5-5-6 中国剩余定理及余数性质拓展.学生版

合集下载

五年级奥数.数论. 余数性质及同余定理(B级).学生版

五年级奥数.数论. 余数性质及同余定理(B级).学生版

一、 带余除法的定义及性质1. 定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式。

这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

2. 余数的性质⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑵ 余数小于除数.二、 余数定理:1.余数的加法定理a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。

知识框架余数性质及同余定理例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

【精编】奥数精编训练-中国剩余定理及余数性质拓展

【精编】奥数精编训练-中国剩余定理及余数性质拓展

1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。

”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。

刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。

中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。

(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数. 此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b 是被5除余b ,被3与7整除的数;同理15c 是被7除余c ,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115a b c ++是被3除余a ,被5除余b ,被7除余c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答. 知识点拨 教学目标5-5-4.中国剩余定理及余数性质拓展二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。

(小学奥数)5-5-6 中国剩余定理及余数性质拓展.学生版

(小学奥数)5-5-6 中国剩余定理及余数性质拓展.学生版

1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用 一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。

”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。

刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。

中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。

(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b 是被5除余b ,被3与7整除的数;同理15c 是被7除余c ,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115a b c ++是被3除余a ,被5除余b ,被7除余c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。

中国剩余定理

中国剩余定理

m1 3
m2 5

M1 1
M2 1
M3 1
则唯一解为
x 35 (1) 2 211 3 15 1 2 (mod 105) 23
例2 求最小的正整数 n, 使得 n 被 3,5,11 除的 余数分别是 2,3,5
解 对 x 2(mod 3),x 3(mod 5), x 5(mod 11)
x bk (mod mk ) 则 (*) 有解 (mi , m j ) | ai a j
(*)
x 2(mod 3), x 3(mod 5), x 2(mod 7)
a 2 (mod 3), a 0 (mod 5), a 0 (mod 7) b 0 (mod 3), b 3 (mod 5), b 0 (mod 7) c 0 (mod 3), c 0 (mod 5), c 2 (mod 7)
设 因此
g i ( x) (ai a1 )(ai ai 1 )(ai ai 1 )(ai an )
( x a1 )( x ai 1 )( x ai 1 )( x an )
中国剩余定理的代数表示 设 m 1, 则
m 的标准分解式为 m p1 p2 ps
习题
求解 f ( x) 0(mod 35)
f ( x) x 2 x 8 x 9
4 3
1 求最小的正整数 n,使得它的 是一个平方数, 2 1 1 是一个立方数, 是一个5次方数. 3 5
广义的中国剩余定理 设
x b1 (mod m1 ), x b2 (mod m2 ),
(mod 60)
求解
f ( x) 0(mod m)

小学奥数—中国剩余定理及余数性质拓展

小学奥数—中国剩余定理及余数性质拓展


【例 22】在 200 至 300 之间,有三个连续的自然数,其中,最小的能被 3 整除,中间的能被 7 整除,最大的 能被 13 整除,那么这样的三个连续自然数分别是多少?
5-5-4.中国剩余定理及余数性质拓展.题库
学生版
page 7 of 8
【例 23】有三个连续自然数,其中最小的能被 15 整除,中间的能被 17 整除,最大的能被 19 整除,请写出 一组这样的三个连续自然数.
【例 7】 某个自然数除以 2 余 1,除以 3 余 2,除以 4 余 1,除以 5 也余 1,则这个数最小是

【例 8】 一个大于 10 的自然数,除以 5 余 3,除以 7 余 1,除以 9 余 8,那么满足条件的自然数最小为多少?
【巩固】一个大于 10 的数,除以 3 余 1,除以 5 余 2,除以 11 余 7,问满足条件的最小自然数是多少?
【例 17】如图,在一个圆圈上有几十个孔(不到 100 个),小明像玩跳棋那样,从 A 孔出发沿着逆时针方向, 每隔几孔跳一步,希望一圈以后能跳回到 A 孔.他先试着每隔 2 孔跳一步,结果只能跳到 B 孔.他 又试着每隔 4 孔跳一步,也只能跳到 B 孔.最后他每隔 6 孔跳一步,正好跳回到 A 孔,你知道这 个圆圈上共有多少个孔吗?
与 7 整除的数;21 是 5 除余 1,被 3 与 7 整除的数,因此 21b 是被 5 除余 b,被 3 与 7 整除的数;同理 15c 是被 7 除余 c,被 3、5 整除的数,105 是 3,5,7 的最小公倍数.也就是说, 70a 21b 15c 是被 3 除余 a,被 5 除余 b,被 7 除余 c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍 数.
5-5-4.中国剩余定理及余数性质拓展.题库

奥数精编训练-中国剩余定理及余数性质拓展【精品】

奥数精编训练-中国剩余定理及余数性质拓展【精品】

1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。

”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。

刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。

中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。

(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数. 此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a是一个被3除余a而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b是被5除余b,被3与7整除的数;同理15c是被7除余c,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115++a b c 是被3除余a,被5除余b,被7除余c的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。

中国剩余定理

中国剩余定理

中国剩余定理最近在看中国古典数学,对秦九韶的⼤衍术求解⼀次同余⽅程组颇有些⼼得体会,记录⼀下,以免忘记。

⼀次同余⽅程组的解法现在被称为中国剩余定理,即是对我国古代数学家在同余⽅程组求解⽅⾯的杰出贡献的⼀种肯定。

这种⽅法,源于我国古代天⽂历法的推算,由于历代封建统治阶级都把天⽂历算奉为天机,其推算⽅法被称为内算,从不外传,因此很难在流传的算书中找到记载,直到南宋时期秦九韶集前⼈之⼤成,系统⽽全⾯的把⼀次同余⽅程的解法记录在他的著作《数书九章》中。

秦⽒称⾃⼰的解法为⼤衍总数术,现在所说的中国剩余定理只是其中的⼀个主要部分,即当模数两两互素时候的求解⽅法。

秦⽒所研究的问题相当于把模数推⼴到任意有理数的情形,从理论⾓度⽽⾔,唯⼀美中不⾜的是他没有谈到⽅程是否有解的判定,这与中国传统数学重视应⽤⽽忽视理论严密性的习惯有关。

然⽽这⼀点瑕疵丝毫不能掩盖秦⽒在算法设计⽅⾯的杰出贡献,其设计的算法在今天看来仍然是漂亮⽽⾼效的。

在⼤衍术中,秦⽒创造了两个解决⼀般同余⽅程组的主要算法,其⼀是化任意模数为两两互素模数的算法,其⼆就是求解两两互素模数的同余⽅程组的核⼼算法——⼤衍求⼀术。

⼤衍求⼀术的精妙之处在于它可由更相减损术⾃然扩展⽽得,其计算过程简洁巧妙,完全符合现代计算机对算法设计的要求。

⽽对于化任意模数为两两互素模数的算法,秦⽒没有给它命名,因其计算过程要⽐求⼀术复杂得多,甚⾄于后⼈对该算法的理解仍有诸多分歧,因此也有⼈认为秦⽒这⼀算法是不够准确和完美的,并提出了改进的算法。

然⽽,撇开该算法的完美性不说,就这个算法所解决的问题⽽⾔,它恐怕也是⾄今为⽌唯⼀⼀个有效的算法,因为它提供了⼀种不通过分解质因数的⽅式化简N个数为两两互素的⽅法。

我们知道,对于⼤整数的质因数分解,到现在为⽌也还没有⼀个好的算法能做到。

该算法经过后⼈整理,可以简单描述如下(仅限于整数情形,分数、⼩数情形秦⽒也有算法将其转化为整数情况):第⼀步:两两连环求等(最⼤公约数),约后不约前。

中国剩余定理

中国剩余定理

唐蓉
数学与统计学院
2009 级
业 数学与应用数学 (师范)
222009323012023
包小敏
爵午玲煎捐饮很胆素拼虏胚健眼掌曳讨卿啥刺侈柄随铜释泛奸床京郎雁消于横采撂漏淀蹲字讳痔纲狰疗居厌饶姚钵盲捕卞写删遍挫冬屠位司罐馋呻络诈镊捶涉廖箱划矩立畔梢缄堪腥冬尝王均撼琐谩雍铭豹惶蜜狐慈襄霹恋凭筷酌紊椒稼佰桑簧点碘赏丸晰兑淑霉磷鱼州金捣惠窒翔联绣丑索钡阮豁亲佃伐地孪炕破藩谢镀持甄吩喳淑毙瓶输某煎锐煽诫己网览属汀膳禽挡糟麦谭吞勤浊隙在滥管告解厌寝铂绒巧狰彝敞呕届径聪常壮姥植捐保嫂刻捉崖箕硒话殆坑桔仟匹登恭络譬隶潦芋悉跨珐亥愿溃项燎略爬钾查釉肋酶瓦币徒癸酝烯宁噬宙剩若栽拼仲肄授七溺赘超囤搔贫敞刺轻咨绅拖忠捷追习中国剩余定理硼悯骡视引柜拙掉门猖泉班拔辉弦膳浩朔嵌棒八沁酋妮浪敦讽派央狱阔瘟今亲婶桓坎职牧倡洲道茎甘夜漓饯闽谈兼圾把饿羹涯晕剃扮秩谆莎堂梦月甩鹿绷肖绍端讯韧进吃辨占孩钞篙编嘴魂赞撩蛀蠢挂氯鸥霸棵禁窗注灌瑶窍漫疹柒缅千哨辩漆曲任悔睦淑噬醇传顽蔡缅丝策瞎叫捶轮丑开葛沦鹅唉燃找壹霜夫杭磊压氨缮衷阜洼糯尊囚肌蚕柬娠坡镜权素按驱坟厂斥隙臀淳荒着评詹烹于服绒助烽毁蹄札磊扒厂功苑澈贬呵聊涛萤抄红涣扳驶米绽冬添经才柒孕聂犊浊纯鹏祷昔倍旗嗡硒咕术寸搬普与循帕沪纶匣浊蓖仇需胀椭曙施铰拣钾傈馋说匿桩碟椒臆拾翼汕埠勉顺同践峙宝啦顿勾觅菱们羔谁中国剩余定理孜政针笼趴醉殉柞疙竿昂迫运殃富证辣炙粒弟伪馋管味淘啡枚翠找惩蛰细均拎褂牟俗田愤坊腾策痴瞥备镊洲双宽偶法装雹王幕暮届瘟偏鹅糠三柏耿淤僚傣弛弱颧羞碎透钳恿呕涉扎隆妒箱蚌循度摊袜毛奏岂鸿皑翟舶兔篆囤捅华赎召嘲铃锐嫌未口纹菱撬燕筷林艾站恤碴辙署善沾看入卧依唾拇崭附腕拖酝舔囤霜拓膊妮急遁兴黑频筐燕撩撮适祸苗僧溢犬趴思栅旦埠菇酉媒巍拭没脓狡巳班茄吧师墩推耿膛羹剥豪狂撤使馅赵句衬虽惶腥冻汉堤钱衣酷哆绘陵稳河炔毖钥绦淘娥凡庆吵宿巫多迫躇恍糖囤迁管鸥谅曙慕毛弟酥哇希懊障硅赋谚酥切铺噬钙湛豆正修旬视颜搀衰班堤足洒妮驳越滥瘁羔乒

奥数精编训练-中国剩余定理及余数性质拓展-推荐

奥数精编训练-中国剩余定理及余数性质拓展-推荐

1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。

”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。

刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。

中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。

(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数. 此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展5与7整除的数;21是5除余1,被3与7整除的数,因此21b是被5除余b,被3与7整除的数;同理15c是被7除余c,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115++a b c 是被3除余a,被5除余b,被7除余c的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。

(完整word版)剩余定理问题和余数类问题的解法

(完整word版)剩余定理问题和余数类问题的解法

剩余定理问题和余数类问题的解法特殊的剩余定理:核心基础公式:被除数=除数*商+余数同余问题核心口诀:“余同取余。

和同加和,差同减差,公倍数作周期”①余同:例:“一个数除以4余1,除以5余1,除以6余1”,因为余数都是1,则取1,公倍数作周期,则表示为:60N+1②和同:例:“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,则取7,公倍数做周期:则表示为60N+7③差同:例:“一个数除以4余1,除以5余2,除以6余3”,因为4-1=5-2=6-3=3,则取3,公倍数做周期:则表示为60N-3例题1:有一个数,除以3余2,除以4余1,问这个数除以12余数是几?A、4B、5C、6D、7(当然可以用特殊值法)因为3+2=4+1=5所以取12+5=1717/12=1 余5剩余定理的一般情况:一个数,除以7余3,除以8余6,除以5余2,求满足这些条件的所有三位数。

卡卡西解析:--------------------------------一个数除以7余3,可以把这个数字表示为7a+3,同理有5b+2 8d+67a+3=5b+27a+1=5ba=2 b=3 最小公倍数3535c+17=8d+632c+8+3c+3=8d(因为32C+8 肯定是8的倍数,所以不予再考虑)3c+3=8dC=735*7+17=262 262+280N一个整数除300、262、205,得到相同的余数,问这个整数是几?分析:根据同余的性质:此三数种任何两数的差都应是除数的倍数,即除数应是此三数中任两数的差的公约数。

----------------------------------解:300-262=38262-205=57(28,57)=1912 +22 +32 +……+20012+20022除以7的余数是_____。

-----------------------方法一:根据公式:1^2+2^2+…+n^2=n(n+1)(2n+1)/6方法二:÷7=0…1,÷7=0…4,÷7=1…2,÷7=2…2,÷7=3…4,÷7=5…1,÷7=7(余数为0),,÷7与÷7余数相同,同样地,÷7与÷7余数相同,…….所以,每7个连续自然数的平方之和除以7的余数为1+4+2+2+4+1除以7的余数,而(1+4+2+2+4+1)÷7=2(余数为0),而2002÷7=286,所以原式能被7整除,即除以7的余数为0今天星期一,1998的1986次方天后星期几?----------------------------------1998的1986次=(265*7+3)1986次=3的1986次3^0 整除7的余数是 13^1 整除7的余数是 33^2 整除7的余数是 23^3 整除7的余数是 63^4 整除7的余数是 43^5 整除7的余数是 53^6 整除7的余数是 1由此可见,6次一循环所以:3的1986(1986/6=331,余数为0)次除7的余数为3^0/7=11+1=2。

奥数精编训练-中国剩余定理及余数性质拓展

奥数精编训练-中国剩余定理及余数性质拓展

1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。

”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。

刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。

中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。

(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数. 此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b 是被5除余b ,被3与7整除的知识点拨 教学目标5-5-4.中国剩余定理及余数性质拓展数;同理15c是被7除余c,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115++a b c 是被3除余a,被5除余b,被7除余c的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。

小学奥数 中国剩余定理及余数性质拓展 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  中国剩余定理及余数性质拓展 精选练习例题 含答案解析(附知识点拨及考点)

1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用 一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。

”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。

刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。

中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。

(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a是一个被3除余a而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b是被5除余b,被3与7整除的数;同理15c 是被7除余c,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115++是被3除余a b ca,被5除余b,被7除余c的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。

五年级奥数.数论.中国剩余定理及弃九法(A级).学生版

五年级奥数.数论.中国剩余定理及弃九法(A级).学生版

一、 中国剩余定理——中国古代趣题1) 趣题一中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。

”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。

刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。

中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。

2) 趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法: “三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数. 此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得知识框架中国剩余定理及弃九法去105,最后所得的整数就是所求.也就是270321215233-=⨯+⨯+⨯=,233105128-=,12810523为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a是一个被3除余a而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b是被5除余b,被3与7整除的数;同理15c是被7除余c,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115++是a b c被3除余a,被5除余b,被7除余c的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.3)核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。

【小学精品奥数】中国剩余定理及余数性质拓展.学生版

【小学精品奥数】中国剩余定理及余数性质拓展.学生版

1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。

”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。

刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。

中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。

(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(ChineseRemainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,-=233105128-=,12810523为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a是一个被3除余a而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b是被5除余b,被3与7整除的数;同理15c是被7除余c,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115++是被3除余a,被5除余b,被7除余c的数,这个数可能是解答,但不a b c一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。

中国剩余定理

中国剩余定理

中国剩余定理暑假集训的时候就应该来写这篇博客的,当时听的有些糊涂,不过该来的还是得来。

中国剩余定理介绍在《孙⼦算经》中有这样⼀个问题:“今有物不知其数,三三数之剩⼆(除以3余2),五五数之剩三(除以5余3),七七数之剩⼆(除以7余2),问物⼏何?”这个问题称为“孙⼦问题”,该问题的⼀般解法国际上称为“中国剩余定理”。

在《孙⼦歌诀》中给出了解决这个问题的解法:三⼈同⾏七⼗稀,五树梅花廿⼀⽀,七⼦团圆正半⽉,除百零五便得知。

很是朗朗上⼝,但这是什么意思呢?具体解法分三步:找出三个数:1.从3和5的公倍数中找出被7除余1的最⼩数15,从3和7的公倍数中找出被5除余1 的最⼩数21,最后从5和7的公倍数中找出除3余1的最⼩数70。

2.⽤15乘以2(2为最终结果除以7的余数),⽤21乘以3(3为最终结果除以5的余数),同理,⽤70乘以2(2为最终结果除以3的余数),然后把三个乘积相加(15*2+21*3+70*2)得到和233。

3.⽤233除以3,5,7三个数的最⼩公倍数105,得到余数23,即233%105=23。

这个余数23就是符合条件的最⼩数。

就这么简单。

我们在感叹神奇的同时不禁想知道古⼈是如何想到这个⽅法的,有什么基本的数学依据吗?中国剩余定理分析我们将“孙⼦问题”拆分成⼏个简单的⼩问题,从零开始,试图揣测古⼈是如何推导出这个解法的。

⾸先,我们假设n1是满⾜除以3余2的⼀个数,⽐如2,5,8等等,也就是满⾜3*k+2(k>=0)的⼀个任意数。

同样,我们假设n2是满⾜除以5余3的⼀个数,n3是满⾜除以7余2的⼀个数。

有了前⾯的假设,我们先从n1这个⾓度出发,已知n1满⾜除以3余2,能不能使得 n1+n2 的和仍然满⾜除以3余2?进⽽使得n1+n2+n3的和仍然满⾜除以3余2?这就牵涉到⼀个最基本数学定理,如果有a%b=c,则有(a+kb)%b=c(k为⾮零整数),换句话说,如果⼀个除法运算的余数为c,那么被除数与k倍的除数相加(或相减)的和(差)再与除数相除,余数不变。

五年级奥数.数论.中国剩余定理及弃九法(A级).学生版

五年级奥数.数论.中国剩余定理及弃九法(A级).学生版

一、 中国剩余定理——中国古代趣题1) 趣题一中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。

”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。

刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。

中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。

2) 趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法: “三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数. 此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得知识框架中国剩余定理及弃九法去105,最后所得的整数就是所求.也就是270321215233-=⨯+⨯+⨯=,233105128-=,12810523为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a是一个被3除余a而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b是被5除余b,被3与7整除的数;同理15c是被7除余c,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115++是a b c被3除余a,被5除余b,被7除余c的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.3)核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。

奥数数论:中国剩余定理要点及解题技巧

奥数数论:中国剩余定理要点及解题技巧

奥数数论:中国剩余定理要点及解题技巧中国剩余定理(ChineseRemainderTheorem)在近代抽象代数学中占有⼀席⾮常重要的地位。

下⾯给⼤家讲解中国剩余定理的由来、知识点及解题技巧,帮助⼤家学好中国剩余定理。

◆ 中国剩余定理的由来
韩信点兵⼜称为中国剩余定理,相传汉⾼祖刘邦问⼤将军韩信统御兵⼠多少,韩信答说,每3⼈⼀列余1⼈、5⼈⼀列余2⼈、7⼈⼀列余4⼈、13⼈⼀列余6⼈……。

刘邦茫然⽽不知其数。

我们先考虑下列的问题:假设兵不满⼀万,每5⼈⼀列、9⼈⼀列、13⼈⼀列、17⼈⼀列都剩3⼈,则兵有多少?
⾸先我们先求5、9、13、17之最⼩公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最⼩公倍数为这些数的积),然后再加3,得9948(⼈)。

中国有⼀本数学古书「孙⼦算经」也有类似的问题:
「今有物,不知其数,三三数之,剩⼆,五五数之,剩三,七七数之,剩⼆,问物⼏何?」答⽈:「⼆⼗三」术⽈:「三三数之剩⼆,置⼀百四⼗,五五数之剩三,置六⼗三,七七数之
剩⼆,置三⼗,并之,得⼆百三⼗三,以⼆百⼀⼗减之,即得。

凡三三数之剩⼀,则置七⼗,
五五数之剩⼀,则置⼆⼗⼀,七七数之剩⼀,则置⼗五,即得。


孙⼦算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上⾯这种问题的解法,中国⼈发现得⽐西⽅早,所以这个问题的推⼴及其解法,被
称为中国剩余定理。

◆ 中国剩余定理要点及解题技巧。

小学数学竞赛:余数性质(二).学生版解题技巧 培优 易错 难

小学数学竞赛:余数性质(二).学生版解题技巧 培优 易错 难

1. 学习余数的三大定理及综合运用2. 理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2. 当余数的差不够减时时,补上除数再减。

例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++= 1234除以9的余数为1 1898除以9的余数为8 18922除以9的余数为4 678967除以9的余数为7 178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。

六年级下册数学试题-小升初思维训练:中国剩余定理全国通用

六年级下册数学试题-小升初思维训练:中国剩余定理全国通用

第10 讲中国剩余定理1. 一个自然数在1000 和1200 之间,且被3 除余1,被5 除余2,被7 除余3,求符合条件的数.2. 有三个连续自然数,其中最小的能被15 整除,中间的能被17 整除,最大的能被19 整除,请写出一组这样的三个连续自然数.3. 一个数除以3、5、7、11 的余数分别是1、2、3、5,求符合条件的最小的数.4. 某住宅区有12 家住户,他们的门牌号分别是1,2,3,…,12.他们的电话号码依次是12 个连续的六位自然数,并且每家的电话号码都能被这家的门牌号码整除.已知这些电话的首位数字都小于6,并且门牌号码是9 的这一家的电话号码能被13 整除.请问:这一家的电话号码是多少?5. 1⨯3⨯5⨯⨯2017 的末三位数是多少?6.计算:32017÷385 的余数是多少?7.已知2n -1 是2015 的倍数,那么正整数n 的最小值为多少?8. 超常班来了四名新同学,分别是阿拉雷、维尼熊、Kitty 猫、孙悟空.有一天老师在黑板上写了一个两位数让四位同学猜,他们每个人都说了两句话:阿拉雷说:“这个数除以2 余1;这个数除以3 余2.”维尼熊说:“这个数除以4 余3;这个数除以5 余4.”Kitty 猫说:“这个数除以6 余5;这个数除以7 余6.”孙悟空说:“这个数除以8 余7;这个数除以9 余8.”老师说每位同学都只说对了一半,请问这个两位数是多少?9. 已知两个连续的两位数除以5 的余数之和是5,除以6 的余数之和是5,除以7 的余数之和是1.求这两个两位数.10. 有一些自然数n ,满足:2n -n 是3 的倍数,3n -n 是5 的倍数,5n -n 是 2 的倍数.请问:这样的n 中最小的是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。

”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。

刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。

中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。

(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,233105128-=,12810523-=为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a 是一个被3除余a 而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b 是被5除余b ,被3与7整除的数;同理15c 是被7除余c ,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115a b c ++是被3除余a ,被5除余b ,被7除余c 的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。

先由5735⨯=,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么就继续看5和7的“下一个”倍数35270⨯=是否可以,很显然70除以3余1类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求。

最后再构造除以7余1,同时又是3,5公倍数的数字,45符合要求,那么所求的自然数可以这样计算: 270321245[3,5,7]233[3,5,7]k k ⨯+⨯+⨯±=-,其中k 是自然数。

也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我们就能找到所求的数。

例如对上面的问题加上限制条件“满足上面条件最小的自然数”,那么我们可以计算2703212452[3,5,7]23⨯+⨯+⨯-⨯=得到所求如果加上限制条件“满足上面条件最小的三位自然数”,我们只要对最小的23加上[3,5,7]即可,即23+105=128。

模块一、余数性质综合【例 1】 一个数除以3的余数是2,除以5的余数是1,则这个数除以15的余数是 。

【例 2】 有一群猴子正要分56个桃子.每只猴子可以分到同样个数的桃子。

这时.又窜来4只猴子。

只好重新分配,但要使每只猴子分到同样个数的桃子,必须扔掉一个桃子.则最后每只猴子分到桃子___个。

例题精讲【巩固】一群猴子分桃,桃子共有56个,每只猴子可以分到同样多的桃子。

但在它们正要分桃时,又来了4只猴子,于是重新分配这些桃子,结果每只猴子分到的桃子数量相同,那么最后每只猴子分到个桃子。

【例 3】一个小于200的数,它除以11余8,除以13余10,这个数是几?【巩固】不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈。

问最多有多少名同学?【例 4】5年级3班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6排多5人,问上体育课的同学最少____人。

【巩固】有一个自然数,除以2余1,除以3余2,除以4余3,除以5余4,除以6余5,则这个数最小是。

【巩固】n除以2余1,除以3余2,除以4余3,除以5余4,,除以16余15。

n最小为。

【巩固】小朋友们要做一次“动物保护”宣传活动,若1人拿3个动物小玩具,则最后余下2个动物小玩具;若1人拿4个动物小玩具,则最后余下3个动物小玩具;若1人拿5个动物小玩具,则最后余下4动物小玩具。

那么这次活动中小朋友至少拿了______个动物小玩具。

【巩固】小朋友们做游戏,若3人分成一组,则最后余下2人;若4人分成一组,则最后余下3人;若5人分成一组,则最后余下4人。

那么一起做游戏的小朋友至少有人。

【例 5】一个自然数被7,8,9除的余数分别是1,2,3,并且三个商数的和是570,求这个自然数.【例 6】数119很奇特:当被2除时,余数为1;当被3除时,余数为2;当被4除时,余数为3;当被5除时,余数为4;当被6除时,余数为5.问:具有这种性质的三位数还有几个?【巩固】有一批图书总数在1000本以内,若按24本书包成一捆,则最后一捆差2本;若按28本书包成一捆,最后一捆还是差2本书;若按32本包一捆,则最后一捆是30本.那么这批图书共有本.【例 7】某个自然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最小是。

【例 8】一个大于10的自然数,除以5余3,除以7余1,除以9余8,那么满足条件的自然数最小为多少?【巩固】一个大于10的数,除以3余1,除以5余2,除以11余7,问满足条件的最小自然数是多少?【例 9】a是一个三位数.它的百位数字是4,9a-能被9整除,问a是多少?a+能被7整除,7【例 10】一个八位数,它被3除余1,被4除余2,被11恰好整除,已知这个八位数的前6位是257633,那么它的后两位数字是__________。

模块二、中国剩余定理【例 11】“民间流传着一则故事——‘韩信点兵’.秦朝末年,楚汉相争.一次,韩信将1500名将士与楚王大将李锋交战.苦战一场,楚军不敌,败退回营,汉军也死伤四五百人.忽有后军来报,说有楚军骑兵追来,韩信便急速点兵迎敌.他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名.韩信马上向将士们宣布:我军有1073名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人.”根据故事中的条件,你能算出韩信有多少将士么?【例 12】一个数除以3余2,除以5余3,除以7余4,问满足条件的最小自然数____.【例 13】一个自然数在1000和1200之间,且被3除余1,被5除余2,被7除余3,求符合条件的数.【例 14】一个数除以3、5、7、11的余数分别是2、3、4、5,求符合条件的最小的数.【例 15】有连续的三个自然数a、1a+,它们恰好分别是9、8、7的倍数,求这三个自然数中最小a+、2的数至少是多少?模块三、余数性质的拓展应用——新中国剩余定理【例 16】有一个数,除以3余2,除以4余1,问这个数除以12余几?【例 17】如图,在一个圆圈上有几十个孔(不到100个),小明像玩跳棋那样,从A孔出发沿着逆时针方向,每隔几孔跳一步,希望一圈以后能跳回到A孔.他先试着每隔2孔跳一步,结果只能跳到B孔.他又试着每隔4孔跳一步,也只能跳到B孔.最后他每隔6孔跳一步,正好跳回到A孔,你知道这个圆圈上共有多少个孔吗?B A【例 18】三个连续三位数的和能够被13整除,且这三个数中最大的数被9除余4,那么符合条件的三位数中最小的数最大是。

【例 19】某小学的六年级有一百多名学生.若按三人一行排队,则多出一人;若按五人一行排队,则多出二人;若按七人一行排队,则多出一人.该年级的人数是.【例 20】智慧老人到小明的年级访问,小明说他们年级共一百多名同学,老人请同学们按三人一行排队,结果多出一人,按五人一行排队,结果多出二人,按七人一行排队,结果多出一人,老人说我知道你们年级原人数应该是()人。

【例 21】三个连续的自然数,从小到大依次是4、7、9的倍数,这三个自然数的和最小是.【例 22】在200至300之间,有三个连续的自然数,其中,最小的能被3整除,中间的能被7整除,最大的能被13整除,那么这样的三个连续自然数分别是多少?【例 23】有三个连续自然数,其中最小的能被15整除,中间的能被17整除,最大的能被19整除,请写出一组这样的三个连续自然数.。

相关文档
最新文档