七年级应用一元一次方程-水箱变高了教案

合集下载

七年级数学上册 第五章 一元一次方程 3 应用一元一次方程——水箱变高了教案 (新版)北师大版-(新

七年级数学上册 第五章 一元一次方程 3 应用一元一次方程——水箱变高了教案 (新版)北师大版-(新

3 应用一元一次方程——水箱变高了1.通过分析图形问题中的等量关系,建立方程解决问题.2.进一步了解一元一次方程在解决实际问题中的应用.重点列一元一次方程解简单的图形变化的实际问题.难点从复杂问题中寻找等量关系.一、情境导入1.课件出示两瓶矿泉水(容量一样,一瓶短而宽,另一瓶长而窄).教师:哪瓶矿泉水多?为什么?2.教师演示:先用一块橡皮泥捏出一个“瘦长”的圆柱体,然后再让这个“瘦长”的圆柱“变矮”,变成一个“又矮又胖”的圆柱.教师:在刚才操作的过程中,圆柱由“高”变“低”,圆柱的底面直径变了没有?圆柱的高呢?在这个变化过程中,是否有不变的量?是什么没变?学生思考后回答问题,教师点评.二、探究新知课件出示教材第141页图5-1,提出问题:某居民楼顶有一个底面直径和高均为4 m的圆柱形储水箱.现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4 m减少为3.2 m.那么在容积不变的前提下,水箱的高度由原先的4 m变为多少米?教师:这道题该如何解答呢?其中的等量关系是什么?引导学生找出等量关系:旧水箱的容积=新水箱的容积.教师:设水箱的高度为x,请同学们把下表补充完整.旧水箱新水箱底面半径/m高/m容积/m3学生完成后举手汇报答案,教师点评.教师:根据等量关系,怎样列出方程?解得x的值是多少?学生列出方程并解答,教师点评.课件出示实验题:一个圆柱形玻璃杯中装满了水,把杯中的水倒入一个长方体形状的可盛水的盒子里(玻璃杯的容积大于长方体的容积),当盒子装满水时,玻璃杯中的水下降了多少?要求学生用玻璃杯按要求分组实验后,全班交流各组得到的结果及解决问题的方法、步骤,并派小组代表进行操作示X、讲解.教师巡视课堂,指导、参与学生的实验.三、举例分析例(课件出示教材第141页例题)要求学生分四人小组讨论解决问题,并根据计算的结果画出各自的长方形(或正方形).最后,抽派小组代表阐述解题的步骤以及思路,并展示自己所在的小组所画的长方形(或正方形).四、练习巩固教材第142页“随堂练习”.五、小结1.通过本节课的学习,你有什么收获?2.列一元一次方程解实际问题时,关键是什么?六、课外作业教材第144页习题5.6第1~3题.本节课是对前面所学的一元一次方程的一个应用——水箱变高了.让数学与几何问题相结合,使学生学以致用.在课堂上,让学生观察水箱由“矮”变“高”的变化过程,引导学生找出问题中的等量关系,列出方程,并解方程,使问题得到解决.通过学生自己动手操作实验、计算、验证,调动学生学习的积极性和主动性,充分体现“自主、合作、交流、探究”的新课程理念.观察、演示、分析问题中各个量之间的关系使学生初步体验把实际问题转化为数学问题的“化归”过程.。

北师大版数学七年级上册《3 应用一元一次方程—水箱变高了》教学设计1

北师大版数学七年级上册《3 应用一元一次方程—水箱变高了》教学设计1

北师大版数学七年级上册《3 应用一元一次方程—水箱变高了》教学设计1一. 教材分析北师大版数学七年级上册《3 应用一元一次方程—水箱变高了》这一节主要通过一个实际问题引入一元一次方程的应用。

通过水箱加水的问题,让学生了解并掌握一元一次方程在实际生活中的运用,培养学生解决实际问题的能力。

教材通过具体的例题和练习,使学生掌握一元一次方程的解法,并能够将其应用到实际问题中。

二. 学情分析学生在学习这一节内容前,已经学习了一元一次方程的理论知识,对于如何解一元一次方程已经有了初步的了解。

但是,对于如何将一元一次方程应用到实际问题中,可能还存在一定的困难。

因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生解决实际问题的能力。

三. 教学目标1.知识与技能:让学生掌握一元一次方程在实际问题中的应用,能够通过列方程解决实际问题。

2.过程与方法:通过实际问题的解决,培养学生解决问题的能力,提高学生运用数学知识解决实际问题的意识。

3.情感态度与价值观:培养学生对数学的兴趣,让学生感受到数学在生活中的重要性。

四. 教学重难点1.重点:让学生掌握一元一次方程在实际问题中的应用。

2.难点:如何引导学生将实际问题转化为数学问题,并用一元一次方程进行解决。

五. 教学方法1.情境教学法:通过设置实际问题情境,引导学生主动探究,从而掌握一元一次方程的应用。

2.引导发现法:在教学过程中,引导学生发现实际问题与数学问题之间的联系,培养学生解决问题的能力。

3.实践操作法:让学生通过实际操作,体验一元一次方程在实际问题中的应用。

六. 教学准备1.教具准备:多媒体课件、黑板、粉笔。

2.学具准备:学生笔记本、练习本。

七. 教学过程1.导入(5分钟)通过一个实际问题引出本节课的主题:水箱变高了。

问题可以这样设置:一个水箱原来装有水2米深,现在在水箱中再加入0.5米深的水,问这时水箱中的水深是多少?2.呈现(10分钟)引导学生将实际问题转化为数学问题,即水箱原来的水深加上加入的水深等于现在的水深。

5.3应用一元一次方程水箱变高了(教案)

5.3应用一元一次方程水箱变高了(教案)
3.培养学生的数学运算能力,让学生熟练掌握一元一次方程的解法,并能应用于解决实际生活中的问题。
4.培养学生的数学建模素养,通过构建水位高度与时间的关系模型,培养学生运用数学知识解决现实问题的能力。
5.培养学生的数据分析素养,让学生在解决问题的过程中,学会收集、整理、分析数据,为解决更复杂的实际问题奠定基础。
举例:在本节课中,教师应重点讲解如何将水箱注水过程中水位的变化转化为数学模型,即一元一次方程。例如,如果水箱每分钟注水V升,初始水位为h0米,经过t分钟后水位变为h米,那么可以通过方程h = h0 + Vt来描述这一过程。
2.教学难点
-抽象出实际问题中的一元一次方程模型,特别是当问题情境较为复杂时。
三、教学难点与重点
1.教学重点
-理解并掌握一元一次方程在描述现实问题中的应用,尤其是水箱注水问题中水位高度与时间的关系。
-学会根据实际问题抽象出一元一次方程,并能正确列出方程。
-掌握一元一次方程的解法,特别是如何将实际问题转化为方程求解。
-能够运用一元一次方程解决类似水箱注水问题,如计算注水时间、确定水位高度等。
3.重点难点解析:在讲授过程中,我会特别强调如何从实际问题中抽象出一元一次方程,以及如何解这样的方程。对于难点部分,我会通过具体的例子和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与水位变化相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的模拟实验。通过加水到容器中,观察并记录水位随时间的变化。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)

应用一元一次方程——水箱变高(教案)

应用一元一次方程——水箱变高(教案)

北师大版数学七年级 5.3应用一元一次方程——水箱变高了教学设计课题 5.3应用一元一次方程——水箱变高了单元第五单元学科数学年级七学习目标1.通过分析图形问题中的数量关系体会方程模型的作用,进一步提高学生分析问题、解决问题、敢于提出问题的能力.2.借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接或间接设未知数的解题思路,从而建立方程,解决实际问题3. 通过分析图形问题中的数量关系体会方程模型的作用,进一步提高学生分析问题、解决问题、敢于提出问题的能力.4. 通过对实际问题的探讨,使学生在独立思考的过程中,进一步体会数学应用的价值,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望.重点寻找图形问题中的等量关系,建立一元一次方程,使实际问题数学化.难点寻找图形问题中的等量关系,建立方程.教学过程教学环节教师活动学生活动设计意图导入新课1、教师出示课件:教师以“橡皮泥的变化”为情境引入:思考:1. 放在手里的橡皮泥在手压前和手压后有何变化?你发现了其中的相等关系吗?1、变胖了,变矮了.(即高度和底面半径发生了改变.)2、手压前后体积不变,重重不变通过思考问题,引入本课:应用一元一次方程——水箱变高了。

学生思考橡皮泥的变化?交流、讨论、总结。

从而引入应用一元一次方程——水箱变高了。

教师以“橡皮泥的变化”为载体,激发学生的学习兴趣,让让学生初步体会“形积变化”问题,同时简单地感受、分析出不变量与变量间的等量关系.把学生引入探究新解法的情境中,自然地引入本节课的课题——应用一元一次方程——水箱变高了.讲授新课2、出示课件教师引导学生探索水箱容积不变,高度如何变化?某居民楼顶有一个底面直径和高均为4m的圆柱形储水箱。

现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4m减少为3.2m。

那么在容积不变的前提下,水箱的高度将由原先的4m增高为多少米?想一想:什么发生了变化?什么没有发生变化?等量关系:旧水箱的容积=新水箱的容积解:设水箱的高变为 xm,填写下表:根据等量关系,列出方程:π×22×4 = π×1.62x 让学生自己通过观察,分析、交流、辩证、归纳,然后老师讲解,师生交流,总结应用一元一次方程——水箱变高了.1.通过学生的观察、对比、分析和讨论,师生共同探究应用一元一次方程——水箱变高了,既可以培养学生观察、思考、分析、总结、归纳能力,又培养了学生的语言表达能力,体会到的形之间的变与不变的关系,量之间的等量关系抽象成数学问题,利用前几节学的解方程方法解决实际问题.引导学生通过填表,找到等量关系,正确列出方程.同时还可以解方程得 x=6.25因此,高变成了6.25 厘米等体积变形做一做:用一根长为10m的铁丝围成一个长方形.(1)若该长方形的长比宽多1.4m,此时长方形的长、宽各是多少?等量关系:(长+宽)× 2=周长解:设此时长方形的宽为xm,则它的长为(x+1.4)m. 根据题意,得(x+1.4 +x) ×2 =10解得 x =1.81.8+1.4=3.2此时长方形的长为3.2m,宽为1.8m.(2)若该长方形的长比宽多0.8m,此时长方形的长和宽各为多少米?它围成的长方形与(1)中所围成的长方形相比,面积有什么变化?解:设此时长方形的宽为xm,则它的长为(x+0.8)m.根据题意,得(x+0.8 +x) ×2 =10解得 x=2.12.1+0.8=2.9此时长方形的长为2.9m,宽为2.1m,面积为2.9 ×2.1=6.09(m2),(1)中长方形的面积为3.2 × 1.8=5.76(m2).此时长方形的面积比(1)中长方形的面积增大6.09-5.76=0.33(m2).(3)若该长方形的长与宽相等,即围成一个正方形,那么正方形的边长是多少?它围成的正方形的面积与(2)中相比,又有什么变化?解:设正方形的边长为xm.根据题意,得(x +x) ×2 =10解得 x=2.5正方形的边长为2.5m正方形的面积为2.5 × 2.5 =6. 25(m2)比(2)中面积增大 6. 25 -6.09=0.16(m2)教师引导学生总结:当周长不变时,围成正方形面积最大.3、出示课件试一试:例1 用两根等长的铁丝分别绕成一个正方形和一个圆,已知正方形的边长比圆的半径长2(π-2) m,求这两根等长的铁丝的长度,并通过计算说明谁的面积大.解析: 比较两图形的面积大小,关键是通过题中的等量关系列方程求得圆的半径和正方形的边长,本题的等量关系为正方形的周长=圆的周长.解:设圆的半径为r m,则正方形的边长为[r +2(π-2)]m.根据题意,得2πr=4(r+2π-4),解得r=4.所以铁丝的长为2πr=8π(m).所以圆的面积是π×42=16π(m 2),正方形的面积为[4+2(π-2)]2=4π2(m 2).因为4π×4>4π×π,所以16π>4π2,所以圆的面积大.答:铁丝的长为8π m,圆的面积较大.师生共同总结:注意事项(1)形状、面积发生了变化,而周长没变;(2)形状、周长不同,但是根据题意找出周长之间的关系,把这个关系作为等量关系.解决问题的关键是通过分析变化过程,挖掘其等量关系,从而可列方程.学习兴趣,调动了学生学习的积极性,一方面巩固学生对所学知识的掌握,另一方面充分利用情境,有助于学生发散思维能力的培养.课堂练习1.要锻造一个半径为5 cm,高为8 cm的圆柱毛坯,应截取半径为4 cm的圆钢的高度为( A ) A.12.5 cm B.13 cm C.13.5 cm D.14 cm 2.如图,小明从一个正方形的纸片上剪下一个宽为6 cm的长条后,再从剩下的纸片上剪下一条宽为8 cm的长条.如果两次剪下的长条面积正好相等,则原正方形的边长是( B )A.20 cm B.24 cm。

七年级数学北师大版上册 第5章《应用一元一次方程——水箱变高了》教学设计 教案(1)

七年级数学北师大版上册 第5章《应用一元一次方程——水箱变高了》教学设计 教案(1)

教学设计应用一元一次方程——水箱变高了【教学目标】让学生学会根据实际应用问题,找出等量关系,学会列一元一次方程并解答实际应用问题.【重点难点】●重点:根据实际问题列一元一次方程.●难点:寻找等量关系.【教法与学法】●教法:引导探究法.●学法:讨论交流.【教学过程】一、情境引入将一个底面直径是20 cm、高9 cm的“矮胖”形圆柱锻压成底面直径为10 cm 的“瘦长”形圆柱,假设在锻压过程中圆柱的体积保持不变,那么圆柱的高变成了多少厘米?二、互动新授1.教师活动:如果设锻压后圆柱的高为x cm,指导学生计算并填写教材P143表格.学生活动:按要求填写表格,并根据等量关系,列出方程求解出x,回答问题.2.教师活动:请同学们阅读教材P143例1的题目,你知道如何按要求围成长方形吗?在此题中有没有等量关系?在变化过程中什么量是不变量呢?如何列出方程?逐步引导学生列出方程并解答问题.学生活动:思考并讨论例1中的等量关系,如何设未知数,如何列方程.【设计意图】让学生学会分析题意,学会抓住题目中的等量关系列方程.3.教师活动:请同学们交流一下所设的未知数是否一致,有哪些设法?所得的方程一样吗?并根据所列的方程解出未知数,得到所求的长方形的长和宽交流是否一致?为什么?学生活动:根据自己所设的未知数,列出方程与同学交流,并解出方程,先回答问题再进行交流.【设计意图】根据所设的未知数不同,得到的方程可以不同,但结果应该一样.4.教师活动:请同学们分别计算所得三个长方形的面积,并比较它们的大小,思考长方形的长和宽怎样变化,所围成的长方形的面积会越大呢?请同学填出下列表格:长方形周长长宽面积第一个第二个第三个学生活动:计算三个长方形的面积,填写表格,并观察比较长方形的面积的大小,找出面积的大小与长和宽的关系.5.教师活动:组织学生练习教材P144随堂练习,并让学生板演交流,教师作好点评.学生活动:练习并交流.【设计意图】通过练习,达到巩固掌握,熟练运用所学的知识解答问题.例:一批宿舍,若每间住1人,则有10人无法安排;若每间住3人,则有10间无人住.这批宿舍的间数为( ).A.20B.15C.10D.12学生活动:讨论本题中所求量和等量关系分别是什么,再列方程求解.教师分析:首先设这批宿舍的间数为x,再找本题中的等量关系,每间的人数可以变化,但总人数不会变,所以可以用未知数x表示出变化前后的总人数相等就得到方程了.【设计意图】引导学生学会从变化中寻找不变量,找出实际应用问题中的等量关系,根据等量关系列出方程.三、例题讲解【例1】有一个底面直径为0.1 m的圆柱形储油器,油中浸有钢珠,若从中捞出546π克钢珠,问液面将下降多少厘米?(1 cm 3钢珠重7.8 g)解析:题中的等量关系为:钢珠的体积=液面下降后减少的体积.【例2】现有长为35米的竹篱笆,小王打算用它围成一个长方形的鸡场,且尽可能使鸡场面积最大,请你帮他设计并求出最大面积.解析:养鸡场的长、宽相等时,面积最大. 四、巩固练习1.一个长方形的周长是40 cm,若将长减少8 cm,宽增加2 cm,长方形就变成了正方形,则正方形的边长为( )A.6 cmB.7 cmC.8 cmD.9 cm2.现有一个长方体水箱,从水箱里面量得它的深是30 cm,底面的长是25 cm,宽是20 cm.水箱里盛有深为 a cm(0<a≤8)的水,若往水箱里放入棱长为10 cm 的立方体铁块,则此时水深为( )A.43a cmB.54a cmC.(a+2) cmD.5a+106cm五、课堂小结1.如何根据实际问题列方程?2.解答实际应用问题需要哪些步骤? 【布置作业】教材习题5.6第1、2题. 【板书设计】3 应用一元一次方程——水箱变高了一、等量关系:变化前后的体积不变 二、列方程先要根据所求设出未知数,用未知数表示出其他量,再用未知数表示出等量关系. 【教学反思】本节课是运用方程解答实际问题的起始课,学生对方程的应用意识没有建立起来,如何把实际问题转化为方程这一环节的处理就尤为重要,这就要求教师做好表率,要先引导学生把所求的量设成字母x,这样就有了方程中的未知数,如何仔细阅读题目,找出题目中的不变量,此处不太好理解,建议教师可以让同学们用橡皮泥做实验,把橡皮泥捏成不同的形状,让学生观察变化中的不变量中什么,有了这二直观的认识就好理解本节内容,从而引导学生顺理成章地用方程解答问题了.。

七年级数学上册第五章一元一次方程3应用一元一次方程__水箱变高了教案新版北师大版

七年级数学上册第五章一元一次方程3应用一元一次方程__水箱变高了教案新版北师大版

3 应用一元一次方程——水箱变高了【知识与技能】通过分析图形问题中的数量关系,建立方程解决问题.【过程与方法】经历由实际问题抽象为方程模型的过程,进一步体会用方程解实际问题的一般思路和步骤.【情感态度】结合本课教学特点,教育学生热爱学习,热爱生活,激发学生学习的兴趣.【教学重点】分析图形问题中的数量关系,熟练地列方程解应用题.【教学难点】从实际问题中抽象出数学模型教学过程.一、情境导入,初步认识用同一根铁丝围成不同的图形,如三角形长方形、正方形、梯形、平行四边形等在这些图形中,什么发生了变化?什么不发生变化?【教学说明】学生很容易得出这些图形的变化,初步感受图形问题中的数量关系.二、思考探究,获取新知1.运用一元一次方程解决等体积变形问题问题1 教材第141页例题以上的内容.【教学说明】学生通过思考、分析,与同伴进行交流,完成表格,列出方程解决问题.体会列表法的重要作用.【归纳结论】列方程解应用题关键是找出问题中的等量关系.2.运用一元一次方程解决等周长变形问题问题2 教材第141页下方的例题.【教学说明】学生通过思考、分析与同伴进行交流,列出方程求解.【归纳结论】在问题2中,长方形的周长始终是不变的,即长与宽的和为:10×1/2=5(m).所以在解决问题的过程中,要紧紧抓住这个等量关系.3.运用一元一次方程解决等面积变形问题.问题3 已知一梯形的高为8cm,上底长为14cm,下底长比上底长的2倍少6cm,若把这个梯形改成与其面积相等的长方形,且长方形的长为24cm,求长方形的宽.【教学说明】学生思考、分析,与同伴交流,设未知数列出方程求解.【归纳结论】运用一元一次方程解决实际问题的一般步骤(1)设未知数,(2)找等量关系式,(3)列方程,(4)解方程,(5)检验,(6)写出答案.三、运用新知,深化理解1.已知内径为120mm的圆柱玻璃杯和内径为300mm,内高为32mm的圆柱形玻璃盆可以盛同样多的水,则玻璃杯的内高为().A.150mmB.200mmC.250mmD.300mm2.一根绳子刚好可以围成一个边长为6cm的正方形,如果用这根绳子围成一个长8cm的长方形,这个长方形的宽为_______cm,面积是_______cm2.3.如图所示,将一个底面直径为10cm,高为 36cm的“瘦长”形圆柱锻压成底面直径为20cm的“矮胖”形圆柱.假设在锻压过程中圆柱的体积保持不变,那么高变成了多少?第3题图第4题图4.墙上钉着一根彩绳围成的梯形形状的饰物,如右图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如右图虚线所示,小颖所钉长方形的长、宽各为多少厘米?【教学说明】学生自主完成,加深对新学知识的理解,检测对运用一元一次方程解决等积变形问题的掌握情况?对学生的疑惑教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.B2.4 323.设高度为xcm,由题意得:π×52×36=π×102x解得x=9所以高变成了9cm.4.设长方形的长为xcm,由题意得:2(x+10)=10×4+6×2解得x=16所以长方形的长为16cm,宽为10cm.四、师生互动,课堂小结1.师生共同回顾运用一元一次方程解决等体积、等周长、等面积问题.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题5.6”中选取.2.完成练习册中本课时的相应作业.本节课从学生运用一元一次方程解决等体积,等周长\等面积问题,到掌握运用一元一次方程解决实际问题的一般步骤,培养学生动手\动脑习惯,提高学生用所学知识解决实际问题的能力,激发学生的学习兴趣.。

北师大版数学七年级上册5.3《应用一元一次方程——水箱变高了》教学设计

北师大版数学七年级上册5.3《应用一元一次方程——水箱变高了》教学设计

北师大版数学七年级上册5.3《应用一元一次方程——水箱变高了》教学设计一. 教材分析北师大版数学七年级上册5.3《应用一元一次方程——水箱变高了》这一节主要让学生学会运用一元一次方程解决实际问题。

通过水箱变高的例子,让学生理解一元一次方程在现实生活中的应用,培养学生的数学应用能力。

二. 学情分析学生在学习这一节内容前,已经学过一元一次方程的理论知识,对解方程有一定的掌握。

但运用一元一次方程解决实际问题还是第一次,因此需要老师在教学中引导学生将理论知识与实际问题相结合。

三. 教学目标1.知识与技能目标:学生会运用一元一次方程解决实际问题,如水箱变高问题。

2.过程与方法目标:学生通过自主探究、合作交流,培养解决问题的能力。

3.情感态度与价值观目标:学生体会数学在生活中的应用,提高学习数学的兴趣。

四. 教学重难点1.重点:学生会运用一元一次方程解决实际问题。

2.难点:如何引导学生将实际问题转化为数学模型,并用一元一次方程解决。

五. 教学方法1.情境教学法:通过设置水箱变高的情境,激发学生兴趣,引导学生主动参与。

2.启发式教学法:在教学中,老师提问引导学生思考,培养学生解决问题的能力。

3.合作学习法:学生分组讨论,共同解决问题,培养学生的团队协作能力。

六. 教学准备1.课件:制作课件,展示水箱变高的情境。

2.教学素材:准备一些实际问题,让学生练习解决。

3.板书设计:设计板书,突出一元一次方程的解题步骤。

七. 教学过程1.导入(5分钟)老师出示一个水箱变高的情境,引导学生思考如何用数学方法解决这个问题。

2.呈现(10分钟)老师呈现一个关于水箱变高的问题,让学生尝试用一元一次方程解决。

引导学生列出方程,并解释方程的来源。

3.操练(10分钟)学生分组讨论,尝试解决其他关于水箱变高的问题。

老师巡回指导,解答学生的疑问。

4.巩固(10分钟)老师挑选几组学生的答案,进行讲解和评价。

让学生明确一元一次方程在解决实际问题中的作用。

北师大版七年级上册5.3--应用一元一次方程——水箱变高了教案

北师大版七年级上册5.3--应用一元一次方程——水箱变高了教案

应用一元一次方程——水箱变高了【教学目标】知识与技能:引导学生感受一元一次方程在解决实际问题中的应用.过程与方法:借助表格,分析复杂问题中的数量关系,建立方程解决实际问题.情感、态度与价值观:总结运用方程解决实际问题的一般步骤,明确列方程解决实际问题的关键是找等量关系.【教学重难点】重点:1.体验借助方程解决实际问题的过程.2.列一元一次方程解具有简单等量关系的应用题.难点:从复杂问题中挖掘条件,由“未知”向“已知”转化,寻找等量关系.【教学过程】一、创设情境引入新知教师演示操作1:爸爸把杯子中高度为5cm的水倒入量筒中(已知:杯子底面半径为,量筒底面半径为2cm)(1)仔细观察,认真思考,你发现哪些量发生了变化,哪些量没有改变?(2)量筒中水的高度是多少?操作2:小院有一个底面直径和高均为4m的圆柱形水箱.现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4m减少为3.2m.那么在容积不变的前提下,水箱的高度由原先的4m增高为多少米?在这个问题中,有如下的等量关系:旧水箱的容积=新水箱的容积.设水箱的高度为m,填写下表:底面半径/(m)旧水箱新水箱高/(m)容积/(m3)根据等量关系,列出方程:.解得=.因此,水箱的高变成了m.(1)看一看:让学生观察水箱由“矮”变“高”的变化过程;(2)列一列:根据问题中的等量关系列出方程,并解方程,使问题(一)得到解决.1.引导学生分析问题中的已知量与未知量.2.用实物模拟演示水箱由“矮”变“高”的变化过程.3.引导学生探究问题中的等量关系,列方程并解方程.学生独立思考,找出解决问题的方法和思路,列方程,解决问题(一).通过观察、演示、分析问题中各个量之间的关系使学生初步体验把实际问题转化为数学问题的“化归”过程.二、合作探究深化新知用一根长为10米的栅栏围成一个长方形鸡舍.(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围成的长方形相比,面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少?它所围成的图形的面积与(2)中相比又有什么变化?1.学生分四人小组讨论解决问题,并根据计算的结果作出各自的长方形(或正方形).2.抽派小组代表阐述解题的步骤以及思路,并展示自己所在的小组所作的长方形(或正方形).3.通过猜测、验证说明三个长方形面积变化的规律.分析:由题意可知,长方形的周长始终是不变的,即长与宽的和为:.在解决这个问题的过程中,要抓住这个等量关系.解:(1)设此时长方形的宽为m,则它的长为m.根据题意,得.解这个方程,得..此时长方形的长为m,宽为m.(2)设此时长方形的宽为m,则它的长为m.根据题意,得.解这个方程,得..此时长方形的长为m,宽为m,面积为,(1)中长方形的面积为.此时长方形的面积比(1)中长方形的面积增大.(3)设正方形的边长为m.根据题意,得.解这个方程,得.正方形的边长为m,正方形的面积为,比(2)中面积增大.周长长宽之差长宽面积长方形1长方形2长方形3多媒体几何画板直观演示长宽变化时面积变化的规律.三、学以致用即时反馈1、墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?2、把一块长、宽、高分别为5cm、3cm、3cm的长方体铁块,浸入半径为4cm的圆柱形玻璃杯中(盛有水),水面将增高多少?(不外溢)四、课堂小结内化新知学习了本节课你有那些收获?应用一元一次方程解决实际问题(水箱变高了).1、步骤:审、找、设、列、解、检、答.2、关键:借助不变量,寻找等量关系.(形状变了,体积不变;面积变了,周长不变)3、规律:长方形的周长一定,正方形的面积最大.4、思想:转化、方程、从特殊到一般.5、感悟:热爱数学、热爱生活、努力追求幸福的生活.五、布置作业巩固落实见导学案。

3应用一元一次方程—水箱变高了-北师大版七年级数学上册教案

3应用一元一次方程—水箱变高了-北师大版七年级数学上册教案

应用一元一次方程—水箱变高了-北师大版七年级数学上册教案教学目标1.理解一元一次方程的概念和性质;2.掌握应用一元一次方程求解实际问题的方法;3.学会通过实际问题分析、解决问题的能力。

教学重点1.学生能熟练掌握一元一次方程求解实际问题的方法;2.能够理解实际问题的含义、分析实际问题并解决问题。

教学难点1.能够灵活运用所学知识解决实际问题。

教学内容在真实生活中,数学常常用于解决各种各样的问题。

本节课介绍如何使用一元一次方程来解决有关“水箱变高了”的问题。

问题背景一个长5米、宽3米、高2米的水箱,里面充满了水,水深为1.5米。

由于雨水过多,水箱底部加了一块大小合适的木板,使得水位上升了10厘米。

请问木板的大小是多少?教学过程:导入教师通过引入实际生活中的问题,向学生介绍了一元一次方程的应用。

然后教师给出了上面提出的问题。

分析问题教师带领学生一起分析问题,帮助学生更好地理解问题,形成正确的数学思维方式。

学生先通过简单的估算,得出答案约为0.3平方米左右。

然后,教师引导学生通过列式子来解决问题。

设计表达式和方程式教师带领学生学习如何通过列式子的方法解决问题。

首先,学生可以计算出水箱里现有的水的体积为:5 × 3 × 1.5 = 22.5 立方米然后,通过加上10厘米高度来计算新的水箱所需的体积:5 × 3 × 1.6 = 24 立方米计算得到,新的水箱所需的体积为24立方米。

那么,这个10厘米的高度差所占的体积为多少呢?可以通过设计方程来解决:10÷100 × 5 × 3 = 0.15 立方米那么,木板的面积可以通过设计式子得出:面积 = 总体积 - 新水箱所需的体积 - 高度差所占的体积面积 = 5 × 3 - 24 + 0.15 = 0.65 平方米因此,木板的面积为0.65平方米。

检验答案教师带领学生检验答案。

学生可以通过计算在木板的高度差下,水箱里的水的体积和新的水箱所需的体积是否相等来判断答案是否正确。

应用一元一次方程——水箱变高了

应用一元一次方程——水箱变高了

5.3应用一元一次方程——水箱变高了教学设计教学目标1、知识与能力:借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接或间接设未知数的解题思路,从而建立方程,解决实际问题。

2、过程和方法:通过分析图形问题中的数量关系,建立方程解决问题。

3、情感态度价值观:进一步体会运用方程解决问题的关键是建立等量关系,认识方程模型的重要性。

一、情景引入内容:让学生来讲述曹冲称象的故事,发现其中蕴含的数学知识。

【设计意图】激发学生学习兴趣,让学生在熟悉的历史故事中感受数学,并找到其中的等量关系,也为后面的学习做好铺垫。

二、自主探究内容:探究1:请学生说出下列变化过程中的等量关系。

1、用一根15cm长的铁丝围成一个三角形,然后把它围成长方形。

2、用一块橡皮泥先做成一个长方体,再把它改变成圆柱。

3、把一小杯的水倒入另一只大杯中。

(让学生观察,在变换的过程中,体会哪些量发生了变化,哪些量没有变化?并复习回顾三角形长方形周长以及长方体圆柱体的体积,教师对基础差的同学可适当引导)【设计意图】让学生通过3个变化过程,体会等长变化和等体积变化的现象中蕴涵的不变量。

在回答问题的过程中复习几何体的周长以及体积公式。

温习旧知识的同时,为后续用方程解决实际问题做好铺垫。

探究2:某居民楼顶有一个底面直径和高均为4m的圆柱形储水箱.现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4m减少为3.2m.那么在容积不变的前提下,水箱的高度将由原来的4m增高为多少米?半径高体积旧水箱新水箱(让学生依据探究1的经验,在此情景中找到等量关系,引导学生通过列表法根据等量关系列出方程。

)【设计意图】让学生经历从实际问题中抽象数学知识的过程,激发学生的学习热情,渗透了列表建立方程模型的方法。

让学生通过分析图形问题中的数量关系,从而建立一元一次方程解决实际问题。

三、巩固训练问题1:两个圆柱体容器如图所示,它们的直径分别为8cm和4cm,高分别为10cm和39cm。

应用一元一次方程 ——水箱变高了 教学设计

应用一元一次方程 ——水箱变高了 教学设计
四、教学设计
1.创设情境,引发思考做实验,把准备好的又矮又胖量筒100毫升倒入“瘦长”形的量筒体中,观察水面高度有无变化,思考:量筒哪些量变了?哪些量没变?
2.合作探究,获得新知1)黑板出示1,有一位工人师傅要锻造底面直径为20㎝的“矮胖“形圆柱,可他手边只有底面直径是10㎝,高为36㎝的“瘦长”形圆柱,这位师傅想知道将
这个“瘦长”形圆柱体锻压成“矮胖”形圆柱(底面直径为20㎝)高变成了多少?你能帮他吗?
本课学了如何在问题中寻找等量关系,并列方程解决问题,最后检验合理性,一步步骤可概括为设(未知数)、找(等量关系)、列(方程)、解(方程)、检(合理性)
通过前几节解方程的学习,学生已经掌握了解、列方程的基本方法,在此过程中也初步掌握了运用方程解决实际问题的一般过程,基本会通过分析简单问题中已知量与未知量的关系列出方程解应用题,但学生在列方程解应用题时常常会遇到从题设条件中找不到所依据的等量关系,或虽能找到等量关系,但不能列出方程这样的问题,因此,在教师的引导下,通过学生亲自动手制作模型,自主探索在模型变化过程中的等量关系,建立方程,从而将图形问题代数化。
二、学情分析
通过前几节解方程的学习,学生已经掌握了解、列方程的基本方法,在此过程中也初步掌握了运用方程解决实际问题的一般过程,基本会通过分析简单问题中已知量与未知量的关系列出方程解应用题,但学生在列方程解应用题时常常会遇到从题设条件中找不到所依据的等量关系,或虽能找到等量关系,但不能列出方程这样的问题,因此,在教师的引导下,通过学生亲自动手制作模型,自主探索在模型变化过程中的等量关系,建立方程,从而将图形问题代数化。
本节课采取学生自主探究的学习方法,让学生在实践中分析总结规律,把个人结论在小组内展示,黑板上展示,实行组内交流纠错表现方式,让学生经历过程,体验成功,获得快乐,对能抓住万变中不变量的学生大加赞赏,在课后要注重反思,在创设情境中学生能否积极思考,分析变化中的定量关系而不只看热闹,学生参与的人数及积极性怎样,能否透过变化现象抓住不变的本质。

北师大版七年级上册数学5.3《应用一元一次方程————水箱变高了》教学设计

北师大版七年级上册数学5.3《应用一元一次方程————水箱变高了》教学设计

北师大版七年级上册数学5.3《应用一元一次方程————水箱变高了》教学设计一. 教材分析北师大版七年级上册数学5.3《应用一元一次方程————水箱变高了》这一节主要讲述了一元一次方程在实际生活中的应用。

通过水箱变高的实例,让学生掌握一元一次方程的解法及其在实际问题中的应用。

教材以生活中的实际问题为背景,让学生体会数学与生活的紧密联系,培养学生的数学应用能力。

二. 学情分析学生在学习这一节内容前,已经学过一元一次方程的理论知识,对解方程有一定的了解。

但将方程应用于实际问题中,求解现实生活中的问题,对学生来说还较为陌生。

因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。

三. 教学目标1.理解一元一次方程在实际生活中的应用,体会数学与生活的紧密联系。

2.掌握一元一次方程的解法,提高学生的数学解题能力。

3.培养学生的合作交流能力,提高学生的数学素养。

四. 教学重难点1.重点:一元一次方程在实际生活中的应用。

2.难点:将实际问题转化为方程,求解问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置实际问题,引导学生运用一元一次方程解决问题,培养学生的数学应用能力。

同时,学生进行小组合作交流,分享解题心得,提高学生的合作意识。

六. 教学准备1.准备相关的生活案例,用于引导学生思考和讨论。

2.准备课件,展示解题过程和思路。

3.准备练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)通过展示一个关于水箱变高的实际问题,引发学生的思考。

提问:“如何计算水箱变高后的容量?”让学生意识到需要运用数学知识解决问题。

2.呈现(10分钟)讲解水箱变高的实例,引导学生将实际问题转化为方程。

呈现一元一次方程的解法,让学生跟随老师一起解题,体会解题过程。

3.操练(10分钟)让学生独立完成类似的题目,巩固一元一次方程的解法。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)学生进行小组讨论,分享解题心得。

北师大版七年级数学上册教案-第五章第三节 应用一元一次方程——水箱变高了

北师大版七年级数学上册教案-第五章第三节 应用一元一次方程——水箱变高了

北师大版七年级数学上册教案第三节应用一元一次方程——水箱变高了【教学目标】1.通过分析图形问题中的基本等量关系,建立方程解决问题.2.进一步了解一元一次方程在解决实际问题中的应用.【教学重难点】重点:使学生进一步体会运用方程解决问题的关键是抓住等量关系,认识方程.难点:关键是让学生抓住问题变化中的不变量,确定等量关系.【教学过程】一、创设情境,导入新课动手操作:用手压你准备好的“瘦长”型圆柱体橡皮泥,使其变成“矮胖”型圆柱体,并思考交流以下问题.1.手里的橡皮泥在手压前和手压后有何变化?2.在你操作的过程中,圆柱由“瘦”变“胖”,圆柱的底面直径变了没有?圆柱的高呢?3.在这个变化过程中,是否有不变的量?是什么没变?改变的量:半径(直径)、高不变的量:体积目的:让学生在玩中体会等体积变化的现象中蕴涵的不变量,同时分析出不变量与变量间的等量关系.实际效果:通过操作的过程,学生能够认识到手里的橡皮泥在手压前和手压后只是形状发生了变化,变粗了,变矮了,即橡皮泥的高度和底面半径发生了改变,但手压前后体积不变,重量不变.二、师生互动,探究新知某居民楼顶有一个底面直径和高均为4m的圆柱形储水箱.现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4m减少为3.2m.那么在容积不变的前提下,水箱的高度将由原先的4m变为多少米?目的:将上述题目中体会到的形之间的变与不变的关系、量之间的等量关系抽象成数学问题,利用前几节的解方程方法解决实际问题.实际效果:学生解答过程列方程很顺利,有的学生还使用了下面的表格来帮助分析.学生分析:由题意可知“旧水箱的容积=新水箱的容积”,从而可得出方程.解:设新水箱的高为xcm.由题意,得π×22×4=π×1.62×x.解得x=6.25.此时有学生将π的值取3.14代入方程,教师应在此时给予指导,不要急于说明.①此类题目中的π值由等式的基本性质就已约去,无须代入具体数值;②若是题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度.变式题:若将上面题目中的水箱由圆柱形变成长方体,那么新旧两个水箱又有什么关系呢?分析:三、运用新知,解决问题例 用一根长为10m 的铁丝围成一个长方形.(1)使得该长方形的长比宽多1.4m ,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8m ,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比,面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与(2)中相比又有什么变化?分析:由题意可知,长方形的周长始终是不变的,即长与宽的和为:10×12=5(m).在解决这个问题的过程中,要抓住这个等量关系.解:(1)设此时长方形的宽为xm ,则它的长为(x +1.4)m. 根据题意,得x +x +1.4=10×12. 解这个方程,得x =1.8.1.8+1.4=3.2.此时长方形的长为3.2m ,宽为1.8m.(2)设此时长方形的宽为xm ,则它的长为(x +0.8)m. 根据题意,得x +x +0.8=10×12. 解这个方程,得x =2.1.2.1+0.8=2.9.此时长方形的长为2.9m ,宽为2.1m ,面积为2.9×2.1=6.09(m 2),(1)中长方形的面积为3.2×1.8=5.76(m 2).此时长方形的面积比(1)中长方形的面积增大6.09-5.76=0.33(m 2).(3)设正方形的边长为xm. 根据题意,得x +x =10×12. 解这个方程,得x =2.5. 正方形的边长为2.5m ,正方形的面积为2.5×2.5=6.25(m 2), 比(2)中面积增大6.25-6.09=0.16(m 2). 四、课堂小结,提炼观点1.通过对“水箱变高了”的了解,我们知道“旧水箱的容积=新水箱的容积”,“变形前周长等于变形后周长”是解决此类问题的关键.2.遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验.3.学习中要善于将复杂问题简单化、生活化,再由实际背景抽象出数学模型,从而解决实际问题.五、布置作业,巩固提升 教材第144页习题5.6. 【板书设计】应用一元一次方程——水箱变高了等量关系:旧水箱的容积=新水箱的容积. 变形前周长=变形后周长.。

七年级数学上册《应用一元一次方程水箱变高了》优秀教学案例

七年级数学上册《应用一元一次方程水箱变高了》优秀教学案例
2.设定未知数,建立方程:设定未知数为水位上升的高度,根据水箱的形状和已知条件,建立一元一次方程。
3.解方程,求解未知数:运用一元一次方程的解法,求解未知数,并解释结果的实际意义。
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,每组学生合作解决一个与水箱变高类似的问题。具体步骤如下:
1.小组讨论:每组学生根据问题,共同分析、讨论,建立一元一次方程模型。
3.小组合作学习模式
小组合作学习在本案例中发挥了重要作用。通过合理分组,确保每个学生都能在小组中发挥自己的优势,共同解决问题。在合作学习过程中,学生相互讨论、交流、分享,不仅提高了团队协作能力,还培养了沟通能力和解决问题的能力。
4.反思与评价相结合
本案例注重学生的反思与评价。在教学过程中,引导学生对自己的学习过程进行反思,总结收获和不足,提高自我认知。同时,组织学生进行相互评价,学会欣赏他人、提出建设性意见。这样的设计有助于促进学生之间的相互学习,提高教学质量。
在教学过程中,以水箱变高为背景,引导学生运用一元一次方程的知识,解决实际的水位变化问题。这不仅有助于巩固学生对一元一次方程的理解,还能培养学生将数学知识应用于现实生活的能力,提高学生的创新意识和解决问题的能力。
本案例注重以人为本,关注学生的个体差异,鼓励学生主动探究、合作交流,以实现课程标准中倡导的“人人学有价值的数学,不同的人在数学上有不同的发展”的理念。通过本节课的学习,让学生在轻松愉快的氛围中掌握数学知识,感受数学的无穷魅力。
同时,我还会组织学生进行相互评价,让学生学会欣赏他人的优点,发现他人的不足,并给出建设性的意见。通过评价,促进学生之间的相互学习,提高整体教学质量。
此外,我还将结合课堂教学,定期对学生的学习成果进行评价,关注学生的个体差异,鼓励学生发挥潜能,不断提高教学效果。

北师大初中数学七上《53应用一元一次方程—水箱变高了》word教案(4)

北师大初中数学七上《53应用一元一次方程—水箱变高了》word教案(4)

5.3 水箱变高了教案教学目标:1.了解一元一次方程在解决实际问题中的应用.体会运用方程解决问题的关键是抓住等量关系.2.学会通过分析图形问题中的基本等量关系,并由此关系列方程解相关的应用题.教学重点与难点:重点:1.寻找图形问题中的等量关系,建立方程.2.根据具体问题列出的方程,掌握其简单的解方程的方法.难点:寻找图形问题中的等量关系,建立一元一次方程,使实际问题数学化.教法与学法指导:本节课主要使学生领悟形体变化问题中的变与不变,体验解决形变而体积不变这一问题的思路和方法.通过分析图形问题中的基本等量关系,建立方程解决问题.本节课的关键是通过对实际问题所涉及的数学关系的理解,寻找图形问题中的等量关系,建立一元一次方程,使实际问题数学化.教学中,注意指导学生审清题意,抓住图形问题中的不变量.所以教学中采用直观——自主探索的方法,在教师的引导下,通过学生亲自动手制作模型,自主探索发现在模型变化过程中的等量关系,建立方程,从而将图形问题代数化.课前准备:多媒体课件、橡皮泥、细铁丝、土豆、水杯.教学过程:一、创新情境,引入新课学生讨论,但找不到好的方法.(学生通过直观感知、操作等活动,寻找图形问题中的等量关系.)教师:现在拿出你们准备好的橡皮泥,先用这块橡皮泥捏出一个“瘦长”的圆柱体;然后再让这个“瘦长”的圆柱“变胖”,变成一个又矮又胖的圆柱,随后思考两个问题:学生:在我操作的过程中,圆柱的直径和高度都发生了变化,而橡皮泥的体积没有变.(设计意图:我们知道, 感知到的东西往往没有自己亲手经历操作后的感受来得实在.所以设置此环节,让学生手、眼、脑几个感官并用,在操作中体会,在计算中验证,在变化中发现.这样能培养学生观察、分析,归纳、总结等数学学习中不备数学思想与数学方法,也同时让学生感悟最复杂的问题中的道理,就在我们玩的过程,就在我们的生活中.通过学生的动手操作整体感知,上述两个问题中都涉及到了体积不变这个等量关系,为下一步处理例题做好准备.)(教学建议:不要把得学生太紧,不要怕完不成进度,这个过程进行完后,学生对课本设置相关内容就剩下规范解题过程了.学生的理解远比直接先讲教材的例题效果要好的多.)二、合作探究,展示交流探究1:等体积问题(多媒体展示)学生:用一元一次方程来解.这个问题的等量关系:旧水箱的体积=新水箱的体积.教师:这位同学的分析很好.列方程时,关键是找出问题中的等量关系.下面我们如果设新水箱的高为x m,通过填写下表来看一下旧水箱的体积和新水箱的体积.旧水箱新水箱底面半径/m 2 1.6高/m 4 x体积/ m3π×22×4 π×1.62×x(学生计算填表,让一位同学说出自己的结果)学生:旧水箱的圆柱的底面半径为4÷2=2m,高为4米,所以旧水箱的圆柱的体积为π×22×4 m3.新水箱的圆柱的底面半径为3.2÷2=1.6m,高设为x m,所以新水箱的体积为π×1.62×x.由等量关系我们便可得到方程:π×22×4=π×1.62×x.学生:将π换成3.14,算出x的系数π×22,然后将系数化为1就解出了方程.学生:我认为应先观察方程的特点,左右两边都含有π,可用等式的第二个性质,方程两边同时除以π,可使方程变得简单.教师:这位同学的想法很好.下面我们共同把这个题的过程写一下.解:设新水箱圆柱的高为x厘米,根据题意,列出方程π×22×4=π×1. 62×x解得x=25 4答:高变成了254米.(学生认真思考后,小组内交流.教师适时引导共同归纳出列一元一次方程解决实际问题的步骤:理解题意、寻找等量关系、设未知数列方程、解方程、作答.)(设计意图:设置丰富的问题情境,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望.)探究2:周长相等问题学生:不变,都相等.(学生动手操作,操作完成后让学生汇报结果)学生:面积发生变化.教师:下面以小组为单位,借助你手中的铁丝,依据上一题的解题经验,小组内分工合作完成下面问题.例1 用一根长为10米的铁丝围成一个长方体.解:(1)设此时长方形的宽为x m,则它的长为(x+1. 4)m.根据题意,得x+(x+1.4) =10×12.解这个方程,得x=1.8.x+1.4=1.8+1.4=3.2此时长方形的长为3.2m,宽为1.8m.(2)此时长方形的宽为x m,则它的长为(x+0.8) m.根据题意,得x+(x+0.8) =10×12.解这个方程,得x=2.1.x+0.8=2.1+0.8=2.9.此时长方形的长为2.9 m,宽为2.1 m,面积为2.1×2.9=6.09(m2), (1)中长方形的面积为3.2×1.8=5.76(m 2).此时长方形的面积比(1)中长方形面积增大 6.09-5.76=0.33(m2).(3)设正方形的边长为x m.根据题意,得4x=10×12.解这个方程,得x=2.5.正方形的边长为2.5m,正方形的面积为2.5×2.5=6.25(m2),比(2)中面积增大6.25-6.09=0.16(m2).教师:我们解答这个题的关键是我们在改变长方形的长和宽的同时,长方形的周长不变,始终是铁丝的长度10米.由此便可建立“等量关系”.但是我们可以发现,虽然长方形的周长不变,改变长方形的长和宽,长方形的面积却在发生变化,而且围成正方形的时候面积达到最大.(设计意图:通过例题让学生再次感受找到题目中的等量关系是列方程解应用题的关键,让学生经历知识的探索、发现、掌握、应用的过程.使学生体验“数学化”过程,使学生在实际动手计算、制作中体验合作的愉快及成功的喜悦.进一步理性地感受上一个环节中得出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性.)学生:竹篱笆围成的长方形的三边之和.(教学建议:教师巡视学生做题情况,指导学生解题的步骤,通过小组交流怎么判断结果的合理性.让学生明白是否符合实际关键看和墙相对的一边不能超过14米,所以我们就需要根据小王和小赵的设计求出这一边的长度和14米比较.而此时就需找到“等量关系”建立方程.)解:根据小王的设计可以设宽为x米,长为(x+5)米,根据题意,得2x+(x+5)=35,解这个方程得:x=10因此小王设计的长为x+5=10+5=15(米),而墙的长度只有14米,小王的设计是不符合实际的.小赵的设计可以设宽为x米,长为(x+2)米,根据题意,得, 2x+(x+2)=35 ,解这个方程得:x=11因此小赵的设计的长为x+2=11+2=13(米).而墙的长度是14米,显然小赵的设计符合要求.此时,鸡场的面积为11×13=143(米2).(设计意图:通过此题培养学生的验证能力,能把解应用题得到的解结合实际判断合理性,使学生分析问题能力、解决问题能力都得到提高.)三、训练反馈,应用提升教师:用实物演示图形的变化过程.引导学生思考:学生:利用铁丝动手操作,观察图形变化的过程;弄清题意,积极回答老师所提问题;独立思考,解决问题,积极争取发言,阐述自己的解题思路.计算后说出答案.解:设长方形的长为x厘米,根据题意得,2(x+10)=10×4+6×2.解这个方程,得x=16.因此,小颖所钉长方形的长为16厘米,宽为10厘米.(设计意图:通过分析、演示,观察、思考,让学生直观的感受的在图形的变化过程中各个量的变与不变,从而逐步的领悟到寻找等量关系是列方程解决应用问题的关键.)四、课堂小结,纳入系统(教学建议:先让学生畅所欲言,着重引导学生总结以下三个方面:1.通过对“水箱变高了”的了解,我们知道“旧水箱的体积=新水箱的体积”,“变形前周长等于变形后周长”是解决此类问题的关键,即变的是什么,不变的是什么.2.遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验.3.解出的数学问题要联系生活实际问题来检验它的结果的合理性.)(设计意图: 用问题的形式归纳小结不仅可以使学生从整体上把握知识,还可以培养学生良好的个性和思维品质.引导学生积极地参与总结,提高独立分析和自主小结的能力.)五、达标检测,反馈矫正1.根据图中给出的信息,可得正确的方程是( )A .()2286522x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭B .()2286522x x ππ⎛⎫⎛⎫⨯=⨯⨯- ⎪ ⎪⎝⎭⎝⎭C .()22865x x ππ⨯=⨯⨯+D .22865x ππ⨯=⨯⨯2.要锻造一个半径为8cm ,高为10cm 的圆柱体,应截取半径为5cm的圆柱形毛柸 cm .六、布置作业,课后促学必做题:课本114页,习题5.6 第2题.选做题:助学巩固训练3.(设计意图:学生自由选择完成作业,按不同的要求统计达标情况,让每个学生都有了成就感.实践探究活动,通过学生自己动手操作实验、计算、验证,调动学生学习的积极性和主动性.充分体现“自主、合作、交流、探究”的新课程理念.)板书设计:5.3 应用一元一次方程――水箱变高了一、等体积问题解:二、周长相等问题解:三、巩固训练:解:教学反思:本节课的设计中,通过学生多次的动手操作活动,引导学生进行探索,使学生确实是在旧知识的基础上探求新内容,探索的过程是没有难度的任何学生都会动手操作,每个学生都有体会的过程,都有感悟的可能,这种形式让学生切身去体验问题情景,从而进一步帮助学生理解比较复杂的问题,再把实际问题抽象成数学问题.然后,指导学生借助表格去表达问题的信息,这里表格的引入非常自然,使学生真正感受到表格对分析问题所起的作用.从中也让学生学会学数学用数学的思考方式.今后的课堂上需要继续发扬的几点:1.注重“创设情境,导入新课”通过测量土豆的体积激发学生学习兴趣,动手操作感受获取知识的过程,可以让他保持精力相对集中.2.注重了培养学生合作交流、团结协作的意识这节课的教学我改变了传统的以讲解例题为主的教学方式,而是利用小组合作的形式让学生经历试验、猜想、探索发现问题的过程,通过实际问题的解决,增强用数学方法解决问题的意识,从而做到了教学中注意培养学生学习数学的主动性.这一点应该是今后最应该继续保持的.3.注重了对学生变式思维的培养.本节课的几点不足和需要进一步改进与完善的方面:1.课堂教学过程中的问题设计应该具体、明确、具有针对性和指向性.在讲课过程中由于我设计的问题过于笼统而导致学生的思考方向不明确,有些浪费时间.2.学生在完成课本上的表格时,我发现部分同学把半径与直径混淆,方程中直接用3.14学生活动区学生活动区学生活动区替代π,圆柱体的体积公式遗忘等,我只能随时加以纠正.如果做题之前就把这些问题加以复习或强调,那么效果会好得多.3.这节课没能很好地渗透列方程时找等量关系的方法,学生独立解题的能力还需要再提高.。

北师大版七年级数学上册教案《应用一元一次方程--水箱变高了》

北师大版七年级数学上册教案《应用一元一次方程--水箱变高了》

《应用一元一次方程--水箱变高了 》通过分析图形问题中的数量关系,建立方程解决问题。

进一步体会运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性。

【教学重点】 应用简单图形(如正方形、长方形、梯形、圆柱、正方体、长方体等) 的周长、面积、体积公式,学会分析等量关系来列方程、解放程。

【教学难点】学会分析等量关系来列方程、解放程。

尝试练习、探索归纳总结。

电教平台。

1.如果长方形的面积是56平方厘米,它的长与宽相差1厘米,请问这个长方形的长、宽各是多少厘米?2.一圆柱的体积是314立方厘米,底面圆的半径是5厘米,此圆柱的高为多少厘米?一、探索练习:将一个底面直径是20厘米、高为9厘米的“矮胖”形圆柱锻压成底面直径为10厘米的“瘦长”形圆柱,高变成了多少?假设在锻压过程中圆柱的体积保持不变,那么在这个问题中有如下的等量关系:锻压前的体积=锻压后的体积。

解:设锻压后圆柱的高为x 厘米,填写下表:根据等量关系,列出方程:(接着解方程)答:高变成了 厘米。

二、巩固练习:1、用一根长为12米的铁丝围成一个长方形。

(1)使得该长方形的长比宽多1.6米,此时长方形的长、宽各为多少米?面积为多少?(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比,面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与(2)中的长方形面积相比又有什么变化?解:(1)设此时长方形的宽为 米,则它的长为 米。

根据题意,得:(列方程并解方程)它所围成的长方形的长为此时所围成的长方形面积为:(2)设长方形的宽为 米,则它的长为 米。

根据题意,得:(列方程并解方程)它所围成的长方形的长为:此时所围成的长方形面积为:此时与(1)中所围成的长方形的面积相比,情况如何?(3)设正方形的边长为 米。

根据题意,得:(列方程并解方程)此时所围成的正方形的面积为此时与(2)中所围成的长方形的面积相比,情况如何?2、圆柱的直径是8厘米,高6厘米,大圆柱的直径是10厘米,并且它的体积是小圆柱体体积的2.5倍,那么大圆柱的高是多少?3、墙上钉着用一根彩绳围成的梯形形状的饰物,如右图实线所示。

七年级数学上册《应用一元一次方程水箱变高了》教案、教学设计

七年级数学上册《应用一元一次方程水箱变高了》教案、教学设计
(6)课堂小结:对本节课的知识点进行总结,强调一元一次方程在实际问题中的应用价值。
4.教学评价:
(1)过程性评价:关注学生在课堂中的参与度、合作表现、问题解决能力等方面,给予及时反馈。
(2)总结性评价:通过作业、测试等方式,评估学生对一元一次方程知识的掌握程度。
(3)自我评价:鼓励学生进行自我反思,总结学习过程中的优点和不足,提高自主学习能力。
3.注重培养学生的合作意识和沟通能力,提高学生在团队中的协作能力。
4.关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。
在教学过程中,教师应以学生为主体,关注学生的需求,充分调动学生的积极性,使学生在轻松愉快的氛围中学习数学,提高数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.重点:使学生掌握一元一次方程在实际问题中的应用,提高学生的数学建模和问题解决能力。
2.难点:引导学生从实际问题中抽象出一元一次方程,并能够熟练运用方程解决相关问题。
(二)教学设想
1.教学方法:
(1)采用情境教学法,以实际问题为背景,引导学生进入学习状态,激发学生的学习兴趣。
(2)运用启发式教学法,引导学生主动探究、发现、解决问题,培养学生的自主学习能力。
(3)采用任务驱动法,设计不同难度的任务,让学生在完成任务的过程中,逐步提高解决问题的能力。
(二)讲授新知,500字
在讲授新知环节,我会以水箱变高问题为例,逐步引导学生掌握一元一次方程的应用。首先,我会带领学生分析问题,找出问题中的等量关系,明确变量和常量。然后,根据等量关系,列出相应的一元一次方程。
(三)学生小组讨论,500字
在学生小组讨论环节,我会将学生分成若干小组,每组分配一个实际问题,让学生运用一元一次方程解决。在讨论过程中,要求学生相互交流、协作,共同完成任务。

5.3《应用一元一次方程——水箱变高了》参考教案

5.3《应用一元一次方程——水箱变高了》参考教案

3 应用一元一次方程——水箱变高了〖教学目标〗1.知识与技能(1)通过分析图形问题中的基本等量关系,建立方程解决问题。

(2)进一步了解一元一次方程在解决实际问题中的应用。

2.数学思考认识方程模型的重要性,领悟用方程解决实际问题的关键是找到等量关系。

3.解决问题体会数学与现实生活的密切联系,增强应用意识,提高运用数学知识与方法解决实际问题的能力。

4.情感与态度培养敢于面对学习中的困难,增强自信,大胆猜想并发表自己的观点,激发好奇心和主动学习的欲望。

〖教材分析〗本节课主要通过分析图形问题中的基本等量关系,建立方程解决问题。

教材首先通过一个锻压问题,使学生领悟形体变化问题中的变与不变,体验解决形变而体积不变这一问题的思路和方法。

在此基础上,又通过例题进一步提高运用数学知识与方法解决实际问题的能力。

本节课的重点是:通过对实际问题所涉及的数学关系的理解,寻找图形问题中的等量关系,建立一元一次方程,使实际问题数学化。

本节课的难点是:审清题意,关键是让学生抓住图形问题中的不变量。

〖教学设计〗(一)创设问题情境,引入新课同学们,今天这堂课我们共同来学习《应用一元一次方程——水箱变高了》我们先做两个小实验,请同学们仔细观察。

1.把准备好的橡皮泥由又“矮”又“胖”的圆柱体拉伸成“瘦长”形的圆柱体。

2.准备一个量桶(细长型)和一个烧杯(矮胖型),把烧杯中的水倒入量桶里(注:水中滴入红墨水加色)。

师:通过对这两个实验的观察,你是否已经领悟出课题“水箱长高了”的真实含义了?生1:通过这两个实验我觉得“水箱长高了”的真实含义是:物体的形状发生了变化,由矮胖的圆柱体变成了“细长”的圆柱体。

如果反过来,也可以叫做“水箱变矮了”。

生2:“水箱长高了”实际上就是物体的变形问题,由一种形状变成了另一种形状,比如把橡皮泥由正方体也可以捏成圆柱体等。

师:你们回答得棒极了!那么在这两个实验中,圆柱由“低”变“高”的过程中,圆柱的哪些量发生了变化?有没有不变的量?请小组同学讨论后回答。

七年级应用一元一次方程-水箱变高了教案

七年级应用一元一次方程-水箱变高了教案

第五章一元一次方程3.应用一元一次方程——水箱变高了一、学生起点分析本节课涉及到图形问题,关键是让学生抓住形变过程中的不变量,对于基本图形的体积、面积、周长等公式,学生已在小学系统学习,如果遗忘或混淆,可做适当复习.二、教学任务分析本节学习列方程解应用题,其关键还是寻找实际问题中的等量关系.在实际生活中经常会遇到类似本节情境的问题,最关键的是抓住变化中的不变量,从而设出未知数,根据等量关系列出方程.教学时,应鼓励学生独立思考,发现等量关系.特别是对例1,应让学生根据生活经验和原有基础分组独立完成,然后请各小组汇报:四个小问题的解答情况,最后组织学生展开讨论:解这道题的关键是什么?从解这道题中你有哪些收获和体验?因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解得合理性.三、教学目标1.借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接或间接设未知数的解题思路,从而建立方程,解决实际问题.2.通过分析图形问题中的数量关系体会方程模型的作用,进一步提高学生分析问题、解决问题、敢于提出问题的能力.3.通过对实际问题的探讨,使学生在动手独立思考、方程意识的过程中,进一步体会数学应用的价值,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望.四、教学过程设计本节课设计了六个教学环节:第一环节:创设情境,引入新课;第二环节:运用情境,解决问题;第三环节:操作实践,发现规律;第四环节:体验数学模型第五环节:课堂小结;第六环节:布置作业.环节一:创设情境,引入新课活动内容:情境1:成语“朝三暮四”的故事(附内容:从前有个叫狙公的人养了一群猴子.每一天他都拿足够的栗子给猴子吃,猴子高兴他也快乐.有一天他发现如果再这样喂猴子的话,等不到下一个栗子的收获季节,他和猴子都会饿死,于是他想了一个办法,并且把这个办法说给猴子听,当猴子听到只能早上吃四个,晚上吃三个栗子的时候很是生气,呲牙咧嘴的.没办法狙公只好说早上三个,晚上四个,没想到猴子一听高兴得直打筋斗.)问题1:猴子为什么高兴了?这其中有什么数学奥秘吗?情境2:教师从讲台下拿出了两瓶矿泉水(容量一样,A短而宽,B长而窄).问题2:请问大家哪瓶矿泉水多?为什么?教师拿出两个相同的量杯,让学生把两瓶矿泉水分别倒进两个量杯中,结果全体同学都说一样多,没有说对的同学,不好意思的笑了.教师:不要紧张,现在还有一个机会证明自己.情境3:先用一块橡皮泥捏出一个“瘦长”的圆柱体,然后再让这个“瘦长”的圆柱“变矮”,变成一个又矮又胖的圆柱,请思考下列几个问题:●在你操作的过程中,圆柱由“高”变“低”,圆柱的底面直径变了没有?圆柱的高呢?●在这个变化过程中,是否有不变的量?是什么没变?活动目的:让学生在愉快地玩的过程中体会等体积变化的现象中蕴涵的不变量.同时分析出不变量与变量间的等量关系.活动的实际效果:学生能够感受到:两瓶形状不一样的矿泉水体积是一样的,手里的橡皮泥在手压前和手压后发生了变化,变胖了,变矮了.即高度和底面半径发生了改变,但手压前后体积不变,重量不变.环节二:运用情景,解决问题活动内容:张师傅将一个底面直径为20厘米、高为9厘米的“矮胖”形圆柱锻压成底面直径为10厘米的“瘦长”形圆柱.假设在张师傅锻压过程中圆柱的体积保持不变,那么圆柱的高变成了多少?(在这个环节中可安排两组同桌分别上黑板合作完成.并把思路分析给大家.可给每个四人小组发一张表格,让学生试着通过填写表格寻找等量关系.)活动目的:将上述环节中体会到的形之间的变与不变的关系,量之间的等量关系抽象成数学问题,利用前几节的解方程方法解决实际问题.活动的实际效果:学生解答过程布列方程很顺利,很多学生使用了下面的表格来帮助分析.由实验操作环节知“锻压前的体积=锻压后的体积”,从而得出方程. 解:设锻压后的圆柱的高为xcm ,由题意的 π×2220)(×9=π×2210)(×x,解之,得 x=36.黑板上两组学生中有一组学生将π的值取3.14,带入方程,教师应在此给予指导,不要早说,现在恰到好处!(1) 此类题目中的π值由等式的基本性质就可以约去,无须带具体值;(2) 若题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度. 环节三:操作实践,发现规律 活动内容:学生用预先准备好的40厘米长的铁丝,以小组作出不同形状的长方形,通过测量边长,近似求出长方形的面积,比较小组内四个同学的计算结果,你发现了什么? 活动目的:我们知道:学生自己亲手经历操作后的感受会更深刻.所以设置此环节,让学生手、眼、脑几个感官并用,在操作中体会,在计算中验证,在变化中发现.这样能培养学生经过观察、分析、归纳、总结等数学学习活动中发现数学思想与数学方法,也同时让学生感悟复杂的问题中的道理就在我们玩的过程中,就在我们的生活中. 活动的实际效果:由学生的实际操作得到的近似值已反映出来一个很好的规律.学生:由操作过程,同学们作出的长方形形状有“胖”有“瘦”,反映到表中数据为:当长方形的周长一定,它的长逐渐变短,宽随之逐渐变长,面积在逐渐变大.当长与宽一样长时面积最大.过程感悟:不要怕完不成进度,这个过程进行完成后,学生对课本设置相关内容就剩下规范解题过程了,学生的理解远比直接先讲教材的例题效果要好的多.(此处教师可用几何画板来完成)环节四:练一练,体验数学模型活动内容:课本例题例1:一根长为10米的铁丝围成一个长方形.1.若该长方形的长比宽多1.4米.此时长方形的长和宽各为多少米?2.若该长方形的长比宽多0.8米,此时长方形的长和宽各为多少米?它围成的长方形的面积与(1)中所围成长方形相比,面积有什么变化?3.若该长方形的长与宽相等,即围成一个正方形,那么正方形的边长是多少?它围成的长方形的面积与(2)中相比,又有什么变化?4.如果把这根长为10米的铁丝围成一个圆,这个圆的半径是多少?面积是多少?请思考:解此例题的关键是什么?通过此题你有哪些收获和体验?你能试着设计表格解决这个问题吗?活动的实际效果:因为有了环节三的铺垫,有效地分解难点,学生掌握很好.完整的解题过程留成课后作业.环节五:课堂小结1.通过对“我变高了”的了解,我们知道“锻压前体积=锻压后体积”,“变形前周长等于变形后周长”是解决此类问题的关键,其中也蕴涵了许多变与不变的辩证的思想.2.遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验.3.学习中要善于将复杂问题简单化、生活化,再由实际背景抽象出数学模型,从而解决实际问题.环节六:布置作业1.P184 随堂练习习题5.72.思考:地面上钉着用一根彩绳围成的直角三角形.如果将直角三角形锐角顶点的一个钉子去掉,并将这条彩绳钉成一个长方形,则所钉长方形的长,宽各是多少?面积是多少?五、教学反思1.创造性地使用教材.本节课的引入新颖自然,通过两个实验(情景2为液态物体变化,情景3为固态物体变化),使学生对课题有了初步的认识,并通过学生对实验的观察,发现了在物体形状变化时的不变量,从而为列方程找等量关系作了铺垫.环节2中的表格发给每个小组,为增强小组讨论结果的展示起到了较好的作用.环节3中通过让学生自己设计表格为讨论的得出起到辅助作用.2.相信学生并为学生提供充分展示自己的机会本节课的设计中,通过学生多次的动手操作活动,引导学生进行探索,使学生确实是在旧知识的基础上探求新内容,探索的过程是没有难度的任何学生都会动手操作,每个学生都有体会的过程,都有感悟的可能,这种形式让学生切身去体验问题的情景,从而进一步帮助学生理解比较复杂的问题,再把实际问题抽象成数学问题.3.注意改进的方面本节课由于构题新颖有趣,所以一开始就抓住了学生的求知欲望,课堂气氛活跃,讨论问题积极主动.但由于学生发表自己的想法较多,使得教学时间不能很好把握,导致课堂练习时间紧张,今后予以改进.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章一元一次方程
3.应用一元一次方程——水箱变高了
一、学生起点分析
本节课涉及到图形问题,关键是让学生抓住形变过程中的不变量,对于基本图形的体积、面积、周长等公式,学生已在小学系统学习,如果遗忘或混淆,可做适当复习.
二、教学任务分析
本节学习列方程解应用题,其关键还是寻找实际问题中的等量关系.在实际生活中经常会遇到类似本节情境的问题,最关键的是抓住变化中的不变量,从而设出未知数,根据等量关系列出方程.教学时,应鼓励学生独立思考,发现等量关系.特别是对例1,应让学生根据生活经验和原有基础分组独立完成,然后请各小组汇报:四个小问题的解答情况,最后组织学生展开讨论:解这道题的关键是什么?从解这道题中你有哪些收获和体验?因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解得合理性.
三、教学目标
1.借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接或间接设未知数的解题思路,从而建立方程,解决实际问题.
2.通过分析图形问题中的数量关系体会方程模型的作用,进一步提高学生分析问题、解决问题、敢于提出问题的能力.
3.通过对实际问题的探讨,使学生在动手独立思考、方程意识的过程中,进一步体会数学应用的价值,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望.
四、教学过程设计
本节课设计了六个教学环节:
第一环节:创设情境,引入新课;第二环节:运用情境,解决问题;第三环节:操作实践,发现规律;第四环节:体验数学模型第五环节:课堂小结;第六环节:布置作业.
环节一:创设情境,引入新课
活动内容:
情境1:成语“朝三暮四”的故事
(附内容:从前有个叫狙公的人养了一群猴子.每一天他都拿足够的栗子给猴子吃,猴子高兴他也快乐.有一天他发现如果再这样喂猴子的话,等不到下一个栗子的收获季节,他和猴子都会饿死,于是他想了一个办法,并且把这个办法说给猴子听,当猴子听到只能早上吃四个,晚上吃三个栗子的时候很是生气,
呲牙咧嘴的.没办法狙公只好说早上三个,晚上四个,没想到猴子一听高兴得直打筋斗.)问题1:猴子为什么高兴了?这其中有什么数学奥秘吗?
情境2:教师从讲台下拿出了两瓶矿泉水(容量一样,A短而宽,B长而窄).
问题2:请问大家哪瓶矿泉水多?为什么?
教师拿出两个相同的量杯,让学生把两瓶矿泉水分别倒进两个量杯中,结果全体同学都说一样多,没有说对的同学,不好意思的笑了.
教师:不要紧张,现在还有一个机会证明自己.
情境3:先用一块橡皮泥捏出一个“瘦长”的圆柱体,然后再让这个“瘦长”的圆柱“变矮”,变成一个又矮又胖的圆柱,请思考下列几个问题:
●在你操作的过程中,圆柱由“高”变“低”,圆柱的底面直径变了没有?圆柱的高呢?
●在这个变化过程中,是否有不变的量?是什么没变?
活动目的:
让学生在愉快地玩的过程中体会等体积变化的现象中蕴涵的不变量.同时分析出不变量与变量间的等量关系.
活动的实际效果:
学生能够感受到:两瓶形状不一样的矿泉水体积是一样的,手里的橡皮泥在手压前和手压后发生了变化,变胖了,变矮了.即高度和底面半径发生了改变,但手压前后体积不变,重量不变.
环节二:运用情景,解决问题
活动内容:
张师傅将一个底面直径为20厘米、高为9厘米的“矮胖”形圆柱锻压成底面直径为10厘米的“瘦长”形圆柱.假设在张师傅锻压过程中圆柱的体积保持不变,那么圆柱的高变成了多少?
(在这个环节中可安排两组同桌分别上黑板合作完成.并把思路分析给大家.可给每个四人小组发一张表格,让学生试着通过填写表格寻找等量关系.)
活动目的:
将上述环节中体会到的形之间的变与不变的关系,量之间的等量关系抽象成数学问题,利用前几节的解方程方法解决实际问题.
活动的实际效果:
学生解答过程布列方程很顺利,很多学生使用了下面的表格来帮助分析.
由实验操作环节知“锻压前的体积=锻压后的体积”,从而得出方程. 解:设锻压后的圆柱的高为xcm ,由题意的 π×2220)(
×9=π×2
2
10)
(×x,
解之,得 x=36.
黑板上两组学生中有一组学生将π的值取3.14,带入方程,教师应在此给予指导,不要早说,现在恰
到好处!
(1) 此类题目中的π值由等式的基本性质就可以约去,无须带具体值;
(2) 若题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度. 环节三:操作实践,发现规律 活动内容:
学生用预先准备好的40厘米长的铁丝,以小组作出不同形状的长方形,通过测量边长,近似求出长方形的面积,比较小组内四个同学的计算结果,你发现了什么? 活动目的:
我们知道:学生自己亲手经历操作后的感受会更深刻.所以设置此环节,让学生手、眼、脑几个感官并用,在操作中体会,在计算中验证,在变化中发现.这样能培养学生经过观察、分析、归纳、总结等数学学习活动中发现数学思想与数学方法,也同时让学生感悟复杂的问题中的道理就在我们玩的过程中,就在我们的生活中. 活动的实际效果:
由学生的实际操作得到的近似值已反映出来一个很好的规律.
学生:由操作过程,同学们作出的长方形形状有“胖”有“瘦”,反映到表中数据为:当长方形的周长一定,它的长逐渐变短,宽随之逐渐变长,面积在逐渐变大.当长与宽一样长时面积最大.
过程感悟:不要怕完不成进度,这个过程进行完成后,学生对课本设置相关内容就剩下规范解题过程了,学生的理解远比直接先讲教材的例题效果要好的多.(此处教师可用几何画板来完成)
环节四:练一练,体验数学模型
活动内容:课本例题
例1:一根长为10米的铁丝围成一个长方形.
1.若该长方形的长比宽多1.4米.此时长方形的长和宽各为多少米?
2.若该长方形的长比宽多0.8米,此时长方形的长和宽各为多少米?它围成的长方形的面积与(1)中所
围成长方形相比,面积有什么变化?
3.若该长方形的长与宽相等,即围成一个正方形,那么正方形的边长是多少?它围成的长方形的面积与
(2)中相比,又有什么变化?
4.如果把这根长为10米的铁丝围成一个圆,这个圆的半径是多少?面积是多少?
请思考:解此例题的关键是什么?通过此题你有哪些收获和体验?你能试着设计表格解决这个问题吗?
活动的实际效果:因为有了环节三的铺垫,有效地分解难点,学生掌握很好.完整的解题过程留成课后作业.
环节五:课堂小结
1.通过对“我变高了”的了解,我们知道“锻压前体积=锻压后体积”,“变形前周长等于变形后周长”
是解决此类问题的关键,其中也蕴涵了许多变与不变的辩证的思想.
2.遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程
解的检验.
3.学习中要善于将复杂问题简单化、生活化,再由实际背景抽象出数学模型,从而解决实际问题.
环节六:布置作业
1.P184 随堂练习习题5.7
2.思考:地面上钉着用一根彩绳围成的直角三角形.如果将直角三角形锐角顶点的一
个钉子去掉,并将这条彩绳钉成一个长方形,则所钉长方形的长,宽各是多少?面
积是多少?
五、教学反思
1.创造性地使用教材.
本节课的引入新颖自然,通过两个实验(情景2为液态物体变化,情景3为固态物体变化),使学生对课题有了初步的认识,并通过学生对实验的观察,发现了在物体形状变化时的不变量,从而为列方程找等量关系作了铺垫.环节2中的表格发给每个小组,为增强小组讨论结果的展示起到了较好的作用.环节3中通过让学生自己设计表格为讨论的得出起到辅助作用.
2.相信学生并为学生提供充分展示自己的机会
本节课的设计中,通过学生多次的动手操作活动,引导学生进行探索,使学生确实是在旧知识的基础上探求新内容,探索的过程是没有难度的任何学生都会动手操作,每个学生都有体会的过程,都有感悟的可能,这种形式让学生切身去体验问题的情景,从而进一步帮助学生理解比较复杂的问题,再把实际问题抽象成数学问题.
3.注意改进的方面
本节课由于构题新颖有趣,所以一开始就抓住了学生的求知欲望,课堂气氛活跃,讨论问题积极主动.但由于学生发表自己的想法较多,使得教学时间不能很好把握,导致课堂练习时间紧张,今后予以改进.。

相关文档
最新文档