2-2随机变量及其分布律(精)
第二章 随机变量及其分布(第2讲)
引入随机变量和分布函数,在随机现象与数 学分析之间搭起了桥梁。
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
连续型随机变量(random variables of continuous type)
四、几种重要的连续型分布 均匀分1. 布均的匀实分际布背景是: 并概f ( x率且)随=与取⎪⎩⎪⎨⎧机0b这值−1变a个在量小(其x ∈X它区a取[a,,间bb值)] 的在中是 记长区一 为任度个间意成概X(小正~率aU区比密,[ab间度。,)b上内]函,的数.
利用分布函数与概率密度函数之间的关系,可以求得服从均匀 分布的随机变量 X 的分布函数
f
(x)
=
⎪⎧ ⎨
1 3
,
⎪⎩0 ,
0≤ x≤3 其它
∫ ∫ 所求概率 P{0 ≤ X ≤ 2}=
2 f (x )dx =
0
2 0
1 3
dx
=
2 3
四、几种重要的连续型分布
2.指数分布
定义: 若随机变量X的概率密度函数
X
~
f
(
x)
=
⎧λ
⎨
e−λ
x
⎩0
x>0 x≤0
称 X 服从参数为λ的指数分布,记为X~E(λ) (λ>0),
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
§2.2节学习的分布律对于非离散型型随 机变量失效
复习课(二) 随机变量及其分布
首页
上一页
下一页
末页
结束
解:(1)记事件 A 为“甲、乙 2 人一次竞猜成功”, 则 P(A)=2CC12+16·C416C31=49, 设 3 次竞猜中,竞猜成功的次数为 X,则 X~B3,49, 则甲、乙 2 人获奖的概率为 P=1-C03490593-C13491592=370249.
首页
上一页
P(AB)=P( A )P( B ).
2.若事件 A1,A2,…,An 相互独立,则有 P(A1A2A3…An)=P(A1)P(A2)…P(An). 3.在 n 次独立重复试验中,事件 A 发生的次数为 X,在每 次试验中事件 A 发生的概率为 p,那么在 n 次独立重复试验中, 事件 A 恰好发生 k 次的概率为 P(X=k)=Cknpk(1-p)n-k,k=0,1,2,…,n.
下一页
末页
结束
[解] 记事件 A:第一次取出的是红球; 事件 B:第二 次取出的是红球.
(1)从中随机地不放回连续抽取两次,每次抽取 1 个, 所 有基本事件共 6×5 个; 第一次取出的是红球, 第二次是其 余 5 个球中的任一个, 符合条件的有 4×5 个,
所以 P(A)=46× ×55=23.
结束
复习课(二) 随机变量及其分布
条件概率
1.在近几年的高考中对条件概率的考查有所体现,一般以选 择题或填空题形式考查,难度中低档.
2.条件概率是学习相互独立事件的前提和基础,计算条件概 率时,必须搞清欲求的条件概率是在什么条件下发生的概率.
首页
上一页
下一页
末页
结束
[考点精要] 条件概率的性质 (1)非负性:0≤P(B|A)≤1. (2)可加性:如果是两个互斥事件,则 P(B∪C|A)=P(B|A)+ P(C|A).
2-2离散型随机变量及其分布律
松定理(第二章)和中心极限定理(第五章),利用这些定理
可以近似计算出它们的值.
3.泊松分布
定义 2.5 如果随机变量 X 的分布律为
P{X k} k e , k 0,1, 2,L , 0 ,
k!
就称 X 服从参数为 的泊松分布,记为 X ~ P() .
【注 1】 P{X
k
k}
e
0 , k 0,1, 2,L
一般地,在随机试验 E 中,如果样本空间 只包含两个
样本点
{1,2},且
X
0, 1,
若 =1 , 若 =2 ,
则 X ~ B(1, p) ,其中 p P{X 1} P({2}) .
在现实生活中,0 1两点分布有着广泛的应用.例如某产品 合格与不合格;某课程的考试及格与不及格;某事件 A 发生与 不发生等许多现象都能够刻划成 0 1两点分布.
§2 离散型随机变量及其分布律
一、离散型随机变量及其分布律的概念 定义 2.1 若随机变量 X 的取值为有限个或可列无限多个,就 称 X 为离散型随机变量.
定义 2.2 设 X 为离散型随机变量,其所有可能的取值为 x1, x2 ,L , xi ,L ,且
P{X xi} pi , i 1, 2,L .
的概率为 0.6 ,求该射手在 4 次射击中,命中目标次数 X 的
分布律,并问 X 取何值时的概率最大. 解 将每次射击看成一次随机试验,所需考查的试验结果只
有击中目标和没有击中目标,因此整个射击过程为 4 重的贝
努里试验.故由题意知, X ~ B(4, 0.6) ,即
P{X k} C4k 0.6k 0.44k , k 0,1, 2,3, 4 .
P{X
10}
第二章随机变量及其分布函数
28
例2.2.9 设在时间t分钟内通过某交叉路口的汽车 数服从参数与t成正比的泊松分布. 已知在一分钟内 没有汽车通过的概率为0.2,求在2分钟内多于一辆 车通过的概率.
S={红色、白色} ?
将 S 数量化
非数量 可采用下列方法
X ()
红色 白色
S
1 0R
3
即有 X (红色)=1 , X (白色)=0.
1, 红色, X () 0, 白色.
这样便将非数量的 S={红色,白色} 数量化了.
4
实例2 抛掷骰子,观察出现的点数.
则有
S={1,2,3,4,5,6} 样本点本身就是数量 X () 恒等变换
20
泊松分布是一个非常常用的分布律,它常与 单位时间、单位面积等上的计数过程相联系. 例如一小时内来到某百货公司中顾客数、单位 时间内某电话交换机接到的呼唤次数和布匹 上单位面积的疵点数等随机现象都可以用泊
松分布来描述. 附表 2 给出了不同 值对应的
泊松分布函数的值.
21
泊松分布的取值规律
记 P(k; ) k e ,则
P
1 2
X
5
2
P(X
1 X
2)
P(X 1) P(X 2) 5
9
12
例 2.2.2 一只口袋中有 m 只白球, n m 只黑球.连 续无放回地从这口袋中取球,直到取出黑球为止.设 此时取出了 X 只白球,求 X 的分布律.
解 X 的可能取值为 0,1,2,, m ,且事件{X i}意 味着总共取了 i+1 次球,其中最后一次取的是黑球而 前面 i 次取得都是白球.
或 X ~ Bn, p.
二项分布的背景是伯努利试验:如果每次试验中事 件A发生的概率均为p,则在n重伯努利试验中A发生 的次数服从参数为n,p的二项分布。
2-2离散型随机变量的概率分布
(3) 二项概率公式 若 X 表示 n 重伯努利试验中事件 A 发生的次数, 则 X 所有可能取的值为
0, 1, 2, , n.
当 X k (0 k n) 时, 即 A 在 n 次试验中发生了 k 次.
AAA AAA ,
泊松资料
泊松分布的图形
泊松分布随机数演示
上面我们提到
二项分布 np ( n )泊松分布
单击图形播放/暂停 ESC键退出
合理配备维修工人问题
例5 为了保证设备正常工作, 需配备适量的维修 工人 (工人配备多了就浪费 , 配备少了又要影响生 产),现有同类型设备300台,各台工作是相互独立的, 发生故障的概率都是0.01.在通常情况下一台设备 的故障可由一个人来处理(我们也只考虑这种情况 ) ,问至少需配备多少工人 ,才能保证设备发生故障 但不能及时维修的概率小于0.01?
把检查一只元件是否为一级品看成是一次试 验, 检查20只元件相当于做20 重伯努利试验.
解 以 X 记 20 只元件中一级品的只数, 则 X ~ b(20, 0.2), 因此所求概率为
P{ X k} 20(0.2)k (0.8)20k , k 0,1,,20. k
P{ X 0} 0.012 P{ X 4} 0.218 P{ X 8} 0.022 P{ X 1} 0.058 P{ X 5} 0.175 P{ X 9} 0.007 P{ X 2} 0.137 P{ X 6} 0.109 P{ X 10} 0.002 P{ X 3} 0.205 P{ X 7} 0.055
一、离散型随机变量的分布律
定义 设离散型随机变量X 所有可能取的值为 xk (k 1,2,), X 取各个可能值的概率, 即事件 { X xk } 的概率, 为
随机变量及其分布
• 则称X为连续型随机变量,其中函数f(x)称为X的概率密度函数,简称 概率密度或者密度函数.
• 下面给出概率密度函数f(x)的性质: • (1)f(x)≥0 • (2)由分布函数的性质易得
下一页 返回
• 二、离散型随机变量的分布函数
• 设离散型随机变量X的分布律为:
上一页 下一页 返回
2. 3随机变量的分布函数
• 其中 • 则随机变量X的分布函数仿照例1可得
• 如图2一1所示,F(x)为阶梯函数,分段区间为半闭半开区间,并且右 连续
上一页 返回
2. 4连续型随机变量及其概率密度
• 一、连续型随机变量及其概率分布
上一页 返回
2. 2离散型随机变量及其分布律
• 一、离散型随机变量
• 在某些试验中(例如 2. 1中的例1,例2,例3),随机变量的取值是有 • 限个或者无穷可列个.这一类随机变量通常称为离散型随机变量,下
面我们给出离散型随机变量的精确定义: • 定义1若随机变量X的所有可能取值为x1,x2,…,xn…,并且其 • 对应的概率分别为p1, p2,…,p n,…,即
• 注:实值单值函数指的是每一个。仅存在唯一一个实数X (ω)与之对应, 其中X (ω)是一个关干样本点的函数,值域为实数集.
• 随机变量可以根据它的取值分为离散型随机变量与非离散型随机变量, • 其中非离散型随机变量又可以进一步分为连续型随机变量与混合型随
机变量.在本书中我们主要学习的是离散型与连续型随机变量.
• 则称X为离散型随机变量,并且式(2.均称为随机变量X的概率分布, 又称分布律或分布列.
下一页 返回
2-2离散型随机变量及其分布律
4、二项分布的泊松近似 (泊松定理)
当试验次数n很大时,计算二项分布很麻烦,必须寻求近似方法
P ( X 5 )
5 k 0
Ck 5000
(
1 1000
)k
(
999 1000
)5000k
离散型随机变量X b(n, p). 又设np ( 0), 则有
Cnk
pk (1
p )nk
n
k e
k!
即当n 很大且p 很小时,可用泊松分布近似计算二项分布.
P(X=0)=P(A1)=1/2,
P(X 1) P(A1A2 ) P(A1)P(A2 ) 1 4 P(X 2) P(A1 A2A3 ) P(A1)P(A2)P(A3) 1 8 P(X 3) P(A1 A2 A3A4 ) P(A1)P(A2 )P(A3 )P(A4 ) 1 16 P(X 4) P(A1A2 A3 A4 ) P(A1)P(A2)P(A3)P(A4) 1 16
例3 (P30,例2) 设射手每次击中目标的概率p=0.75, 且各次射击 相互独立。现共射击4次,以X表示击中目标的次数。(1)写出X的 分布律;(2)求恰击中3次的概率;(3)求至少击中2次的概率。
解 : 定义 A {击中目标}, 伯努利试验.
X的可能取值有:0,1,2,3,4. 显然, X b(2,0.75)
解 : 记 X表示200人中患此病的人数.
显然, X b(200, 0.01)
np 200* 0.01 2
P ( X 4 ) 1 P( X 3)
3
1
Ck 200
(0.01)k
(0.99)2004
k
k0
1 3 2k e2 k0 k !
=1-0.8571=0.1429 (查泊松分布表: P247)
2-2离散型随机变量及其分布律
P(X=2)=C (0.05) (0.95) = 0.007125
思考:本例中的“有放回”改为”无放回” 思考: 本例中的“有放回”改为”无放回”? 不是伯努利试验。 各次试验条件不同,此试验就不是伯努利试验 此时, 各次试验条件不同,此试验就不是伯努利试验。此时, 1 2 只能用古典概型求解. 古典概型求解 只能用古典概型求解. C C
3. 泊松分布
定义 若一个随机变量 X 的概率分布为 λke−λ P{ X = k} = , k = 0,1,2,⋯, k! 则称 X 服从参数为 λ 的泊松分布, 泊松分布, 记为 X ~ P (λ ) 或 X ~ π (λ ). 易见, 易见,1) P { X = k } ≥ 0; ( k −λ ∞ ∞ ∞ λk λe −λ (2)∑P{X = k} = ∑ =e ∑ k! k=0 k ! k=0 k=0
泊松分布是常见的一种分布: 泊松分布是常见的一种分布: 地震 火山爆发 特大洪水
商场接待的顾客数 电话呼唤次数 交通事故次数
4. 二项分布的泊松近似
很大时, 对二项分布 b( n, p ), 当试验次数 n 很大时, 计 算其概率很麻烦. 例如, 算其概率很麻烦 例如,b(5000, 0.001), 要计算
.
二、几种常见分布
1. 两点分布 只可能取x 设随机变量 X 只可能取 1与x2两个值 , 它的 分布律为 x x
X pi
p 1− p
1
2
0< p<1
则称 X 服从x1 , x2处参数为 的两点分布。 处参数为p的两点分布。
说明: 只可能取0与 两个值 说明:若随机变量 X 只可能取 与1两个值 , 它的 分布律为 0 1
则随机变量 X的分布律为 X 的分布律为
2-2离散型随机变量及其分布律
即P
X
0
1
2 0.30
3 0.20
4 0.09
5 0.03
6
7
8 0.00
9 0.00
10 0.00
0.11 0.27
0.01 0.00
P ( X 1) P ( X 0) P ( X 1)
1 0.2 0.89 =0.38. 0.810 +C10
第二章 一维随机变量及其分布
第二节 离散型随机变量及其分布律
一、离散型随机变量的分布律
对于离散型随机变量,我们所关心的问题: (1)随机变量所有可能的取值有哪些? (2)取每个可能值的概率是多少? 定义 设x1,x2,…为离散型随机变量X的可能取值, p1,p2,…为 X 取 x1,x2,… 的概率,即 P(X=xi ) = pi (i=1,2,…) (1)
(0 p 1) ,则在n重伯努利试验中事件A出现k次 的概率为
C pq
k n
k
n k
其中p q 1
k 0,1,, n.
k k n k pq 若随机变量 X 的分布律为 PX k Cn
其中 k 0,1,, n; 0 p 1; q 1 p. 即 X p
k e xk e x,易知 1. 利用级数 k 0 k ! k 0 k!
历史上,泊松分布是作为二项分布的 近似,于1837年由法国数学家泊松引入的 . 近数十年来,泊松分布日益显示其重要性 , 成为概率论中最重要的几个分布之一 . 在 实际中,许多随机现象服从或近似服从泊 松分布. 二十世纪初罗瑟福和盖克两位科学家在 观察与分析放射性物质放出的 粒子个数 的情况时,他们做了2608 次观察(每次时 间为7.5 秒)发现放射性物质在 规定的一段时间内, 其放射的粒 子数X 服从泊松分布.
概率论与数理统计第2章随机变量及其分布
1 4
)0
(
3 4
)10
C110
(
1 4
)(
3 4
)9
0.756.
(2)因为
P{X
6}
C160
(
1)6 4
(
3 4
)4
0.016
,
即单靠猜测答对 6 道题的可能性是 0.016,概率很小,所
以由实际推断原理可推测,此学生是有答题能力的.
二项分布 b(n, p) 和 (0 1) 分布 b(1, p ) 还有一层密切关
P{X 4} P(A1 A2 ) P(A1)P(A2 ) 0.48 ,
P{X 6} P(A1A2 ) P(A1)P(A2 ) 0.08 , P{X 10} P(A1A2 ) P(A1)P(A2 ) 0.32 , 即 X 的分布律为
X 0 4 6 10
P 0.12 0.48 0.08 0.32
点 e, X 都有一个数与之对应. X 是定义在样本空间 S 上的
一个实值单值函数,它的定义域是样本空间 S ,值域是实数
集合 {0,1,2},使用函数记号将 X写成
0, e TT , X=X (e) 1, e HT 或TH ,
2, e HH.
▪
例2.2 测试灯泡的寿命.
▪
样本空间是 S {t | t 0}.每一个灯泡的实际使用寿命可
(2)若一人答对 6 道题,则推测他是猜对的还是有答 题能力.
解 设 X 表示该学生靠猜测答对的题数,则
X
~
b(10,
1) 4
.
(1) X 的分布律为
P{X
k}
C1k0
(
1)k 4
(
3 4
第2章 随机变量及其分布
, 解 死亡人数 X ~ B(10000 0.005)
40 (1) P{ X 40} C10000 0.005400.9959960 .
k C10000 0.005k 0.99510000 k . (2) P{ X 70} k 0 70
计算相当复杂,下面介绍一个实用的近似公式。
2
2、在有些试验中,试验结果看来与数值无关,但我 们可以引进一个变量来表示它的各种结果.也就是说, 把试验结果数值化. 例1 抛一枚硬币,观察正反面的出现情况. 显然,该试验有两个可能的结果: H , T
我们引入记号:
1, X X (e ) 0,
eH , e T
于是我们就可以用 { X 1}表示出现的是正面, 而用 { X 0} 表示出现的是反面。 X就是一个随机变量。
路口1
路口2
路口3
1 P{ X 0} P( A1 ) . 2
10
路口1
路口2
路口3
1 P{ X 1} P ( A1 A2 ) . 4
路口1
路口2
路口3
1 P{ X 2} P ( A1 A2 A3 ) . 8
11
路口1
路口2
路口3
1 P{ X 3} P ( A1 A2 A3 ) . 8
24
定义
若随机变量X的概率分布为
k! 则称X服从参数为 的泊松分布,记为 X ~ ( ) .
验证规范性:
P{ X k }
k
e , k 0,1,2, , ( 0)
k!
k 0
k
e ,
k! e
k 0
第二章 随机变量及其分布第一节 随机变量及其分布函数讲解
Copyright © 2006 NJUFE
正态分布的概率计算公式:设 ~N (, 2 ),
P( a) (
a
); x2 ) ( x1 );
P( x1 x2 ) (
c P( c) 1 ( ); c c P( c) 2 ( ) ( ); c c P( c) ( ) ( ) 1.
P ( a b) F (b) F ( a )
f ( x)dx;
a
b
若f(x)在x0处连续,则F ( x0 ) f ( x0 )。
连续型随机变量与离散型随机变量的区别: 1) 连续型随机变量没有分布律; 2) 连续型随机变量取个别值的概率为零,即
P( x0 ) 0,x0 (, )。
二、随机变量的分布函数及其基本性质
定义2.2 (教材 p 47)
设
是随机变量,x 是任意实数,称函数 F ( x) P( x), x 为 的分布函数。
对于任意两实数
x1,x2, x1 x2,有
P( x1 x2 ) P( x2 ) P( x1 ) F ( x2 ) F ( x1 )
5. 几何分布 定义2.6( 若离散型随机变量
的分布律为
P( k ) p(1 p)k 1,k 1 , 2, 0 p 1
则称 服从参数为p的几何分布。 第三节、连续型随机变量 一、连续型随机变量的概念 定义2.7(教材 51) 设F(x) 为随机变量 使对一切实数x,都有
pk P( xk ), k 1 , 2,
为 的分布律(概率分布)。
概率论-2-2多维随机变量及其分布(2),边缘分布-PPT课件
由于
( y μ ) ( x μ )( 2 2 2 y μ x μ ( x μ ) 2 2 1 1 ρ ρ , 2 σ σ σ 2 1 1
pij P {Y y j },
i 1
分别称 p i ( i 1, 2 , ) 和 p j ( j 1, 2 , ) 为 ( X , Y ) 关于 X 和关于 Y 的边缘分布律 .
Y y 1 y 2 y j
X
x x 1 x 2 i
p p 11 p 21 i 1
x
p( x, y)d y]d x,
p( x, y)d y,
称其为随机变量 ( X, Y ) 关于X 的边缘概率密度 .
同理可得 Y 的边缘分布函数
F ( y ) F ( , y ) [ p ( x , y ) d x ] d y , Y
y
p ( y ) ( x ,y ) d x . Y p
Y 的边缘概率密度.
X 和Y 具有联合概率密度 例3 设随机变量 6, x2 y x, p(x, y) . 0, 其它 求边缘概率密度 pX (x), pY ( y).
解
p ( x ) ( x ,y ) d y X p
第二章
第二节 多维随机变量 及其分布(2)
一、边缘分布函数
二、离散型随机变量的边缘分布律 三、连续型随机变量的边缘分布 四、内容小结
一、边缘分布函数
问题 : 已知 ( X , Y ) 的分布 , 如何确定 X , Y 的分 ?
F ( x ) P { X x }, F ( x , y ) P { X x , Y y } ,
概率与数理统计 第二章-2-离散型随机变量及其分布律
(0–1)分布的分布律也可以写成:
P{X k} pk (1 p)1k , k 0,1,0 p 1.
两点分布的模型为:
(1)Ω= {1, 2}, 只有两个基本事件。
P({1}) = p , P({2}) = 1-p =q.
令
X
()
1, 0,
1, 2,
(2) W A A ,有两个结果。
1
2
P 0.04 0.32 0.64
PX 0 0.2 0.2 0.04
PX 1 0.80.2 0.20.8 0.32
PX 2 0.8 0.8 0.64
(2) ∵是并联电路 ∴ P{线路接通} =P{只要一个继电器接通} =P{X≥1} =P{X=1}+P{X=2}=0.32+0.64=0.96
所以,X 的概率分布为
P{X k } C4k p k (1 p )4k ,
k 0, 1, 2, 3, 4 .
(1) 伯努利试验 若随机试验E只有两个可能的结果: 事件A发生与事件A不发生,则称这样的 试验为伯努利(Bermourlli)试验。记
P(A) p, P(A) 1 p q (0 p 1),
P{X=1}:o o o Co41 p1(1 p)41
P{X=2}:o o oo oo oo C42opo2(1oop)42
P{X=3}:ooo oo o o oo oooC43 p3(1 p)43 P{X=4}:oooo C44 p4(1 p )44 p4
其中“×”表示未中,“○”表示命中。
P(A) p, P(A) 1 p ;
③ 各次试验相互独立。
我们关心的问题是:
n次的独立伯努利试验中,事件A发生的次数 及A发生k次的概率。
2.2离散型随机变量及其分布律
P 1 p
p
称X服从(01)分布或两点分布 记为 X~ B(1, p)
13
2.二项分布
在n重贝努里试验中,设每次试验事 件A发生的概率为p
令X是n次试验中事件A发生的次数
则 X为一离散型随机变量
P ( X k ) C p (1 p)
k n k n k
2.2 离散型随机变
量及其分布律
一、离散型随机变量 二、常见离散型分布
1
一天内接到的电话个数(可以一一罗列) 从某一学校随机选一学生,测量他的身高 (不可以一一罗列)
定义1: 如果随机变量X只能取有限个 或可列无限多个不同可能值,则称X 为 离散型随机变量
2
一、离散型随机变量
定义:设离散型随机变量X所有可能取 的值为x1, x2,…, xi ,…, X取可能值xi的概 率pi ,即P(X=xi)=pi (i=1,2,…),则称该式为 离散型随机变量X的分布律或概率分布 分布律也常用下列形式表示: X x1 x2 … xi … 性质: (1) pi≥0, i=1,2,… (2)
k n k e k n k
k!
( np)
21
泊松定理表明,泊松分布是二项分布的极限分布,
当n很大,p很小时,二项分布就可近似地 看成是参数=np的泊松分布
22
例.用步枪向某一目标射击,每次击中目标
的概率为0.001,今射击6000次,试求至少有 两弹击中目标的概率.(泊松定理)
24
4.几何分布: X ~ G(p)
PX k q
k 1
p
k 1, 2,
(其中p 0, q 0, p q 1)
第二讲随机变量
P{X k} Cnk pk (1 p)nk ,
此时称, X 服从参数为 n, p 的二项分布, 记为 X ~ b(n, p).
n=1时, P{X=k}=pk(1-p)1-k,(k=0,1),
注意
即P{X=0}=1-p, P{X=1}=p
(0-1)分布
X ~ b(n, p).
P{ X
k}
C
k n
pk (1
p)nk
,
二项分布的图形特点:
Pk
对于固定 n 及 p, 当 k 增
加时, 概率 P{ X k}先
是随之增加直至达到最
大值, 随后单调减少.
O
n
完
可以证明, 一般的二项分布的图形也具有这一
性质,且当 (n 1) p 不为整数时,二项概率
P{ X k} 在 k [(n 1) p] 达到最大值; 当 (n 1) p 为整数时, 二项概率 P{ X k} 在 k (n 1) p 和 k (n 1) p 1 处达到最
记载的实际年数作对照, 这些值及 P{ X k} 的值
均列入下表.
X Pk
理论年数
实际年数
0 12 3 45 6 0.055 0.160 0.231 0.224 0.162 0.094 0.045 3.5 10.1 14.6 14.1 10.2 5.9 2.8
4 8 14 19 10 4 2
X
7
售记录知道, 某种商品每月的销售数可以用参数
5 的泊松分布来描述, 为了以 95%以上的把
握保证不脱销, 问商店在月底至少应进该种商品
多少件?
解 设该商品每月的销售数为X , 已知 X 服从参数
5 的泊松分布. 设商店在月底应进该种商品 m
随机变量及其分布律
随机变量的分类
离散随机变量
离散随机变量的取值可以列举出来,如投掷一枚骰子出现的点数。
连续随机变量
连续随机变量的取值范围是连续的,如人的身高、体重等。
随机变量的数学表示
离散随机变量常用概率分布列表示,如二项分布、泊松分布等。
连续随机变量常用概率密度函数表示,如正态分布、指数分布等。
PART 02
离散型随机变量及其分布 律
REPORTING
WENKU DESIGN
离散型随机变量的定义
离散型随机变量是在一定范围内可以一一列举出来的随机变量,其取值范围称为样本空间,样本空间 中的每一个元素称为样本点。
离散型随机变量的取值可以是整数、分数等,但取值范围必须是有限的或者可数的。
协方差的计算公式为: Cov(X,Y) = Σ[(x-E(X))*(yE(Y))*p(x,y)],其中x、y分 别是两个随机变量的取值, p(x,y)是相应的联合概率。
相关系数是协方差与两个 随机变量标准差的乘积之 比,用于衡量两个随机变 量的线性相关程度。
相关系数的计算公式为: ρ(X,Y) = Cov(X,Y) / (σ(X)*σ(Y)),其中σ(X)、 σ(Y)分别是X、Y的标准差。
方差
01
方差是衡量随机变量取值分散程度的量,表示随机变量取值 偏离期望值的程度。
02
方差的计算公式为:Var(X) = Σ[(x-E(X))^2*p(x)],其中x是 随机变量的取值,p(x)是相应的概率。
03
方差具有非负性,即Var(X) ≥ 0。
协方差与相关系数
协方差是衡量两个随机变 量同时取值的分散程度和 趋势的量。
《概率论与数理统计》第二章 随机变量及其分布教案
第二章随机变量及其分布§2.1随机变量及其分布教学目的要求:使学生掌握随机变量、离散型随机变量、连续型随机变量的概念及其分布,会应用这些概念、分布求分布列.教材分析:1.概括分析:概率论所要考察的是与各种随机现象有关的问题,并通过随机试验从数量的侧面来研究随机现象的统规律性.为此,就有必要把随机试验的每一个可能的结果与一个实数联系起来.随机变量正是为适应这种需要而引进的。
随机变量实质上是定义在样本空间Ω={e}上的一个实值单值函数X(e).从此,对随机事件的研究转变为对随机变量的研究,通过随机变量将各个事件联系起来,进而去研究随机试验的全部结果.而且,随机变量的引入,使我们有可能借助于微积分等数学工具,把研究引向深入.2.教学重点:随机变量、离散型随机变量、连续型随机变量的概念及其分布函数.3.教学难点:求随机变量分布函数.教学过程:在第一章里,我们研究了随机事件及其概率,可以会注意到,在某些例子中,随机事件和实数之间存在着某种客观的联系.例如,在伯努利概型这一节中,曾经讨论过“在n 重伯努利试验中,事件A 出现k 次”这一事件的概率,如果令ξ=n 重伯努利试验中事件A 出现的次数则上述“n 重伯努利试验中事件A 出现k 次”这个事件就可以简单地记作(ξ=k),从而有P(ξ=k)=⎪⎪⎭⎫ ⎝⎛k n p k q n-k.并且ξ所有可能取到的数值也就是试验中事件A 可能出现的次数:0,1,…,n.在另一些例子中,随机事件与实数之间虽然没有上述那种“自然的”联系,但是我们常常可以人为地给它们建立起一个对应关系.例如抛掷一枚均匀的硬币,可能出现正面,也可能出现反面,现在约定若试验结果出现正面,令η=1,若试验结果出现反面,令η=0,这时就有:{试验结果出现正面}=(η=1),{试验结果出现反面}=(η=0).在上述例子中,对每一个试验结果ω,自然地或人为地对应着一个实数X(ω),这与高等数学中熟知的“函数”概念本质上是一致的.只不过在函数概念中,函数f(x)的自变量是实数x,而在X(ω)的自变量是样本点ω.因为对每一个试验结果ω,都有实数X(ω)与之对应,所以,X(ω)的定义域是样本空间,显然值域是实数域.显然,一般来讲此处的实数X 值将随ω的不同而变换,它的值因ω的随机性而具有随机性,我们称这种取值具有随机性的变量为随机变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何分布
伯努里试验中, 事件A发生的概率P(A)=p. 记X为事件A首次发生
时已试验的次数, 则X服从几何分布. 记作: X : Ge(p)
分布律:
P{X=k}=P( A{...A A) =P(A)...P(A)=(1-p)k-1p
举例:
k-1
k 1,2,...
(1)某产品不合格率0.1,则首次查到不合格品的检查次数X~Ge(0.1).
举例:(1)随机抽取医院一产婴是否为男婴。
(2)工厂随机抽取一产品是否合格。 (3)掷骰子一次是否出现6点。
0 X=X(e)= 1
e e1 (女婴,不合格,非6点) e e1 (男婴,合格, 6点)
二项分布
(1)n重伯努里试验:
随机试验E的结果只有两个: A, A, 则称试验E为伯努里试验. 独立地重复进行n次伯努里试验E, n重伯努里试验.
pk p1 p2 ... pk ...
b.公式法 (列出X取一般项xk的概率pk计算公式(k=1,2,...).
P{X=xk } pk (k 1, 2, ..., )
c.图示法 线条图,概率直方图
例1(P33) 一批产品的废品率为5%,从中任意抽取一个进行
检验,用随即变量 来描述废品出现的情况。写出的分布。
(2)某射手命中率为0.6,则首次击中目标的射击次数Y~Ge(0.6).
(3)同时掷两骰子,则点数之和首次为8点的投掷数Z~Ge(5/36).
特点:无记忆性: 设X : Ge(p), 则对任意m,n N, 成立
P(X>m+n|X>m)= P(X>n)
即前m次试验中A没有出现条件下,则在接下来n次试验中A仍 未出现的概率只与n有关,而以前的m次试验无关.
(2)二项分布
n重伯努里试验中, 每次试验中事件A发生的概率P(A)=p, 记X为n次试验中A发生的次数, 则X所服从的分布称为二项分布.表示为: X : b(n,p)
例 设射手每次击中目标的概率p=0.75, 且各次射击相互独立。 现共射击4次,以X表示击中目标的次数。(1)写出X的分布律; (2)求恰击中3次的概率;(3)求至少击中2次的概率。
矩形宽度代表分组个数,高度代表落在该区间样本的频率 高度越大,相应区间的样本数越多,分布越密集,反之亦然 分组越多,则频率直方图趋于一光滑曲线:概率密度
说明:
(1) 两个要素: a.所有可能取值xk; b.取各值的概率P{X=xk }=pk .
(2) pk满足两个条件: a. pk 0 (k=1,2,...)
b. pk 1
k=1
(3) 分布律表示方法: a.列举法 (列出所有可能取值xk及其概率pk (k=1,2,...).
X x1 x2 ... xk ...
超几何分布
设N个产品中有M个次品, 从中不放回地随机任取n个,设X为其中的 次品数.则称X服从超几何分布.记作: X : h(n,N,M)
分布律: X的可能取值为0,1,2,…,min(n,M)。
P{X=k}=
C C k n-k M N-M CnN
举例:
(1 p) p
(k=0,1,2,...,min(n,M))
解 : 定义 A {击中目标}, 伯努利试验.
X的可能取值有:0,1,2,3,4. 显然, X : b(2,0.75)
(1) P ( X k ) C4k (0.75)k (0.25)4k (k 0,1, 2, 3, 4)
(2)P(XLeabharlann 3)
C
3 4
(0.75)3 (0.25)43
P(
X
k)
Ck 400
(0.02)k
(0.98)400k
k=0,1,2,...,400
400
所求概率为: P(X 2)=
C
k 400
(0.02)k
(0.98)400
k
k=2
P(X 2)=1-P(X 0)-P(X 1)
1 0.98400 400* 0.02* 0.98399 0.997
袋中白球5个,黑球10个,任取3个,其中白球个数为X ~h(3,15,5)
二、连续型随机变量及其概率密度
背景:
例子:1、灯泡(电视机)的寿命; 2、股票的收益率等。
特点:1、随机变量的取值充满某个区间,不能一一列出。 2、随机变量取任一值的概率为0,即P(X=x)=0。
用直方图近似正态分布的概率密度演示
第二节 随机变量及其分布函数
主要内容(1.5学时)
一、离散型随机变量的分布律; 二、连续型随机变量及其概率密度 ; 三、分布函数
一、离散型随机变量的分布律
设X为离散型随机变量, 则X的所有可能取值xk (k 1, 2, ..., ), 及取各个 可能值的概率P{X=xk } pk (k 1, 2, ..., ), 称为离散型X的分布律.
=0.422
(3) P ( X 2 ) 1 P ( X 2 ) 1 P ( X 0 ) P ( X 1)
1 (0.25)4 C41(0.75)1(0.25)41=0.949
例 某人每次射击命中率为0.02,独立射击400次,试求至 少击中两次的概率。
解: 400重独立重复试验。设X表示400次射击中的击中次数 显然, X ~ b (400, 0.02)
解: 随机变量X取值范围0,1.
=0 表示产品为不合格品 =1 表示产品为合格品
对应的概率值 P( 0)=95% P( 1)=5%
0
1
P 95%
5%
0-1分布(伯努里分布)
随机变量X取值两个:0、1,P(X=1)=p,则分布律为:
列表法: X
0
1
P(X=k) 1-p
p
公式法: P{X k} pk (1 p)1k (k=0,1)
启示:一次试验中概率很小,但在大量重复试验中几乎必然发生
例4(P35) 社会上定期发行某种奖券,每券1元,中奖率为p。 某人每次购买1张奖券,如果没有中奖下次再继续购买一张,
直到中奖为止。求该人购买次数的分布。
解:
=1 表示第一次购买奖券中奖 P( =1) p =2 表示第二次购买奖券中奖 P( =2) (1 p) p .... =i 表示第i次购买奖券中奖 P( =i) (1 p)i1 p