§17.4.1棣莫弗定理与欧拉公式

合集下载

棣莫弗—拉普拉斯定理证明

棣莫弗—拉普拉斯定理证明

棣莫弗—拉普拉斯定理证明棣莫弗—拉普拉斯定理是数学中的一个重要定理,它与泰勒级数展开密切相关,被广泛应用于数学和物理之中。

棣莫弗—拉普拉斯定理提供了一种求解函数的近似值的方法,特别适用于当自变量趋向于无穷大时。

下面我将详细阐述并证明这一定理。

假设我们有一个函数f(x),它在实数轴上连续,并且在某个区间上存在高阶导数。

设a是实数,考虑函数f(x)在x=a处的泰勒级数展开式为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + ... + f^(n)(a)(x-a)ⁿ/n! + ...(1)其中f^(n)(a)表示f(x)的n次导数在x=a处的值。

棣莫弗—拉普拉斯定理是指,当自变量x趋向于无穷大时,函数f(x)可以用它的泰勒级数展开的前几项来近似表示。

具体来说,如果我们只保留泰勒级数展开的前n项,并且在其中每一项的指数幂都是x的二次项及以上时,那么我们可以得到以下近似表达式:f(x) ≈f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + ... + f^(n)(a)(x-a)ⁿ/n!(2)其中≈表示“近似等于”。

棣莫弗—拉普拉斯定理的基本思想是,当x趋向于无穷大时,泰勒级数展开中的高次项在整体上变得可以忽略不计,而低次项的贡献逐渐占主导地位,从而可以用前n项来近似表示函数f(x)。

这一近似成立的条件是,函数f(x)在x=a处的泰勒级数展开存在,且高次项在x趋向于无穷大时趋向于0。

要证明棣莫弗—拉普拉斯定理,我们可以考虑泰勒级数展开式中的误差项,即余项。

根据泰勒中值定理,对于x=a+h(其中h>0),函数f(x)在[a,a+h]上至少有一个点ξ,使得余项等于f^(n+1)(ξ)(x-a)ⁿ⁺¹/(n+1)!。

当x趋向于无穷大时,假设ξ趋向于无穷大,我们可以猜测余项的渐近表达式为O(xⁿ⁺¹),其中O表示“同阶无穷小”。

棣美弗定理与Euler公式

棣美弗定理与Euler公式
n→∞ n→∞
y θn θn · n tan θn = lim · n→∞ tan θ tan θn n 1+
x n
=y
(2.7)
定理 2.1. 已知 z = x + iy 則 ez = ex+iy = ex (cos y + i sin y ) 如果 z = iy 就回到 Euler 公式。 由這個定理可容易證明函數方程。 系 2.2. 指數函數 ez 滿足函數方程 ez1 +z2 = ez1 ez2 z1 , z2 ∈ C (2.9) (2.8)
與 (1.5) 不謀而合, 現在決定 K 是甚麼? f 對 x 微分 df = KeKx = − sin x + i cos x = i(cos x + i sin x) dx 因此 K = i, 換言之 f (x) = cos x + i sin x = eix 這正是 Euler 公式。 同理對於函數 g (x) 也有類似的公式: g (x)g (y ) = g (x + y ), [g (x)]n = g (nx) (1.7) (1.8) (1.6)
這個函數方程 (functional equation) 是指數函數的基本性質但是直接由定義是不容易證明的, 不信你可以試看看。 (B) 從分析的角度而言, 利用冪級數來定義指數函數是最自然不過的了 ez = zn , n=0 n!

z = x + iy
(2.10)
在複變函數理論我們將這類可以表為冪級數的函數稱為解析函數 (analytic function), 因為是 無窮級數所以必需先討論收斂性問題。 對於複數要比較大小最自然的就是選取其模 (modulus) 或範數 (norm) |z | = |x + iy | = x2 + y 2

欧拉公式解析

欧拉公式解析

欧拉公式解析欧拉公式,那可是数学世界里超级厉害的一个存在!咱们先来说说欧拉公式是啥。

欧拉公式是e^(iθ) = cosθ + i*sinθ 。

这看起来是不是有点复杂?别担心,咱们慢慢捋一捋。

就拿咱们生活中的一个例子来说吧,比如说你在公园里转圈圈。

想象一下,你站在圆心,每转一个角度,就相当于在这个数学的“圆”里移动了一段“距离”。

这个“距离”可以用欧拉公式来描述。

咱们先看看 e 这个数,它可是个神奇的常数,在很多数学和科学的地方都出现。

就像你总是能在熟悉的地方碰到熟悉的朋友一样,e 也是数学世界里的“常客”。

再说说 i ,这个虚数单位,一开始接触的时候,可能会觉得它有点奇怪。

但其实啊,它就像是给数学打开了一扇新的窗户,让我们能看到更多奇妙的景象。

而θ 呢,就是咱们转的那个角度。

cosθ 和sinθ 大家应该比较熟悉啦,它们能告诉我们在某个角度上,水平和垂直方向的“分量”是多少。

比如说,当θ = 0 的时候,欧拉公式就变成了 e^(i*0) = cos0 + i*sin0 ,也就是 1 = 1 + 0i ,这是不是很简单明了?再比如,当θ = π/2 的时候,就变成了 e^(i*π/2) = cos(π/2) +i*sin(π/2) ,也就是 i = 0 + i ,是不是很有趣?那欧拉公式到底有啥用呢?这用处可大了去了!在物理学里,研究交流电的时候,欧拉公式就能大显身手。

还有在信号处理、控制理论等好多领域,欧拉公式都是非常重要的工具。

记得有一次,我和一个朋友讨论一个物理问题,涉及到电磁波的传播。

我们一开始被那些复杂的公式和计算搞得晕头转向。

后来突然想到了欧拉公式,就像在黑暗中找到了一盏明灯。

用欧拉公式一化简,那些原本让人头疼的式子一下子变得清晰起来,问题也迎刃而解。

那一刻,我真真切切地感受到了欧拉公式的强大魅力。

总之,欧拉公式虽然看起来有点复杂,但只要我们耐心去理解,去探索,就能发现它背后隐藏的美妙和神奇。

棣莫弗公式

棣莫弗公式

棣莫弗公式棣莫弗定理1科学原理设两个复数(用三角形式表示)Z1=r1(coθ1+iinθ1),Z2=r2(coθ2+iinθ2),则:Z1Z2=r1r2[co(θ1+θ2)+iin(θ1+θ2)]。

2解析证:先讲一下复数的三角形式的概念。

在复平面C上,用向量Z(a,b)来表示Z=a+bi。

于是,该向量可以分成两个在实轴,虚轴上的分向量。

如果向量Z与实轴的夹角为θ,这两个分向量的模分别等于rcoθ,rinθ(r=√a^2+b^2)。

所以,复数Z可以表示为Z=r(coθ+iinθ)。

这里θ称为复数Z的辐角。

因为Z1=r1(coθ1+iinθ1),Z2=r2(coθ2+iinθ2),所以Z1Z2=r1r2(coθ1+iinθ1)(coθ2+iinθ2)=r1r2(coθ1coθ2+icoθ1inθ2+iinθ1coθ2-inθ1inθ2)=r1r2[(coθ1coθ2-inθ1inθ2)+i(coθ1inθ2+inθ1coθ2)]=r1r2[co(θ1+θ2)+iin(θ1+θ2)]。

其实该定理可以推广为一般形式:3推广设n个复数Z1=r1(coθ1+iinθ1),Z2=r2(coθ2+iinθ2),。

Zn=rn(coθn+iinθn),则:Z1Z2。

Zn=r1r2。

rn[co(θ1+θ2+。

+θn)+iin(θ1+θ2+。

+θn)]。

4解析证:用数学归纳法即可,归纳基础就是两个复数相乘的棣莫弗定理。

如果把棣莫弗定理和欧拉(Euler)公式“e^iθ=coθ+iinθ”(参见《泰勒公式》,严格的证明需要复分析)放在一起看,则可以用来理解欧拉公式的意义。

利用棣莫弗定理有:Z1Z2。

Zn=r1r2。

rn[co(θ1+θ2+。

+θn)+iin(θ1+θ2+。

+θn)]如果可以把所有的复数改写成指数的形式,即:Z1=r1e^iθ1,Z2=r2e^iθ2,。

Zn=rne^iθn,Z1Z2。

Zn=r1r2。

rne^i(θ1+θ2+。

§17.4-棣莫弗定理与欧拉公式

§17.4-棣莫弗定理与欧拉公式
课堂练习
学生小结教师补充
分析:积的辐角等于辐角的和,欲求+可利用 的乘积进行求解.
学生黑板练习
南通工贸技师学院教案用纸附页
教学内容、方法和过程
附记
解: (2+i)(3i)=5+5i=
由复数的乘法法则知,
又∵两个复数分别为2+i和3i
∴其辐角主值 <<, <<2,
∴2<+<3
∴+=2+ =
点评:利用复数的乘法法则求两辐角的和,关键要注意辐角和的范围,复数积的辐角主值不一定是两个复数辐角的和.分析:复数积的等于模的积,商的模等于模的商.
解:|z|=
点评:如果一个复数是由若干个复数相乘或相除而构成,则求其模时,不需要将该复数进行化简运算,而可利用复数三角形式的乘除运算法则,先求各自复数的模,再进行乘除运算.
【举一反三】
已知 ,则
【例3】已知复数 =2+i和 3i的辐角主值分别为、,求+的值
解:(1)原式=
(2)原式=
(3)原式=
(4)原式=
教师讲授
讲授
南通工贸技师学院教案用纸附页
教学内容、方法和过程
附记
点评:若复数是代数形式或非标准的三角形式,要先将复数化为标准的三角形式,然后再利用相应法则进行运算.
【举一反三】
计算:
(1)
(2) (cos +isin )÷ (cos isin )
【例2】求复数 的模.
南通工贸技师学院
教案首页
授课
日期
班级
15单招2
课题:§17.4棣莫弗定理与欧拉公式
教学目的要求:掌握复数三角形式的乘除法运算法则,能熟练运用法则进行三角形式的乘、除运算.

欧拉公式的启发性推导

欧拉公式的启发性推导

欧拉公式的启发性推导
以瑞士著名数学家欧拉命名的公式定理不胜枚举,平面几何,拓扑,复变函数,数论等等各个数学领域内均有欧拉大神的插旗。

本文所指的欧拉公式是比较广为人知的,联系三角函数与复指数的公式: 预备知识:
(1)自然对数的底
以及相应的推广:对任意a
(2)极限
(3)棣莫弗公式
对复数

备注:棣莫弗公式比欧拉早,当时他还没有认识到复数的指数形式。

另外简单介绍一下,棣莫弗De Moivre(1667-1754),法国数学家,一生未婚。

87岁时患上了“嗜眠症”,每天睡觉20小时。

当达到24小时长睡不起时,他便在贫寒中离开了人世。

接下来是推导。

根据棣莫弗公式,对任意n,都有
令n趋于无穷,根据预备知识(2),则
于是
根据预备知识(1)第二个公式,n趋于无穷时,有
由n的任意性,趋于可改为等号,从而
就得到了欧拉公式。

当然,以上过程并不严谨,严谨的证明需要用泰勒级数,但可以加深对欧拉公式的理解。

也许欧拉一开始也是这么想的,无聊的时候,对着棣莫弗公式一顿操作,突然,Eureka!发现了这一公式,然后才进一步通过其他严谨的方法证明了这一公式。

从无到有的第一步最为艰难,道生一,一生二,二生三,三生万物。

大部分时候,差的就是“道生一”的关键一步。

§17.4.1棣莫弗定理与欧拉公式

§17.4.1棣莫弗定理与欧拉公式

3 1 4 计算: (1)(cos 5 i sin 5 ) ; (2)( i) . 2 2
6
问题解决
当n取什么正整数时,z= 1 3i 是一个实数?


n
n 3k , k Z .
本节课 学到了哪些知识?
掌握了哪些方法?
何处还需要注意?
归纳
乘法:
复数的积的模等于模的积,


由此推测, 复数的n次幂的模等于模的n次幂, 复数的n次幂的辐角等于辐角的n倍.
n n
[r (cos isin )] r (cos n isin n ). 棣莫弗定理:
计算: (1)(cos 40 i sin 40 )9 ; (2)(1 3i) 2012 . 1 cos360 i sin 360 (1)原式 解: 2012 (2)原式 [2(cos i sin )] 3 3 2012 2012 2012 2 (cos i sin ) 3 3 2 2 2012 2 (cos i sin ) 3 3 1 3 2012 2 ( i) 22011 22011 3i 2 2
由此可见, 复数的商的模等于模的商, 复数的商的辐角等于辐角的 差 .
计算:[6(cos 70 isin 70 )] [3(cos 40 isin 40 )].
原式 2[ cos(70 40 ) isin(70 40 )] 解:

2(cos30 isin 30 ) 3 i.
2 3
;
21 2
i i 2 6i

.
关键点拨:如果我们要求几个复数积或商或幂的模,那么可以利用 z1 z1 n n z1 z2 = z1 z2 、 = 和 z z 进行计算,而不需要 z2 z2 先算出积、商、幂之后再求模.

棣莫弗公式

棣莫弗公式

棣莫弗公式复数乘方用三角表示式来解比较简便.复数r(cosθ+isinθ)的n次方是:z^n=[r(cosθ+isinθ)]^n=r^n(cosnθ+isinnθ)n∈N.复数开方也用三角表示式来解比较简便.复数r(cosθ+isinθ)的n次方根是:(n次根号r){cos[(θ+2kπ)n]+isin[(θ+2kπ)n](k=0,1,2,......). n∈N.这两条公式叫做棣莫弗公式[编辑本段]证明棣莫弗公式证明先引入欧拉公式:e^ix = cosx + isinx将e^t,sint , cost 分别展开为泰勒级数:e^t = 1 + t + t^22! + t^33! + …… + t^nn!+ ……sint = t - t^33!+t^55!-t^77!+……-……cost = 1 - t^22!+t^44!-t^66!+……-……将t = ix 代入以上三式,可得欧拉公式应用欧拉公式,(cosx+isinx)^n = (e^ix)n=e^inx=cos(nx)+isin(nx)另外一种证法:根据两复数相乘的公式,设Z=r(cos x+isin x),Z'=r'(cos x'+isin x')则ZZ'=rr'(cos (x+x')+isin (x+x'))令Z=Z',得Z^2=r^2(cos 2x+isin 2x)继续用Z乘这个式子,得Z^3=r^2(cos 3x+isin 3x)最后可以由数学归纳法导出,对于n∈N,Z^n=r^n(cos nx+isin nx)[编辑本段]在三角问题中的应用在r=1时:(cosx+isinx)^n = cos(nx)+isin(nx)有这个公式可以得到一个特别重要的结果。

我们可以令n=3为例,此时(cosx+isinx)^3 =cos(3x)+isin(3x)而等式左边根据二项式定理展开得到(cosx+isinx)^3 =cos^3 x+3cos^2 x isinx+3cosx i^2 sin^2 x+i^3 sin^3 x =cos^3 x-3cos x sin^2 x+i(3cos^2 x sin x-sin^3 x)最后根据右边得到cos^3 x-3cos x sin^2 x+i(3cos^2 x sin x-sin^3 x)=cos(3x)+isin(3x)这相当于实数间的一对等式,因为复数相等的条件是实部和虚部分别相等,所以cos(3x)=cos^3 x-3cos x sin^2 xsin(3x)=3cos^2 x sin x-sin^3 x再根据式子sin^2 x+cos^2 x=1,代入并整理后得cos 3x=4cos^3 x-3cos xsin 3x=-4sin^3 x+3sin x以此类推,对于n∈N,可以用sin x 和 cos x的幂分别表示sin nx 和cos nx.棣美弗定理[编辑本段]定理法国数学家亚伯拉罕·棣·美弗(Abraham de Moivre, 1667-1754)于1707年创立该定理,并与1730年发表。

隶模弗定理

隶模弗定理

隶模弗定理隶模弗定理是一项重要的数学定理,在数学和计算机科学等领域中有广泛的应用。

这个定理最初由克卢斯·夏尔得提出,其思想是将一个大的问题分解成许多小问题,并逐一解决。

这篇文章将介绍隶模弗定理的定义、重要性以及一些应用。

隶模弗定理的定义首先,我们需要了解一些基本概念。

在模论中,模是一种数学结构,包括一个集合和一个关于这个集合的运算。

设 $R$ 为一个环,$M$ 为一个左 $R$-模,$N$ 为$M$ 的一个子模,$P$ 为 $R$ 的一个左理想,那么隶模弗定理的一般形式表述如下:\[(M/N)/(P/NM) \cong M/ (P + N)\]其中 $\cong$ 表示同构,即两个结构之间存在一个一一映射,保持所有的结构关系。

简单来说,这个定理的意思是:在一个模 $M$ 中,假设有一个子模 $N$,以及一个左理想 $P$,那么 $M$ 中所有包含 $N$ 的子模都形如 $P + N$。

换句话说,模$M$ 中所有包含 $N$ 的子模都可以表示为 $N$ 和 $P$ 的和,其中 $N$ 是 $P + N$ 的子模。

隶模弗定理的意义隶模弗定理在数学和计算机科学中具有重要意义。

首先,它为模论提供了一个基本工具,使得我们可以更方便地研究模的结构和性质。

其次,隶模弗定理允许我们将大的问题分解成小的、易于解决的问题,这在实际应用中非常有用。

例如,我们可以将一个大的模分解为更小的子模,然后逐一考虑这些子模的性质。

此外,隶模弗定理也有一些重要的推论。

其中一个推论是,如果 $P$ 和 $N$ 都是 $M$ 的子模,那么\[M/N \cong (M/P)/(N/P)\]这个推论告诉我们,如果我们将 $M$ 按照一个左理想分解,则可以将 $M/N$ 分解为 $M/P$ 中的 $N/P$。

隶模弗定理的应用隶模弗定理在代数学和计算机科学中有广泛的应用。

以下是一些例子:1. 隶模弗定理可以用于求解线性代数中的矩阵秩问题。

复数棣莫弗公式

复数棣莫弗公式

复数棣莫弗公式
棣莫弗公式是:Z1Z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]。

在棣莫弗公式“Z1Z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]”中,Z1=r1(cosθ1+isinθ1),Z2=r2(cosθ2+isinθ2)。

证明的方法:在复数平面上,可以用向量Z(a,b)来表示Z=a+ib.该向量可以分成两个在实轴,虚轴上的分向量。

如果向量Z与实轴的夹角为θ,这两个分向量的模分别等于rcosθ,risinθ(r=√a^2+b^2).所以,复数Z可以表示为Z=r(cosθ+isinθ).这里θ称为复数Z的辐角。

推导过程:
如果一个函数fx符合fx1fx2=f(x1+x2)
那么两边同时取对数lnfx1+lnfx2=lnf(x1+x2)
令lnfx=gx,则gx1+gx2=g(x1+x2)
令Fx=ga+gx=g(a+x)其中a是任意实数
两边同时求导g'x=g'(a+x)
因为a是任意实数,所以x和a+x可以是任意两个不同的数。

gx的导数取任何值都相等,说明这个导数是个常数。

令这个常数等于k,则:
g'x=k
gx=kx+C
fx=e^(kx+C)=Ce^kx
带入fx1fx2=f(x1+x2)得
C²=C,C=1(C不能是0)
fx=e^kx
所以任何这种形式的函数都是一种指数函数,那棣莫弗公式一定是一种指数函数。

数学第四册(综高)17.4棣莫弗定理与欧拉公式

数学第四册(综高)17.4棣莫弗定理与欧拉公式

备注§17.4 棣莫弗定理与欧拉公式教学目标:1.掌握复数的代数形式、三角形式及指数形式,并会进行三种 形式的互化;2.掌握复数的三角形式的乘、除和棣莫弗定理与欧拉公式。

教学重点:掌握复数的三角形式的乘、除和隶莫弗定理与欧拉公式。

教学难点:掌握复数的代数形式、三角形式及指数形式,并会进行 三种形式的互化。

新课讲授:棣莫弗定理与欧拉公式 一、复习导入在三角形式下对复数进行的运算主要是乘除。

二、探究设复数z 1= 2(cos6π+isin6π),z 2= 4(cos3π+isin3π),则z 1 ·z 2等于多少?三、知识链接(1)一般z 1= r 1(cos θ1 +isin θ1),z 2= r 2 (cos θ2+isin θ2), 则有z 1 ·z 2= r 1 r 2 [cos(θ1 +θ2 )+isin (θ1+θ2)]由此可见,复数的积的模等于模的积,积的辐角等于辐角的和。

(2)一般z 1= r 1(cos θ1 +isin θ1),z 2= r 2 (cos θ2+isin θ2), 则有21z z = 21r r[cos(θ1 -θ2 )+isin (θ1-θ2)] 由此可见,复数的积的模等于模的商,积的辐角等于辐角的差。

四、典型例题 例1、计算 (1)3(cos6π+isin6π)·4(cos12π+isin12π)(2)2(cos 500+isin500)·3(cos400+isin400)例2、计算:[6(cos 700+isin700)]÷[3(cos400+isin400)]若3(cos6π+isin6π),那么z 2与z 3的值分别为多少?练习1.计算: (1)2(cos6π+isin6π)·2( cos12π+isin12π)(2)2(cos83π+isin83π)·3( 1+i )(3)2(cos6π-isin6π)÷2( cos12π+isin12π)课内练习:P77练习一、复习导入学习了复数三角形式的乘法后,接下来我们学习复数三角形式的 幂运算。

17.4棣莫弗定理及欧拉公式复习过程

17.4棣莫弗定理及欧拉公式复习过程
144厂](7丿J7丿」
(3)
2(cos40°+i sin 400)
(3)(3)0
V2 (cos10+isin 10)
Z2
因此,复数的商的模等于,商的辐角等于
证明:先乘,再用两角和的正弦、余弦公式整理:
注意:运用复数的三角形式的乘除法运算时,首先要使每个复数是三角形
式。
二、例题讲解
例1、
例2、利用复数的三角形式计算下列各式:
(1)2cos300isin30°3
(2)^/6lost +i sin=icoS一竺】+i sin〔-—
2、 例题讲解4、例题讲解6、例题讲解
课堂教学安排
第一课时
一、知识链接:
1、若zy=r-\cos3i sin y,z2二r2cos v2i sin v2,贝Uz1* z2=、
因此,复数的积的模等于,积的辐角等于
证明:先乘,再用两角和的正弦、余弦公式整理:
2、若z^i=ri(cosd +i si nd),z2= r2(cos日2+i si n日2),则—1=
3、了解复数的指数形式和极坐标形式在电工学中的应用。
教学重点
棣莫弗定理和欧拉公式,复数指数形式和复数的幕运算。
复数的代数形式、三角形式和指数形式间。
复数在电工学中的应用。
更新、补
充、删节
内容

板书设计
17.4棣莫弗定理及欧拉公式
1、复数二角形式的乘除法3、棣莫弗定理5、欧拉公式
课题序号
授课班级
养殖班/艺术班
授课课时
2
授课形式
讲授式
授课章节
名称
17.4棣莫弗定理及欧拉公式

《数学》第四册17.4棣莫弗定理与欧拉公式

《数学》第四册17.4棣莫弗定理与欧拉公式

17.4棣莫弗定理与欧拉公式学习目标:1、掌握复数三角形式的乘除法运算和棣莫弗定理、欧拉公式,知道在进行复数的幂运算时采用三角形式和指数形式会使计算变得简便。

2、会进行复数的代数形式、三角形式和指数形式之间的互化。

3、了解复数的指数形式和极坐标形式在电工学中的应用。

学习重点:棣莫弗定理和欧拉公式,复数指数形式和复数的幂运算。

复数的代数形式、三角形式和指数形式间的互化。

学习难点:复数的代数形式、三角形式和指数形式间的互化。

复数在电工学中的应用。

学习过程:一、 知识链接:1、 若()1111sin cos θθi r z +=,()2222sin cos θθi r z +=,则=∙21z z 因此,复数的积的模等于 ,积的辐角等于 证明:先乘,再用两角和的正弦、余弦公式整理:2、 若()1111sin cos θθi r z +=,()2222sin cos θθi r z +=,则=21z z 因此,复数的商的模等于 ,商的辐角等于 证明:先乘,再用两角和的正弦、余弦公式整理:注意:运用复数的三角形式的乘除法运算时,首先要使每个复数是三角形式。

3、棣莫弗定理若()θθsin cos i r z +=,则=nz ()+∈N n证明:因此,复数的n 次幂的模等于 ,辐角等于 4、复数的指数形式: 欧拉公式:cos sin i θθ+=欧拉公式表示复数:(cos sin )z a bi r i θθ=+=+= (复数的指数形式)5、复数指数形式乘除法则: 若1212,i i z re z reθθ==,则12z z ∙= ;12z z = 。

证明:6、复数指数形式乘方法则: 若,i z re θ=则n z = 证明:二、 例题讲解:例1、 利用复数的三角形式计算下列各式: (1)()()000032cos30sin 30cos 60sin 602i i ⎡⎤++⎢⎥⎣⎦(233cos sincos sin 4477i i ππππ⎤⎫⎛⎫⎛⎫+-+-⎪ ⎪ ⎪⎥⎭⎝⎭⎝⎭⎦(3002cos 40sin 40i + (4)5512cossin 662i ππ⎛⎫⎛⎫+∙- ⎪ ⎪ ⎪⎝⎭⎝⎭(5)32cos sin 66i ππ⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦ (6)(51+ (7)7cos sin 77i ππ⎛⎫-- ⎪⎝⎭例2、 将下列复数化为指数形式:(1)cos sin44i ππ⎛⎫+ ⎪⎝⎭(255cossin 33i ππ⎫+⎪⎭(3)cos sin 55i ππ--(4)cossin36i ππ- (5)1i -+ (6i (7)4i - (8)0例3、 将下列复数的指数形式化为三角形式和代数形式:(1)32ie π(223iπ- (3)28ieπ练习:将下列复数的指数形式化为三角形式和代数形式:(1)625.610iieeππ-∙ (2)445i ieeππ⎛⎫- ⎪⎝⎭÷ (3)424i π⎫⎪⎭练习:将下列复数化为复数的三角形式和指数形式 (1)1cos sin66z i ππ=- (2)23z =-- (33iπ练习:已知复数66123,i iz ez ππ⎛⎫- ⎪⎝⎭==,用复数的指数形式分别求出:(1)12z z ∙ (2)12z z (3)31z。

棣莫弗定理与欧拉公式

棣莫弗定理与欧拉公式

棣莫弗定理与欧拉公式编写人:刁国龙 审核人:叶新红学习目标:1、掌握复数三角形式的乘除法运算和棣莫弗定理、欧拉公式,知道在进行复数的幂运算时采用三角形式和指数形式会使计算变得简便。

2、会进行复数的代数形式、三角形式和指数形式之间的互化。

3、了解复数的指数形式和极坐标形式在电工学中的应用。

学习重点:棣莫弗定理和欧拉公式,复数指数形式和复数的幂运算。

复数的代数形式、三角形式和指数形式间的互化。

学习难点:复数的代数形式、三角形式和指数形式间的互化。

复数在电工学中的应用。

学习过程:一、 知识链接:1、 若()1111sin cos θθi r z +=,()2222sin cos θθi r z +=,则=∙21z z 因此,复数的积的模等于 ,积的辐角等于 证明:先乘,再用两角和的正弦、余弦公式整理:2、 若()1111sin cos θθi r z +=,()2222sin cos θθi r z +=,则=21z z 因此,复数的商的模等于 ,商的辐角等于 证明:先乘,再用两角和的正弦、余弦公式整理:注意:运用复数的三角形式的乘除法运算时,首先要使每个复数是三角形式。

3、棣莫弗定理若()θθsin cos i r z +=,则=nz ()+∈N n证明:因此,复数的n 次幂的模等于 ,辐角等于欧拉公式表示复数:(cos sin )z a bi r i θθ=+=+= (复数的指数形式) 5、复数指数形式乘除法则: 若1212,i i z re z reθθ==,则12z z ∙= ;12z z = 。

证明:6、复数指数形式乘方法则: 若,i z re θ=则nz =证明:7、复数的极坐标形式:r θ∠表示模为 ,辐角为 的复数。

即r θ∠= 复数的极坐标形式的运算法则:(1)1122r r θθ∠∙∠= (2)1122r r θθ∠=∠ (其中220r θ∠≠)(3)()nr θ∠=二、 例题讲解:例1、 利用复数的三角形式计算下列各式: (1)()()00032cos30sin 30cos60sin 602i i ⎡⎤++⎢⎥⎣⎦(233cos sincos sin 4477i i ππππ⎤⎫⎛⎫⎛⎫+-+-⎪ ⎪ ⎪⎥⎭⎝⎭⎝⎭⎦(3002cos 40sin 40i +(4)5512cossin 662i ππ⎛⎫⎛⎫+∙- ⎪ ⎪ ⎪⎝⎭⎝⎭(5)32cos sin 66i ππ⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦(6)(51+ (7)7cos sin 77i ππ⎛⎫-- ⎪⎝⎭小结:例2、 将下列复数化为指数形式: (1)cos sin44i ππ⎛⎫+ ⎪⎝⎭(255cossin 33i ππ⎫+⎪⎭(3)cos sin 55i ππ-- (4)cossin36i ππ- (5)1i -+(6i (7)4i - (8)0例3、 将下列复数的指数形式化为三角形式和代数形式: (1)32ie π(223iπ- (3)28ieπ例4、 计算: (1)625.610iieeππ-∙ (2)445i ieeππ⎛⎫- ⎪⎝⎭÷ (3)424i π⎫⎪⎭例5、 将下列复数化为复数的极坐标形式: (1)1cos sin66z i ππ=- (2)23z =-- (33iπ例6、已知复数66123,i iz ez ππ⎛⎫- ⎪⎝⎭==,用复数的极坐标形式分别求出:(1)12z z ∙ (2)12z z (3)31z例7、在并联电路中,已知两个正弦交流电流为()()0012120,30i t A i t A ωω=+=+,求总电流i。

棣莫弗公式

棣莫弗公式

棣莫弗公式棣莫弗定理1科学原理设两个复数(用三角形式表示)z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),则:z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)].证:先谈一下复数的三角形式的概念。

在为丛藓科扭口藓平面c上,用向量z(a,b)去则表示z=a+bi.于是,该向量可以分为两个在实轴,虚轴上的分向量.如果向量z与实轴的夹角为θ,这两个分后向量的模分别等同于rcosθ,rsinθ(r=√a^2+b^2).所以,复数z可以则表示为z=r(cosθ+isinθ).这里θ称作复数z的辐角.因为z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),所以z1z2=r1r2(cosθ1+isinθ1)(cosθ2+isinθ2)=r1r2(cosθ1cosθ2+icosθ1sinθ2+isinθ1cosθ2-sinθ1sinθ2)=r1r2[(cosθ1cosθ2-sinθ1sinθ2)+i(cosθ1sinθ2+sinθ1cosθ2)]=r1r2[cos(θ1+θ2)+isin(θ1+θ2)].其实该定理可以推展为通常形式:设n个复数z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),……,zn=rn(cosθn+isinθn),则:z1z2……zn=r1r2……rn[cos(θ1+θ2+……+θn)+isin(θ1+θ2+……+θn)].4解析证:用数学归纳法即可,归纳基础就是两个复数相乘的棣莫弗定理。

如果把棣莫弗定理和欧拉(euler)公式“e^iθ=cosθ+isinθ”(参看《泰勒公式》,严苛的证明须要复分析)放到一起看看,则可以用以认知欧拉公式的意义。

利用棣莫弗定理存有:z1z2……zn=r1r2……rn[cos(θ1+θ2+……+θn)+isin(θ1+θ2+……+θn)]如果可以把所有的复数重写成指数的形式,即为:z1=r1e^iθ1,z2=r2e^iθ2,……,zn=rne^iθn,z1z2……zn=r1r2……rne^i(θ1+θ2+……+θn)这和指数的直和性一致.在一般形式中如果令z1=z2=……=zn=z,则能导出复数开方的公式.有兴趣可自己推推看.棣莫弗,a.(demoivre,abraham)1667年5月26日出生法国维特里的弗朗索瓦;1754年11月27日卒于英国伦敦.数学.棣莫弗出生于法国的一个乡村医生之家,其父一生勤政,以行医税金勉力保持家人温饱.棣莫弗自幼拒绝接受父亲的教育,稍大后步入当地一所天主教学校念书,这所学校宗教气氛不淡,学生们以求在一种随心所欲、民主自由的环境中自学,这对他的性格产生了关键性影响.随后,他返回农村,步入色拉的一所清教徒学院稳步念书,这里却戒律森严,令人窒息,学校建议学生誓词效忠教会,棣莫弗婉拒顺从,于是受了严苛制裁,被罚诵读各种宗教教义.那时,学校不注重数学教育,但棣莫弗常常偷偷地自学数学.在早期所学的数学著作中,他最感兴趣的就是c.惠更斯(huygens)关于赌徒的著作,特别就是惠更斯于1657年出版发行的《论赌徒中的机会》(deratiociniisinludoaleae)一书,鼓舞了他的启发.1684年,棣莫弗来到巴黎,幸运地遇见了法国杰出的数学教育家、热心传播数学知识的j.奥扎拉姆(ozanam).在奥扎拉姆的鼓励下,棣莫弗学习了欧几里得(euclid)的《几何原本》(ele-ments)及其他数学家的一些重要数学著作.1685年,棣莫弗与许多信仰新教的教友一道,出席了愤慨欧洲的宗教暴乱,在这场暴乱中,他与许多人一起被监禁出来.正是在这一年,维护加尔文教徒的南兹敕令被撤消.随后,包含棣莫弗在内的许多存有才华的学者由法国移住英国.据教会的材料记述,棣莫弗一直被监禁至1688年才出狱,并于当年迁居伦敦.但据20世纪60年代辨认出的一份当时的材料,1686年时棣莫弗已经至了英国.随后,棣莫弗一直生活在英国,他对数学的所有贡献全系列就是在英国作出的.抵达伦敦后,棣莫弗立刻发现了许多优秀的科学著作,于是如饥似渴地学习.一个偶然的机会,他读到i.牛顿(newton)刚刚出版的《自然哲学的数学原理》(mathematicalprinciplesofnaturalphilosophy),深深地被这部著作吸引了.后来,他曾回忆起自己是如何自学牛顿的这部重要著作的:他依靠搞家庭教师糊口,必须给许多家庭的孩子听课,因此时间很很紧,于是就将这部重要著作拆下,当他本学期一家的孩子后回去另一家的路上,赶紧写作几页,没多久便把这部书学完了.这样,棣莫弗很快就存有了扩充的学术基础,并已经开始展开学术研究.1692年1692年,棣莫弗拜会了英国皇家学会秘书e.哈雷(halley),哈雷将棣莫弗的第一篇数学论文“论牛顿的流数原理”(onnew-ton’sdoctrineofflux ions)在英国皇家学会上宣读,引起了学术界的注意.1697年,由于哈雷的努力,棣莫弗当选为英国皇家学会会员.棣莫弗的天才及成就逐新受了人们广为的高度关注和认同.哈雷将棣莫弗的重要著作《机会的学说》(thedoctrineofchances)呈交牛顿,牛顿对棣莫弗十分观赏.据传,后来碰到学生向牛顿求教概率方面的问题时,他就说道:“这样的问题必须去找棣莫弗,他对这些问题的研究比我深入细致得多”.1710年,棣莫弗被委派参予英国皇家学会调查牛顿-莱布尼茨关于微积分优先权的委员会,可知他很受到学术界的认同.1735年,棣莫弗被选为柏林科学院院士.1754年,又被法国的巴黎科学院采纳为会员.棣莫弗终生未婚.尽管他在学术研究方面颇有成就,但却贫困潦倒.自到英国伦敦直至晚年,他一直做数学方面的家庭教师.他不时撰写文章,还参与研究确定保险年金的实际问题,但获得的收入却极其微薄,只能勉强糊口.他经常抱怨说,周而复始从一家到另一家给孩子们讲课,单调乏味地奔波于雇主之间,纯粹是浪费时间.为此,他曾做了许多努力,试图改变自己的处境,但无济于事.。

中职数学教案:棣莫弗定理与欧拉公式

中职数学教案:棣莫弗定理与欧拉公式
江苏省XY中等专业学校2021-2022-2教案编号:
备课组别
数学
上课
日期
主备
教师
授课
教师
课题:
17.4-1棣莫弗定理与欧拉公式
教学
目标
1. 理解复数三角形式乘除法公式.
2..能根据复数三角形式乘除法公式进行计算。
重点
复数三角形式乘除法;
难点
利用复数三角形式乘除法公式进行计算
教法
讲练结合数形结合
教学设备
由此可见,复数的积的模等于模的积,积的辐角等于辐角的和.
二 巩固数学
例1

由此可见,复数的商的模等于模的商,商的辐角等于辐角的差.
教学
环节
教学活动内容及组织过程
个案补充




例2计算:
解:
例3若 那么 与 的值分别为多少?
解:
三 理解数学
计算:
教学
环节
教学活动内容及组织过程
个案补充




【思考提升】
1.深入理解复数三角形式的乘除法运算法则.
2.体会在计算乘除法时,三角形式比代数形式要简便.
三、 小结
通过本节课的学习,我们进一步学习了复数三角形式
的乘除法运算,在计算乘除法时,三角形式比代数形式要简
便.
四 、作业
P77练习




教后札记
多媒体一体机
教学
环节
教学活动内容及组织过程
个案补充


内ห้องสมุดไป่ตู้

【课堂导学】
复数的代数形式 可以进行加、减、乘、除等运算.

棣莫佛公式

棣莫佛公式

棣莫佛(De moivre, 1667~1754)于1667年出生于法国香槟,长大后在巴黎从师学习数学。

由于宗教信仰的缘故,十八岁那年他被迫离开自己的祖国,去了英国伦敦。

在那里,他靠做家庭教师以及为有钱人解决赌博中的概率问题为生,直到去世。

他很想在剑桥或其它大学谋一个数学教授之职,却未能如愿。

他的数学工作主要在概率论和三角学方面,著有《人生保险》(1725)、《机会学说》(1718)和《分析杂记》(1730)等,并发表了许多重要论文。

由于在数学上成就卓著,他被选为英国皇家学会会员,柏林科学院和巴黎科学院的外籍院士。

棣莫佛是牛顿的亲密朋友,他的数学才能深受牛顿的推崇。

牛顿晚年常常对一些向他请教数学问题的人说:“去找棣莫佛先生吧,他比我更精通这些问题。

”作为大数学家,棣莫佛在英国享有盛誉。

他的同代人,英国著名诗人波普(A. Pope, 1688~1744)在《人类小品》中吟道:是谁教那蜘蛛不用直线或直尺帮忙画起平行线来和棣莫佛一样稳稳当当诗人笔下的棣莫佛,无疑成了数学家的代名词了。

棣莫佛的死是一个奇迹,在去世前不久,他声称以后每天将比前一天多睡一刻钟。

最后,他睡了二十四小时,从此再也没有醒来。

把复数用三角式(具体参见复数)表示:棣莫佛定理c=r(cosa+isina)证明:或者表示为:r(cos+isina) 的n次方根=n次根号下{r×[cos((a+2k)/n)+isin((a+2kπ)/n)]}其中k=0,1,2...n-1 先引入欧拉公式:e^ix = cosx + isinx1.将e^t,sint ,cost 分别展开为泰勒级数:e^t = 1 + t + t^2/2! + t^3/3! + …… + t^n/n!+ ……sint = t - t^3/3!+t^5/5!-t^7/7!+……-……cost = 1 - t^2/2!+t^4/4!-t^6/6!+……-……将t = ix 代入以上三式,可得欧拉公式应用欧拉公式,(cosx+isinx)^n = (e^ix)n=e^inx=cos(nx)+isin(nx)证毕泰勒级数(cosx+isinx)*(cosy+isiny)=cosx*cosy - sinx*siny +(sinx*cosy +c osx*siny)*i=cos(x+y)+isin(x+y)令x=y=n可得(cosn+isinn)^2 = cos(2n)+isin(2n)令x=n y=2n,可得(cosn+isinn)*(cos2n+isin2n)=cos3n+isin3n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算:( 3 cos
பைடு நூலகம்




() 1
2(cos50 i sin 50 ) 3(cos 40 i sin 40 );

2
计算: ( 4 cos120 isin120) 3(cos30 isin 30).
复数的除法运算! 设z1 r1 (cos 1 isin 1 ), z2 r2 (cos2 isin 2 ). z2 z2 z1 则 z1 z1 z1 r2 (cos 2 i sin 2 ) r1[cos(1 ) i sin(1 )] 2 z1 z2 r2 [cos( 2 1 ) i sin( 2 1 )] z1 r1
2 3
;
21 2
i i 2 6i

.
关键点拨:如果我们要求几个复数积或商或幂的模,那么可以利用 z1 z1 n n z1 z2 = z1 z2 、 = 和 z z 进行计算,而不需要 z2 z2 先算出积、商、幂之后再求模.
作业
P82 习题1.1 — 6
由此可见, 复数的商的模等于模的商, 复数的商的辐角等于辐角的 差 .
计算:[6(cos 70 isin 70 )] [3(cos 40 isin 40 )].
原式 2[ cos(70 40 ) isin(70 40 )] 解:

2(cos30 isin 30 ) 3 i.
三角形式下复数的乘法!
设z1 r1 (cos 1 isin 1 ), z2 r2 (cos2 isin 2 ). 则z1 z2 r1 (cos 1 isin 1 ) r2 (cos 2 isin 2 ) r1r2 (cos 1 isin 1 )(cos 2 isin 2 ) r1r2 (cos 1 cos 2 i cos 1 sin 2 i sin 1 cos 2 i 2 sin 1 sin 2 ) r1r2 [cos 1 cos 2 sin 1 sin 2 i( cos 1 sin 2 sin 1 cos 2 )] z1 z2 r1r2 [cos(1 2 ) isin(1 2 )]
复数及其应用
§17.4.1复数三角形式的乘除法 与棣莫弗定理
复数的代数形式
复数的三角形式
z a bi z r (cos isin )
三角形式 有哪些特征?
其中r= z 0, . 且有r cos a, r sin b.
确定复数的三角形式,需要先明确什么? 模和辐角 两个共轭复数的模和辐角有什么关系? 模相等,辐角互为相反数


由此推测, 复数的n次幂的模等于模的n次幂, 复数的n次幂的辐角等于辐角的n倍.
n n
[r (cos isin )] r (cos n isin n ). 棣莫弗定理:
计算: (1)(cos 40 i sin 40 )9 ; (2)(1 3i) 2012 . 1 cos360 i sin 360 (1)原式 解: 2012 (2)原式 [2(cos i sin )] 3 3 2012 2012 2012 2 (cos i sin ) 3 3 2 2 2012 2 (cos i sin ) 3 3 1 3 2012 2 ( i) 22011 22011 3i 2 2
6(cos 50 i sin 50) 计算: . 3(cos 20 i sin 20)
复数的乘方!
若z 3(cos
i sin ),求z 2与z 3的值. 6 6 2 2 解:z z z ( 3) [cos( ) i sin( )] 6 6 6 6 3 3 3 3(cos i sin ) i 3 3 2 2 3 3 z z z z ( 3) [cos( 3) i sin( 3)] 6 6 3 3(cos i sin ) 3 3i 2 2
复数的积的辐角等于辐角的 和 .
复数的商的模等于模的商, 复数的商的辐角等于辐角的 差 . 复数的n次幂的模等于模的n次幂, 复数的n次幂的辐角等于辐角的n倍.
除法:
乘方:
计算:
1
3+4i
2 3i
2
;
2
2 2 2i 3 4i
2
3
;
1 2i 3 3 2 2 3i 3 3i 3i i 4
由此可见, 复数的积的模等于模的积, 复数的积的辐角等于辐角的 和 .
i sin ) 4(cos i sin ). 6 6 12 12 原式 4 3[ cos( ) i sin( )] 解: 6 12 6 12 4 3(cos i sin ) 4 4 2 6 2 6i.
3 1 4 计算: (1)(cos 5 i sin 5 ) ; (2)( i) . 2 2
6
问题解决
当n取什么正整数时,z= 1 3i 是一个实数?


n
n 3k , k Z .
本节课 学到了哪些知识?
掌握了哪些方法?
何处还需要注意?
归纳
乘法:
复数的积的模等于模的积,
指出下列复数的模和辐角: (1) cos 210 i sin 210 ; (2)5(cos 3 i sin 3); (3) ( 2 cos

5
i sin

5
) ; (4)2(sin1 i cos1).
将下列复数的代数形式化成三角形式: (1) z1 5; (2) z2 1 i; 1 3 (3) z4 2i; (4) z5 i. 2 2
相关文档
最新文档