平面向量应用教案

合集下载

高中数学教案《平面向量及其应用》

高中数学教案《平面向量及其应用》

教学设计:《平面向量及其应用》一、教学目标1.知识与技能:使学生理解平面向量的基本概念,包括向量的定义、表示方法(有向线段、坐标表示)、向量的模、方向角等;掌握向量的加法、减法、数乘及数量积的运算法则和几何意义;能运用向量知识解决简单的几何与物理问题。

2.过程与方法:通过观察、实验、推理等数学活动,培养学生的空间想象能力和逻辑推理能力;引导学生运用数形结合的思想,理解向量运算的几何背景,提高解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和勇于探索的精神;通过团队合作解决问题,增强学生的沟通能力和团队协作能力。

二、教学重点和难点●重点:平面向量的基本概念、向量的基本运算(加法、减法、数乘、数量积)及其几何意义。

●难点:理解向量数量积的概念、性质及其在解决实际问题中的应用;向量运算的坐标表示法及其应用。

三、教学过程1.导入新课o情境创设:通过展示风力发电机叶片的运动、航海中的航向与速度变化等实例,引出向量的概念,说明向量在现实生活中的应用价值。

o问题引入:提问学生如何描述这些运动中的方向和大小,引导学生思考向量的必要性。

o概念引入:正式给出平面向量的定义,强调其作为“有方向的量”的特性。

2.新知讲授o基本概念讲解:详细解释向量的表示方法(有向线段、坐标表示)、模长、方向角等概念,并通过图示加深理解。

o向量运算教学:●加法与减法:通过“平行四边形法则”和“三角形法则”演示向量的加法与减法,强调其几何意义。

●数乘:讲解数乘的定义,通过伸缩变换的直观演示,理解数乘对向量方向和大小的影响。

●数量积:引入数量积的概念,通过投影长度的计算,讲解其计算公式和性质,强调其在度量角度、判断方向等方面的应用。

3.例题解析o选取典型例题,覆盖向量运算的所有类型,逐步引导学生分析、解题,重点讲解解题思路和方法。

o强调解题过程中向量运算的几何背景,促进学生数形结合思维的发展。

4.学生活动o小组讨论:分组讨论向量在日常生活或专业领域的应用实例,每组选代表分享,增强课堂互动性。

平面向量的概念教案

平面向量的概念教案

平面向量的概念教案一、教学目标:1. 知识与技能:学生能够理解平面向量的概念,掌握平面向量的基本运算法则,并能够熟练进行向量的相加、相减、数量乘法等运算。

2. 过程与方法:通过例题演练,培养学生独立思考、分析问题、解决问题的能力;通过实际应用,加深学生对平面向量概念的理解和运用。

3. 情感态度与价值观:激发学生对数学的兴趣,形成积极的学习态度,提高解决实际问题的能力。

二、教学重点和难点:重点:平面向量的概念及基本运算法则。

难点:向量的数量乘法及在平面向量应用中的解决问题。

三、教学步骤:1. 导入新课:通过提问和引导学生联想等方式,引出向量的概念。

例如:什么是向量?向量有哪些性质?向量在生活中的应用等。

2. 确定学习目标:向学生解释接下来我们要学习平面向量,所以我们需要了解什么是平面向量及其基本性质,以及平面向量的加法、减法和数量乘法等基本运算,掌握这些内容。

3. 学习新知识:向学生详细讲解平面向量的定义、表示方法、平行向量、零向量、共线向量等基本概念和性质。

并讲解平面向量的基本运算法则,如向量的加法、减法、数量乘法等。

4. 练习与巩固:布置练习题,让学生积极参与,巩固学习内容。

5. 拓展应用:引导学生通过实际问题,运用平面向量的概念进行解决问题,提高学生的综合运用能力。

6. 总结归纳:通过本节课学习,对平面向量的概念和基本运算法则进行归纳总结,巩固所学知识。

四、教学手段:1. 教师讲解2. 学生讨论3. 课堂练习4. 实例演练五、教学资源:1. 教科书2. 多媒体课件3. 平面向量的实际应用例题材料六、教学反馈:1. 教师在学习过程中及时纠正学生的错误认识和解题方法。

2. 布置练习题,检验学生学习效果,及时发现学生的问题。

七、教学设计理念:通过让学生参与讨论和思考,培养其分析问题、解决问题的思维能力;通过实例演练,加深学生对平面向量概念的理解和运用;通过应用实际问题,引导学生运用所学知识解决实际问题的能力。

平面向量基本定理教案(精选10篇)

平面向量基本定理教案(精选10篇)

平面向量基本定理教案(精选10篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!平面向量基本定理教案(精选10篇)平面向量基本定理教案(精选10篇)作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案是教学活动的依据,有着重要的地位。

向量的教案5篇

向量的教案5篇

向量的教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如合同协议、学习总结、生活总结、工作总结、企划书、教案大全、演讲稿、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, the shop provides you with various types of practical information, such as contract agreement, learning summary, life summary, work summary, plan, teaching plan, speech, composition, work plan, other information, etc. want to know different data formats and writing methods, please pay attention!向量的教案5篇教案不仅仅是一份计划,还是教育实践的反映和指南,教案包含了教材选择和使用的详细说明,以便教师能够有效地传授知识,下面是本店铺为您分享的向量的教案5篇,感谢您的参阅。

教案平面向量的坐标表示

教案平面向量的坐标表示

平面向量的坐标表示教学目标:1. 理解平面向量的概念。

2. 学习平面向量的坐标表示方法。

3. 掌握平面向量的线性运算与坐标表示。

教学重点:1. 平面向量的概念。

2. 坐标表示方法。

3. 线性运算与坐标表示。

教学难点:1. 理解平面向量的坐标表示方法。

2. 掌握平面向量的线性运算与坐标表示。

教学准备:1. 教学PPT。

2. 教学素材。

教学过程:一、导入(5分钟)1. 向量概念的复习。

2. 向量表示方法的学习。

二、平面向量的概念(10分钟)1. 引导学生了解平面向量的定义。

2. 通过实例让学生理解平面向量的概念。

三、坐标表示方法(15分钟)1. 讲解平面向量的坐标表示方法。

2. 让学生通过实例掌握坐标表示方法。

四、线性运算与坐标表示(20分钟)1. 讲解平面向量的线性运算。

2. 让学生通过实例掌握线性运算与坐标表示。

五、巩固练习(10分钟)1. 让学生完成一些有关平面向量的练习题。

2. 引导学生运用所学的知识解决实际问题。

教学反思:本节课通过讲解平面向量的概念、坐标表示方法以及线性运算与坐标表示,让学生掌握平面向量的基本知识。

在教学过程中,要注意引导学生通过实例理解概念和方法,提高学生的实际操作能力。

要加强练习,使学生巩固所学知识。

六、平面向量的几何解释(15分钟)1. 向量起点与终点的表示。

2. 通过图形让学生理解向量的几何解释。

七、向量加法与坐标表示(20分钟)1. 讲解平面向量的加法。

2. 让学生通过实例掌握向量加法与坐标表示。

八、向量减法与坐标表示(15分钟)1. 讲解平面向量的减法。

2. 让学生通过实例掌握向量减法与坐标表示。

九、数乘向量与坐标表示(15分钟)1. 讲解平面向量的数乘。

2. 让学生通过实例掌握数乘向量与坐标表示。

十、向量共线定理(20分钟)1. 讲解向量共线定理。

2. 让学生通过实例理解向量共线定理的应用。

十一、向量垂直与坐标表示(20分钟)1. 讲解平面向量垂直的条件。

2. 让学生通过实例掌握向量垂直与坐标表示。

高中数学备课教案向量的平面向量几何应用

高中数学备课教案向量的平面向量几何应用

高中数学备课教案向量的平面向量几何应用高中数学备课教案:向量的平面向量几何应用一、引言在高中数学中,向量是一个重要的概念,它具有广泛的应用。

其中,平面向量几何应用是向量的一个重要应用领域。

本篇教案将重点介绍向量的平面向量几何应用,并针对备课内容进行详细讲解。

二、向量的概念回顾在开始讲解向量的平面向量几何应用之前,我们首先回顾一下向量的概念。

向量是由大小和方向共同决定的有向线段,通常用有向线段的起点和终点表示。

向量的大小可以通过向量的模、长度或大小来表示,向量的方向可以用角度、单位向量或方向角来表示。

三、平面向量几何应用1. 向量的共线与共面判定向量的平面向量几何应用中,一个重要的问题是如何判断向量的共线与共面关系。

对于两个向量,如果它们的方向相同或相反,则称这两个向量共线;如果三个向量在同一个平面内,则称这三个向量共面。

2. 向量的数量积向量的数量积是向量的一种重要运算。

通过计算两个向量的数量积,我们可以求得它们的夹角、判定两个向量是否垂直、求解平面向量的几何问题等。

通过具体的例题,我们将详细介绍向量的数量积的计算方法及其应用。

3. 平面向量的线性组合平面向量的线性组合是指将若干个向量按照一定的比例相加得到的向量。

线性组合在平面向量几何中具有重要的意义,可以用来表示平面上的任意向量。

4. 平面向量与几何图形的关系在平面向量几何中,向量和几何图形之间有着密切的联系。

例如,可以通过向量的平移、旋转、反射等操作来描述几何图形的变换关系。

通过分析几何图形的性质,我们可以通过向量解决一些与几何图形相关的问题。

5. 平面向量的共面条件在平面向量几何应用中,我们常常需要判断若干个向量是否共面。

通过理论推导和实例演示,我们将介绍平面向量的共面条件以及解决问题的方法。

四、结语通过本教案的学习和讲解,我们详细介绍了向量的平面向量几何应用。

平面向量几何应用是高中数学中一个重要的应用领域,它为我们解决几何问题提供了强有力的工具和方法。

平面向量应用教案设计

平面向量应用教案设计

平面向量应用教案设计。

一、教案设计背景在进行平面向量的教学过程中,应该给学生提供一些实际的、具有应用意义的例子,让学生真正了解向量的物理意义和几何意义。

因此,在设计教案时,要注重培养学生的实际应用能力,帮助学生将理论与实践相结合。

同时,还要根据学生的实际情况,合理设置教学目标和教学内容,有针对性地进行教学。

二、教案设计目标1、了解平面向量的定义、性质及运算法则;2、了解平面向量的几何和物理意义;3、掌握平面向量的加、减、数乘等基本运算;4、理解平面向量在物理学中的应用;5、能运用平面向量解决相关问题。

三、教学内容设计1、平面向量的定义及其基本性质;2、平面向量的加、减、数乘及其性质;3、平面向量在平面直角坐标系中的坐标表示;4、平面向量的应用:(1)向量叉积的物理意义及其应用;(2)向量叉积的计算方法;(3)摩擦力的向量分解;(4)向量投影的应用。

四、教学方法设计1、讲授法在平面向量教学中,讲授法是最基础的教学方法,通过以物理意义为主线的学习方法,结合具体的例子来进行讲解,可以让学生快速掌握向量的相关知识。

2、归纳法平面向量的定义、性质及运算法则较多,采用归纳法可以让学生快速记忆和理解,增加教学效果,提高教学质量。

3、实践法在教学中,可以通过让学生参与实际操作来达到教学效果的提高。

举个例子,通过让学生进行向量相加、相减、数乘等操作,能够有效增强学生的理解和记忆能力。

4、启发式教学法在解决向量应用问题时,可以采用启发式教学法,结合学生的实际情况,帮助学生提高解题的思维能力和应用能力。

五、教学资源准备1、教学材料:课件、示意图、多媒体资料等;2、教学实例:让学生自主选择实际应用实例,进行讨论和分析;3、计算机程序:使用计算机程序来帮助学生更快速、准确地进行计算,增强学生的实际操作能力和计算能力。

六、教学反思与评估在教学过程中,教师应时刻反思自己的教学方法是否合理、有效,及时进行调整和完善。

同时,要通过测试、问答、小组讨论等方式对学生进行评估,了解学生的掌握程度和反馈意见,为下一步的教学改进提供参考。

平面向量的应用(教案)(教师版)

平面向量的应用(教案)(教师版)

平面向量的应用(教案)【第一课时】教学重难点教学目标核心素养向量在平面几何中的应用会用向量方法解决平面几何中的平行、 垂直、长度、夹角等问题数学建模、逻辑推理向量在物理中的应用 会用向量方法解决物理中的速度、力学问题数学建模、数学运算一、问题导入预习教材内容,思考以下问题:1.利用向量可以解决哪些常见的几何问题? 2.如何用向量方法解决物理问题? 二、新知探究 探究点1:向量在几何中的应用角度一:平面几何中的垂直问题例1:如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE . 证明:法一:设AD →=a ,AB →=b , 则|a |=|b |,a·b =0,又DE →=DA →+AE →=-a +12b ,AF →=AB →+BF →=b +12a ,所以AF →·DE →=⎝⎛⎭⎫b +12a ·⎝⎛⎭⎫-a +12b =-12a 2-34a ·b +12b 2=-12|a |2+12|b |2=0. 故AF →⊥DE →,即AF ⊥DE .法二:如图,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),AF →=(2,1),DE →=(1,-2).因为AF →·DE →=(2,1)·(1,-2)=2-2=0, 所以AF →⊥DE →,即AF ⊥DE .角度二:平面几何中的平行(或共线)问题:如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AF FB =12.求证:点E ,O ,F在同一直线上.证明:设AB →=m ,AD →=n , 由CE ED =AF FB =12,知E ,F 分别是CD ,AB 的三等分点,所以FO →=F A →+AO →=13BA →+12AC →=-13m +12(m +n )=16m +12n ,OE →=OC →+CE →=12AC →+13CD →=12(m +n )-13m =16m +12n . 所以FO →=OE →.又O 为FO →和OE →的公共点,故点E ,O ,F 在同一直线上. 角度三:平面几何中的长度问题:如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC 的长. 解:设AD →=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD →|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2,所以5-2a ·b =4,所以a ·b =12,又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,所以|AC →|=6,即AC =6.用向量方法解决平面几何问题的步骤向量在物理中的应用:(1)在长江南岸某渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25 km/h .渡船要垂直地渡过长江,其航向应如何确定?(2)已知两恒力F 1=(3,4),F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),求F 1,F 2分别对质点所做的功.解:(1)如图,设AB →表示水流的速度,AD →表示渡船的速度,AC →表示渡船实际垂直过江的速度. 因为AB →+AD →=AC →,所以四边形ABCD 为平行四边形. 在Rt △ACD 中,∠ACD =90°,|DC →|=|AB →|=12.5.|AD →|=25,所以∠CAD =30°,即渡船要垂直地渡过长江,其航向应为北偏西30°. (2)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s . 因为AB →=(7,0)-(20,15)=(-13,-15).所以W 1=F 1·AB →=(3,4)·(-13,-15) =3×(-13)+4×(-15)=-99(焦), W 2=F 2·AB →=(6,-5)·(-13,-15) =6×(-13)+(-5)×(-15)=-3(焦).用向量方法解决物理问题的“三步曲”三、课堂总结1.用向量方法解决平面几何问题的“三个步骤”2.向量在物理学中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的减法和加法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,即为力F 与位移s 的数量积,即W =F·s =|F ||s |cos θ(θ为F 与s 的夹角). 四、课堂检测1.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( ) A .10 m/s B .226 m/s C .4 6 m/sD .12 m/s解析:选B .由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如图. 所以小船在静水中的速度大小 |v |=102+22=226(m/s ).2.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f 4,则f 4=( ) A .(-1,-2) B .(1,-2) C .(-1,2)D .(1,2)解析:选D .由物理知识知f 1+f 2+f 3+f 4=0,故f 4=-(f 1+f 2+f 3)=(1,2).3.设P ,Q 分别是梯形ABCD 的对角线AC 与BD 的中点,AB ∥DC ,试用向量证明:PQ ∥AB . 证明:设DC →=λAB →(λ>0且λ≠1),因为PQ →=AQ →-AP →=AB →+BQ →-AP →=AB →+12(BD →-AC →)=AB →+12[(AD →-AB →)-(AD →+DC →)]=AB →+12(CD →-AB →)=12(CD →+AB →)=12(-λ+1)AB →, 所以PQ →∥AB →,又P ,Q ,A ,B 四点不共线,所以PQ ∥AB .【第二课时】一、问题导入预习教材内容,思考以下问题: 1.余弦定理的内容是什么? 2.余弦定理有哪些推论? 二、新知探究已知两边及一角解三角形:(1)(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .42B .30C .29D .25(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =5,c =2,cos A =23,则b =( )A .2B .3C .2D .3解析:(1)因为cos C =2cos 2 C 2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C =25+1-2×5×1×⎝⎛⎭⎫-35=32,所以AB =42,故选A . (2)由余弦定理得5=22+b 2-2×2b cos A ,因为cos A =23,所以3b 2-8b -3=0,所以b =3⎝⎛⎭⎫b =-13舍去.故选D . 答案:(1)A (2)D 互动探究:变条件:将本例(2)中的条件“a =5,c =2,cos A =23”改为“a =2,c =23,cos A =32”,求b 为何值?解:由余弦定理得: a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32, 即b 2-6b +8=0,解得b =2或b =4. 规律方法:解决“已知两边及一角”解三角问题的步骤(1)用余弦定理列出关于第三边的等量关系建立方程,运用解方程的方法求出此边长. (2)再用余弦定理和三角形内角和定理求出其他两角. 探究点2:已知三边(三边关系)解三角形:(1)在△ABC 中,已知a =3,b =5,c =19,则最大角与最小角的和为( ) A .90° B .120° C .135°D .150°(2)在△ABC 中,若(a +c )(a -c )=b (b -c ),则A 等于( ) A .90° B .60° C .120°D .150°解析:(1)在△ABC 中,因为a =3,b =5,c =19, 所以最大角为B ,最小角为A ,所以cos C =a 2+b 2-c 22ab =9+25-192×3×5=12,所以C =60°,所以A +B =120°,所以△ABC 中的最大角与最小角的和为120°.故选B .(2)因为(a +c )(a -c )=b (b -c ),所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0°,180°),所以A =60°. 答案:(1)B (2)B已知三角形的三边解三角形的方法先利用余弦定理的推论求出一个角的余弦,从而求出第一个角;再利用余弦定理的推论求出第二个角;最后利用三角形的内角和定理求出第三个角.注意:若已知三角形三边的比例关系,常根据比例的性质引入k ,从而转化为已知三边求解. 探究点3: 判断三角形的形状:在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状. 解:将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得 b 2+c 2-b 2⎝⎛⎭⎫a 2+b 2-c 22ab 2-c 2⎝⎛⎭⎫a 2+c 2-b 22ac 2=2bc ×a 2+c 2-b 22ac ×a 2+b 2-c 22ab ,所以b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a2=a 2.所以A =90°.所以△ABC 是直角三角形. 规律方法:(1)利用余弦定理判断三角形形状的两种途径①化边的关系:将条件中的角的关系,利用余弦定理化为边的关系,再变形条件判断. ②化角的关系:将条件转化为角与角之间的关系,通过三角变换得出关系进行判断. (2)判断三角形时经常用到以下结论①△ABC 为直角三角形⇔a 2=b 2+c 2或c 2=a 2+b 2或b 2=a 2+c 2. ②△ABC 为锐角三角形⇔a 2+b 2>c 2,且b 2+c 2>a 2,且c 2+a 2>b 2. ③△ABC 为钝角三角形⇔a 2+b 2<c 2或b 2+c 2<a 2或c 2+a 2<b 2. ④若sin 2A =sin 2B ,则A =B 或A +B =π2.三、课堂总结 1.余弦定理cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac;cos C =a 2+b 2-c 22ab .3.三角形的元素与解三角形 (1)三角形的元素三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素. (2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形. 四、课堂检测1.在△ABC 中,已知a =5,b =7,c =8,则A +C =( ) A .90° B .120° C .135°D .150°解析:选B .cos B =a 2+c 2-b 22ac =25+64-492×5×8=12.所以B =60°,所以A +C =120°.2.在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,则角A 等于( ) A .30° B .60° C .120°D .150°解析:选B .因为(b +c )2-a 2=b 2+c 2+2bc -a 2=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12,所以A =60°.3.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab =________. 解析:因为C =60°,所以c 2=a 2+b 2-2ab cos 60°, 即c 2=a 2+b 2-ab .① 又因为(a +b )2-c 2=4, 所以c 2=a 2+b 2+2ab -4.②由①②知-ab =2ab -4,所以ab =43.答案:434.在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.所以a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2.根据勾股定理知△ABC 是直角三角形.【第三课时】一、问题导入预习教材内容,思考以下问题:1.在直角三角形中,边与角之间的关系是什么? 2.正弦定理的内容是什么? 二、新知探究已知两角及一边解三角形:在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形. 【解】因为A =45°,C =30°,所以B =180°-(A +C )=105°. 由a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=102. 因为sin 75°=sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64,所以b =c sin B sin C =10×sin (A +C )sin 30°=20×2+64=52+56.已知三角形的两角和任一边解三角形的思路(1)若所给边是已知角的对边时,可由正弦定理求另一角所对的边,再由三角形内角和定理求出第三个角. (2)若所给边不是已知角的对边时,先由三角形内角和定理求出第三个角,再由正弦定理求另外两边.已知两边及其中一边的对角解三角形已知△ABC 中的下列条件,解三角形: (1)a =10,b =20,A =60°; (2)a =2,c=6,C =π3.解:(1)因为b sin B =asin A,所以sin B =b sin A a =20sin 60°10=3>1,所以三角形无解.(2)因为a sin A =c sin C ,所以sin A =a sin C c =22.因为c >a ,所以C >A .所以A =π4.所以B =5π12,b = c sin Bsin C =6·sin 5π12sin π3=3+1.互动探究:变条件:若本例(2)中C =π3改为A =π4,其他条件不变,求C ,B, b .解:因为a sin A =c sin C ,所以sin C =c sin A a =32.所以C =π3或2π3.当C =π3时,B =5π12,b =a sin B sin A =3+1.当C =2π3时,B =π12,b =a sin B sin A=3-1.(1)已知两边及其中一边的对角解三角形的思路 ①首先由正弦定理求出另一边对角的正弦值;②如果已知的角为大边所对的角时,由三角形中大边对大角,大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角;③如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.(2)已知两边及其中一边的对角判断三角形解的个数的方法①应用三角形中大边对大角的性质以及正弦函数的值域判断解的个数;②在△ABC 中,已知a ,b 和A ,以点C 为圆心,以边长a 为半径画弧,此弧与除去顶点A 的射线AB 的公共点的个数即为三角形解的个数,解的个数见下表:判断三角形的形状:已知在△ABC 中,角A ,B 所对的边分别是a 和b ,若a cos B =b cos A ,则△ABC 一定是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形解析:由正弦定理得:a cos B=b cos A⇒sin A cos B=sin B cos A⇒sin(A-B)=0,由于-π<A-B<π,故必有A-B=0,A=B,即△ABC为等腰三角形.答案:A互动探究:变条件:若把本例条件变为“b sin B=c sin C”,试判断△ABC的形状.解:由b sin B=c sin C可得sin2B=sin2C,因为三角形内角和为180°,所以sin B=sin C.所以B=C.故△ABC为等腰三角形.判断三角形形状的两种途径注意:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.三、课堂总结1.正弦定理对正弦定理的理解(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)揭示规律:正弦定理指出的是三角形中三条边与其对应角的正弦之间的一个关系式,它描述了三角形中边与角的一种数量关系.2.正弦定理的变形若R为△ABC外接圆的半径,则(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)sin A∶sin B∶sin C=a∶b∶c;(4)a+b+csin A+sin B+sin C=2R.四、课堂检测1.(2019·辽宁沈阳铁路实验中学期中考试)在△ABC中,AB=2,AC=3,B=60°,则cos C=()A.33B.63C.32D.62解析:选B.由正弦定理,得ABsin C=ACsin B,即2sin C=3sin 60°,解得sin C=33.因为AB<AC,所以C<B,所以cos C=1-sin2C=6 3.2.在△ABC中,角A,B,C的对边分别为a,b,c,且A∶B∶C=1∶2∶3,则a∶b∶c=()A.1∶2∶3B.3∶2∶1C.2∶3∶1D.1∶3∶2解析:选D.在△ABC中,因为A∶B∶C=1∶2∶3,所以B=2A,C=3A,又A+B+C=180°,所以A=30°,B =60°,C=90°,所以a∶b∶c=sin A∶sin B∶sin C=sin 30°∶sin 60°∶sin 90°=1∶3∶2.3.在△ABC中,角A,B,C的对边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形解析:选D.已知c-a cos B=(2a-b)cos A,由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin(A+B)-sin A cos B=2sin A cos A-sin B cos A,化简得cos A(sin B-sin A)=0,所以cos A=0或sin B-sin A=0,则A=90°或A=B,故△ABC为等腰三角形或直角三角形.【第四课时】一、问题导入预习教材内容,思考以下问题:1.什么是基线?2.基线的长度与测量的精确度有什么关系?3.利用正、余弦定理可解决哪些实际问题?二、新知探究测量距离问题:海上A ,B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 岛与C 岛间的距离是________.解析:如图,在△ABC 中,∠C =180°-(∠B +∠A )=45°, 由正弦定理,可得BC sin 60°=ABsin 45°,所以BC =32×10=56(海里). 答案:56海里变条件:在本例中,若“从B 岛望C 岛和A 岛成75°的视角”改为“A ,C 两岛相距20海里”,其他条件不变,又如何求B 岛与C 岛间的距离呢?解:由已知在△ABC 中,AB =10,AC =20,∠BAC =60°,即已知两边和两边的夹角,利用余弦定理求解即可. BC 2=AB 2+AC 2-2AB ·AC ·cos 60°=102+202-2×10×20×12=300.故BC =103.即B ,C 间的距离为103海里.测量距离问题的解题思路求解测量距离问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.构造数学模型时,尽量把已知元素放在同一个三角形中.测量高度问题:如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m . 解析:由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°. 又AB =600 m ,故由正弦定理得600sin 45°=BCsin 30°,解得BC =300 2 m .在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m ). 答案:1006 互动探究:变问法:在本例条件下,汽车在沿直线AB 方向行驶的过程中,若测得观察山顶D 点的最大仰角为α,求tan α的值.解:如图,过点C ,作CE ⊥AB ,垂足为E ,则∠DEC =α,由例题可知, ∠CBE =75°,BC =3002, 所以CE =BC ·sin ∠CBE=3002sin 75° =3002×2+64=150+1503.所以tan α=DC CE =1006150+1503=32-63.测量高度问题的解题思路高度的测量主要是一些底部不能到达或者无法直接测量的物体的高度问题.常用正弦定理或余弦定理计算出物体的顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.这类物体高度的测量是在与地面垂直的竖直平面内构造三角形或者在空间构造三棱锥,再依据条件利用正、余弦定理解其中的一个或者几个三角形,从而求出所需测量物体的高度.测量角度问题:岛A 观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行(如图所示),观察站即刻通知在岛A 正南方向B 处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C 处,随即以每小时103海里的速度前往拦截. (1)问:海监船接到通知时,在距离岛A 多少海里处?(2)假设海监船在D 处恰好追上可疑船只,求它的航行方向及其航行的时间. 解:(1)根据题意得∠BAC =45°,∠ABC =75°,BC =10, 所以∠ACB =180°-75°-45°=60°, 在△ABC 中,由AB sin ∠ACB =BCsin ∠BAC ,得AB =BC sin ∠ACB sin ∠BAC=10sin 60°sin 45°=10×3222=56. 所以海监船接到通知时,在距离岛A 5 6 海里处.(2)设海监船航行时间为t 小时,则BD =103t ,CD =10t , 又因为∠BCD =180°-∠ACB =180°-60°=120°, 所以BD 2=BC 2+CD 2-2BC ·CD cos 120°, 所以300t 2=100+100t 2-2×10×10t ·⎝⎛⎭⎫-12, 所以2t 2-t -1=0,解得t =1或t =-12(舍去).所以CD =10,所以BC =CD ,所以∠CBD =12(180°-120°)=30°,所以∠ABD =75°+30°=105°.所以海监船沿方位角105°航行,航行时间为1个小时. (或海监船沿南偏东75°方向航行,航行时间为1个小时)测量角度问题的基本思路(1)测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,在图形中标出相关的角和距离. (2)根据实际选择正弦定理或余弦定理解三角形,然后将解得的结果转化为实际问题的解. 三、课堂总结 1.基线在测量过程中,我们把根据测量的需要而确定的线段叫做基线 实际测量中的有关名称、术语南偏西60°(指以正南方向为始边,转向目标方向线形成的角)1.若P 在Q 的北偏东44°50′方向上,则Q 在P 的( ) A .东偏北45°10′方向上 B .东偏北45°50′方向上 C .南偏西44°50′方向上 D .西偏南45°50′方向上解析:选C .如图所示.2.如图,D ,C ,B 三点在地面同一直线上,从地面上C ,D 两点望山顶A ,测得它们的仰角分别为45°和30°,已知CD =200米,点C 位于BD 上,则山高AB 等于( )A .1002米B .50(3+1)米C .100(3+1)米D .200米解析:选C .设AB =x 米,在Rt △ACB 中,∠ACB =45°, 所以BC =AB =x .在Rt △ABD 中,∠D =30°,则BD =3AB =3x . 因为BD -BC =CD ,所以3x -x =200, 解得x =100(3+1).故选C .3.已知台风中心位于城市A 东偏北α(α为锐角)度的150公里处,以v 公里/小时沿正西方向快速移动,2.5小时后到达距城市A 西偏北β(β为锐角)度的200公里处,若cos α=34cos β,则v =( )A .60B .80C .100D .125解析:选C .画出图象如图所示,由余弦定理得(2.5v )2=2002+1502+2×200×150cos (α+β)①,由正弦定理得150sin β=200sin α,所以sin α=43sin β.又cos α=34 cos β,sin 2 α+cos 2 α=1,解得sin β=35,故cos β=45,sin α=45,cos α=35,故cos (α+β)=1225-1225=0,代入①解得v =100.4.某巡逻艇在A 处发现在北偏东45°距A 处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇的航行方向.解:设经过t 小时在点C 处刚好追上走私船,依题意:AC =123t ,BC =12t ,∠ABC =120°, 在△ABC 中,由正弦定理得123t sin 120°=12tsin ∠BAC,所以sin ∠BAC =12,所以∠BAC =30°,所以AB =BC =8=12t ,解得t =23,航行的方向为北偏东75°.即巡逻艇最少经过23小时可追到走私船,沿北偏东75°的方向航行.坚持希望一天,一个瞎子和一个瘸子结伴去寻找那种仙果,他们一直走呀走,途中他们翻山越岭。

平面向量教案3篇

平面向量教案3篇

平面向量教案3篇平面向量教案1一、教学目标:1. 理解平面向量的定义及相关术语;2. 掌握平面向量的基础运算和性质,如向量的加、减、数乘、模长等;3. 能够利用向量解决几何、三角学以及力学等问题。

二、教学重难点:教学重点:向量的基础运算和性质;教学难点:向量问题的解答。

三、教学方法:讲述法、举例法、实验法。

四、教学过程:1. 前置知识概括为了有利于学生对本次课程的学习,首先需要对平面向量有一定的了解。

向量是运用在三角学以及计算机科学中的一个概念,它表示一个方向和一个大小。

在二维空间中,向量通常用一个有序数对(x, y)表示,其中x和y分别表示向量在x轴和y轴上的分量。

然而,在本课程中,我们将会介绍另一种同样重要的表现向量的方式:平面向量。

2. 讲解平面向量的定义及相关术语平面向量即为有向线段,表示为 $\vec{a}$,具有大小和方向。

平面向量有以下几个重要的术语:(1)起点:向量 $\vec{a}$ 的起点是线段的始点,表示为 $A$。

(2)终点:向量 $\vec{a}$ 的终点是线段的末点,表示为 $B$。

(3)长度:向量 $\vec{a}$ 的长度等于线段 $AB$ 的长度,可以用$|\vec{a}|$表示。

(4)方向角:向量 $\vec{a}$ 的方向角是向量与$x$轴正方向的夹角,通常用 $\theta$表示。

(5)方向余弦:向量 $\vec{a}$ 的方向余弦分别是向量在$x$和$y$轴上的投影与向量长度的比值,分别用 $\cos\alpha$ 和$\cos\beta$表示。

(6)坐标表示:用有序数对 $(a_x, a_y)$ 表示向量 $\vec{a}$,其中 $a_x$ 和 $a_y$ 分别表示向量在$x$轴和$y$轴上的分量。

3. 讲解向量的基本运算及性质(1)向量的加法:设 $\vec{a}$ 和 $\vec{b}$ 为两个向量,它们的和记为 $\vec{a}+\vec{b}$,可通过作一平行四边形得到。

平面向量的应用教案

平面向量的应用教案

平面向量的应用教案一、教学目标1. 了解平面向量的概念和性质;2. 掌握平面向量的加法、减法和乘法运算法则;3. 能够应用平面向量解决简单的几何和物理问题。

二、教学内容1. 平面向量的定义和表示;2. 平面向量的加法和减法;3. 平面向量的数量积和向量积;4. 平面向量在几何和物理问题中的应用。

三、教学过程步骤一:引入1. 通过展示一些与平面向量相关的真实生活例子,引起学生对平面向量的兴趣和好奇心。

2. 引导学生思考并讨论平面向量的定义和表示方法。

步骤二:知识讲解1. 介绍平面向量的定义:一个平面向量是由大小和方向确定的有向线段。

2. 解释平面向量的表示方法:以坐标表示和以向量符号表示。

3. 讲解平面向量的加法和减法运算法则。

步骤三:运算实践1. 给出一些平面向量的具体数值,让学生进行加法和减法运算练。

2. 提供一些几何图形,让学生将其分解为平面向量并进行计算。

步骤四:引入向量积和数量积1. 介绍向量积和数量积的概念和定义。

2. 解释向量积和数量积在几何和物理问题中的应用。

步骤五:应用实例1. 给出一些具体的几何和物理问题,让学生运用平面向量的知识进行求解。

2. 引导学生讨论解题思路,进行实际操作。

四、教学评价1. 在课堂上进行小组讨论和问题解答,检验学生是否理解和掌握了平面向量的相关知识。

2. 布置一些练题和作业,评估学生对平面向量运算的应用能力。

五、教学资源1. 平面向量的教学课件;2. 练题和作业。

六、教学反思以学生为中心,注重综合实践和问题解决能力的培养,通过生动的例子和实际运用让学生更好地理解和应用平面向量的知识。

同时,及时反馈学生的学习情况,帮助他们及时纠正错误和理清思路。

新人教版高中数学必修二第六章平面向量及其应用精品教案

新人教版高中数学必修二第六章平面向量及其应用精品教案

平面向量的概念【教学过程】一、问题导入预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?二、新知探究 1.向量的相关概念例1:给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.解析:AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC→|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.答案:②③ 教师小结(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可.(2)理解零向量和单位向量应注意的问题 ①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向. 2.向量的表示例2:在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA →,使|OA →|=42,点A 在点O 北偏东45°方向上;(2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC →,使|BC →|=6,点C 在点B 北偏东30°方向上.解:(1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB→,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.教师小结:用有向线段表示向量的步骤3.共线向量与相等向量例3:如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?解:(1)与a 的长度相等、方向相反的向量有OD →,BC →,AO →,FE →.(2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.互动探究:(1)变条件、变问法:本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. (2)变问法:本例条件不变,与AD→共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →. 教师小结共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .注意:对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.【课堂总结】1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB →.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.【课堂检测】1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4解析:选C .图中与AE→平行的向量为BE →,FD →,FC →共3个.2.下列结论中正确的是( ) ①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ; ④若a ≠b ,则a 与b 方向相反且|a |≠|b |.A .①③B .②③C .③④D .②④解析:选B .两个向量相等需同向等长,反之也成立,故①错误,a ,b 可能反向;②③正确;④两向量不相等,可能是不同向或者长度不相等或者不同向且长度不相等.3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC→相等的向量;(2)与OB→长度相等的向量;(3)与DA→共线的向量.解:画出图形,如图所示. (1)易知BC ∥AD ,BC =AD ,所以与BC→相等的向量为AD →. (2)由O 是正方形ABCD 对角线的交点知OB =OD =OA =OC , 所以与OB→长度相等的向量为BO →,OC →,CO →,OA →,AO →,OD →,DO →.(3)与DA→共线的向量为AD →,BC →,CB →.平面向量的应用【第一课时】教学重难点教学目标核心素养向量在平面几何中的应用会用向量方法解决平面几何中的平行、垂直、长度、夹角等问题数学建模、逻辑推理向量在物理中的应用会用向量方法解决物理中的速度、力学问题数学建模、数学运算【教学过程】一、问题导入预习教材内容,思考以下问题:1.利用向量可以解决哪些常见的几何问题? 2.如何用向量方法解决物理问题? 二、新知探究探究点1:向量在几何中的应用角度一:平面几何中的垂直问题例1:如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .证明:法一:设AD→=a ,AB →=b ,则|a |=|b |,a·b =0, 又DE→=DA →+AE →=-a +12b ,AF →=AB →+BF →=b +12a , 所以AF →·DE →=⎝ ⎛⎭⎪⎫b +12a ·⎝ ⎛⎭⎪⎫-a +12b =-12a 2-34a ·b +12b 2=-12|a |2+12|b |2=0. 故AF→⊥DE →,即AF ⊥DE . 法二:如图,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),AF →=(2,1),DE →=(1,-2).因为AF →·DE →=(2,1)·(1,-2)=2-2=0,所以AF→⊥DE →,即AF ⊥DE . 角度二:平面几何中的平行(或共线)问题:如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AF FB =12.求证:点E ,O ,F 在同一直线上.证明:设AB→=m ,AD →=n ,由CE ED =AF FB =12,知E ,F 分别是CD ,AB 的三等分点,所以FO →=F A →+AO→=13BA →+12AC → =-13m +12(m +n )=16m +12n , OE→=OC →+CE →=12AC →+13CD → =12(m +n )-13m =16m +12n .所以FO →=OE →.又O 为FO→和OE →的公共点,故点E ,O ,F 在同一直线上.角度三:平面几何中的长度问题:如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD=2,求对角线AC 的长.解:设AD→=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD →|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2,所以5-2a ·b =4,所以a ·b =12,又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,所以|AC →|=6,即AC =6.用向量方法解决平面几何问题的步骤向量在物理中的应用:(1)在长江南岸某渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25 km/h .渡船要垂直地渡过长江,其航向应如何确定?(2)已知两恒力F 1=(3,4),F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),求F 1,F 2分别对质点所做的功.解:(1)如图,设AB →表示水流的速度,AD →表示渡船的速度,AC →表示渡船实际垂直过江的速度.因为AB→+AD →=AC →,所以四边形ABCD 为平行四边形. 在Rt △ACD 中,∠ACD =90°,|DC →|=|AB →|=12.5.|AD →|=25,所以∠CAD =30°,即渡船要垂直地渡过长江,其航向应为北偏西30°. (2)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s .因为AB →=(7,0)-(20,15)=(-13,-15). 所以W 1=F 1·AB →=(3,4)·(-13,-15) =3×(-13)+4×(-15)=-99(焦),W 2=F 2·AB →=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(焦).用向量方法解决物理问题的“三步曲”三、课堂总结1.用向量方法解决平面几何问题的“三个步骤”2.向量在物理学中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的减法和加法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,即为力F与位移s的数量积,即W=F·s=|F||s|cos θ(θ为F与s的夹角).四、课堂检测1.河水的流速为2 m/s,一艘小船以垂直于河岸方向10 m/s的速度驶向对岸,则小船在静水中的速度大小为()A.10 m/s B.226 m/sC.4 6 m/s D.12 m/s解析:选B.由题意知|v水|=2 m/s,|v船|=10 m/s,作出示意图如图.所以小船在静水中的速度大小|v|=102+22=226(m/s).2.已知三个力f1=(-2,-1),f2=(-3,2),f3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f4,则f4=()A.(-1,-2)B.(1,-2)C.(-1,2)D.(1,2)解析:选D.由物理知识知f1+f2+f3+f4=0,故f4=-(f1+f2+f3)=(1,2).3.设P,Q分别是梯形ABCD的对角线AC与BD的中点,AB∥DC,试用向量证明:PQ ∥AB.证明:设DC →=λAB →(λ>0且λ≠1),因为PQ →=AQ →-AP →=AB →+BQ →-AP →=AB →+12(BD →-AC →) =AB→+12[(AD →-AB →)-(AD →+DC →)] =AB→+12(CD →-AB →) =12(CD →+AB →)=12(-λ+1)AB→, 所以PQ→∥AB →,又P ,Q ,A ,B 四点不共线,所以PQ ∥AB . 【第二课时】教学重难点教学目标核心素养余弦定理 了解余弦定理的推导过程 逻辑推理 余弦定理的推论掌握余弦定理的几种变形公式及应用数学运算三角形的元素及解三角形 能利用余弦定理求解三角形的边、角等问题数学运算【教学过程】一、问题导入预习教材内容,思考以下问题: 1.余弦定理的内容是什么? 2.余弦定理有哪些推论? 二、新知探究已知两边及一角解三角形:(1)(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A .4 2 B .30 C .29D .2 5(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =5,c =2,cos A =23,则b =( )A . 2B . 3C .2D .3 解析:(1)因为cos C =2cos 2 C 2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC2-2AC ·BC cos C =25+1-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =42,故选A .(2)由余弦定理得5=22+b 2-2×2b cos A ,因为cos A =23,所以3b 2-8b -3=0,所以b =3⎝ ⎛⎭⎪⎫b =-13舍去.故选D .答案:(1)A (2)D 互动探究:变条件:将本例(2)中的条件“a =5,c =2,cos A =23”改为“a =2,c =23,cos A =32”,求b 为何值? 解:由余弦定理得: a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32, 即b 2-6b +8=0,解得b =2或b =4. 规律方法:解决“已知两边及一角”解三角问题的步骤(1)用余弦定理列出关于第三边的等量关系建立方程,运用解方程的方法求出此边长. (2)再用余弦定理和三角形内角和定理求出其他两角. 探究点2:已知三边(三边关系)解三角形:(1)在△ABC 中,已知a =3,b =5,c =19,则最大角与最小角的和为( ) A .90° B .120° C .135°D .150°(2)在△ABC 中,若(a +c )(a -c )=b (b -c ),则A 等于( ) A .90° B .60° C .120°D .150°解析:(1)在△ABC 中,因为a =3,b =5,c =19,所以最大角为B ,最小角为A ,所以cos C =a 2+b 2-c 22ab =9+25-192×3×5=12,所以C =60°,所以A +B =120°,所以△ABC 中的最大角与最小角的和为120°.故选B .(2)因为(a +c )(a -c )=b (b -c ),所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0°,180°),所以A =60°.答案:(1)B (2)B已知三角形的三边解三角形的方法先利用余弦定理的推论求出一个角的余弦,从而求出第一个角;再利用余弦定理的推论求出第二个角;最后利用三角形的内角和定理求出第三个角.注意:若已知三角形三边的比例关系,常根据比例的性质引入k ,从而转化为已知三边求解.探究点3: 判断三角形的形状:在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状. 解:将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得b 2+c 2-b 2⎝⎛⎭⎪⎫a 2+b 2-c 22ab 2-c 2⎝ ⎛⎭⎪⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c22ab ,所以b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a 2=a 2.所以A =90°.所以△ABC 是直角三角形. 规律方法:(1)利用余弦定理判断三角形形状的两种途径①化边的关系:将条件中的角的关系,利用余弦定理化为边的关系,再变形条件判断. ②化角的关系:将条件转化为角与角之间的关系,通过三角变换得出关系进行判断. (2)判断三角形时经常用到以下结论①△ABC 为直角三角形⇔a 2=b 2+c 2或c 2=a 2+b 2或b 2=a 2+c 2. ②△ABC 为锐角三角形⇔a 2+b 2>c 2,且b 2+c 2>a 2,且c 2+a 2>b 2. ③△ABC 为钝角三角形⇔a 2+b 2<c 2或b 2+c 2<a 2或c 2+a 2<b 2.④若sin 2A =sin 2B ,则A =B 或A +B =π2. 三、课堂总结1.余弦定理2.余弦定理的推论cos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab.3.三角形的元素与解三角形(1)三角形的元素三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.(2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形.四、课堂检测1.在△ABC中,已知a=5,b=7,c=8,则A+C=()A.90°B.120°C.135°D.150°解析:选B.cos B=a2+c2-b22ac=25+64-492×5×8=12.所以B=60°,所以A+C=120°.2.在△ABC中,已知(a+b+c)(b+c-a)=3bc,则角A等于()A.30°B.60°C.120°D.150°解析:选B.因为(b+c)2-a2=b2+c2+2bc-a2=3bc,所以b2+c2-a2=bc,所以cos A=b2+c2-a22bc=12,所以A=60°.3.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab =________.解析:因为C=60°,所以c2=a2+b2-2ab cos 60°,即c 2=a 2+b 2-ab .① 又因为(a +b )2-c 2=4, 所以c 2=a 2+b 2+2ab -4.②由①②知-ab =2ab -4,所以ab =43.答案:434.在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca +c ·c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.所以a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.【第三课时】教学重难点教学目标核心素养正弦定理通过对任意三角形边长和角度关系的探索,掌握正弦 定理的内容及其证明方法逻辑推理【教学过程】一、问题导入预习教材内容,思考以下问题:1.在直角三角形中,边与角之间的关系是什么? 2.正弦定理的内容是什么? 二、新知探究已知两角及一边解三角形:在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形.【解】因为A =45°,C =30°,所以B =180°-(A +C )=105°.由a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=102.因为sin 75°=sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64,所以b =c sin Bsin C =10×sin(A+C)sin 30°=20×2+64=52+56.已知三角形的两角和任一边解三角形的思路(1)若所给边是已知角的对边时,可由正弦定理求另一角所对的边,再由三角形内角和定理求出第三个角.(2)若所给边不是已知角的对边时,先由三角形内角和定理求出第三个角,再由正弦定理求另外两边.已知两边及其中一边的对角解三角形已知△ABC中的下列条件,解三角形:(1)a=10,b=20,A=60°;(2)a=2,c=6,C=π3.解:(1)因为bsin B=asin A,所以sin B=b sin Aa=20sin 60°10=3>1,所以三角形无解.(2)因为asin A=csin C,所以sin A=a sin Cc=22.因为c>a,所以C>A.所以A=π4.所以B=5π12,b=c sin Bsin C=6·sin5π12sinπ3=3+1.互动探究:变条件:若本例(2)中C=π3改为A=π4,其他条件不变,求C,B, b.解:因为asin A=csin C,所以sin C=c sin Aa=32.所以C=π3或2π3.当C=π3时,B=5π12,b=a sin Bsin A=3+1.当C=2π3时,B=π12,b=a sin Bsin A=3-1.(1)已知两边及其中一边的对角解三角形的思路①首先由正弦定理求出另一边对角的正弦值;②如果已知的角为大边所对的角时,由三角形中大边对大角,大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角;③如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.(2)已知两边及其中一边的对角判断三角形解的个数的方法①应用三角形中大边对大角的性质以及正弦函数的值域判断解的个数;②在△ABC中,已知a,b和A,以点C为圆心,以边长a为半径画弧,此弧与除去顶点A的射线AB的公共点的个数即为三角形解的个数,解的个数见下表:A为钝角A为直角A为锐角a>b 一解一解一解a=b 无解无解一解a<b 无解无解a>b sin A 两解a =b sin A 一解a<b sin A 无解判断三角形的形状:已知在△ABC中,角A,B所对的边分别是a和b,若a cos B=b cos A,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形解析:由正弦定理得:a cos B=b cos A⇒sin A cos B=sin B cos A⇒sin(A-B)=0,由于-π<A-B<π,故必有A-B=0,A=B,即△ABC为等腰三角形.答案:A互动探究:变条件:若把本例条件变为“b sin B=c sin C”,试判断△ABC的形状.解:由b sin B=c sin C可得sin2B=sin2C,因为三角形内角和为180°,所以sin B=sin C.所以B=C.故△ABC为等腰三角形.判断三角形形状的两种途径注意:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.三、课堂总结1.正弦定理条件在△ABC中,角A,B,C所对的边分别为a,b,c结论asin A=bsin B=csin C文字叙述在一个三角形中,各边和它所对角的正弦的比相等■名师点拨对正弦定理的理解(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)揭示规律:正弦定理指出的是三角形中三条边与其对应角的正弦之间的一个关系式,它描述了三角形中边与角的一种数量关系.2.正弦定理的变形若R为△ABC外接圆的半径,则(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)sin A∶sin B∶sin C=a∶b∶c;(4)a+b+csin A+sin B+sin C=2R.四、课堂检测1.(2019·辽宁沈阳铁路实验中学期中考试)在△ABC中,AB=2,AC=3,B=60°,则cos C=()A.33B.63C.32D.62解析:选B.由正弦定理,得ABsin C=ACsin B,即2sin C=3sin 60°,解得sin C=33.因为AB<AC,所以C<B,所以cos C=1-sin2C=6 3.2.在△ABC中,角A,B,C的对边分别为a,b,c,且A∶B∶C=1∶2∶3,则a∶b∶c =()A.1∶2∶3 B.3∶2∶1C.2∶3∶1 D.1∶3∶2解析:选D.在△ABC中,因为A∶B∶C=1∶2∶3,所以B=2A,C=3A,又A+B+C =180°,所以A=30°,B=60°,C=90°,所以a∶b∶c=sin A∶sin B∶sin C=sin 30°∶sin 60°∶sin 90°=1∶3∶2.3.在△ABC中,角A,B,C的对边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形解析:选D.已知c-a cos B=(2a-b)cos A,由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin(A+B)-sin A cos B=2sin A cos A-sin B cos A,化简得cos A(sin B -sin A)=0,所以cos A=0或sin B-sin A=0,则A=90°或A=B,故△ABC为等腰三角形或直角三角形.【教学过程】一、问题导入预习教材内容,思考以下问题:1.什么是基线?2.基线的长度与测量的精确度有什么关系?3.利用正、余弦定理可解决哪些实际问题?二、新知探究测量距离问题:海上A ,B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 岛与C 岛间的距离是________.解析:如图,在△ABC 中,∠C =180°-(∠B +∠A )=45°,由正弦定理,可得BC sin 60°=ABsin 45°,所以BC =32×10=56(海里).答案:56海里变条件:在本例中,若“从B 岛望C 岛和A 岛成75°的视角”改为“A ,C 两岛相距20海里”,其他条件不变,又如何求B 岛与C 岛间的距离呢?解:由已知在△ABC 中,AB =10,AC =20,∠BAC =60°,即已知两边和两边的夹角,利用余弦定理求解即可.BC 2=AB 2+AC 2-2AB ·AC ·cos 60°=102+202-2×10×20×12=300.故BC =103. 即B ,C 间的距离为103海里.测量距离问题的解题思路求解测量距离问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.构造数学模型时,尽量把已知元素放在同一个三角形中.测量高度问题:如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m .解析:由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BCsin 30°,解得BC =300 2 m .在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m ).答案:100 6互动探究:变问法:在本例条件下,汽车在沿直线AB方向行驶的过程中,若测得观察山顶D点的最大仰角为α,求tan α的值.解:如图,过点C,作CE⊥AB,垂足为E,则∠DEC=α,由例题可知,∠CBE=75°,BC=3002,所以CE=BC·sin∠CBE=3002sin 75°=3002×2+6 4=150+1503.所以tan α=DCCE=1006150+1503=32-63.测量高度问题的解题思路高度的测量主要是一些底部不能到达或者无法直接测量的物体的高度问题.常用正弦定理或余弦定理计算出物体的顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.这类物体高度的测量是在与地面垂直的竖直平面内构造三角形或者在空间构造三棱锥,再依据条件利用正、余弦定理解其中的一个或者几个三角形,从而求出所需测量物体的高度.测量角度问题:岛A观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行(如图所示),观察站即刻通知在岛A正南方向B处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C处,随即以每小时103海里的速度前往拦截.(1)问:海监船接到通知时,在距离岛A多少海里处?(2)假设海监船在D处恰好追上可疑船只,求它的航行方向及其航行的时间.解:(1)根据题意得∠BAC=45°,∠ABC=75°,BC=10,所以∠ACB=180°-75°-45°=60°,在△ABC中,由ABsin∠ACB=BCsin∠BAC,得AB =BC sin ∠ACB sin ∠BAC=10sin 60°sin 45°=10×3222=56.所以海监船接到通知时,在距离岛A 5 6 海里处.(2)设海监船航行时间为t 小时,则BD =103t ,CD =10t , 又因为∠BCD =180°-∠ACB =180°-60°=120°, 所以BD 2=BC 2+CD 2-2BC ·CD cos 120°,所以300t 2=100+100t 2-2×10×10t ·⎝ ⎛⎭⎪⎫-12, 所以2t 2-t -1=0,解得t =1或t =-12(舍去). 所以CD =10,所以BC =CD ,所以∠CBD =12(180°-120°)=30°, 所以∠ABD =75°+30°=105°.所以海监船沿方位角105°航行,航行时间为1个小时. (或海监船沿南偏东75°方向航行,航行时间为1个小时)测量角度问题的基本思路(1)测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,在图形中标出相关的角和距离.(2)根据实际选择正弦定理或余弦定理解三角形,然后将解得的结果转化为实际问题的解. 三、课堂总结1.基线在测量过程中,我们把根据测量的需要而确定的线段叫做基线实际测量中的有关名称、术语名称 定义图示仰角在同一铅垂平面内,视线在水平线上方时与水平线的夹角俯角在同一铅垂平面内,视线在水平线下方时与水平线的夹角方向角从指定方向线到目标方向线的水平角(指定方向线是指正北或正南或正东或正西,方向角小于90°)南偏西60°(指以正南方向为始边,转向目标方向线形成的角)方位角从正北的方向线按顺时针到目标方向线所转过的水平角四、课堂检测1.若P在Q的北偏东44°50′方向上,则Q在P的()A.东偏北45°10′方向上B.东偏北45°50′方向上C.南偏西44°50′方向上D.西偏南45°50′方向上解析:选C.如图所示.2.如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于()A.1002米B.50(3+1)米C.100(3+1)米D.200米解析:选C.设AB=x米,在Rt△ACB中,∠ACB=45°,所以BC=AB=x.在Rt△ABD中,∠D=30°,则BD=3AB=3x.因为BD-BC=CD,所以3x-x=200,解得x=100(3+1).故选C.3.已知台风中心位于城市A 东偏北α(α为锐角)度的150公里处,以v 公里/小时沿正西方向快速移动,2.5小时后到达距城市A 西偏北β(β为锐角)度的200公里处,若cos α=34cos β,则v =( )A .60B .80C .100D .125解析:选C .画出图象如图所示,由余弦定理得(2.5v )2=2002+1502+2×200×150cos(α+β)①,由正弦定理得150sin β=200sin α,所以sin α=43sin β.又cos α=34 cos β,sin 2 α+cos 2α=1,解得sin β=35,故cos β=45,sin α=45,cos α=35,故cos (α+β)=1225-1225=0,代入①解得v =100.4.某巡逻艇在A 处发现在北偏东45°距A 处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇的航行方向.解:设经过t 小时在点C 处刚好追上走私船,依题意:AC =123t ,BC =12t ,∠ABC =120°,在△ABC 中,由正弦定理得123t sin 120°=12tsin ∠BAC,所以sin ∠BAC =12,所以∠BAC =30°,所以AB =BC =8=12t ,解得t =23,航行的方向为北偏东75°. 即巡逻艇最少经过23小时可追到走私船,沿北偏东75°的方向航行.平面向量的运算【第一课时】【教学重难点】【教学目标】【核心素养】平面向量加法的几何意义理解向量加法的概念以及向量加法的几何意义数学抽象、直观想象平行四边形法则 和三角形法则掌握向量加法的平行四边形法则和三角形法则, 会用它们解决实际问题 数学抽象、直观想象平面向量加法的运算律 掌握向量加法的交换律和结合律,会用它们进行计算数学抽象、数学运算【教学过程】一、问题导入预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则? 2.向量加法的运算律有哪两个? 二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a ,b ,c ,求作和向量a +b +c .解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA →=a ,OB→=b ; (2)作平行四边形AOBC ,则OC→=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE , 则OE→=OC →+c =a +b +c .OE →即为所求.规律方法:(1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合; ②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和. (2)应用平行四边形法则求向量和的基本步骤 ①平移两个不共线的向量使之共起点; ②以这两个已知向量为邻边作平行四边形;③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和. 探究点2:平面向量的加法运算 例2:化简:(1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →. 解:(1)BC→+AB →=AB →+BC →=AC →. (2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0. 规律方法:向量加法运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简.探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA →,OB →为邻边作▱OACB ,则此人的实际速度为OA→+OB →=OC →.由勾股定理知|OC →|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.规律方法:应用向量解决平面几何和物理学问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将相关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题. 三、课堂总结1.向量加法的定义及运算法则 定义求两个向量和的运算,叫做向量的加法法则三角形法则前提 已知非零向量a ,b作法在平面内任取一点A ,作AB→=a ,BC →=b ,再作向量AC →结论向量AC→叫做a 与b 的和,记作a +b , 即a +b =AB→+BC →=AC →图形法则平行四边形法前提 已知不共线的两个向量a ,b作法在平面内任取一点O ,以同一点O 为起点的两个已知向量a ,b 为邻边作▱OACB。

人教版高中数学必修26.4平面向量的应用 教案

人教版高中数学必修26.4平面向量的应用 教案

6.4平面向量的应用教学设计证明:如图,因为平面几何问题转化为向问题中的几何元素,将几何与向量的联系,用解:第一步,建立平面D(1,1),P(x,1-x),E(0,1-x),F(x,0)(1,),(,DP x x EF x x ∴=--=DP EF DP EF∴⊥∴⊥(1)(1)DP EF x x x x =---小结:①建立坐标系;②写出用到的点的坐标及向量坐标;③进行坐标运算;④还原为几何问题。

几何问题代数化数形结合思想2、如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC 的长.解 设AD →=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD →|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2, ∴5-2a ·b =4,∴a ·b =12.又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,∴|AC →|=6,即AC = 6.方法总结:向量在平面几何中常见的应用 (1)证明线段平行或点共线问题,以及相似问题,常用平行向量基本定理a ∥b ⇔a =λb (λ∈R ,b ≠0)⇔x 1y 2-x 2y 1=0(a =(x 1,y 1),b =(x 2,y 2))(2)证明线段垂直问题,如证明四边形是矩形、正方形,判断两直线(或线段)是否垂直等,常用向量垂直的条件:a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0(a =(x 1,y 1),b =(x 2,y 2))(3)求线段的长度或说明线段相等,常用公式:|a |=a 2=x 2+y 2(a =(x ,y ))或AB =|AB →|=x 1-x 22+y 1-y 22(A (x 1,y 1),B (x 2,y 2)) 知识探究(二):向量在物理中的应用举例下面,我们再来感受下向量在物理中的应用。

高中数学平面向量教案(精选6篇)

高中数学平面向量教案(精选6篇)

高中数学平面向量教案(精选6篇)为大家收集的高中数学平面向量教案,欢迎阅读,希望大家能够喜欢。

高中数学平面向量教案精选篇1教学目标1、了解基底的含义,理解并掌握平面向量基本定理。

会用基底表示平面内任一向量。

2、掌握向量夹角的定义以及两向量垂直的定义。

学情分析前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。

如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备重点难点重点:对平面向量基本定理的探究难点:对平面向量基本定理的理解及其应用教学过程4.1第一学时教学活动活动1【导入】情景设置火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度v=vx+vy=6i+4j。

活动2【活动】探究已知平面中两个不共线向量e1,e2,c是平面内任意向量,求向量c=___e1+___e2(课堂上准备好几张带格子的纸张,上面有三个向量,e1,e2,c)做法:作OA=e1,OB=e2,OC=c,过点C作平行于OB的直线,交直线OA于M;过点C作平行于OA的直线,交OB于N,则有且只有一对实数l1,l2,使得OM=l1e1,ON=l2e2。

因为OC=OM+ON,所以c=6 e1+6e2。

向量c=__6__e1+___6__e2活动3【练习】动手做一做请同学们自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____(做完后,思考一下,这样的一组实数是否是唯一的呢?)(是唯一的)由刚才的几个实例,可以得出结论:如果给定向量e1,e2,平面内的任一向量a,都可以表示成a=入1e1+入2e2。

活动4【活动】思考问题2:如果e1,e2是平面内任意两向量,那么平面内的任一向量a还可以表示成a=入1e1+入2e2的形式吗?生:不行,e1,e2必须是平面内两不共线向量活动5【讲授】平面向量基本定理平面向量基本定理:如果e1,e2是平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数l1,l2,使a=l1e1+l2e2。

教案运用平面向量的坐标求内积

教案运用平面向量的坐标求内积

平面向量内积的概念及坐标表示一、教学目标:1. 让学生了解平面向量的概念,理解向量的几何意义。

2. 掌握平面向量的坐标表示方法,学会用坐标表示向量的内积。

3. 能够运用坐标求解向量的内积,并解决相关的几何问题。

二、教学内容:1. 平面向量的概念及几何表示。

2. 向量的坐标表示方法。

3. 向量内积的定义及坐标表示。

4. 向量内积的运算性质。

5. 运用坐标求解向量内积的实例分析。

三、教学重点与难点:1. 重点:平面向量的概念、坐标表示方法,向量内积的定义及其坐标表示。

2. 难点:向量内积的运算性质,运用坐标求解向量内积。

四、教学方法:1. 采用讲授法,讲解平面向量的概念、坐标表示方法,向量内积的定义及其坐标表示。

2. 利用多媒体演示,直观展示向量的几何意义及坐标表示。

3. 运用例题解析,让学生掌握运用坐标求解向量内积的方法。

4. 开展小组讨论,引导学生探究向量内积的运算性质。

五、教学过程:1. 导入:回顾高中数学中关于向量的知识,引导学生思考向量的几何意义。

2. 新课讲解:(1)介绍平面向量的概念,解释向量的几何表示。

(2)讲解向量的坐标表示方法,举例说明。

(3)引入向量内积的定义,阐述其几何意义。

(4)推导向量内积的坐标表示,解释其含义。

3. 例题解析:选取典型例题,讲解如何运用坐标求解向量内积,引导学生思考解题思路。

4. 小组讨论:让学生分组讨论向量内积的运算性质,总结规律。

5. 课堂练习:布置相关练习题,巩固所学知识。

6. 总结:对本节课内容进行总结,强调重点知识点。

7. 作业布置:布置适量作业,巩固所学知识。

六、教学拓展:1. 引导学生思考向量内积的应用,例如在几何中的运用,如计算平行四边形的面积、判断两个向量是否垂直等。

2. 探讨向量内积在物理中的意义,例如在力学中,两个向量的内积可以表示力的大小和方向的乘积。

七、课堂小结:1. 回顾本节课所学内容,强调平面向量的概念、坐标表示方法,向量内积的定义及其坐标表示。

高中数学教案平面向量的运算与应用

高中数学教案平面向量的运算与应用

高中数学教案平面向量的运算与应用高中数学教案:平面向量的运算与应用一、引言平面向量是高中数学中的重要概念之一,它在数学中具有广泛的应用价值。

本教案将介绍平面向量的基本运算,包括向量的加减法、数量乘法以及向量的模、方向角等概念。

同时,还将探讨平面向量在几何、物理等领域的应用,帮助学生更好地掌握和应用平面向量。

二、平面向量的基本概念1. 向量的定义在平面上,向量可以用有向线段表示。

其中,有向线段的方向由箭头表示,长度表示向量的大小。

向量通常用小写字母加箭头表示,如$\overrightarrow{AB}$。

2. 向量的加法对于平面上的两个向量$\overrightarrow{AB}$和$\overrightarrow{CD}$,它们的和记作$\overrightarrow{AB}+\overrightarrow{CD}$,可以通过首尾相连进行几何运算。

3. 向量的减法对于平面上的两个向量$\overrightarrow{AB}$和$\overrightarrow{CD}$,它们的差记作$\overrightarrow{AB}-\overrightarrow{CD}$,可以通过首尾相连进行几何运算。

4. 向量的数量乘法对于一个向量$\overrightarrow{AB}$和一个实数$k$,它们的数量乘记作$k\overrightarrow{AB}$,表示将向量的长度按照比例进行拉伸或缩放。

5. 向量的模向量$\overrightarrow{AB}$的模表示向量的长度,记作$|\overrightarrow{AB}|$,可以通过勾股定理计算。

6. 向量的方向角向量$\overrightarrow{AB}$的方向角表示向量与平行于$x$轴正方向的夹角,记作$\alpha$。

可以通过三角函数计算,其中\[\alpha = \arctan\left(\frac{y_B-y_A}{x_B-x_A}\right)\]三、平面向量的运算规律1. 交换律:$\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{CD}+\overri ghtarrow{AB}$2. 结合律:$(\overrightarrow{AB}+\overrightarrow{CD})+\overrightarrow{EF}=\over rightarrow{AB}+(\overrightarrow{CD}+\overrightarrow{EF})$3. 数量乘法结合律:$k(l\overrightarrow{AB})=(kl)\overrightarrow{AB}$4. 数量乘法分配律:$(k+l)\overrightarrow{AB}=k\overrightarrow{AB}+l\overrightarrow{AB}$5. 加法与数量乘法的分配律:$k(\overrightarrow{AB}+\overrightarrow{CD})=k\overrightarrow{AB}+k\ overrightarrow{CD}$相关练习及讲解请见附表.四、平面向量的应用1. 向量的位移在平面上,可以将向量看作物体的位移,通过矢量的加减法计算物体的位置变化。

平面向量的应用-教案

平面向量的应用-教案

第3课时平面向量的应用一、向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为零的向量;其方向是任意的记作0单位向量长度等于1个单位的向量非零向量a的单位向量为±a|a|平行向量方向相同或相反的非零向量0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为0二、向量的线性运算向量运算定义法则(或几何意义) 运算律加法求两个向量和的运算(1)交换律:a+b=b+a.(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb三、平面向量基本定理1.定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.2.基底:不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.四、两向量的夹角1.夹角:已知两个非零向量a和b,作OA→=a,OB→=b,则∠AOB=θ叫做向量a与b的夹角.(1)范围:向量a与b的夹角的范围是0°≤θ≤180°.(2)当θ=0°时a与b同向.(3)当θ=180°时a与b反向.2.垂直:如果a与b的夹角是90°,那么称a与b垂直,记作a⊥b.五、平面向量的坐标表示1.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 2.平面向量的坐标表示 (1)向量的直角坐标在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,对于平面内的一个向量a ,由平面向量基本定理知,有且只有一对实数x ,y 使得a =x i +y j ,则把有序数对(x ,y)叫做向量a 的坐标.(2)向量的坐标表示在向量a 的直角坐标中,x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,a =(x ,y)叫做向量的坐标表示.(3)在向量的直角坐标中,i =(1,0),j =(0,1),0=(0,0). 六、平面向量的坐标运算 向量的 加、减法 若a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2).即两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差)实数与 向量的 积 若a =(x ,y),λ∈R ,则λa =(λx ,λy),即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标向量的 坐标已知向量AB →的起点A(x 1,y 1),终点B(x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),即向量终点坐标减去向量起点坐标平面向量共线的坐标表示1.a =(x 1,y 1),b =(x 2,y 2)(b ≠0),当且仅当x 1y 2-x 2y 1=0时,向量a ,b 共线; 2.a =(x 1,y 1),b =(x 2,y 2)(b ≠0),当且仅当x 1x 2+y 1y 2=0时,向量a ,b 垂直; 3.已知P 1(x 1,y 1),P 2(x 2,y 2),若P 是线段P 1P 2的中点,则点P 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.七、向量的数量积的定义1.已知两非零向量a 与b ,它们的夹角为θ,则把数量|a ||b |·cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ.规定零向量与任一向量的数量积均为0. 2.向量的数量积的几何意义 (1)投影的概念如下图所示:OA →=a ,OB →=b ,过B 作BB 1垂直于直线OA ,垂足为B 1,则OB 1=|b |cos θ.|b |cos θ叫做向量b 在a 方向上的投影,|a |cos θ叫做向量a 在b 方向上的投影. (2)数量积的几何意义a ·b 的几何意义是 a 的长度|a |与b 在a 方向上的投影|b |cos θ的乘积. 八、向量的数量积的性质和运算律 1.向量的数量积的性质设a 与b 都是非零向量,θ为a 与b 的夹角. (1)a ⊥b ⇔a ·b =0.(2)当a 与b 同向时,a ·b =|a ||b |. 当a 与b 反向时,a ·b =-|a ||b |. (3)a ·a =|a |2或|a |=a ·a =a 2. (4)cos θ=a ·b|a ||b |. (5)|a ·b |≤|a ||b |. 2.向量数量积的运算律 (1)a ·b =b ·a (交换律).(2)(λa )·b =λ(a ·b )=a ·(λb )(结合律). (3)(a +b )·c =a ·c +b ·c (分配律).真题回顾1.(2019·全国2·文T3)已知向量a =(2,3),b =(3,2),则|a -b |=( ) A.2 B.2C.25D.50【答案】A【解析】由题意,得a-b=(-1,1),则|a-b|=,故选A.2.(2019·全国·1理T7文T8)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为( )A. B. C. D.【答案】B【解析】因为(a-b)⊥b,所以(a-b)·b=a·b-b2=0,所以a·b=b2.所以cos<a,b>=,所以a与b 的夹角为,故选B.3.(2018·全国1·理T6文T7)在△ABC中,AD为BC边上的中线,E为AD的中点,则=( )A. B.C. D.【答案】A【解析】如图,=-=-)==)=.4.(2018·北京·理T6)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件【答案】C【解析】由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2.∵a,b均为单位向量,∴1-6a·b+9=9+6a·b+1.∴a·b=0,故a⊥b,反之也成立.故选C.5.(2018·天津·文T8)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,=2=2,则的值为()A.-15B.-9C.-6D.0【答案】C【解析】连接MN,∵=2=2,∴=3=3.∴MN∥BC,且,∴=3=3(),∴=3()·=3(-||2)=3=-6.6.(2012·陕西·文T7)设向量a=(1,cos θ)与b=(-1,2cos θ)垂直,则cos 2θ等于( )A. B. C.0 D.-1【答案】C【解析】∵a⊥b,∴a·b=0,∴-1+2cos2θ=0,即cos 2θ=0.7.(2015·广东)在平面直角坐标系xOy中,已知向量m=⎝⎛⎭⎪⎫22,-22,n=(sinx,cosx),x∈⎝⎛⎭⎪⎫0,π2.(1)若m⊥n,求tanx的值;(2)若m 与n 的夹角为π3,求x 的值.补充题1.(向量在平面几何中的应用)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心 答案 C解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心.补充题2.(向量的综合应用)已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是( )A .1 B.13 C.14 D.18。

平面向量坐标的应用教案

平面向量坐标的应用教案

平面向量坐标的应用教案引言:平面向量是以向量为基本概念的研究内容之一,具有很广的应用。

在学习平面向量时,我们可以将其应用于几何问题和物理学问题中,可以使用向量分解、平面向量加法、平面向量减法、平面向量数量积等概念来解决问题。

本文将介绍如何编写一份平面向量坐标的应用教案,并讲述其教学内容和教学目标。

第一部分:教学内容1.平面向量定义在讲解平面向量的应用前,我们需要先了解平面向量的定义。

可以通过图形和文字定义平面向量,同时需要讲解向量的长度、方向和起点等概念。

2.平面向量坐标表示了解平面向量的定义后,我们需要引入平面向量的坐标表示方式。

通过直角坐标系来表示向量,可以更好的表达其长度和方向。

需要介绍坐标系的标准位置和坐标轴的方向,以及如何表示向量的坐标。

3.平面向量的加法和减法在了解了平面向量的坐标表示方式后,我们可以进行平面向量的加法和减法。

可以通过图形或坐标的方式进行讲解,使学生更好的理解平面向量的加减法规则。

4.平面向量数量积的定义和计算平面向量数量积是向量的一个重要性质,其定义为两个向量之间的乘积。

需要进行向量数量积的定义和计算,同时讲解其性质和基本应用。

可以通过计算向量夹角、平面图形面积等问题进行讲解。

5.平面向量的向量积(选讲)平面向量的向量积是向量的另一个重要性质,其定义为两个向量所构成的平行四边形的面积。

可以进行向量积的定义和计算,同时讲解其性质和基本应用。

需要注意的是,向量积的计算需要使用三维向量的计算方式。

第二部分:教学目标1.了解平面向量的概念和基本性质;2.掌握平面向量的坐标表示方式和坐标的计算方法;3.掌握平面向量的加法和减法运算规则及应用;4.掌握平面向量数量积的定义和计算方法,并理解其性质和基本应用;5.(选讲) 掌握平面向量的向量积的计算方法,并理解其性质和基本应用。

第三部分:教学方法和教学手段1.授课法教师采取讲解、示范和演示等方法进行教学,注重理论和实践相结合,在讲解中引入具体的例子和应用来加深学生的理解和记忆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量应用教案
一、引言
平面向量是数学中的重要概念之一,它在解决各种几何和物理问题
中有着广泛的应用。

本教案将介绍平面向量在几何和物理中的具体应用,帮助学生更好地理解和掌握平面向量的使用方法。

二、平面向量的表示与性质
1. 平面向量的表示方法
平面上的向量可以使用有序数对或者坐标表示。

例如,向量AB可
以表示为➡️ AB 或者 (x, y)。

其中,向量的起点为A,终点为B。

向量
的模长可以通过勾股定理计算得到。

2. 平面向量的性质
平面向量具有位移性、共线性和反箭头性质等基本性质。

在计算中,我们可以通过向量加法、数乘和平移等运算来处理各种向量问题。

三、平面向量的应用
1. 几何应用
1.1 平行四边形的性质
平行四边形的两条对角线互相平分,即向量AC = -向量BD,向量AD = -向量BC。

这个性质在解决平行四边形相关问题时非常有用。

1.2 向量和三角形面积
三角形ABC的面积可以通过向量积的大小来计算,即S△ABC =
1/2 |AB × AC|。

这个公式对于求解三角形面积问题非常方便。

2. 物理应用
2.1 力的合成与分解
力的合成是指将多个力的作用效果等效为一个力的过程。

我们可以利用平面向量的加法来求解力的合成问题。

而力的分解是指将一个力
拆解为多个分力的过程,这可以通过平面向量的减法来实现。

2.2 力的平衡与不平衡
多个力在平面上的合力为零时,称为力的平衡。

我们可以使用平面向量的加法和减法来求解力的平衡问题。

相反,当多个力在平面上的
合力不为零时,称为力的不平衡。

这种情况下,平面向量的合力将导
致物体加速度的出现。

四、案例分析
通过以下案例,我们来具体应用平面向量解决几何和物理问题。

案例1:求解平行四边形的对角线交点坐标。

已知平行四边形ABCD的顶点坐标分别为A(-2, 1),B(1, 3),C(4, 1)和D(1, -1),求对角线AC和BD的交点坐标。

解析:
向量AC = (4, 1) - (-2, 1) = (6, 0)
向量BD = (1, -1) - (1, 3) = (0, -4)
由于对角线互相平分,所以交点坐标为平行四边形对角线的中点。

交点坐标为(-2, 1) + 1/2(6, 0) = (1, 1)
案例2:求解力的合成问题。

已知力F1 = (3, 2) N,力F2 = (-1, 4) N,请求解两个力合成后的结果力F。

解析:
力F = F1 + F2 = (3, 2) + (-1, 4) = (2, 6) N
案例3:求解三角形面积问题。

已知三角形ABC的顶点坐标分别为A(1, 2),B(3, 4)和C(5, 1),求解三角形ABC的面积。

解析:
向量AB = (3, 4) - (1, 2) = (2, 2)
向量AC = (5, 1) - (1, 2) = (4, -1)
S△ABC = 1/2 |(2, 2) × (4, -1)| = 1/2 |(0, 10)| = 5 平方单位
五、总结
本教案简要介绍了平面向量的表示与性质,以及在几何和物理中的具体应用。

通过案例分析,我们发现平面向量在解决各种问题中具有
很高的实用性和灵活性。

希望学生能够通过本教案更好地理解和掌握平面向量的应用方法,提高解决实际问题的能力。

相关文档
最新文档