圆锥曲线.03圆锥曲线的弦长面积问题.知识讲解和练习
圆锥曲线:弦长公式与面积的12类题型考法总结 高考数学

PQ = 3.
【答案】(1)求椭圆C的方程;(2)求△ 面积的取值范围.
试卷讲评课件
【详解】(1)依题意, = ,当直线的斜率不存在时,由 = ,
得直线过点
为
+
,
,于是
+
= ,解得 = ,所以椭圆的方程
= .
(2)依题意,直线不垂直于轴,设直线的方程为
【解析】 = .
试卷讲评课件
(3)是否存在常数,使得 + = ⋅ 恒成立?若存在,
求的值;若不存在,请说明理由.
【解析】由于PF 的方程为 = �� + ,将其代入椭圆方程得
+ − + − = ,由违达定理得
+
+
−
− − +
− +
+
=
试卷讲评课件
3.特殊方法:拆分法,可以将三角形沿着轴或者轴拆分成两个三角形,
不过在拆分的时候给定的顶点一般在轴或者轴上,此时,便于找到两
个三角形的底边长.
= + = ∣ ∣∣ − ∣
+
+
由 >,得0< < ,所以 <<.综上可得:
+
<
≤ ,即 ∈
( ,
].
试卷讲评课件
例2.已知 P 为椭圆
x2
8
+
y2
2
= 1 上的一个
圆锥曲线知识点总结与经典例题

圆锥曲线知识点总结与经典例题圆锥曲线解题方法技巧第一、知识储备: 1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈2121y y k x x -=-②点0(,)P x y 到直线0Ax By C ++=的距离 0022Ax By C d A B++=+③夹角公式:直线111222::l y k x b l y k x b =+=+ 夹角为α, 则2121tan 1k kk kα-=+ (3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离①222121()()AB x x y y =-+-2121AB k x =+-221212(1)[()4]k x x x x =++-③12211AB y k =+-(4)两条直线的位置关系 (Ⅰ)111222::l y k x b l y k x b=+=+ ①1212l lk k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且(Ⅱ) 11112222:0:0l A x B y C l A x B y C ++=++=①1212120l lA AB B ⊥⇔+=②1212211221//0l l A B A B AC A C ⇔≠-=0且-或111222AB C AB C =≠者(222A B C≠)两平行线距离公式1122::l y kx b l y kx b =+⎧⎨=+⎩ 距离1221d k =+1122:0:0l Ax By C l Ax By C ++=⎧⎨++=⎩ 距离1222d A B =+二、椭圆、双曲线、抛物线:椭圆 双曲线 抛物线定义1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹 2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹 2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1) 与定点和直线的距离相等的点的轨迹. 轨迹条件 点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a}. 点集:{M ||MF 1|-|MF 2|.=±2a,|F 2F 2|>2a}.点集{M | |MF |=点M 到直线l 的距离}.图形方 标准12222=+by a x (b a >>012222=-by a x (a>0,b>0pxy 22=程方程) )参数方程为离心角)参数θθθ(sincos⎩⎨⎧==byax为离心角)参数θθθ(tansec⎩⎨⎧==byax⎩⎨⎧==ptyptx222(t为参数)范围─a≤x≤a,─b≤y≤b|x| ≥ a,y∈R x≥0中心原点O(0,0)原点O(0,0)顶点(a,0), (─a,0),(0,b) , (0,─b)(a,0), (─a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a, 虚轴长2b.x轴焦点F1(c,0),F2(─c,0)F1(c,0), F2(─c,0))0,2(pF准线x=±ca2准线垂直于长轴,且在椭圆外.x=±ca2准线垂直于实轴,且在两顶点的内侧.x=-2p准线与焦点位于顶点两侧,且到顶点的距离相等.焦距 2c (c=22b a -) 2c (c=22b a +) 离心率)10(<<=e a ce)1(>=e acee=1焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点|PF 1|=a+ex 0|PF 2|=a-ex 0 P 在右支时:P 在左支时:|PF 1|=a+ex 0|PF 1|=-a-ex 0|PF 2|=-a+ex 0|PF 2|=a-ex 0|PF|=x 0+2p 【备注1】双曲线:⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e .⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x互为共轭双曲线,它们具有共同的渐近线:02222=-by a x .⑸共渐近线的双曲线系方程:)0(2222≠=-λλb y ax 的渐近线方程为2222=-b y a x 如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为)0(2222≠=-λλb y ax .【备注2】抛物线:(1)抛物线2y =2px(p>0)的焦点坐标是(2p,0),准线方程x=-2p ,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p ,开口向上; 抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p ,开口向下.(2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20px MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x p MF-=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B两点,则线段AB 称为焦点弦,设A(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2p AB =(α为直线AB 的倾斜角),221p yy -=,2,41221p x AF p x x +==(AF 叫做焦半径).椭圆典型例题一、已知椭圆焦点的位置,求椭圆的标准方程。
微考点6-2 圆锥曲线中的弦长面积类问题(解析版)

微考点6-2 圆锥曲线中的弦长面积类问题(三大题型)直线与圆锥曲线相交,弦和某个定点所构成的三角形的面积,处理方法:①一般方法:d AB S 21=(其中AB 为弦长,d 为顶点到直线AB 的距离),设直线为斜截式m kx y +=.进一步,d AB S 21==20011221214)(121k m y kx x x x x k ++--++②特殊方法:拆分法,可以将三角形沿着x 轴或者y 轴拆分成两个三角形,不过在拆分的时候给定的顶点一般在x 轴或者y 轴上,此时,便于找到两个三角形的底边长.12PAB PQA PQB A B S S S PQ y y ∆∆∆=+=-=12PAB PQA PQB A B S S S PQ x x ∆∆∆=+=-=③坐标法:设),(),,(2211y x B y x A ,则||211221y x y x S AOB -=∆④面积比的转化:三角形的面积比及其转化有一定的技巧性,一般的思路就是将面积比转化为可以利用设线法完成的线段之比或者设点法解决的坐标形式,通常有以下类型:1.两个三角形同底,则面积之比转化为高之比,进一步转化为点到直线距离之比2.两个三角形等高,则面积之比转化为底之比,进一步转化为长度(弦长之比)3.利用三角形面积计算的正弦形式,若等角转化为腰长之比4.面积的割补和转化⑤四边形的面积计算在高考中,四边形一般都比较特殊,常见的情况是四边形的两对角线相互垂直,此时我们借助棱形面积公式,四边形面积等于两对角线长度乘积的一半;当然也有一些其他的情况,此时可以拆分成两个三角形,借助三角形面积公式求解.⑥注意某条边过定点的三角形和四边形当三角形或者四边形某条边过定点时,我们就可以把三角形,四边形某个定顶点和该定点为边,这样就转化成定底边的情形,最终可以简化运算.当然,你需要把握住一些常见的定点结论,才能察觉出问题的关键.题型一:利用弦长公式距离公式解决弦长问题【精选例题】【例1】已知椭圆()2222:10x y E a b a b +=>>,1F ,2F 分别为左右焦点,点(1P,2P -⎛⎝在椭圆E 上.(1)求椭圆E 的离心率;(2)过左焦点1F 且不垂直于坐标轴的直线l 交椭圆E 于A ,B 两点,若AB 的中点为M ,O 为原点,直线OM交直线3x =-于点N ,求1ABNF 取最大值时直线l 的方程.则2222(2)(2)2x y x -+=-【跟踪训练】1.已知椭圆C :()222210x y a b a b +=>>,圆O :22320x y x y ++--=,若圆O 过椭圆C 的左顶点及右焦点.(1)求椭圆C 的方程;(2)过点()1,0作两条相互垂直的直线1l ,2l ,分别与椭圆相交于点A ,B ,D ,E ,试求AB DE +的取值范围.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.题型二:利用弦长公式距离公式解决三角形面积类问题【精选例题】圆心O 到直线CD 的距离为2||51m d k ==+联立22132y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 得()2223k x ++()()()2226423360km k m ∆=-+->,可得设()11,A x y 、()22,B x y ,则12623km x x k -+=+()2222121236141k m AB kx x x x k=++-=+()()()(2222261322612k km k ⋅++-+【点睛】方法点睛:圆锥曲线中最值与范围问题的常见求法:(特征和意义,则考虑利用图形性质来解决;(首先建立目标函数,再求这个函数的最值,式长最值.P x y满足方程【例3】动点(,)【点睛】求解动点的轨迹方程,可通过定义法来进行求解型的轨迹的定义,由此来求得轨迹方程用不等式的性质、基本不等式等知识来进行求解【例4】已知椭圆C的中心在原点,一个焦点为(1)求椭圆C的标准方程;【点睛】思路点睛:本题第二小问属于直线与圆锥曲线综合性问题,设出过点达定理可得12y y +,12y y ,可求出1142ABF S a r =⋅⋅△,由此可求得直线【跟踪训练】(1)求椭圆C的标准方程;(2)判定AOMV(O为坐标原点)与理由.【答案】(1)2212xy+=;(2)面积和为定值,定值为【分析】(1)根据题意求,a b)方程为22221x ya b+=,焦距为2c,则2221b a c=-=,的标准方程为221 2xy+=.()0,1A,()0,1B-,直线l:x(1)求椭圆C的方程;(2)过B作x轴的垂线交椭圆于点①试讨论直线AD是否恒过定点,若是,求出定点坐标;若不是,请说明理由.△面积的最大值.②求AOD②设直线AD 恒过定点记为M 由上()222481224t m ∆=-+=⨯所以1222423t y y t +=+,122y y =)题型三:利用弦长公式距离公式解决定四边形面积问题【精选例题】(1)求椭圆的标准方程;(2)求四边形ABCD面积的最大值;(3)试判断直线AD与BC的斜率之积是否为定值,若是,求出定值;若不是,请说明理由【答案】(1)2214xy+=;(2)4;(3))当直线1l,2l中的一条直线的斜率不存在、另一条直线的斜率为1AB CD=⨯⨯=.4122当直线1l,2l的斜率都存在且不为0时,【跟踪训练】2.已知焦距为2的椭圆M :于A ,B 两点,1ABF V 的周长为(1)求椭圆M 的方程;F l)斜率不存在时.1l 方程为1x =,2l 方程为1134622ABCD S AB CD =⋅=⋅⋅=四边形斜率为0时.1l 方程为0y =,此时无法构成斜率存在且不为0时.设1l 方程为y =12.已知圆O :224x y +=,点点P 的轨迹为E .(1)求曲线E 的方程;(2)已知()1,0F ,过F 的直线m【点睛】方法点睛:设出直线的方程,与椭圆方程联立,根据韦达定理结合弦长公式得出弦长3.已知椭圆2222:1(x yEa b+=()2,1T,斜率为k的直线l与椭圆(1)求椭圆E的标准方程;(2)设直线AB的方程为6.已知椭圆(2222:1x y C a a b+=两点,且1ABF V 的周长最大值为(1)求椭圆C 的标准方程;(2)已知点P 是椭圆C 上一动点(不与端点重合),则112AF AH AF AF +≤+=故当AB 过右焦点2F 时,ABF V 因为椭圆C 的离心率为c e a =22121,2A F a c A A a =-===则11214A PQ PA A S S =V V ,故PQ =设(,),(02)P P P P x y x <<,则又P 点在22143x y +=上,则又2(2,0)A ,所以直线2A P 的方程为)O 中,由OA l ⊥,2EOF EOA ∠=∠,则EOA V 中,cos 601OA OE =⋅=o ,则S 当直线l 的斜率不存在时,可得:1l x =±,代入方程可得:2114y +=,解得32y =±,可得MN 当直线l 的斜率存在时,可设:l y kx b =+,联立可得))得1(0,3)B ,2(1,0)F ,12B F k =所以直线MN 的斜率为33,所以直线()2231313x y =++=.消去y 并化简得13(1)求椭圆E的方程;(2)是否存在实数λ,使椭圆若不存在,请说明理由;(3)椭圆E的内接四边形ABCD4t4t【点睛】方法点睛:本题(2圆联立求出弦长,然后再结合基本不等式求解出最值11.已知椭圆221:184x yC+=与椭圆(1)求椭圆2C的标准方程:不妨设P 在第一象限以及x 故000022AP AQ k y y k x x -+⋅=⋅=-由题意知直线AP 存在斜率,设其方程为若直线l ,m 中两条直线分别与两条坐标轴垂直,则其中有一条必与直线所以直线l 的斜率存在且不为零,设直线()()1122,,,A x y B x y ,()1y k x ⎧=+。
4圆锥曲线的弦长面积问题-中等难度-讲义

圆锥曲线的弦长面积问题知识讲解一、弦长问题设圆锥曲线C ∶(),0f x y =与直线:l y kx b =+相交于()11,A x y ,()22,B x y 两点, 则弦长AB 为:()2221212121141x AB k x x k x x x x k a∆=+-=++-=+()1212122221111141y AB y y y y y y k k ka∆=+-=++-=+或二、面积问题1.三角形面积问题直线AB 方程:y kx m =+ 0021kx y md PH k-+==+002211122a1x ABPkx y mS AB d k k∆∆-+=⋅=+⋅+2.焦点三角形的面积直线AB 过焦点21,F ABF ∆的面积为112121212y ABF c S F F y y c y y a∆∆=⋅-=-=H OyxPBA3.平行四边形的面积直线AB 为1y kx m =+,直线CD 为2y kx m =+d CH ==12AB x =-=ABCDSAB d =⋅==三、范围问题方法:首选均值不等式或对勾函数,其实用二次函数配方法,最后选导数思想 均值不等式 :222(,)a b ab a b R +≥∈变式:2,);()(,)2a b a b a b R ab a b R ++++≥∈≤∈ 作用:当两个正数的积为定值时求出这两个正数的和的最小值;当两个正数的和为定值时求出这两个正数的积的最大值注意:应用均值不等式求解最值时,应注意“一”正“二”定“三”相等圆锥曲线经常用到的均值不等式形式:1)2226464t S t t t==++(注意分0,0,0t t t =><三种情况讨论) 2)224222121212333196123696k AB t k k k=+=+≤+++⨯+++当且仅当2219k k =时,等号成立3)222002200259342593464925y x PQ x y =+⋅+⋅≥+ 当且仅当22002200259259925y x x y ⋅=⋅时等号成立. 4)2282m m S -+===当且仅当228m m =-+时,等号成立 5)2221121k m m S -++==≤=当且仅当221212k m +=时等号成立.经典例题一.选择题(共9小题)1.(2018•德阳模拟)设点P为椭圆C:x249+y224=1上一点,F1、F2分别是椭圆C的左、右焦点,且△PF1F2的重心为点G,若|PF1|:|PF2|=3:4,那么△GPF1的面积为()A.24B.12C.8D.6【解答】解:∵点P为椭圆C:x 249+y224=1上一点,|PF1|:|PF2|=3:4,|PF1|+|PF2|=2a=14∴|PF1|=6,|PF2|=8,又∵F1F2=2c=10,∴△PF1F2是直角三角形,S△PF1F2=12×PF1⋅PF2=24,∵△PF1F2的重心为点G.∴S△PF1F2=3S△GF1F2,∴△GPF1的面积为8,故选:C.2.(2018•邵阳三模)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为2√1313,且两焦点与短轴端点构成的三角形的面积为6,则椭圆C的标准方程是()A .x 216+y 29=1B .x 216+y 213=1C .x 213+y 29=1D .x 213+y 24=1【解答】解:设椭圆半焦距为c ,则{c a=2√131312×2c ×b =6a 2−b 2=c 2,解得a=√13,b=3,c=2.故椭圆方程为:x 213+y 29=1.故选:C .3.(2018•齐齐哈尔三模)已知双曲线x 22−y 2=1的左焦点为F ,抛物线y 2=12x 与双曲线交于A ,B 两点,则△FAB 的面积为( ) A .2B .1+√2C .2+√2D .2+√3【解答】解:双曲线x 22−y 2=1的左焦点为F (﹣√3,0),由{x 22−y2=1y 2=12x可得:A (2,1),B (2,﹣1),则△FAB 的面积为:12×(2+√3)×2=2+√3.故选:D .4.(2018•珠海二模)已知F 是双曲线C :x 2a 2﹣y 2b2=1(a >0,b >0)的右焦点,P是y 轴正半轴上一点,以OP 为直径的圆在第一象限与双曲线的渐近线交于点M ,若点P ,M ,F 三点共线,且△MFO 的面积是△PMO 面积的4倍,则双曲线C 的离心率为( )A .√3B .√5C .√6D .√7【解答】解:如图以OP 为直径的圆在第一象限与双曲线的渐近线y=bax 交于点M ,由△MFO 的面积是△PMO 面积的4倍,可得|MF |=4|MP |, 由OM ⊥PF ,设F (c ,0),可得|MF |=√a 2+b 2=b ,则|PM |=b4,在直角三角形POF 中,由射影定理可得, |OF |2=|MF |•|FP |,即为c 2=b•54b=54(c 2﹣a 2),则c 2=5a 2,即有e=ca=√5.故选:B .5.(2018•重庆模拟)已知抛物线y 2=4x 的焦点为F ,以F 为圆心的圆与抛物线交于M 、N 两点,与抛物线的准线交于P 、Q 两点,若四边形MNPQ 为矩形,则矩形MNPQ 的面积是( ) A .16√3B .12√3C .4√3D .3【解答】解:根据题意画出示意图:依题意,抛物线抛物线y 2=4x 的焦点为F (1,0), ∴圆的圆心坐标为F (1,0).∵四边形MNPQ 是矩形,且PM 为直径,QN 为直径,F (1,0)为圆的圆心, ∴点F 为该矩形的两条对角线的交点,∴点F 到直线PQ 的距离与点F 到MN 的距离相等.∵点F 到直线MN 的距离d=2, ∴直线MN 的方程为:x=3, ∴M (3,2√3),∴则矩形MNPQ 的面积是:4×4√3=16√3. 故选:A .6.(2018•武汉模拟)过点P (2,﹣1)作抛物线x 2=4y 的两条切线,切点分别为A ,B ,PA ,PB 分别交x 轴于E ,F 两点,O 为坐标原点,则△PEF 与△OAB 的面积之比为( )A .√32B .√33 C .12D .34【解答】解:设过P 点的直线方程为:y=k (x ﹣2)﹣1,代入x 2=4y 可得x 2﹣4kx +8k +4=0,①令△=0可得16k 2﹣4(8k +4)=0,解得k=1±√2.∴PA ,PB 的方程分别为y=(1+√2)(x ﹣2)﹣1,y=(1﹣√2)(x ﹣2)﹣1, 分别令y=0可得E (√2+1,0),F (1﹣√2,0),即|EF |=2√2.∴S △PEF =12×2√2×1=√2,解方程①可得x=2k ,∴A (2+2√2,3+2√2),B (2﹣2√2,3﹣2√2), ∴直线AB 方程为y=x +1,|AB |=8,原点O 到直线AB 的距离d=√22,∴S △OAB =12×8×√22=2√2.∴△PEF 与△OAB 的面积之比为12.故选:C .7.(2018•马鞍山三模)已知抛物线C :y 2=4√3x 的准线为l ,过C 的焦点F 的直线交l 于点A ,与抛物线C 的一个交点为B ,若F 为线段AB 的中点,BH ⊥AB 交l 于H ,则△BHF 的面积为( ) A .12√3B .16√3C .24√3D .32√3【解答】解:抛物线C :y 2=4√3x 的准线为为x=﹣√3,焦点F (√3,0), 设直线AB 的方程为y=k (x ﹣√3), 由{y =k(x −√3)x =−√3,解得x=﹣√3,y=﹣2√3k ,∴A (﹣√3,﹣2√3k ), ∵F 为线段AB 的中点, ∴x B ﹣√3=2√3,y B ﹣2√3k=0, ∴x B =3√3,y B =2√3k将点B 坐标代入y 2=4√3x ,可得12k 2=4√3×3√3, 解得k=±√3,不妨令k=√3,∴A (﹣√3,﹣6),B (3√3,6), ∵k BH •k BA =﹣1, ∴k BH =﹣√33, 设H (﹣√3,y H ),∴H −√3−3√3=﹣√33, 解得y H =10,∴|BH |=√(−√3−3√3)2+(10−6)2=8, |BF |=√(3√3−√3)3+62=4√3,∴S △BHF =12|BH |•|BF |=12×8×4√3=16√3,故选:B .8.(2018•新课标Ⅰ)已知双曲线C :x 23﹣y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( )A .32B .3C .2√3D .4【解答】解:双曲线C :x 23﹣y 2=1的渐近线方程为:y=±√33x ,渐近线的夹角为:60°,不妨设过F (2,0)的直线为:y=√3(x −2),则:{y =−√33xy =√3(x −2)解得M (32,−√32),{y =√33x y =√3(x −2)解得:N (3,√3), 则|MN |=(3−32)+(√3+√32)=3.故选:B .9.(2008秋•中山区校级月考)斜率为2的直线l 经过抛物线x 2=8y 的焦点,且与抛物线相交于A ,B 两点,则线段AB 的长为( ) A .8B .16C .32D .40【解答】解:设直线l 的倾斜解为α,则l 与y 轴的夹角θ=90°﹣α, cotθ=tanα=2, ∴sinθ=√5,|AB |=8sin 2θ=815=40.故选:D .二.填空题(共6小题)10.(2018•邵阳三模)已知Q 为椭圆C :x 23+y 2=1上一动点,且Q 在y 轴的右侧,点M (2,0),线段QM 的垂直平分线交y 轴于点N ,则当四边形OQMN的面积取最小值时,点Q 的横坐标为32. 【解答】解:设直线MQ 的中点为D ,由题意知ND ⊥MQ ,直线ND 的斜率存在,设Q (x 0,y 0),(y 0≠0,x 0>0),∴点D 的坐标为(x 0+22,y 02),且直线MQ 的斜率k MQ =y 0x 0−2,∴k ND =﹣1k MQ =2−x 0y 0,∴直线ND 的方程为y ﹣y 02=2−x 0y 0(x ﹣x 0+22),令x=0,可得y=x 02+y 02−42y 0,∴N (0,x 02+y 02−42y 0),由x 023+y 02=1可得x 02=3﹣3y 02, ∴N (0,−2y 02−12y 0),∴S四边形OQMN =S△OQM +S△OMN =12×2×|y 0|+12×2×|−2y 02−12y 0|=|y 0|+|2y 02+12y 0|=2|y 0|+12|y 0|,即y 0=±12,x 0=32等号成立,故Q 的横坐标为32,故答案为:3211.(2018•齐齐哈尔二模)已知点P 是双曲线x 22﹣y 2=1 上的一点,F 1,F 2是双曲线的两个焦点,若|PF 1|+|PF 2|=4√2,则△PF 1F 2的面积为 √5 . 【解答】解:不妨设P 在双曲线的右支上,由双曲线的定义可知|PF 1|﹣|PF 2|=2√2,又|PF 1|+|PF 2|=4√2, ∴|PF 1|=3√2,|PF 2|=√2,又|F 1F 2|=2c=2√3,∴cos ∠F 1PF 2=PF 12+PF 22−F 1F 222PF 1⋅PF 2=23,sin ∠F 1PF 2=√53,∴△PF 1F 2的面积为12×3√2×√2×√53=√5.故答案为:√5.12.(2018•沈阳一模)已知正三角形△AOB (O 为坐标原点)的顶点A 、B 在抛物线y 2=3x 上,则△AOB 的边长是 6√3 . 【解答】解:由抛物线的对称性可得∠AOx=30°,∴直线OA 的方程为y=√33x ,联立{y =√33x y 2=3x,解得A (9,3√3).∴|AO |=√81+27=6√3. 故答案为:6√3.13.(2018•甘肃模拟)抛物线C :y 2=4x 的焦点为F ,过准线上一点N 作NF 的垂线交y 轴于点M ,若抛物线C 上存在点E ,满足2NE →=NM →+NF →,则△MNF 的面积为 3√22.【解答】解:准线方程为x=﹣1,焦点为F (1,0), 不妨设N 在第三象限, ∵2NE →=NM →+NF →, ∴E 是MF 的中点,∴NE=12MF=EF ,∴NE ∥x 轴,又E 为MF 的中点,E 在抛物线y 2=4x 上,∴E (12,﹣√2),∴N (﹣1,﹣√2),M (0,﹣2√2),∴NF=√6,MN=√3,∴S △MNF =12×√6×√3=3√22故答案为:3√2214.(2016秋•九龙坡区校级期中)如图所示,过抛物线C :y 2=2px (p >0)的焦点F 作直线交C 于A 、B 两点,过A 、B 分别向C 的准线l 作垂线,垂足为A′,B′,已知四边形AA′B′F 与BB′A′F 的面积分别为15和7,则△A′B′F 的面积为 6 .【解答】解:设△A′B′F 的面积为S ,直线AB :x=my +p2,代入抛物线方程,消元可得y 2﹣2pmy ﹣p 2=0设A (x 1,y 1) B (x 2,y 2),则y 1y 2=﹣p 2,y 1+y 2=2pmS △AA'F =12|AA'|×|y 1|=12|x 1+p 2||y 1|=12(y 122p +p 2)|y 1|S △BB'F =12|BB'|×|y 2|=12|x 2+p 2||y 2|=12(y 222p +p 2)|y 2|∴12(y 122p +p 2)|y 1|×12(y 222p +p 2)|y 2|=p 24(p 22+y 124+y 224)=p 44(m 2+1) S △A′B′F =p2|y 1﹣y 2|=p 2√m 2+1=S∵四边形AA′B′F 与BB′A′F 的面积分别为15和7∴p 44(m 2+1)=(15﹣S )(7﹣S ) ∴14S 2=(15﹣S )(7﹣S ) ∴34S 2﹣22S +105=0 ∴S=6 故答案为:615.(2016春•芒市校级期中)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |得最大值为 4√105.【解答】解:设直线l 的方程为y=x +t ,代入椭圆x 24+y 2=1消去y 得54x 2+2tx +t 2﹣1=0,由题意得△=(2t )2﹣5(t 2﹣1)>0,即t 2<5. 弦长|AB |=4√2×√5−t 25≤4√105.当t=0时取最大值. 故答案为:4√105.三.解答题(共5小题)16.(2018•焦作四模)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,椭圆的四个顶点围成的四边形的面积为4. (Ⅰ)求椭圆Γ的标准方程;(Ⅰ)直线l 与椭圆Γ交于A ,B 两点,AB 的中点M 在圆x 2+y 2=1上,求△AOB (O为坐标原点)面积的最大值.【解答】解:(Ⅰ)根据题意,椭圆Γ:x 2a2+y2b2=1(a>b>0)的离心率为√32,则c a =√32,得c=√32a,b=12a,所以3x 24c2+3y2c2=1,由椭圆Γ的四个顶点围成的四边形的面积为4,得2ab=4,所以a=2,b=1,椭圆Γ的标准方程为x 24+y2=1.(Ⅰ)根据题意,直线l与椭圆Γ交于A,B两点,当直线l的斜率不存在时,令x=±1,得y=±√32,S△AOB=12×1×√3=√32,当直线l的斜率存在时,设l:y=kx+m,A(x1,y1),B(x2,y2),M(x0,y0),由{y=kx+mx2+4y2=4,得(1+4k2)x2+8kmx+4m2﹣4=0,则x1+x2=−8km1+4k2,x1x2=4m2−41+4k2,所以x0=−4km1+4k2,y=kx0+m=−4k2m1+4k2+m=m1+4k2,将(−4km1+4k2,m1+4k2)代入x2+y2=1,得m2=(1+4k2)216k2+1,又因为|AB|=√1+k2⋅√(x1+x2)2−4x1x2=√1+k2⋅41+4k2√1+4k2−m2,原点到直线l的距离d=√1+k2,所以S△AOB=12×|m|√1+k2×√1+k2⋅41+4k2√1+4k2−m2=2|m|1+4k2√1+4k2−m2=21+4k2×2√16k2+1×√1+4k2×√1−1+4k216k2+1=2√12k 2(1+4k 2)(16k 2+1)2=216k 2+1×√12k 2(1+4k 2)≤216k 2+1×1+16k 22=1.当且仅当12k 2=1+4k 2,即k =±√24时取等号.综上所述,△AOB 面积的最大值为1.17.(2018•南通一模)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a>b >0)的离心率为√22,两条准线之间的距离为4√2.(1)求椭圆的标准方程;(2)已知椭圆的左顶点为A ,点M 在圆x 2+y 2=89上,直线AM 与椭圆相交于另一点B ,且△AOB 的面积是△AOM 的面积的2倍,求直线AB 的方程.【解答】解:(1)设椭圆的焦距为2c ,由题意得,c a =√22,2a 2c=4√2,解得a=2,c=b=√2.∴椭圆的方程为:x 24+y 22=1.(2)△AOB 的面积是△AOM 的面积的2倍,∴AB=2AM , ∴点M 为AB 的中点.∵椭圆的方程为:x 24+y 22=1.∴A (﹣2,0).设M (x 0,y 0),则B (2x 0+2,2y 0).由x 02+y 02=89,(2x 0+2)24+(2y 0)22=1, 化为:9x 02﹣18x 0﹣16=0,−2√23≤x 0≤2√23.解得:x0=﹣23.代入解得:y0=±23,∴k AB=±1 2,因此,直线AB的方程为:y=±12(x+2).18.(2018•衡阳一模)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,离心率为12,直线y=1与C的两个交点间的距离为4√63.(Ⅰ)求椭圆C的方程;(Ⅰ)分别过F1、F2作l1、l2满足l1∥l2,设l1、l2与C的上半部分分别交于A、B 两点,求四边形ABF2F1面积的最大值.【解答】解:(Ⅰ)易知椭圆过点(2√63,1),所以83a2+1b2=1,①…(2分)又c a =12,②…(3分)a2=b2+c2,③…(4分)①②③得a2=4,b2=3,所以椭圆的方程为x 24+y23=1.…(6分)(Ⅰ)设直线l1:x=my﹣1,它与C的另一个交点为D.与C联立,消去x,得(3m2+4)y2﹣6my﹣9=0,…(7分)△=144(m2+1)>0.|AD|=√1+m2⋅12√1+m23m2+4,…(9分)又F2到l1的距离为d=2√1+m,…(10分)所以S△ADF2=12√1+m23m2+4.…(11分)令t=√1+m2≥1,则S△ADF2=123t+1t,所以当t=1时,最大值为3.…(14分)又S四边形ABF2F1=12(|BF2|+|AF1|)⋅d=12(|AF1|+|DF1|)⋅d=12|AB|⋅d=S△ADF2所以四边形ABF2F1面积的最大值为3.…(15分)19.(2018•江苏二模)如图,在平面直角坐标系xOy中,B1,B2是椭圆x2a2+y2b2=1(a>b>0)的短轴端点,P是椭圆上异于点B1,B2的一动点.当直线PB1的方程为y=x+3时,线段PB1的长为4√2.(1)求椭圆的标准方程;(2)设点Q满足:QB1⊥PB1,QB2⊥PB2,求证:△PB1B2与△QB1B2的面积之比为定值.【解答】解:设P(x0,y0),Q(x1,y1).(1)在y=x+3中,令x=0,得y=3,从而b=3.……(2分)由{x 2a 2+y 29=1,y =x +3得x 2a 2+(x+3)29=1. 所以x 0=−6a 29+a 2. ……(4分)因为PB 1=√x 02+(y 0−3)2=√2|x 0|,所以4√2=√2⋅6a 29+a2,解得a 2=18. 所以椭圆的标准方程为x 218+y 29=1. ……(6分)(2)方法一:直线PB 1的斜率为k PB 1=y 0−3x 0,由QB 1⊥PB 1,所以直线QB 1的斜率为k QB 1=−x 0y 0−3. 于是直线QB 1的方程为:y =−x 0y 0−3x +3.同理,QB 2的方程为:y =−x 0y 0+3x −3. ……(8分)联立两直线方程,消去y ,得x 1=y 02−9x 0. …(10分)因为P (x 0,y 0)在椭圆x 218+y 29=1上,所以x 0218+y 029=1,从而y 02−9=−x 022. 所以x 1=−x 02. ……(12分) 所以S △PB 1B 2S △QB 1B 2=|x 0x 1|=2. ……(14分)方法二:设直线PB 1,PB 2的斜率为k ,k',则直线PB 1的方程为y=kx +3.由QB 1⊥PB 1,直线QB 1的方程为y =−1k x +3.将y=kx +3代入x 218+y 29=1,得(2k 2+1)x 2+12kx=0,因为P 是椭圆上异于点B 1,B 2的点,所以x 0≠0,从而x 0=−12k2k 2+1.…(8分)因为P (x 0,y 0)在椭圆x 218+y 29=1上,所以x 0218+y 029=1,从而y 02−9=−x 022. 所以k ⋅k′=y 0−3x 0⋅y 0+3x 0=y 02−9x 02=−12,得k′=−12k . ……(10分)由QB 2⊥PB 2,所以直线QB 2的方程为y=2kx ﹣3.联立{y =−1k x +3,y =2kx −3则x =6k 2k 2+1,即x 1=6k 2k 2+1. ……(12分) 所以S △PB 1B 2S △QB 1B 2=|x 0x 1|=|−12k 2k 2+16k 2k 2+1|=2. ……(14分)20.(2018•黄州区校级模拟)如图,从椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F ,又点A 是椭圆与x 轴正半轴的交点,点B 是椭圆与y 轴正半轴的交点,且AB ∥OP ,|FA |=2√2+2,(Ⅰ)求C 的方程;(Ⅰ)过F 且斜率不为0的直线l 与C 相交于M ,N 两点,线段MN 的中点为E ,直线OE 与直线x=﹣4相交于点D ,若△MDF 为等腰直角三角形,求l 的方程.【解答】解:(Ⅰ)令x=﹣c ,得y =±b 2a .所以P (−c ,b 2a ).直线OP 的斜率k 1=−b 2ac .直线AB 的斜率k 2=−b a .故b 2ac =b a 解得b=c ,a =√2c .由已知及|FA |=a +c ,得a +c =2√2+2, 所以(1+√2)c =2√2+2,解得c=2.所以,a =2√2,b=2所以C 的方程为x 28+y 24=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅰ)易得F (﹣2,0),可设直线l 的方程为x=ky ﹣2,A (x 1,y 1),B (x 2,y 2), 联立方程组x=ky ﹣2和x 2+2y 2=8,消去x,整理得(k2+2)y2﹣4ky﹣4=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)由韦达定理,得y1+y2=4k2+k2,y1y2=﹣42+k2,所以y1+y22=2k2+k2,x1+x22=k(y1+y2)2−2=﹣42+k2,即C(﹣42+k2,2k2+k2),所以直线OC的方程为y=﹣k2x,令x=﹣4,得y=2k,即D(﹣4,2k),所以直线DF的斜率为2k−0−4+2=﹣k,所以直线DF与l恒保持垂直关系,故若△ADF为等腰直角三角形,只需|AF|=|DF|,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)即√4+4k2=√(x1+2)2+y12=√(1+k2)y12,解得y1=±2,又x128+y124=1,所以x1=0,所以k=±1,从而直线l的方程为:x﹣y+2=0或x+y+2=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)。
高考数学一轮复习专题02 圆锥曲线弦长问题(解析版)

解析几何专题二:圆锥曲线弦长问题一、知识储备弦长公式||AB =12||AB x ==-= (最常用公式,使用频率最高)= 二、例题讲解1.(2022·辽宁高三开学考试)已知椭圆C 的标准方程为:22221(0)x y a b a b +=>>,若右焦点为F(1)求椭圆C 的方程;(2)设M ,N 是C 上的两点,直线MN 与曲线222x y b +=相切且M ,N ,F 三点共线,求线段MN 的长. 【答案】(1)2213x y +=;(2【分析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为221(0)x y x +=>,讨论直线MN 的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可. 【详解】(1)由题意,椭圆半焦距c =c e a =,则a =2221b a c =-=, ∴椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>当直线MN 的斜率不存在时,直线:1MN x =,不合题意:当直线MN 的斜率存在时,设()11,M x y ,()22,N x y 又M ,N ,F 三点共线,可设直线:(MN y k x =,即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立22(13y x x y ⎧=±⎪⎨+=⎪⎩,得2430x -+=,则12x x +=1234x x ⋅=,∴||MN ==2.(2022·全国高三专题练习)过双曲线142x y -=的右焦点F 作斜率为2的直线l ,交双曲线于A ,B 两点.(1)求双曲线的离心率和渐近线; (2)求AB 的长. 【答案】(1)e =,渐近线方程为y =;(2)207.【分析】(1)由双曲线方程得出,a b ,再求出c ,可得离心率,渐近线方程;(2)写出直线方程,代入双曲线方程,设()11,A xy ,()22,B x y,由韦达定理得1212,x x x x +,然后由弦长公式计算弦长. 【详解】解:(1)因为双曲线方程为22142x y -=, 所以2a =,b =则c =所以62cea,渐近线方程为2y x =±. (2)双曲线右焦点为0),则直线l 的方程为2(y x = 代入双曲线22142x y -=中,化简可得27520x -+=设()11,A x y ,()22,B x y 所以12x x +=12527x x ⋅=,所以2120|||7AB x x -==. 【点睛】方法点睛:本题考查双曲线的离心率和渐近线方程,考查直线与双曲线相交弦长.解题方法是直线方程与双曲线方程联立并消元后应用韦达定理求出1212,x x x x +,然后由弦长公式12d x =-求出弦长.3.(2022·全国高三模拟预测)在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB . 【答案】(1)28y x =;(2【分析】(1)设(),P x y ,求得,,MP OF PF 的坐标,结合12OF MP PF ⋅=,化简、整理,即可求得抛物线的方程; (2)设()()1122,,,A x y B x y ,不妨设120,0y y ><,由2AFD BFD S S =△△,求得122y y =-,设直线AB 的方程为1x my =+,联立方程组,结合根与系数的关系,求得128y y m +=,128y y =-,进而求得12,,y y m ,利用弦长公式,即可求解. 【详解】(1)设(),P x y ,因为()2,0F ,()2,3M -,则()2,3MP x y =+-,()2,0OF =,()2,PF x y =--. 由12OF MP PF ⋅=,可得2x +=28y x =,即动点P 的轨迹C 的方程为28y x =. (2)设()11,A x y ,()22,B x y , 由题意知112AFD S FD y =⋅△,212BFD S FD y =⋅△, 易知120y y <,不妨设120,0y y ><,因为2AFD BFD S S =△△,所以122y y =,所以122y y =-. ① 设直线AB 的方程为1x my =+,联立281y xx my ⎧=⎨=+⎩消去x ,得2880y my --=,则264320m ∆=+>,可得128y y m +=,128y y =- ② 由①②联立,解得1214,2,4y y m ==-=,所以124(2)AB y =-=--=. 【点睛】本题主要考查了向量的坐标运算,抛物线的标准方程的求解,以及直线与抛物线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.三、实战练习1.(2022·江门市培英高级中学高三模拟预测)已知椭圆()2222:10x y C a b a b +=>>过点P ⎭,离心率为12. (1)求椭圆C 的标准方程;(2)若1A 为椭圆C 的左顶点,直线l 过右焦点2F 与椭圆C 交于M ,N 两点(M ,N 与1A 不重合),l 不与x 轴垂直,若11A M A N MN k k k +=-,求MN .【答案】(1)22143x y +=;(2)247 【分析】(1)由题意可得关于,,a b c 的方程组,求解,a b 的值,即可求得椭圆C 的标准方程;(2)根据题意设()()1122,,,M x y N x y ,直线l :()1,0x my m =+≠,联立直线方程与椭圆方程,化为关于y 的一元二次方程,利用根与系数的关系结合11A M A N MN k k k +=-,求出m 的值,再根据弦长公式即可求得MN . 【详解】(1)由题意可得:22222123314c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:224,3a b ==,∴ 椭圆C 的标准方程为:22143x y +=; (2)()()211,0,2,0F A -,由题意可设:直线l :()1,0x my m =+≠,()()1122,,,M x y N x y ,联立:221143x my x y =+⎧⎪⎨+=⎪⎩ 得:()2234690m y my ++-=, 则12122269,3434m y y y y m m --+==++, 1112121,,22A M A N MN y y k k k x x m===++, 11121222A M A N y yx k x k ∴+=+++ ()()()()1221122222y x y x x x +++=++()()()()1221213333y my y my my my +++=++()()2122112122339y y y m y y y my m y ++=+++222229623343496393434mm m m m m m m m --⨯+⨯++=--⨯+⨯+++ m =-,又11A M A N MN k k k +=-, 1m m∴-=-, 解得:21,1m m ==±, 故1212226699,347347m y y y y m m --+==±==-++,247MN =.2.(2022·广东执信中学高三月考)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN =充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k=+,联立直线与椭圆方程结合弦长公式可得=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a =,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N,F 三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN === 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =或y x =-+所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.3.(2022·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>与抛物线24y x =有公共的焦点F ,1A ,2A 分别为椭圆C 长轴的左、右端点,P 为C 上一动点,且12PAA ∆的最大面积为 (1)求椭圆C 的标准方程;(2)直线l 经过点F ,且与C 交于A ,B 两点,若10||3AB =,求直线l 的方程. 【答案】(1)22143x y +=;(20=. 【分析】(1)利用已知条件可以直接得出焦点F 的坐标,当三角形面积最大时P 为短轴端点,从而解出a ,b 的值即可; (2)利用(1)中求出的点F 的坐标,设出直线方程,然后与椭圆方程联立,利用弦长公式即可求出直线的方程. 【详解】(1)抛物线24y x =的焦点F 坐标为()1,0∴椭圆C 中的半焦距为1.由椭圆的几何性质可知,当12PA A ∆面积最大时,P 为椭圆短轴端点,不妨令()0,P b ,则221a b ab ⎧-=⎪⎨=⎪⎩解得2a b =⎧⎪⎨=⎪⎩∴椭圆C 的标准方程为22143x y +=. (2)直线l 经过椭圆C 的右焦点,且10||3AB =∴直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为(1)y k x =-, 与椭圆C 的方程联立可得()22223484120k xk x k +-+-=,0∆>,设()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x x k -=+12||AB x ∴-=()2212110343k k +==+解得k =∴直线l 0=0.【点睛】本题考查椭圆的标准方程、抛物线的几何性质以及直线与椭圆的位置关系,要求较高的运算求解能力,属于中档题.本题的关键点有:(1)韦达定理的应用,韦达定理是联系各个变量之间的桥梁是解决解析几何问题的重要方法; (2)计算能力和计算技巧是解决解析几何问题的关键能力.4.(2022·陕西(文))已知点B 是圆22:(1)16C x y -+=上的任意一点,点(1,0)F -,线段BF 的垂直平分线交BC 于点P .(1)求动点P 的轨迹E 的方程;(2)直线:2l y x m =+与E 交于点M ,N ,且MN =m 的值. 【答案】(1)22143x y +=,(2)1m =±.(1)由条件可得42PC PF PC PB BC FC +=+==>=,然后由椭圆的定义可求出答案;(2)设()()1122,,,M x y N x y ,然后联立直线与椭圆的方程消元,韦达定理得出1212,x x x x +,然后利用MN =出m 的值即可. 【详解】(1)由条件可得42PC PF PC PB BC FC +=+==>=所以动点P 的轨迹E 是以,F C 为焦点的椭圆,设其方程为()222210x y a b a b+=>>所以24,22a c ==,所以2,1,a c b ===所以方程为22143x y += (2)设()()1122,,,M x y N x y联立221432x y y x m ⎧+=⎪⎨⎪=+⎩可得221916+4120x mx m +-= 所以由()22256764120m m ∆=-->得(m ∈2121216412,1919m m x x x x -+=-=因为MN =所以可解得1m =±5.(2022·全国高三专题练习)已知点(A 和B ,动点C到A ,B 两点的距离之差的绝对值为2,记点C 的(1)求轨迹E 的方程;(2)设E 与直线2y x =-交于两点M ,N ,求线段MN 的长度. 【答案】(1)2212y x -=;(2)【分析】(1)设(,)C x y ,由于||||2CA CB -=,||AB =,利用双曲线的定义求解即可; (2)直线和双曲线方程联立消y ,利用韦达定理以及弦长公式求解即可. 【详解】 (1)设(,)C x y , 则||||2CA CB -=,所以点C 的轨迹E 为双曲线22221(0,0)x y a b a b-=>>,且22a =,2||c AB == 则1a =,2222b c a =-=, 所以轨迹E 的方程为2212y x -=;(2)由22122y x y x ⎧-=⎪⎨⎪=-⎩, 得2460x x +-=, 因为0∆>,所以直线与双曲线有两个交点, 设()11,M x y ,()22,N x y , 则124x x +=-,126x x =-,故MN =所以线段MN 的长度为6.(2022·全国高三专题练习)已知双曲线C :22221(0,0)x y a b a b-=>>)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30的直线,直线与双曲线交于不同的两点A ,B ,求AB . 【答案】(1)22136x y -=;(2【分析】(1)求出,a b ,即可得出双曲线方程;(2)可先求出直线方程为3)y x =-,联立椭圆方程,再利用弦长公式即可求出. 【详解】(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b ,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪-⎪⎩得256270x x +-=.设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以AB ==【点睛】本题考查双曲线方程的求法,考查直线与双曲线相交弦长的求法,属于基础题.7.(2022·重庆高三模拟预测)已知直线l :4y kx =+与抛物线C :2y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足||||AN AM =,求BM 的最小值.【答案】(1)214y x =;(2)【分析】(1)先联立直线与抛物线,得到判别式和韦达定理,再根据垂直关系,利用0OA OB ⋅=,求得参数即可;(2)设直线BM 的方程,并与抛物线联立,得到判别式和韦达定理,根据已知关系,判断中点位置,利用坐标关系求得参数m ,最后利用弦长公式计算BM ,利用二次函数判断最小值即可. 【详解】解:(1)依题意,设()()1122,,,A x y B x y ,由24y ax y kx ⎧=⎨=+⎩,消去y ,得240ax kx --=,2121604k a x x a ⎧∆=+>⎪∴⎨=-⎪⎩, OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即2212120x x ax ax +⋅=,即22212120x x a x x +=,所以22440a a a ⎛⎫⎛⎫-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得14a =,∴抛物线C 的标准方程为214y x =; (2)由题意知,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,()33,M x y ,由214y xy tx m ⎧=⎪⎨⎪=+⎩,消去y ,得2440x tx m --=,223231616044t m x x m x x t ⎧∆=+>⎪∴=-⎨⎪+=⎩,由(1)知,1216x x =-,故1123321644x x x x x x m m-===-, 由题意知,,A M N 三点共线,且|AN |=|AM |,即A 为线段MN 的中点,设()0,N n , 则3102x x +=,即13142x x m ==,即8m =,22323161680324t x x x x t⎧∆=+⨯>⎪∴=-⎨⎪+=⎩,23BM x ∴=-=)20t ==≥, 故20t =时,BM最小为=【点睛】 思路点睛:直线与抛物线中的弦长问题,我们常让直线与抛物线方程联立,再利用韦达定理及弦长公式,建立关系式.其中弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B xy ,所以12AB x =-或12AB y =-,解决相关问题.8.(2022·全国高三模拟预测)已知抛物线()2:20C y px p =>的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若A ,B 是C 上的两个动点,且A ,B 两点的横坐标之和为8,求当AB 取最大值时,直线AB 的方程. 【答案】(1)24yx =;(2)220x ±-=. 【分析】(1)根据题意,列出方程组22242pp t pt⎧+=⨯⎪⎨⎪=⎩,求得p 的值,即可求得C 的标准方程; (2)设()11,A x y ,()22,B x y ,当12x x =时,得到AB 的方程4x =;当12x x ≠时,得到2AB k n =,得到()42nx y n =-+,联立方程组,结合根与系数的关系,得到1212,y y y y +,根据弦长公式和基本不等式,即可求解. 【详解】(1)由题意,点(),2P t -在()2:20C y px p =>上,且2PF OF =,可得22242pp t pt ⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()11,A x y ,()22,B x y ,且128x x +=,设AB 中点为(),D m n ,则122x x m +=,122y y n +=, 当12x x =时,:4AB l x =,8AB =; 当12x x ≠时,()212122212121442AB y y y y k x x y y y y n--====--+, 则()2:4AB l y n x n-=-,即()42n x y n =-+,与C 联立方程消去x ,整理得2222160y ny n -+-=, 由22(2)4(216)0n n ∆=--->,解得216n <,且122y y n +=,212216y y n =-,所以2212416102n n AB y ++-=-==, 当26n =时取“=”,所以AB 的最大值为10,此时AB 的方程为220x -=. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.9.(2022·浙江高三模拟预测)已知直线:4l y kx =+与抛物线2:C y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足AN AM =,求BM 的最小值. 【答案】(1)24x y=;(2)最小值为【分析】(1)联立直线l 与抛物线C 的方程,列出韦达定理,由已知条件可得出0OA OB ⋅=,利用平面向量数量积的坐标运算结合韦达定理求出a 的值,即可得出抛物线C 的标准方程;(2)设直线BM 的方程为y tx m =+,点()33,M x y ,将直线BM 的方程与抛物线C 的方程联立,列出韦达定理,由已知条件可得1312x x =,代入韦达定理求出m 的值,再利用弦长公式可求得BM 的最小值.【详解】(1)依题意设()11,A x y 、()22,B x y ,由24y ax y kx ⎧=⎨=+⎩消去y ,得240ax kx --=,所以,212160,4.k a x x a ⎧+>⎪⎨=-⎪⎩OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即22212120x x a x x +=,4160a∴-+=,解得14a =,所以,抛物线C 的标准方程为24x y =;(2)由题意知,若直线BM 的斜率不存在,则该直线与抛物线C 只有一个公共点,不合乎题意.所以,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,点()33,M x y , 由24x y y tx m ⎧=⎨=+⎩消去y ,得2440x tx m --=,223231616044t m x x t x x m⎧+>⎪∴+=⎨⎪=-⎩, 由(1)知1216x x =-,1123231644x x x x x x m m-∴===-①. 由题意知A 、M 、N 三点共线,且A 为线段MN 的中点,设()0,N n ,则3102x x +=,即1312x x =②,由①②得8m =,22323161680432t x x t x x ⎧+⨯>⎪∴+=⎨⎪=-⎩,23BM x ∴=-=)20t ==≥,当且仅当0t =时,等号成立,故BM 的最小值为【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.10.(2022·全国高三专题练习)如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上.(1)求FA FB +的值; (2)求AB 的最大值. 【答案】(1)72;(2)【分析】(1)由抛物线定义有12FA FB x x p +=++,结合已知条件即可求FA FB +;(2)由直线与抛物线位置关系,联立方程得到一元二次方程,结合根与系数关系、弦长公式即可求AB 的最大值. 【详解】(1)由题意知:2p =,抛物线对称轴方程1x =-.设()11,A x y ,()22,B x y ,12324x x +=,则1272FA FB x x p +=++=; (2)点A 和B 在抛物线24y x =上,有2114y x =,2224y x =,两式相减得:()()()1212124y y y y x x -+=-,令3(,)4M m ,∴12122y y x x m -=-,即2AB k m=, ∴设直线AB 的方程为234y m x m ⎛⎫-=- ⎪⎝⎭,即23224m m x y =-+,代入抛物线方程得222230y my m -+-=,∴22248121240m m m ∆=-+=->,得203m ≤<,122y y m +=,21223y y m =-∴12AB y =-=∴当20m=时,max AB = 【点睛】思路点睛:求抛物线焦半径相关线段长度时注意抛物线定义的应用,即抛物线焦点到抛物线上点的距离等于该点到抛物线准线的距离;直线与抛物线相交,求弦长时一般要联立方程应用根与系数关系以及弦长公式.11.(2022·全国高三专题练习)已知抛物线C :22(0)y px p =>的焦点F 与椭圆22143x y +=的右焦点重合,点M 是抛物线C 的准线上任意一点,直线MA ,MB 分别与抛物线C 相切于点A ,B .(1)求抛物线C 的标准方程;(2)设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k ⋅为定值; (3)求AB 的最小值.【答案】(1)24y x =;(2)证明见解析;(3)4.【分析】(1)由椭圆的方程可得右焦点的坐标,由题意可得抛物线的焦点坐标,进而可得抛物线的方程;(2)可设M 的坐标,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=,利用判别式等于零可得结论;(3)设A ,B 的坐标,由(2)可得参数t ,k 的关系,代入过M 的切线方程与抛物线的方程中,可得A ,B 用参数1k ,2k 表示的坐标,代入弦长公式中求||AB的表达式,由参数的范围求出||AB 的最小值.【详解】(1)由椭圆方程得,椭圆的右焦点为(1,0) ∴抛物线的焦点为(1,0)F ,2p ∴=,所以抛物线的标准方程:24y x =. (2)抛物线C 的准线方程为1x =-. 设(1,)M t -,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=. 其判别式△1616()k k t =-+,令△0=,得:210k kt +-=. 由韦达定理知12k k t +=-,121k k =-, 故121k k =-(定值).(3)设1(A x ,1)y ,2(B x ,2)y ,由210k kt +-=,得21k t k-=,故2222214244444440k ky y k t ky y k ky y k y k k k -⎛⎫-++=-++⨯=-+=-= ⎪⎝⎭,所以2y k=,代入抛物线方程得21x k =,所以211(A k ,12)k ,221(B k ,22)k ,||AB=因为121k k =-,12k k t +=-,所以12|||AB k k -244t =+,当且仅当0t =时取等号. 当且仅时取等号. 故||AB 的最小值为4.【点睛】求曲线弦长的方法:(1)利用弦长公式12l x -;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.12.(2022·广西河池·高三期末(理))已知抛物线2:4C y x =的焦点为F ,斜率为2的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)若直线l 与抛物线C 的准线相交于点P ,且PF =l 的方程; (Ⅱ)若直线l 不过原点,且90AFB ∠=︒,求ABF 的周长.【答案】(Ⅰ)2y x =;(Ⅱ)15+【分析】(Ⅰ)设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立直线与抛物线,由判别式大于0可得12m <,由PF =0m =或4m =(舍去),从而可得结果;(Ⅱ)设直线l 的方程为()20=+≠y x b b ,并代入抛物线2:4C y x =,根据韦达定理和0FA FB ⋅=可解得12b =-,根据弦长公式可得||AB =||||AF BF +,进一步可得ABF 的周长. 【详解】(Ⅰ)由抛物线2:4C y x =可知(1,0)F ,准线为1x =-, 设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立方程242y x y x m⎧=⎨=+⎩,消去y 后整理为()224440x m x m +-+=,又由()22441616320m m m ∆=--=->,可得12m <,由点F 的坐标为()1,0,有PF ==, 解得0m =或4m =(舍去), 故直线l 的方程为2y x =.(Ⅱ)设直线l 的方程为()20=+≠y x b b , 点A 、B 的坐标分别为()11,x y ,()22,x y ,联立方程242y x y x b⎧=⎨=+⎩,消去y 后整理为()224440x b x b +-+=,可得121x x b +=-,21214x x b =,()()()()222121212122242212y y x b x b x x b x x b b b b b b =++=+++=+-+=又由()22441616320b b b ∆=--=->,可得12b <. 又由()111,FA x y =-,()221,FB x y =-,可得()()()1212121212111FA FB x x y y x x x x y y ⋅=--+=-+++ ()22111123044b b b b b =--++=+=,得0b =(舍去)或12b =-.由12b =-,可得1213x x +=,1236x x =,所以AB ===()()121211215AF BF x x x x +=+++=++=,故ABF 的周长为15+ 【点睛】本题考查了直线与抛物线的位置关系,考查了抛物线的定义,韦达定理和弦长公式,考查了运算求解能力,属于中档题.。
第九讲 圆锥曲线中弦长和面积问题

∴|AB|= 1+k2|x1-x2| = 1+k2· (x1+x2)2-4x1x2 = 2· -85t2-4×4(t25-1) =452· 5-t2, 当 t=0 时,|AB|max=4 510.故选 C.
变式训练. 过双曲线 x2-y22=1 的右焦点作直线 l 交双曲线于 A,B 两点,若 使得|AB|=λ 的直线 l 恰有三条,则 λ= 44 .
(2)若直线 l:y=kx+m(k,m 为常数,k≠0)与椭圆 Γ 交于不同的两点 M
和 N. (ⅰ)当直线 l 过 E(1,0),且E→M+2E→N=0 时,求直线 l 的方程;
(ⅱ)当坐标原点 O 到直线 l 的距离为 23,且△ MON 的面积为 23时,求 直 线 l 的倾斜角.
解析 (1)∵A1(a,0),B1(0,1),
∴S△MON=12×|MN|× 23=
3 4
3(k2+1)(9k 2+1)
(3k 2+1)2
.
∵△MON 的面积为 23,
由
3 4
3(k2(+31k)2+(19)k 22+1)= 23,可得 k=± 33,
设直线 l 的倾斜角为 θ,则 tan θ=± 33, 由于 0≤θ<π,∴θ=π6或 θ=56π.
解析 ∵使得|AB|=λ 的直线 l 恰有三条. ∴根据对称性,其中有一条直线与实轴垂直. 此时 A,B 的横坐标为 3,代入双曲线方程,可得 y=±2,故|AB|=4. ∵双曲线的两个顶点之间的距离是 2,小于 4, ∴过双曲线的焦点一定有两条直线使得交点之间的距离等于 4, 综上可知,|AB|=4 时,有三条直线满足题意.∴λ=4.
[方法点拨] 求解弦长的 4 种方法 (1)当弦长的两端点坐标易求时,可直接利用两点间的距离公式求解. (2)联立直线与圆锥曲线方程,解方程组求出两个交点坐标,代入两点 间的距离公式求解. (3)联立直线与圆锥曲线方程,消元得到关于 x(或 y)的一元二次方程, 利用根与系数的关系得到(x1-x2)2,(y1-y2)2,代入两点间的距离公式求解. (4)当弦过焦点时,可结合焦半径公式求解弦长.
圆锥曲线大题专题及答案

解析几何大题专题第一类题型 弦长面积问题1.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率是2,且过点P .直线2y x m =+与椭圆C 相交于,A B 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求PAB △的面积的最大值;(Ⅲ)设直线,PA PB 分别与y 轴交于点,M N .判断||PM ,||PN 的大小关系,并加以证明.2. (本小题14分) 已知椭圆22:13+=x y C m m,直线:20+-=l x y 与椭圆C 相交于P ,Q 两点,与x 轴交于点B ,点,P Q 与点B 不重合.(Ⅰ)求椭圆C 的离心率;(Ⅱ)当2∆=OPQ S 时,求椭圆C 的方程;(Ⅲ)过原点O 作直线l 的垂线,垂足为.N 若λ=PN BQ ,求λ的值.3.(本小题共14分)已知椭圆2222:1(0)x yC a ba b+=>>离心率等于12,(2,3)P、(2,3)Q-是椭圆上的两点.(Ⅰ)求椭圆C的方程;(Ⅱ),A B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为12,求四边形APBQ面积的最大值.4.(本小题满分14分)已知椭圆C:2231(0)mx my m+=>的长轴长为O为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设点(3,0)A,动点B在y轴上,动点P在椭圆C上,且P在y轴的右侧,若||||BA BP=,求四边形OPAB面积的最小值.5.(本小题共14分)已知椭圆C:2214xy+=,F为右焦点,圆O:221x y+=,P为椭圆C上一点,且P位于第一象限,过点P作PT与圆O相切于点T,使得点F,T在OP两侧.(Ⅰ)求椭圆C的焦距及离心率;(Ⅱ)求四边形OFPT面积的最大值.6.(本小题13分)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.(I)求抛物线C的方程,并求其焦点坐标和准线方程;(II)若OA OB,求△AOB面积的最小值.第二类题型 圆过定点问题( 包括点在圆上 点在圆外 点在圆内)1.(本小题满分14 分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,椭圆C 与y 轴交于A , B 两点,且|AB |=2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 是椭圆C 上的一个动点,且直线PA ,PB 与直线x =4分别交于M , N两点.是否存在点P 使得以MN 为直径的圆经过点(2,0)?若存在,求出点P 的横坐标;若不存在,说明理由。
高中数学圆锥曲线知识点梳理+例题解析

高考数学圆锥曲线部分知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0。
两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点⇔{0),(0),(002001==y x f y x f 方程组有n个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点。
二、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED --半径是2422F E D -+。
配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E );③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年一轮复习圆锥曲线的弦长面积问题
内容明细内容
要求层次
了解理解掌握圆锥曲线
椭圆的定义与标准方程√
椭圆的简单几何意义√
抛物线的定义及其标准方程√
抛物线的简单几何意义√
双曲线的定义及标准方程√
双曲线的简单几何性质√
直线与圆锥曲线的位置关系√
题型一:弦长问题
设圆锥曲线C∶()
,0
f x y=与直线:l y kx b
=+相交于()
11
,
A x y,()
22
,
B x y两点,
则弦长AB为:
()
222
121212
1141x
AB k x x k x x x x k
a
∆
=+-=++-=+
()
121212
222
111
1141y
AB y y y y y y
k k k a
∆
=+-=++-=+
或
题型二:面积问题
1.三角形面积问题
直线AB方程:y kx m
=+00
2
1
kx y m
d PH
k
-+
==
+
00
2
2
11
1
22a1
x
ABP
kx y m
S AB d k
k
∆
∆-+
=⋅=+⋅
+
自检自查必考点
圆锥曲线
2014年高考怎么考
H
O
y
x
P
B
A
2. 焦点三角形的面积
直线AB 过焦点21,F ABF ∆的面积为
1
1212121
2y ABF c S F F y y c y y a
∆∆=⋅-=-=
F 2
F 1
O
y
x
B
A
3. 平行四边形的面积
直线AB 为1y kx m =+,直线CD 为2y kx m =+ 122
1m m d CH k
-==
+
2222
12121211()41x AB k x x k x x x x k a
∆=+-=++-=+
12
122
2
11x x ABCD
m m m m S
AB d k a
a
k
∆∆--=⋅=+⋅
=
+
题型三:范围问题
首选均值不等式或对勾函数,其实用二次函数配方法,最后选导数思想 均值不等式 222(,)a b ab a b R +≥∈ 变式:2
2(,);(
)(,)2
a b a b ab a b R ab a b R ++++≥∈≤∈ 作用:当两个正数的积为定值时求出这两个正数的和的最小值; 当两个正数的和为定值时求出这两个正数的积的最大值
注意:应用均值不等式求解最值时,应注意“一”正“二”定“三”相等 圆锥曲线经常用到的均值不等式形式: (1)222
64
64t S t t t
=
=++(注意分0,0,0t t t =><三种情况讨论) (2)22
422
2121212
333196123696
k AB t k k k
=+=+≤+++⨯+++
当且仅当22
1
9k k =
时,等号成立
(3)22222
0000
2222
0000
2592593425934225964925925y x y x PQ x y x y =+⋅+⋅≥+⋅⨯⋅= 当且仅当22
00
22
00
259259925y x x y ⋅=⋅时等号成立. (4)22222131111812(8)22222
2223m m m S m m m -+=-⋅=-+≤⨯= 当且仅当228m m =-+时,等号成立 (5)222
1122222
11112
222221221(21)22214242221212121k m m m k m k m m S k k k k k
-++-+-+=+⋅=≤=++++ 当且仅当221212k m +=时等号成立.
【例1
】 已知椭圆22221(0)x y a b a b
+=>>经过点(2,1)A ,离心率为2
2,过点(3,0)B 的直线l 与椭圆交于
不同的两点,M N .
(Ⅰ)求椭圆的方程; (Ⅱ)若2
2
3||=MN ,求直线MN 的方程.
例题精讲
【例2】 已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为12,F F ,且12||2F F =,点(1,
3
2
)在椭圆C 上.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)过1F 的直线l 与椭圆C 相交于,A B 两点,且2AF B ∆的面积为122
7
,求以2F 为圆心且与直线l 相切的圆的方程.
【例3】 已知,,A B C 是椭圆W :2
214
x y +=上的三个点, O 是坐标原点. (Ⅰ)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (Ⅱ)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.
【例4】 已知椭圆2
2
:14
y C x +=,过点()03M ,
的直线l 与椭圆C 相交于不同的两点A 、B . (Ⅰ)若l 与x 轴相交于点N ,且A 是MN 的中点,求直线l 的方程;
(Ⅱ)设P 为椭圆上一点,且OA OB OP λ+=(O 为坐标原点),求当3AB <时,实数λ的取值范围.
【例5】 已知椭圆()11:2
22>=+a y a
x C 的上顶点为A ,左焦点为F ,直线AF 与圆
0726:22=+-++y x y x M 相切.过点⎪⎭⎫ ⎝
⎛
-21,0的直线与椭圆C 交于Q P ,两点.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)当APQ ∆的面积达到最大时,求直线的方程.
【例6】 已知椭圆()22
22:10x y M a b a b
+=>>的左右焦点分别为()()122,0,2,0F F -.在椭圆M 中有一内接
三角形ABC ,其顶点C 的坐标(
)
3,1,AB 所在直线的斜率为
3
3
. (Ⅰ)求椭圆M 的方程;
(Ⅱ)当ABC ∆的面积最大时,求直线AB 的方程.
【例7】 在平面直角坐标系xOy 中, 动点P 到直线:2l x =的距离是到点(1,0)F 的距离的2倍.
(Ⅰ)求动点P 的轨迹方程;
(Ⅱ)设直线FP 与(Ⅰ)中曲线交于点Q ,与l 交于点A ,分别过点P 和Q 作l 的垂线,垂足为,M N ,问:是否存在点P 使得APM ∆的面积是AQN ∆面积的9倍?若存在,求出P 的坐标;若不存在,说明理由.
【例8】 在平面直角坐标系xOy 中,点B 与点(1,1)A -关于原点O 对称,P 是动点,且直线AP 与BP 的斜
率之积等于13
-.
(Ⅰ)求动点P 的轨迹方程;
(Ⅱ)设直线AP 和BP 分别与直线3x =交于点,M N ,问:是否存在点P 使得PAB ∆与PMN ∆的面积相等?若存在,求出点P 的坐标;若不存在,说明理由。