第9讲 设数法解题

合集下载

第9周 设数法解题

第9周 设数法解题

第九周 设数法解题专题简析:在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

例题1。

如果△+△=□+□+□,△+☆=□+□+□+□,那么☆+☆+□=( )个△。

解: 由第一个等式可以设△=3,□=2,代入第二式得☆=5,再代入第三式左边是12,所以右边括号内应填4。

说明:本题如果不用设数代入法,直接用图形互相代换,显然要多费周折。

练习11. 已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。

2. 五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?3. 甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨、例题2。

足球门票15元一张,降价后观众增加一倍,收入增加15,问一张门票降价多少元? 【思路导航】初看似乎缺少观众人数这个条件,实际上观众人数于答案无关,我们可以随便假设一个观众数。

为了方便,假设原来只有一个观众,收入为15元,那么降价后有两个观众,收入为15×(1+15)=18元,则降价后每张票价为18÷2=9元,每张票降价15-9=6元。

即:15-15×(1+15)÷2=6(元) 答:每张票降价6元。

说明:如果设原来有a 名观众,则每张票降价:15-15a ×(1+15)÷2a =6(元) 练习21. 某班一次考试,平均分为70分,其中34及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2. 游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?3. 五年级三个班的人数相等。

小学六年级奥数-第9讲 设数法解题后附答案

小学六年级奥数-第9讲 设数法解题后附答案

第9讲 设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。

练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。

2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加51,问一张门票降价多少元?练习2:1、某班一次考试,平均分为70分,其中43及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。

先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。

练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。

2、张师傅骑自行车往返A 、B 两地。

去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多51,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?练习4:1、某班男生人数是女生的32,男生平均身高为138厘米,全班平均身高为132厘米。

问:女生平均身高是多少厘米?2、某班男生人数是女生的54,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

小学六年级奥数第9讲 设数法解题(含答案分析)

小学六年级奥数第9讲 设数法解题(含答案分析)

第9讲 设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。

练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。

2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加51,问一张门票降价多少元?练习2:1、某班一次考试,平均分为70分,其中43及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。

先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。

练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。

2、张师傅骑自行车往返A 、B 两地。

去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多51,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?练习4:1、某班男生人数是女生的32,男生平均身高为138厘米,全班平均身高为132厘米。

问:女生平均身高是多少厘米?2、某班男生人数是女生的54,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

六年级奥数讲义第9讲设数法解题(2021年整理)

六年级奥数讲义第9讲设数法解题(2021年整理)

六年级奥数讲义第9讲设数法解题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(六年级奥数讲义第9讲设数法解题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为六年级奥数讲义第9讲设数法解题(word版可编辑修改)的全部内容。

第9讲设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=()个△。

解:由第一个等式可以设△=3,□=2,代入第二式得☆=5,再代入第三式左边是12,所以右边括号内应填4。

说明:本题如果不用设数代入法,直接用图形互相代换,显然要多费周折。

练习1:1.已知△=○○□□,△○=□□,☆=□□□,问△□☆=()个○.2.五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?3.甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加1/5,问一张门票降价多少元?【思路导航】初看似乎缺少观众人数这个条件,实际上观众人数于答案无关,我们可以随便假设一个观众数。

为了方便,假设原来只有一个观众,收入为15元,那么降价后有两个观众,收入为15×(1+1/5)=18元,则降价后每张票价为18÷2=9元,每张票降价15-9=6元.即:15-15×(1+1/5)÷2=6(元)答:每张票降价6元。

第9周 设数法解题

第9周 设数法解题

第九周 设数法解题专题简析:在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

例题1。

如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。

解: 由第一个等式可以设△=3,□=2,代入第二式得☆=5,再代入第三式左边是12,所以右边括号内应填4。

说明:本题如果不用设数代入法,直接用图形互相代换,显然要多费周折。

练习11. 已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。

2.3.例题2。

【思路导航】初看似乎缺少观众人数这个条件,实际上观众人数于答案无关,我们可以随便假设一个观众数。

为了方便,假设原来只有一个观众,收入为15元,那么降价后有两个观众,收入为15×(1+15)=18元,则降价后每张票价为18÷2=9元,每张票降价15-9=6元。

即:15-15×(1+15)÷2=6(元) 答:每张票降价6元。

说明:如果设原来有a 名观众,则每张票降价:15-15a ×(1+15)÷2a =6(元) 练习21.2.3.例题3。

小王在一个小山坡来回运动。

先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。

【思路导航】题中四个速度的最小公倍数是1200,设一个单程是1200米。

则(1) 四个单程的和:1200×4=4800(米)(2) 四个单程的时间分别是;1200÷200=6(分)1200÷240=5(分)1200÷150=8(分)1200÷200=6(分)(3) 小王的平均速度为:4800÷(6+5+8+6)=192(米)答:小王的平均速度是每分钟192米。

人教版小学数学六年级奥数训练第9讲 设数法解题

人教版小学数学六年级奥数训练第9讲 设数法解题

第9讲 设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。

练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。

2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加51,问一张门票降价多少元?练习2:1、某班一次考试,平均分为70分,其中43及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。

先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。

练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。

2、张师傅骑自行车往返A 、B 两地。

去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多51,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?练习4:1、某班男生人数是女生的32,男生平均身高为138厘米,全班平均身高为132厘米。

问:女生平均身高是多少厘米?2、某班男生人数是女生的54,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

六年级上册奥数基础+提高练习-第9讲 设数法解题 通用版(含答案)

六年级上册奥数基础+提高练习-第9讲 设数法解题 通用版(含答案)

奥数重点常考题 第九讲 设数法解题基础卷1、 如果△☆=○○○,△=○□,☆=□□,问△○☆=( )个□。

2、在一次英语考试中,甲比乙高4分,乙比丙低3分,丙比丁高5分,甲与丁谁考得高,高几分?3、某班一次考试,全班同学平均分为85分,其中78的同学及格,及格的同学平均分为90分,那么不及格的同学平均分是多少分?4、小明上山的速度是每分钟150米,下山的速度是每分钟300米,求小明上山后又沿原路下山的平均深度。

5、某班同学的平均身高为138cm ,其中男生人数比女生人数多15,女生平均身高比男生高10%,这个班男生的平均身高是多少厘米?6、狗跑3步的时间马跑2步,马跑5步的距离够跑9步,现在狗已跑出30米,马开始追它。

问狗仔跑多远,马可以追到它?提高卷1、甲、乙、丙三个瓶子装有同样多的油,从甲瓶倒出50克油到乙瓶,从乙瓶倒出70克到丙瓶,从丙瓶倒出80克油到甲瓶,这时三个瓶子中的油哪个最多,哪个最少?最多的比最少的多多少克?2、在阅览室看书的学生中,男生占25%,又来了一些学生后,学生总人数增加了20%,男生占总人数的30%,男生增加了百分之几?3、六年级三个班的人数相等,一班的男生人数和二班女生人数相等,三班的男生人数是全部男生人数的38,全年级女生人数占全年级总人数的几分之几?4、小张开车往返A、B两地。

平均深度为每小时80千米,如果他从A到B每小时行60千米,那么他返回时的平均深度是每小时多少千米?5、某班男生人数是女生人数的56,女生的平均身高比男生的高10%,全班的平均身高是116cm,求男、女生的平均身高各是多少厘米?6、狗和兔子同时从A地跑向B地,狗跑4步的距离等于兔子跑7步的距离,而狗跑3步的时间等于兔子跑4步的时间,狗跑480步到达B地,这时兔子还要跑多少步才能到达B地?答案基础卷。

设数法解题

设数法解题

设数法解题有些题目看起来缺少条件,按常规解法似乎无法求解,但是仔细分析就会发现,题中缺少的条件,对题目的答案并无影响。

这时就可以采用“设数法”解题,即对题目中“缺少”的条件,假设一个数代入(假设的数应尽量方便计算),然后求出答案。

[例题解析]例1 李师傅骑自行车往返甲乙两地。

去时每小时行15千米,返回时,由于逆风每小时行10千米。

李师傅往返甲乙两地的平均速度是多少千米?小华上山的速度是每小时3千米,下山的速度是每小时6千米,求小华上山后又沿原路下山的平均速度.例2 足球赛门票15元一张,降价后,观众增加一倍,收入增加1/5,问一张门票降价多少元?[边学边练]游泳池里参加游泳的学生中,小学生占3/10,又来了一批学生后,学生总数增加1/5,小学生占学生总数的2/5,小学生比原来小学生的人数增加了几分之几?例3 某班男生人数是女生人数的2/3,男生平均身高为138厘米,全班平均身高为132厘米。

问女生的平均身高是多少厘米?[边学边练]某幼儿园中班的小朋友的平均身高是115厘米,其中男孩比女孩多1/5 ,女孩的平均身高是121厘米,男孩的平均身高是多少厘米?例4 已知甲校学生数是乙校学生数的3/5,甲校的女生是甲校学生数的5/12,乙校男生是乙校学生数的9/20,那么两校女生总数占两校学生总数的几分之几?[边学边练]有一堆苹果,平均分给甲、乙两班的每个人,每人分得6个。

若只分给甲班,则每个人分得10个苹果。

如果只分给乙班,那么每人分得几个苹果?例5 甲乙两车分别从A、B两地同时出发,甲乙两人步行的速度比是5:3。

如果两人相向而行,那么20分钟后相遇;如果按从A到B的方向同向而行,那么甲追上乙需要多少分钟?需要说明的是,A、B两地的距离并不一定是1600米,1600米是根据假设甲、乙的速度分别是每分行50米和30米时计算出来的。

假设不同的速度,就会得出不同的距离,因为假设的速度与计算的距离成正比,所求的时间是“距离÷速度差”,所以不影响结论的正确性。

2021-2022年六年级奥数第9讲 设数法解题

2021-2022年六年级奥数第9讲 设数法解题

1 第9讲 设数法解题
一、知识要点
在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

二、精讲精练
【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。

练习1:
1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。

2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?
【例题2】足球门票15元一张,降价后观众增加一倍,收入增加5
1,问一张门票降价多少元?。

第9讲 设数法解题(教师版)

第9讲 设数法解题(教师版)

专题九设数法解题专题简析:在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

例题1如果△△=□□□,△☆=□□□□,那么☆☆□=()个△。

即学即练1:1.已知△=○○□□,△○=□□,☆=□□□,问△□☆=()个○。

2.五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?3.甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨?例题2足球门票15元一张,降价后观众增加一倍,收入增加15,问一张门票降价多少元?即学即练2:1. 某班一次考试,平均分为70分,其中34及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2. 游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?3. 五年级三个班的人数相等。

一班的男生人数和二班的女生人数相等,三班的男生是全部男生的25,全部女生人数占全年级人数的几分之几?例题3小王在一个小山坡来回运动。

先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。

即学即练3:1.小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。

2.张师傅骑自行车往返A、B两地。

去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?3. 小王骑摩托车往返A 、B 两地。

六年级奥数 设数法解题

六年级奥数  设数法解题
15-15×(1+1/5)÷2=6(元)
答:每张票降价6元。
说明:如果设原来有a名观众,则每张票降价:
15-15a×(1+1/5)÷2a=6(元)
练习2: 1.某班一次考试,平均分为70分, 其中3/4及格,及格的同学平均分为80 分,那么不及格的同学平均分是多少 分? 设考试总人数为4人。
解题思路:设考试总人数为4人。 (70x4-80x3)÷(4-3)=40(分)
设一个单程为30km。
30x2÷(30÷15+30÷10) =12(平均速 度为每小时48千米,如果他去时每小时行 42千米,那么他返回时的平均速度是每小 时行多少千米?
因为48和42的最小公倍数是336,所 以设一个单程为336km。
336÷(336x2÷48-336÷42) =56(km/h)
设女生有5人,男生有4人。
男生的平均身高为单位一,则女生的平均身高 为(1+15%)。
男生的平均身高:130x(4+5)÷【4+5x (1+15%)】=120(厘米)
女生的平均身高:120x(1+15%)=138(厘米)
3.一个长方形每边增加10%,那么它 的周长增加百分之几?它的面积增加 百分之几?设长方形的长为a,宽为b。
休息10分钟。
【例题4】某幼儿园中班的小朋友平均身高115 厘米,其中男孩比女孩多1/5,女孩平均身高比 男孩高10%,这个班男孩平均身高是多少?
【思路导航】题中没有男、女孩的人数,我们可以假设 女孩有5人,则男孩有6人。 (1)总身高:115×【5+5×(1+1/5)】=1265(厘米) (2) 由于女孩平均身高是男孩的(1+10%),所 以5个女孩的身高相当于5×(1+10%)=5.5个男孩的 身高,因此男孩的平均身高为: 1265÷【(1+10%)×5+6】=110(厘米) 答:这个班男孩平均身高是110厘米。

六年级奥数:第9讲 设数法解题

六年级奥数:第9讲 设数法解题

第9講設數法解題一、知識要點在小學數學競賽中,常常會遇到一些看起來缺少條件的題目,按常規解法似乎無解,但仔細分析就會發現,題目中缺少的條件對於答案並無影響,這時就可以採用“設數代入法”,即對題目中“缺少”的條件,隨便假設一個數代入(當然假設的這個數要儘量的方便計算),然後求出解答。

二、精講精練【例題1】如果△△=□□□,△☆=□□□□,那麼☆☆□=()個△。

練習1:1、已知△=○○□□,△○=□□,☆=□□□,問△□☆=()個○。

2、五個人比較身高,甲比乙高3釐米,乙比丙矮7釐米,丙比丁高10釐米,丁比戊矮5釐米,甲與戊誰高,高幾釐米?1,問一【例題2】足球門票15元一張,降價後觀眾增加一倍,收入增加5張門票降價多少元?練習2:3及格,及格的同學平均分為801、某班一次考試,平均分為70分,其中4分,那麼不及格的同學平均分是多少分?2、游泳池裏參加游泳的學生中,小學生占30%,又來了一批學生後,學生總數增加了20%,小學生占學生總數的40%,小學生增加百分之幾?【例題3】小王在一個小山坡來回運動。

先從山下跑上山,每分鐘跑200米,再從原路下山,每分鐘跑240米,又從原路上山,每分鐘跑150米,再從原路下山,每分鐘跑200米,求小王的平均速度。

練習3:1、小華上山的速度是每小時3千米,下山的速度是每小時6千米,求上山後又沿原路下山的平均速度。

2、張師傅騎自行車往返A、B兩地。

去時每小時行15千米,返回時因逆風,每小時只行10千米,張師傅往返途中的平均速度是每小時多少千米?1,【例題4】某幼稚園中班的小朋友平均身高115釐米,其中男孩比女孩多5女孩平均身高比男孩高10%,這個班男孩平均身高是多少?練習4:2,男生平均身高為138釐米,全班平均身高為1、某班男生人數是女生的3132釐米。

問:女生平均身高是多少釐米?4,女生的平均身高比男生高15%,全班的平均2、某班男生人數是女生的5身高是130釐米,求男、女生的平均身高各是多少?【例題5】狗跑5步的時間馬跑3步,馬跑4步的距離狗跑7步,現在狗已跑出30米,馬開始追它。

六年级奥数举一反三第9讲 设数法解题含答案

六年级奥数举一反三第9讲 设数法解题含答案

第9讲 设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。

练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。

2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加51,问一张门票降价多少元?练习2:1、某班一次考试,平均分为70分,其中43及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。

先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。

练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。

2、张师傅骑自行车往返A 、B 两地。

去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多51,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?练习4:1、某班男生人数是女生的32,男生平均身高为138厘米,全班平均身高为132厘米。

问:女生平均身高是多少厘米?2、某班男生人数是女生的54,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

《设数法解题》优秀教案

《设数法解题》优秀教案

第九周 设数法解题专题简析:在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

例题1。

如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。

解: 由第一个等式可以设△=3,□=2,代入第二式得☆=5,再代入第三式左边是12,所以右边括号内应填4。

说明:本题如果不用设数代入法,直接用图形互相代换,显然要多费周折。

练习11. 已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。

2. 五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?3. 甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨、练11、=82 、设戊是100厘米高,可推出甲是101厘米高。

3、乙仓最多,丙仓最少,设甲、乙、丙三个仓库原来各有100吨,可推出这时乙有115吨,丙有90吨。

例题2。

足球门票15元一张,降价后观众增加一倍,收入增加15,问一张门票降价多少元? 【思路导航】初看似乎缺少观众人数这个条件,实际上观众人数于答案无关,我们可以随便假设一个观众数。

为了方便,假设原来只有一个观众,收入为15元,那么降价后有两个观众,收入为15×(1+15)=18元,则降价后每张票价为18÷2=9元,每张票降价15-9=6元。

即:15-15×(1+15)÷2=6(元) 答:每张票降价6元。

说明:如果设原来有a 名观众,则每张票降价:15-15a ×(1+15)÷2a =6(元) 练习21. 某班一次考试,平均分为70分,其中34及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2. 游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了2021小学生占学生总数的40%,小学生增加百分之几?3. 五年级三个班的人数相等。

设数法解题技巧

设数法解题技巧

设数法解题技巧我们在平时解决应用题时,有时会发现一些看起来缺少条件的应用题。

例如:“五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲和戊谁高?高多少厘米?”如果我们知道一人的身高就可以求出另一个人的身高。

但是现在我们连一个人的具体身高也不知道。

我们按常规解法无法求解,不妨假设题中一个具体的数量(某个人的具体身高),或字母,或假设题中某个未知数的数量是单位“1”,题中数量之间的关系就会变得清晰明确,从而便于找到解答问题的方法。

我们把这种解答应用题的方法叫做“设数法”。

我个人觉得对于小学生来说,设一个具体的数比较好理解,学生容易接受。

再例如:“有一批苹果,平均分给幼儿园大、小两个班的小朋友,每人分得6个。

如果只分给大班的小朋友,每人可分得10个;如果只分给小班的小朋友,每人分得多少个?”“一批苹果平均分给幼儿园大、小两个班的小朋友,每人分得6个。

”说明这些苹果的个数是6的倍数。

“只分给大班的小朋友,每人可分得10个。

”这又说明这些苹果的个数又是10的倍数。

那么我们可以假设这些苹果一共有30个、60个、90个.......通过计算我们发现无论这里的苹果数是多少都不会影响问题的结果。

那么我们怎么假设最简便呢?在运用设数法解答应用题设具体数量时,要注意两点:一是所设数量要尽量小一些;二是所设的数量要便于分析数量关系和计算。

小华上山的速度是每小时4千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。

为了方便我们的计算,虽然无论设什么数对我们的结果没有影响,但是为了简化我们的计算量,最好所设的数是4和6的公倍数,最小公倍数最为简便。

现在我们假设路程是12千米,可以列式为12×2÷(12÷4+12÷6),这样解题就简便多了。

某班一次考试,平均分为70分,其中及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?这道题我们把全班人数看做单位“1”,平均分成4份,女生占其中的3份。

六年级奥数 第9讲 设数法解题

六年级奥数  第9讲 设数法解题

第9讲设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=()个△。

练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=()个○。

2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?1,问一张门票降价多【例题2】足球门票15元一张,降价后观众增加一倍,收入增加5少元?练习2:3及格,及格的同学平均分为80分,那么不1、某班一次考试,平均分为70分,其中4及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。

先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。

练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。

2、张师傅骑自行车往返A、B两地。

去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?1,女孩平均【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多5身高比男孩高10%,这个班男孩平均身高是多少?练习4:2,男生平均身高为138厘米,全班平均身高为132厘米。

1、某班男生人数是女生的3问:女生平均身高是多少厘米?4,女生的平均身高比男生高15%,全班的平均身高是1302、某班男生人数是女生的5厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

设数法解题

设数法解题

设数法解题设数法解题是一种常用的数学解题方法,它通过设定未知数,并借助逻辑推理和数学关系进行求解。

设数法在数学问题解决过程中发挥着重要作用,尤其对于一些复杂的问题,通过恰当的设数可以简化问题,提高解题效率。

本文将介绍设数法解题的基本思路和实践方法。

设数法解题基于设定未知数的思想,在解题过程中,我们可以自行设定一个或多个未知数,并根据问题的情况,逐步推理解题。

设数法的关键是根据问题中的条件以及已知信息设定未知数,并利用这些未知数之间的关系,逐步推导出答案。

下面将通过几个具体例子来说明设数法的应用。

首先,设数法在解决实际问题时常用。

例如:小明的年龄是小红年龄的2倍,而小红的年龄是小华年龄的3倍,现在他们三个人的年龄总和是50岁,请问三个人的年龄各是多少?这个问题可以通过设定一个未知数来解决。

假设小华的年龄为x岁,那么小红的年龄为3x岁,小明的年龄为6x岁。

根据题目中的条件可得到3x+6x+x=50,解方程可以得到x=5,因此小华的年龄为5岁,小红的年龄为15岁,小明的年龄为30岁。

其次,设数法在解决几何问题时也很有实用性。

例如:一个三角形的两边之和等于第三边的长度的一半,且这两条边分别是5和8,求这个三角形的周长。

对于这个问题,我们可以设定未知数表示第三边的长度。

假设第三边的长度为x,根据题目中的条件可得到5+8=0.5x ,解方程可以得到x=26,因此这个三角形的周长为5+8+26=39。

此外,设数法还可以用于解决复杂的代数方程。

例如:已知某数的平方与这个数的和等于12,求这个数的值。

这个问题可以设定一个未知数表示这个数。

假设这个数为x,根据题目中的条件可得到x^2+x=12,移项后得到x^2+x-12=0,通过求解这个一元二次方程,可以得到x=3或x=-4。

因此,这个数的值可以是3或-4。

最后,设数法解题的关键在于设定合适的未知数,并根据问题条件和未知数之间的关系进行逐步推导。

不同的问题可能需要不同的未知数设定,所以在实践中需要根据问题的特点进行合理的选择。

教案:六年级奥数举一反三第9周设数法解题

教案:六年级奥数举一反三第9周设数法解题

第9周设数法解题志成教育中心韩钰教学目的:能解决一些看起来缺少条件的,按常规解法似乎无解的题目重点:假设的这个数要尽量方便计算难点:明白在什么条件下可以设数解决问题教学过程:例题一:(纯图形的等式问题,把其中的一个图形假设成一个数,要比直接用图形代换少费周折,使学生体会设数法的方便、快捷)疯狂操练11、与例题相似,一般找第一个等式,按两个图形个数的比恰当赋予他们的值。

2、在题目中的第一个条件里找出单位“1”所代表的量,根据题意设一个恰当的数,解决问题。

3、与第二题类似,题目中有相同的量,根据题意设一个恰当的数,解决问题。

例题二:(题目中缺少观众人数这个条件,其实与答案无关设原观众数为1个)疯狂操练21、与例题相似,题目中缺少学生人数,恰好这个条件在题目中又是以分数形式变化,设这个量为4人。

2、缺少学生总数这个条件,恰好这个条件在题目中又是以百分数形式变化,设这个量为10人或100人。

3、设全部男生为5人,或10人,在运用设数法的时候,人数可以是小数或分数。

例题三:(题目里出现了四个速度,但是缺少单程的路程,设路程是这四个数的最小公倍数)疯狂操练31、与例题相似2、与例题相似3、本题已知了平均速度和其中的一个速度,同样求这两个已知量的最小公倍数,做此类题忽略平均速度,按速度对待例题四:(题目缺少的是人数,因为女孩的人数是单位“1”,先设女孩的个数,是对应分数分母的倍数,通常就设成分母本身,再把男孩的身高看做单位“1”计算)疯狂操练41、设女生人数是3人2、设女生人数是5人,类似例题3、先把题目中的10%化到最简分数110,再设边长为10例题五:(先根据第二个条件设出狗跑一步为7,马跑一步为4;再根据第一个条件设出马跑三步和狗跑五步的时间都为1;再推出狗和马的速度比)速度和步长问题,较难疯狂操练51、与例题相似2、与例题相似3、先算狗和兔的速度,再从狗算出A、B间的路程,再算兔的时间,再转换成兔的步数,用兔的步数减狗的步数教学反思:1、图形问题的设数要根据等式两边图形的个数比,了解个数比与它们所代表的值成倒数关系。

六年级奥数举一反三专题 第9周 设数法解题

六年级奥数举一反三专题 第9周 设数法解题

第九周 设数法解题专题简析:在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

例题1。

如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。

解: 由第一个等式可以设△=3,□=2,代入第二式得☆=5,再代入第三式左边是12,所以右边括号内应填4。

说明:本题如果不用设数代入法,直接用图形互相代换,显然要多费周折。

练习11. 已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。

2. 五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?3. 甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨、例题2。

足球门票15元一张,降价后观众增加一倍,收入增加15,问一张门票降价多少元? 【思路导航】初看似乎缺少观众人数这个条件,实际上观众人数于答案无关,我们可以随便假设一个观众数。

为了方便,假设原来只有一个观众,收入为15元,那么降价后有两个观众,收入为15×(1+15)=18元,则降价后每张票价为18÷2=9元,每张票降价15-9=6元。

即:15-15×(1+15)÷2=6(元) 答:每张票降价6元。

说明:如果设原来有a 名观众,则每张票降价:15-15a ×(1+15)÷2a =6(元) 练习21. 某班一次考试,平均分为70分,其中34及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2. 游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?3. 五年级三个班的人数相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习奥数的优点
1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心,
以及战胜难题的勇气。

可以养成坚韧不拔的毅力
4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

学习奥数的优点
1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心,
以及战胜难题的勇气。

可以养成坚韧不拔的毅力
4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

第9讲设数法解题
一、知识要点
在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。

二、精讲精练
【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=()个△。

练习1:
1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。

2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?
【例题2】足球门票15元一张,降价后观众增加一倍,收入增加5
1,问一张门票降价多少元?
练习2:
1、某班一次考试,平均分为70分,其中
4
3及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?
2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了
20%,小学生占学生总数的40%,小学生增加百分之几?
【例题3】小王在一个小山坡来回运动。

先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。

练习3:
1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。

2、张师傅骑自行车往返A 、B 两地。

去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?
【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多5
1,女孩平均
身高比男孩高10%,这个班男孩平均身高是多少?
练习4:
1、某班男生人数是女生的
3
2,男生平均身高为138厘米,全班平均身高为132厘米。

问:女生平均身高是多少厘米?
2、某班男生人数是女生的54,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?
【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

问狗再跑多远,马可以追到它?
练习5:
1、猎狗前面26步远的地方有一野兔,猎狗追之。

兔跑8步的时间狗只跑5步,但兔跑9步的距离仅等于狗跑4步的距离。

问兔跑几步后,被狗抓获?
2、猎人带猎狗去捕猎,发现兔子刚跑出40米,猎狗去追兔子。

已知猎狗跑2步的时间兔子跑3步,猎狗跑4步的距离与兔子跑7步的距离相等,求兔再跑多远,猎狗可以追到它?
3、狗和兔同时从A地跑向B地,狗跑3步的距离等于兔跑5步的距离,而狗跑2步的时间等于兔跑3步的时间,狗跑600步到达B地,这时兔还要跑多少步才能到达B地?
三、课后作业
1、甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨?
2、五年级三个班的人数相等。

一班的男生人数和二班的女生人数相等,三班的男生是全部男生的2/5,全部女生人数占全年级人数的几分之几?
3、小王骑摩托车往返A、B两地。

平均速度为每小时48千米,如果他去时每小时行42千米,那么他返回时的平均速度是每小时行多少千米?
4、一个长方形每边增加10%,那么它的周长增加百分之几?它的面积增加百分之几?。

相关文档
最新文档