41比例线段(1)

合集下载

4.1比例线段(1)教学设计13

4.1比例线段(1)教学设计13
4.1比例线段(1)教学设计
课题摘要
学科
数学
学段
初中
年级
九年级
单元
第四章
教材版本
浙教版
课程名称
4.1比例线段(1)
一、学习内容分析
1.教材分析
本节介绍比例的基本性质,利用比例的基本性质进行一些简单的变形.这里主要要求学生理解并初步掌握两种基本方法(或技能):一是利用比例的基本性质进行变形或求值;二是用“设比值”的方法进行变形或求值.课本安排两个例题的目的是让学生理解这两种方法(或技能).
二、新课
1、利用P116的做一做得出比例式的内项积等于外项积,得出比例性质: = <=>ad=bc(a、b、c、d都不为零)。
2、通过练习让学生体会用性质来列比例式。
3、已知ab=cd,请写出有关a,b,c,d成立的
比例式. (至少写4个)
4、讲解例1,例2。总结出比例式变形的常用方法:(1)利用等式性质(2)设比值K。
2.学情分析
本节内容主要是在学生小学已学过比例的有关内容的基础上,给出四个数成比Байду номын сангаас及内项,外项的概念,归纳比例的基本性质,利用比例性质进行比例式变形。
3.教学目标(含重难点)
教学目标:
1、理解比例的基本性质。
2、能根据比例的基本性质求比值。
3、能根据条件写出比例式或进行比例式的简单变形。
教学重点、难点:
教学重点:比例的基本性质
教学难点:例2根据条件判断一个比例式是否成立,不仅要运用比例的基本性质,还要运用等式的性质等方法是本节教学的难点。
二、教学环境选择
□简易多媒体教室
三、教学过程设计
教学环节
活动设计

初中数学北师大版九年级上册《41成比例线段(1)》教学设计

初中数学北师大版九年级上册《41成比例线段(1)》教学设计

北师大版数学九年级上 4.1成比例线段(1)教学设计观察1:下面的每组图形,有什么特征?答案:形状和大小完全相同全等图形:能够完全重合的两个图形,叫做全等图形.观察2:下面的每组图形,又有什么特征呢?答案:形状相同找一找:你能在下面的图形中找出形状相同的图形吗?答案:追问:这些形状相同的图形有什么不同?答案:大小不同讲解1:对于形状相同而大小不同的两个图形,我们可以用相应线段长度的比来描述它们的大小关系.讲解2:如果选用同一个长度单位得两条线段AB,CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB:CD=m:n或AB mCD n=,其中线段AB,CD分别叫做这个线段比的前项和后项.如:如图,五边形ABCDE与五边形A′B′C′D′E′形状相同,AB=5cm,A′B′=3cm,AB:A′B′=5:3,53就是线段AB与A′B′的比,这个比值刻画了这两个五边形的大小关系.指出:如果把mn表示成比值k,那么ABkCD=,或AB=k·CD,E'D'C'B'A'ABC DE两条线段的比实际上就是两个数的比.引入比值k 的方法是解决比例问题的一种重要方法,以后经常会用到. 做一做:设小方格的边长为1,四边形ABCD 与四边形EFGH 的顶点都在格点上,那么AB ,AD ,EF ,EH 的长度分别是多少?分别计算,,,AB AD DC BCEF EH HG FG的值,你发现了什么?答案:82,4AB EF ==2102,10AD EH == 252,5DC HG ==2172,17BC FG == 即:AB AD DC BCEF EH HG FG===归纳1:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即,a cb d =那么这四条线段a ,b ,c ,d 叫作成比例线段,简称比例线段. 如:在AB ADEF EH=中, AB 、EF 、AD 、EH 是成比例线段或者AB 、AD 、EF 、EH 也是成比例线段追问:你还能说出一组成比例线段吗?议一议:如果a ,b ,c ,d 四个数成比例,即,a cb d=,那么ad =bc 吗?反过来,如果ad =bc ,那么a ,b ,c ,d 四个数成比例吗? 归纳2:比例线段的基本性质如果,a cb d=,那么ad =bc ;如果ad =bc (a ,b ,c ,d 都不等于0),那么,a cb d=.例:如图,一块矩形绸布的长AB =am ,宽AD =1m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即那么a 的值应当是多少?解:根据题意可知,AB =am ,AE =am ,AD =1m .由,AE ADAD AB = 得113,1aa = 即2113a = ∴a 2=3.开平方,得a =3(a =-3舍去).。

浙教版数学九年级上册4.1《比例线段》教案1

浙教版数学九年级上册4.1《比例线段》教案1

浙教版数学九年级上册4.1《比例线段》教案1一. 教材分析《比例线段》是浙教版数学九年级上册第四章的第一节内容。

本节主要让学生了解比例线段的定义、性质和应用,培养学生运用比例线段解决实际问题的能力。

教材通过引入实际问题,引导学生探索比例线段的性质,进而得出比例线段的定义,并通过例题和练习题使学生掌握比例线段的应用。

二. 学情分析九年级的学生已经具备了一定的几何知识,对线段、射线、直线等概念有了一定的了解。

但是,对于比例线段这一概念,学生可能较为陌生。

因此,在教学过程中,教师需要引导学生通过实际问题探索比例线段的性质,从而理解比例线段的定义。

三. 教学目标1.理解比例线段的定义及其性质。

2.学会运用比例线段解决实际问题。

3.培养学生的几何思维能力和解决实际问题的能力。

四. 教学重难点1.重点:比例线段的定义及其性质。

2.难点:运用比例线段解决实际问题。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生探索比例线段的性质。

2.启发式教学法:在教学过程中,教师引导学生思考、讨论,从而培养学生的问题解决能力。

3.实践性教学法:通过例题和练习题,使学生掌握比例线段的运用。

六. 教学准备1.教具:黑板、粉笔、投影仪、PPT等。

2.学具:学生每人一份比例线段的相关练习题。

七. 教学过程1.导入(5分钟)教师通过引入实际问题,如“在一条直线上,两点间的距离是否相等?”引发学生的思考,进而引导学生探索比例线段的性质。

2.呈现(10分钟)教师通过PPT展示比例线段的定义及其性质,让学生初步了解比例线段的概念。

3.操练(10分钟)教师提出一些有关比例线段的问题,让学生分组讨论、解答。

例如:“已知线段AB和线段BC的长度比为2:3,求线段AC的长度。

”通过解答这些问题,学生能够更好地理解比例线段的性质。

4.巩固(10分钟)教师给出一些练习题,让学生独立完成。

练习题包括判断题、选择题和解答题,题型多样,难度适中。

九上数学 第13讲 4.1成比例线段

九上数学 第13讲 4.1成比例线段

第13讲 《图形的相似》培优训练4.1成比例线段§4.1成比例线段学 习 目 标1.知道两条线段的比的概念并且会计算两条线段的比2.知道成比例线段的定义并会判断四条线段是否成比例3.熟记比例的基本性质并会应用.重点:1、会求两条线段的比 2、知道成比例线段的定义 3、会用比例的性质应用 难点:成比例线段及比例的基本性质的理解与运用。

导学过程:【自主学习,认真准备】小学里已经学过了比例的有关知识,请同学们口答下列问题: 1、若a 与b 的比值和c 与d 的比值相等,应记为: 2、地理中的比例尺是指什么? 【自主探究、合作交流】任务一:自学课本76页——77页内容,思考并完成下列练习:1、一张桌面的长a=1.25m ,宽b=0.75m ,那么长与宽的比是2、已知线段AB=1.5m ,线段CD=250cm ,那么线段AB 与CD 的比是3、已知A 、B 两地的实际距离是60km,画在地图上其距离A ’B ’是6cm,求这幅地图的比例尺归纳定义:两条线段的比:____________________任务二:完成课本77页“做一做”: 1、计算:=EFAB =EH AD =AD AB =EH EF2、发现: 归纳定义:成比例线段:任务三:完成课本78页“议一议”内容1、结论:归纳:比例的基本性质:如果dcb a ,那么 ;如果ad =bc (a ,b ,c ,d 都不等于0),那么 .还可以写成 形式。

【展示交流】1 、如图,一块矩形绸布的长AB=am,AD=1m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即 AD AE = ABAD,那么a 的值应当是多少?,2、已知a=3,b=6,c=9(1)若a,b,c,x 是成比例线段,求x.(2)若a,x,b,c 是成比例线段,求x【当堂练习】1、已知:线段a=5cm ,b=2cm ,则ab= 2、已知a ,b ,m ,n 是成比例线段,其中a=2cm ,b=3cm ,n=9cm ,则m= . 若a=2,b=18,且a :x=x :b ,则x=3、把mn=pq (m,n,p,q 都不等于0)写成比例式,写错的是( ) A .m q p n = B .p nm q= C .q n m p = D .m p n q =4、如图,△ABC 中,AG DEAH BC=,且DE=12,BC=15,AG=4,求AH .5、在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离为 7.5cm ,那么福州与上海之间的实际距离是多少?归纳:比例的基本性质如果b a =dc,那么__________。

九年级数学上册4.1.1成比例线段教案

九年级数学上册4.1.1成比例线段教案

课题:4.1.1成比例线段教学目标:1.结合现实情境,感受学习线段的比的必要性,了解线段的比和成比例线段.2.借助几何直观,掌握比例的性质及其简单应用.3.通过现实情境,进一步发展学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的密切联系.教学重、难点:重点:了解线段的比和成比例线段的概念,了解比例的基本性质及其应用.难点:了解线段的比和成比例线段的概念.课前准备:制作多媒体课件.教学过程:一、美图欣赏,情境导入导语:同学们,色彩斑谰的世界中有许多美丽的图形,它们有的形状、大小都相同,这就是我们前面学过和全等形(多媒体出示图1);有的只有形状相同,这就是相似图形(多媒体出示图2).你知如何刻画图形的相似吗?你知道如何判定两个三角形相似吗?你知道如何将一个图形放大或缩小吗?从今天开始,我们学习第四章,本章将研究图形的相似,探索三角形相似的条件,了解相似三角形的性质,并利用图形的相似解决一些简单的实际问题.本节课就让我们一起从“成比例线段”开始学习本章.【板书课题:4.1成比例线段(1)】图1 图2处理方式:学生观看生活中的存在的全等形及相似形,体会数学来源于生活,在全等形的基础上感知相似图形.设计意图:通过用幻灯片展示生活的的图片,引入本章的学习内容—相似图形.初步感知相似图形,引发学生思考相似图形的特征,激发学生的求知欲及学习兴趣.为新课的学习做好情感铺垫.二、探究学习,获取新知活动1:两条线段的比1.考考你的眼力(多媒体出示)你能在下面的这些图形中找出形状相同的图形吗?这些形状相同的图形有什么不同?处理方式:学生先自主观察这些图形的特点,然后在小组内交流自已的看法,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作以下引导:(1)图中形状相同的图形,大小有什么不同?(2)形状相同的图形其中的一个如何由另一个得到?(多媒体动画演示图形的放大与缩小)(3)形状相同的图形对应的线段如何变化的?(4)形状相同而大小不同的两个图形,你认为如何来描述它们的大小关系?设计意图:通过以上引导性问题引导学生共同总结出:对于形状相同而大小不同的两个图形,可以用相应线段长度的比来描述它们的大小关系.适时引出两条线段的比的概念.2.引入线段的比(多媒体出示)如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比(ratio)就是它们的长度比,即AB∶CD=m∶n,或写成AB mCD n=.其中,线段AB,CD分别叫做这个线段比的前项和后项.如果把mn表示成比值k,那么ABkCD=,或AB=k·CD.两条线段的比实际上就是两个数的比.处理方式:教师利用多媒体出示两条线段的比的定义.强调相关要点,明确两条线段的比实际上就是两个数的比.接着出示下面实例进一步加深学生对两条线段的比的认识.(多媒体出示)五边形 ABCDE与五边形A′B′C′D′E′形状相同,AB=5cm,A′B′=3cm.AB∶A′B′=5 : 3,就是线段AB与线段A′B′的比.这个比值刻画了这两个五边形的大小关系.设计意图:通过两个五边形对应边的比,具体说明线段的比的意义,进一步巩固对概念的理解.3.想一想(1)在计算两条线段的比时我们要注意什么?(2)两条线段长度的比与所采用的长度单位有没有关系?(3)两条线段的比结果有单位吗?处理方式:学生思考并在小组内交流以上问题,举例说明自己的理由.教师适时点拨引导,共同归纳出:在计算两条线段的比时我们要统一长度单位;两条线段长度的比与所采用的长度单位无关;两条线段的比结果没有单位,是一个数.设计意图:通过想一想使学生进一步加深对两条线段的比的认识.体会:两条线段长度的比与所采用的长度单位无关.但要采用同一个长度单位.活动2:成比例线段(多媒体出示)如图,设小方格的边长为1,四边形ABCD 与四边形EFGH 的顶点都在格点上,那么AB ,CD ,EF ,EH 的长度分别是多少?分别计算,,,AB AD AB EFEF EH AD EH的值,你发现了什么?处理方式:引导学生结合图形分析题意,明确图中两四边形的四条边的长度可以通过观察或勾股定理得出.给学生充足的时间计算,,,AB AD AB EF EF EH AD EH 的值,在计算的过程中体会AB ADEF EH=,AB EFAD EH=.教师借助多媒体展示解题思路及解题过程,规范学生的解题步骤的书写.完成后追问:你发现了什么?从而引出成比例线段的概念.强调:上图中AB ,EF ,AD ,EH 是成比例线段,AB ,AD ,EF ,EH 也是成比例线段.四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a /b =c /d ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.(多媒体出示)设计意图:通过方格纸上两个四边形对应边的比值的计算,引导学生发现这四组对应线段的比相等,进而引出比例线段的概念.跟踪练习:判断下列四条线段是否成比例.(1)2,(2)3,2,(3)4,6,5,10;(4)12,8,15,10.a b c d a b c d a b c d a b c d ===============处理方式:学生先自主判断,然后再在全班展示交流.共同总结出:四条线段成比例与这四条线段的顺序有关.设计意图:通过练习巩固学生对概念的理解.活动3:比例的基本性质议一议如果a,b,c,d四个数成比例,即a/b=c/d,那么ad=bc吗?反过来如果ad=bc,那么a,b,c,d四个数成比例吗?与同伴交流.处理方式:第一个问题可引导学生从两方面加以说明,一方面根据等式的基本性质,在ab=cd两边同时乘bd,得到ad=bc;另一方面可以介绍引入比值k的方法:设ab=cd=k,那么a=bk,c=d k,因此ad= bk·d=b·kd=bc.第二个问题,要注意条件.通过学生的展示,共同总结出比例的基本性质:如果ab=cd,那么ad=bc.如果ad=bc(a,b,c,d都不等于零),那么ab=cd.设计意图:通过对两个问题的讨论引出比例的基本性质.三、例题解析,应用新知例1如图,一块矩形绸布的长AB=a m,AD=1m,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即AE ADAD AB=,那么a的值应当是多少?处理方式:引导学生阅读、理解题意,自己尝试解答,教师利用实物投影展示学生的做题情况,借助多媒体展示解题过程,规范学生的书写,强调知识的应用.解:根据题意可知,AB=a m,AE=13a m,AD=1m.由AE ADAD AB=,得1131aa=,即2113a=.∴a2=3.开平方,得aa).设计意图:通过例题提供应用比例基本性质的一个具体情境,加深学生对比例基本性质的理解.让学生利用所学的知识来解决实际生活中的问题.想一想:生活中还有哪些利用线段比的事例?你能举例吗?学生举例:房屋装修平面图,手机模型,汽车模型,深圳世界之窗,建筑物的效果图等等.设计意图:进一步让学生体会线段的比在生活中的应用.四、回顾反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.处理方式:学生畅谈自己的收获!教师强调:1)线段的比的概念、表示方法;前项、后项及比值k;2)两条线段的比是有序的;与采用的单位无关,但要选用同一长度单位;3)两条线段的比在实际生活中的应用.4)比例的基本性质:如果ab=cd,那么ad=bc.如果ad=bc(a,b,c,d都不等于零),那么ab=cd.设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.五、达标检测,反馈提高活动内容:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)1.一条线段的长度是另一条线段长度的5倍,则这两条线段之比是_ _____.2.一条线段的长度是另一条线段长度的35,则这两条线段之比是___ ___ .3.已知a、b、c、d是成比线段,a=4cm,b=6cm,d=9cm,则c=_ _ __.4.如果2x=5y,那么xy=__ __.5.把mn=pq写成比例式,写错的是()A. m pq n=; B.p nm q=; C.q nm p=; D.m pn q=.6.已知a∶b∶c=2∶3∶4,且a+b+c=15,则a=___,b=___,c=___.处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.六、布置作业,课堂延伸必做题:课本 79页习题4.1 第1题、第2题.选做题:课本 79页习题4.1 第3题.板书设计:。

北师大版九年级数学上册4.1.1成比例线段课件

北师大版九年级数学上册4.1.1成比例线段课件

探究学习,获取新知
3.比例的基本性质
问题:如果a、b、c、d 四个数成比例,即
a b
c d

那么ad=bc 吗?反过来,如果ad=bc,那么a、b、
c、d 四个数成比例吗?
归纳新知
比例的基本性质
如果
a b
c d
,那么ad=bc.
如果ad=bc(a,b,c,d都不等于零),那么
a b
c d
.
即时练习
4.(教材随堂练习第 3题变式题)若线段 a,b,c,d成比例,其中 a=3 cm,b =6 cm,c=2 cm,则 d=____4_c_m____.
达标检测
第1课时 成比例线段
知识点 3 比例的基本性质
5. 已知x2=y3,那么下列式子中一定成立的是( B ) A. 2x=3y B. 3x=2y C. x=2y D. xy=6
想一想
在计算两条线段的比时我们要注意什么? (1)必须选用同一个长度单位 (2)两条线段长度的比与所采用的长度单位没有关 系 (3)两条线段的比结果没有单位,它的结果是一个 正实数 (4) 两条线段的比具有顺序性 (5) 两条线段的比实际就是两个数之比
做一做
如图,设小方格的边长为1,四边形ABCD与四
AB AD AB EF EF EH AD EH
上图中AB,EF,AD,EH是成比例线段, AB,AD,EF,EH也是成比例线段。
成比例线段与排列的顺序(叙述的顺序)有关
探究学习,获取新知
ac(或a:bc:d) bd
a,b,c,d叫作组成比例的项, d是a,b,c的第四比例项, a, d是比例的外项,b,c是比例的内项
温馨提示
上课前,请同学们准备好纸和笔!

《比例线段》PPT课件 (公开课获奖)2022年北京课改版 (5)

《比例线段》PPT课件 (公开课获奖)2022年北京课改版 (5)

c d


ab cd bd
设参数法 acmk
bd
n
2、认真观察图形,特别注意图形中线段的和、 差,巧妙地与合比性质结合起来.
3、要运用方程的思想来认识比例式,设出未 知数,列出比例式,化为方程求解.
在相同时刻的物高与影长成比例. 如果一古塔 在地面上的影长为50 m ,同时,高为1.5 m 的 测竿的影长为2.5 m ,那么古塔的高是多少?
2、竖直上抛物体的高度h和时间t 符合
关系式
h
v0t
1 2
gt
2,其中重力加速度g
以10米/ 秒 2 计算.爆竹点燃后以初速度v0
=20米/秒上升,问经过多少时间爆竹离
地15米?
作业
课后习题
6、7
2、比例的根本性质:
在比例式中,两个外思项考的:积由等于ad两=个b内c项的积. 还可以得到哪些
如果 a c ,那么a比d 例= 式bc?.
bd 如果 ad = bc 且(bd≠0),那么 a c .
bd
3、判断四条线段成比例的方法:
〔1〕直接计算a:b 和 c:d 是否相等;
(2) ad = bc
绿苑小区住宅设计,准备在每两幢楼房之间,开辟 面积为900平方米的一块长方形绿地,并且长比宽多 10米,那么绿地的长和宽各为多少?
解:设宽为x米,那么长为〔 x +10〕

x(x+10)=900
依题整意理得得: x2+10x-900=0
解得: x1 55 37 x2 55 37
所求的 x 1 , x
内项
内项
a、b、c
外项 a :b = c :d. 的第四比
例项
外项

4.1比例线段(1)

4.1比例线段(1)
比例式变形的常用方法: 利用等式性质 设比值k
2x 3y z 求 的值 x 3y z
探究活动
在平面直角坐标系中,过点(a,b)和 坐标原点的直线是一个怎样的正比例函 数的图像? 如果a,b,c,d四个数成比例,你认为点(a, b),点(c,d)和坐标原点在一条直线上吗? 请说明理由.
课堂小结: 比例有如下性质: a c ad bc (a,b,c,d均不为零) b d
,判断下列比例式是否
ab cd (1) b d a ac ( 2) b bd
设比值 k
比例式变形的常用方法: 利用等式性质
试一试:
已知
a 3 b 4
ab 求(1) b
(2)
ab b
(3) 2a b
a 2b
的值
x y z 且xyz≠0 想一想:已知 2 3 4
已知ab=cd,请写出有关a,b,c,d成立的
比例式. (至少写4个)
试一试:
1. 根据下列条件,求a:b的值.
a b (1) 2 a 3b ( 2) 5 4
2. 求下列比例式中的 x.
x x 1 (1) 4 : 3 5 : x ( 2) 3 2
3、已知
成立,并说明理由:
a c b d
13,9,2,6 2 12, 6 , 10, 33, 3, 2 ,2
5
你能换一个数使(3)成比例吗?
做一做
a c 利用等式性质,你能从 推导出 b d ad=bc 吗?
比例有如下性质: a c ad bc (a,b,c,d均不为零) b d
反过来呢?
试一试: 练习:
9︰12 = 6︰8 =
3 4 3 4

湘教版数学九年级上册3.1《比例线段》说课稿1

湘教版数学九年级上册3.1《比例线段》说课稿1

湘教版数学九年级上册3.1《比例线段》说课稿1一. 教材分析湘教版数学九年级上册3.1《比例线段》是整个初中数学的重要内容,是对比例的基本概念和性质的进一步延伸。

本节内容通过比例线段的概念,引入了线段之间的比例关系,让学生体会数学与实际生活的联系,培养学生的抽象思维能力。

教材从生活实例出发,引出比例线段的概念,然后通过大量的例题和练习,使学生掌握比例线段的性质和运用。

教材在编写上注重引导学生主动探究,培养学生的动手操作能力和合作意识。

二. 学情分析九年级的学生已经掌握了比例的基本概念和性质,对数学知识有一定的积累。

但是,对于比例线段的理解和运用,还需要进一步的引导和培养。

因此,在教学过程中,我将以学生为主体,注重启发式教学,引导学生主动探究,提高学生的数学素养。

三. 说教学目标根据新课程标准的要求,本节课的教学目标如下:1.知识与技能:让学生理解比例线段的概念,掌握比例线段的性质,并能运用比例线段解决实际问题。

2.过程与方法:通过观察、操作、讨论等数学活动,培养学生的抽象思维能力和解决问题的能力。

3.情感态度与价值观:让学生感受数学与实际生活的联系,培养学生的合作意识,激发学生学习数学的兴趣。

四. 说教学重难点1.教学重点:比例线段的概念及其性质。

2.教学难点:比例线段的运用和解决实际问题。

五. 说教学方法与手段为了实现本节课的教学目标,我将以学生为主体,采用启发式教学法、讨论法、案例教学法等多种教学方法,引导学生主动探究,提高学生的数学素养。

同时,利用多媒体课件和教具,辅助教学,使抽象的数学概念形象化、直观化。

六. 说教学过程1.导入:从生活实例出发,引出比例线段的概念,激发学生的学习兴趣。

2.新课导入:介绍比例线段的性质,引导学生主动探究,培养学生的抽象思维能力。

3.案例分析:分析实际问题,引导学生运用比例线段解决问题,提高学生的动手操作能力。

4.课堂练习:设计具有针对性的练习题,巩固所学知识,提高学生的应用能力。

22.1-4(1)比例线段-平行线分线段成比例定理-1课时

22.1-4(1)比例线段-平行线分线段成比例定理-1课时
如图:DE∥BC, 2 已知: — AD 求 : —— = 5 2 AE AB —— —— = — AC 5 B
E
D
A C
练习二:
1、如图: 已知 DE∥BC, D AB = 14, AC = 18 , AE = 10, 求:AD的长。 B A 2、如图: 已知AB⊥BD, ED⊥BD,垂足分别为 B B、D。 BC AC = —— 求证:—— EC DC C E C D
AB AC DB EC
AD AE AB AC
例题1 解:
已知:DE//BC, AB=15,AC=9, BD=4 . 求:AE=?
A
∵ DE∥BC
AB AC ∴ —— = —— BD CE B 15 9 即 —— = —— 4 CE D 12 ∴ CE = — 5 2 12 ∴ AE= AC+CE=9+ — =11—
(一)平行线分线段成比例定理的预备定理
Байду номын сангаас
回顾:
AD AE 例1:在△ABC中, DB EC 求证(1) AB AC DB EC
A
D B E C
(2) AD AE AB AC 问题: 是否有这样的直线能使例1中的条件成立呢? 这条直线它必须满足什么样的条件呢?
已知,如图,过△ABC的AB上任意一点D作直线 DE平行BC交AC于点E,
AD AE 求证: DB EC
A
h
D B E C
AD AE 这就是说:在△ABC中,当DE∥BC时, DB EC 成立。
∵DE∥BC ∴ AD AE DB EC
∴ AB AC
DB EC
B
A
D
E
C
AD AE AB AC

4.1第1课时线段的比和比例的基本性质-北师大版九年级数学上册习题课件

4.1第1课时线段的比和比例的基本性质-北师大版九年级数学上册习题课件

ACB=90°,AC=3,BC=4.∴AB=5.∵S = AB·CD= BC·AC,∴CD= = 15.如图,在△ABC中,AD⊥BC,BE⊥AC.
△ABC
2 2 AB 15.如图,在△ABC中,AD⊥BC,BE⊥AC.
第一课时 线段的比和比例的基本性质
2.4,∴在 Rt△ADC 中,AD= 试判断线段AD、BE、AC、BC是否成比例,并说明理由.
15.如图,在△ABC中,AD⊥BC,BE⊥AC.
17.【核心素养题】如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为D,已知AC=3,BC=4.
17.【核心素养题】如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为D,已知AC=3,BC=4.
15.如图,在△ABC中,AD⊥BC,BE⊥AC.
第一课时 线段的比和比例的基本性质
AC2-CD2=1.8,∴BD=AB-AD=3.2,∴AD∶CD
试判断线段AD、BE、AC、BC是否成比例,并说明理由.
=CD∶BD=3∶4,即线段 15.如图,在△ABC中,AD⊥BC,BE⊥AC.
注意:求两条线段的比时,长度单位必须统一.
AD、CD、CD、BD
是成比例线段.
(2)比例尺 在地图或工程图纸上,图上长度与它所表示的实际长度的比通
常称为比例尺.比例尺是两条线段的比的一种. 注意:求两条线段的比时,长度单位必须统一.
知识点 2 比例线段的定义 四条线段 a、b、c、d 中,如果 a 与 b 的比等于 c 与 d 的比,即ab=dc,那么这四 条线段 a、b、c、d 叫做成比例线段,简称比例线段. (1)a、b、c、d 分别叫做比例的第一、二、三、四比例项; (2)a、d 叫做比例外项,b、c 叫做比例内项. 提示:判断给定的四条线段是否成比例的方法:先将四条线段统一单位,再按 大小顺序排列好,看前两条线段之比与后两条线段之比是否相等;也可看最长线段 与最短线段长度的乘积与剩余两条线段长度的乘积是否相等,若相等则成比例,否 则不成比例.

22.1比例线段(第1课时)

22.1比例线段(第1课时)
2、在记两个多边形相似时,要把表示对应角顶点的字母写 在对应的位置上。
S
新课讲解
如果两个多边形相似,那么它们的对应角有 什么关系? 对应边呢?
答:如果两个多边形相似,它们的对应角都相等,
对应边成比例。
新课讲解
如图,设小方格的边长为1,四边形 ABCD与四边形EFGH的顶点都在格点上,那么
AB,AD,EF,EH的长度分别是多少?分别计
在这个过程中,两个图形上的相应线段也被“放大” 或“缩小”,因此,对于形状相同而大小不同的两个图 形,我们可以用相应线段长度的比来描述它们的大小关
系.
探究一
(1)
(2)
(1)在上图(1)两个多边形中,是否有相等的内角?
(2) 在上图(1)两个多边形中,夹相等内角的两边的 比例是否相等?
新课引入
A1 F1
算 AB , AD , AB , EF 值. EF EH AD EH 答案:AB=8,AD= 2 10 ,EF= 10 ,EH=4 AB 8 , AD 10 , AB 4 , EF 10 EF 10 EH 2 AD 10 EH 4 你发现了什么?
例题分析
例 如图,一块矩形绸布的长AB=am,AD=1m,
B1 C1
A F
B C
E1
D1
E
D
(1)在上图两个多边形中,是否有相等的内角?
∠A=∠A1,∠B=∠B1,∠C=∠C1,∠D=∠D1,∠E=∠E1,∠F=∠F1
(2)在上图两个多边形中,夹相等内角的两边是否成比例?
AB BC CD DE EF FA A1B1 B1C1 C1D1 D1E1 E1F1 F1 A1
新课讲解
相似多边形概念: 一般地,两个边数相同的多边形,如果它们的对

4.1.1线段的比与比例的基本性质(教案)北师大版数学九年级上册

4.1.1线段的比与比例的基本性质(教案)北师大版数学九年级上册

第四章图形的相似1成比例线段第1课时线段的比与比例的基本性质教学目标:1.结合实际情境了解线段比的概念,并会计算两条线段的比.2.结合实际情境了解比例线段的概念.3.理解并掌握比例的基本性质,并能进行简单应用.4.通过现实情境,进一步提高学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识.教学重难点:重点:理解线段的比与成比例线段的概念及求解.难点:判断四条线段是否成比例及比例基本性质的灵活应用.教学方法:讲授法、练习法教学课时:1教学过程:导入新课请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?解:这些例子都是形状相同、大小不同的图形.它们之所以大小不同,是因为它们图上对应的线段的长度不同.讲授新知知识点1线段的比已知线段a=30 cm,b=60 cm,c=0.15 m,d=30 cm.(1)求线段a与线段b的比;(2)求线段c与线段d的比.[点拨]先化为相同单位,然后进行计算.解:(1)a∶b=30∶60=1∶2.(2)0.15 m=15 cm,c∶d=15∶30=1∶2.[归纳]如果选用同一个长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么就说这两条线段的比AB ∶CD=m ∶n 或写成AB CD =m n .其中,AB ,CD 分别叫做这个线段比的前项和后项.如果把m n表示成比值k ,那么AB CD =k 或AB=k ·CD. 知识点2 成比例线段计算下列四条线段中a ∶b 与c ∶d 的值,你能发现什么?(1)a=2 cm,b=4 cm,c=3 m,d=6 m;(2)a=0.8,b=1,c=2.4,d=3.解:(1)a ∶b=2∶4=1∶2;c ∶d=3∶6=1∶2,两个比相等.(2)a ∶b=0.8∶1=4∶5;c ∶d=2.4∶3=4∶5,两个比相等.[归纳]四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a b =c d,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.注意:(1)若a ∶b=k ,说明a 是b 的k 倍;(2)两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致;(3)两条线段的比值是一个没有单位的正数. 知识点3 比例的基本性质有四条线段:a=3,b=4,c=6,d=8,它们成比例吗?计算ad 与bc 的值,你能发现什么? 解:它们成比例,ad=bc.[归纳]如果a ,b ,c ,d 四个数成比例,即a b = c d .那么ad=bc.如果ad=bc (a ,b ,c ,d 都不等于0),那么a b = c d . 范例应用例1 如图所示,已知在Rt △ABC 中,∠C=90°,BC=8 cm,AC=6 cm,CD 是斜边AB 上的高,求CD ∶AB 的值.解:在Rt △ABC 中,由勾股定理,得AB=√AC 2+BC 2=√62+82=10(cm ),由面积公式,得S △ABC = 12AC ·BC=12AB ·CD.所以CD=6×810 = 245(cm ).所以CD ∶AB = 245∶10=1225.例2 下列四个数成比例的是(A)A.3,9,5,15B.1,2,3,4C.2,4,5,8D.3,5,7,9例3 若x ∶3=5∶(x+2),求x 的值.解:因为x ∶3=5∶(x+2),则x (x+2)=3×5.即x 2+2x15=0. 解得x=5或x=3.所以x 的值为5或3.课堂训练1.如果3x=5y,则下列比例式成立的是(B)A.x y = 35B.x y = 53C.x 3 = y 5D.3x = 5y2.已知a b =52,那么下列等式中正确的是(A)A.2a=5bB.a+b=7C.a=5,b=2D.a 2 = b 5 3.在比例尺为1∶2 000 000的地图上,量得甲、乙两地的距离是2.4 cm,甲、乙两地的实际距离是 48 km.4.如图所示,有矩形ABCD 和矩形A'B'C'D',AB=8 cm,BC=12 cm,A'B'=4 cm,B'C'=6 cm.则线段A'B',AB,B'C',BC 是成比例线段吗?解:因为AB=8 cm ,BC=12 cm ,A'B'=4 cm ,B'C'=6 cm ,所以A'B'AB =48=12,B'C'BC = 612=12. 所以A'B'AB =B'C'BC .所以A'B',AB ,B'C',BC 是成比例线段.5.已知三个数2,4,8,请你再添上一个数,使它们成比例,求出所有符合条件的数. 解:设添加的数为x ,当2∶4=8∶x 时,x=16.2∶4=x ∶8时,x=4.2∶x=4∶8时,x=4.x ∶2=4∶8时,x=1.所以可以添加的数有1,4,16.课堂小结1.线段比的概念.2.成比例线段的概念、判断及注意事项.3.比例的基本性质.板书设计第四章 图形的相似1 成比例线段第1课时 线段的比与比例的基本性质1.线段的比:如果选用同一个长度单位量得两条线段AB,CD 的长度分别是m,n,那么就说这两条线段的比AB ∶CD=m ∶n 或写成AB CD =m n.2.成比例线段:四条线段a,b,c,d 中,如果a 与b 的比等于c 与d 的比,即a b =c d ,那么这四条线段a,b,c,d 叫做成比例线段,简称比例线段.3.比例的基本性质:如果a,b,c,d 四个数成比例,即a b =c d ,那么ad=bc.如果ad=bc(a,b,c,d 都不等于0),那么a b =c d .教学反思:本节课主要学习比例线段的概念及性质,成比例线段的概念及比例的基本性质,对学生而言,这个概念基于图形背景中,比较直观,学生比较容易理解.比例的性质,是后续研究相似图形的基础,同时也可以为分式的运算提供一些便捷,而且比例的基本性质中蕴含着一些基本的数学方法,可适当运用到后续知识的学习中,是本节课重要的教学任务.。

浙教版数学九年级上册4.1《比例线段》说课稿1

浙教版数学九年级上册4.1《比例线段》说课稿1

浙教版数学九年级上册4.1《比例线段》说课稿1一. 教材分析《比例线段》是浙教版数学九年级上册第四章第一节的内容。

本节内容是在学生已经掌握了线段、射线、直线的概念以及平行线、相交线的基础知识上进行学习的。

比例线段是数学中一种重要的比较方法,它不仅可以解决实际问题,而且也是解决比例、比例分配等问题的重要工具。

本节内容主要包括比例线段的定义、性质和应用。

教材通过生活中的实例引入比例线段的概念,然后引导学生探究比例线段的性质,最后通过练习让学生掌握比例线段的运用。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和探究能力,对于线段、射线、直线等基础知识也有了一定的了解。

但是,学生对于比例线段的理解和运用还需要进一步的引导和培养。

此外,学生可能对于比例线段的实际应用场景还不够了解,需要通过实例和练习来加深理解。

三. 说教学目标1.知识与技能目标:让学生掌握比例线段的定义、性质和运用。

2.过程与方法目标:通过实例引入比例线段的概念,引导学生探究比例线段的性质,培养学生解决问题的能力。

3.情感态度与价值观目标:让学生体验数学与生活的紧密联系,培养学生的学习兴趣。

四. 说教学重难点1.教学重点:比例线段的定义、性质和运用。

2.教学难点:比例线段的性质的证明和运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、案例教学法等。

2.教学手段:利用多媒体课件、实物模型、练习题等。

六. 说教学过程1.导入:通过生活中的实例引入比例线段的概念,让学生感受数学与生活的联系。

2.新课导入:介绍比例线段的定义和性质,引导学生进行探究和证明。

3.实例分析:通过具体的例子让学生理解比例线段的运用和解决实际问题的能力。

4.练习巩固:让学生通过练习题来巩固比例线段的定义、性质和运用。

5.总结提升:对本节内容进行总结,强调比例线段的重要性和应用场景。

七. 说板书设计板书设计要清晰、简洁,能够突出比例线段的定义、性质和运用。

导学 案(25)4.1成比例线段(1)

导学 案(25)4.1成比例线段(1)

课题:4.1成比例线段(1)【教学目标】理解相似形、线段的比、成比例线段概念及其性质;【课前预习】1.解方程:743)1(=x 743)2(=x2.两个口袋中分别装有两张卡片:a,d 和 b,c ;分别从中取出一张,共有______种结果:_______________.3. 线段的比:如果选用同一个长度单位量得两条线段AB,CD 的长度分别是m ,n ,那么就说这两条线段的比AB :CD =___:____,或写成___________其中,AB,CD 分别叫做这个线段比的____项和______项.如果把nm表示成比值k,那么k CDAB =,或AB=_______.两条线段的比实际上就是______________的比。

4. 成比例线段:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即_________,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称_______________.5.如果dc b a =,那么_______=ad 。

6.如果)都不等于0,,,(d c b a bc ad =,那么_____=b a 【探究新知一】阅读课本P77。

1. 线段AB=5cm ,A ’B ’=3cm 。

AB : A ’B ’=___ :______,线段AB=0.5dm ,A ’B ’=0.3dm 。

AB : A ’B ’=___ :______,2.设小方格的边长为1,四边形ABCD 与四边形EFGH 的顶点都在格点上,那么AB=___,AD=____,EH=____,EF=____;__________________是成比例线段,___________________也是成比例线段, 练习:1、线段a=8 cm, b=4 dm,_____=ba 2、线段a 的长度是线段b 长度的5倍,则这两条线段之比是____________,____,___,====EFEH AD AB EF AD EH AB3. 线段a 的长度是线段b 长度的53,则这两条线段之比是______. 4.在比例为1:5000的地图上,一段路的图上距离为16厘米,这段路的实际距离为____米5.下列是4条线段的长度,判断它们是否成比例。

4.1.1成比例线段

4.1.1成比例线段

PB·PC
;
②如果CD
EB
DF AD
,那么AD·CD=
EB·DF ;
③如果HF·NF=HE·NK,
那么 HE
NF
HF ; NK
④如果EF·BD=AC·EA, 那么 AC BD . EF EA
2.如果2x 5y.那么 x 5 y2
比例的计算:
一、已知比值
1.若 x y 17 , 则 x 8
变式:已知线段AB=15 mm,CD=3 cm,则线段
AB与CD的比为

2.已知线段a,b,c,d成比例,
(1)若a=3㎝,b=2㎝,c=6㎝,则 d= 4 ㎝; (2)若a=5㎝,c=3㎝,d=9㎝,则 b= 15 ㎝;
(3)若a=6㎝,b=1㎝,d=3㎝,则 c= 18 ㎝.
3.若m是2、3、6 的第四比例项,则m= 9 ;
bd 等积式
2.如果ad=bc(a,b,c,d都不等于0),那么
ac bd
由ad=bc还可以得到哪些比例式?
①两边同时除以cd
ab cd
②两边同时除以bd
ac bd
③两边同时除以ab
d c ba
④两边同时除以ac
d b ca
自学检测2:(2+5+5分钟) 1.完成下列题目:
①如果
PA PB
PPDC ,那么PA·PD=
设比值k
1
.若x 2
y 3
,则
x y
;x x
-
y y
2.已解知:3a设2x
b 4
3y5ck
,求
a b c 及 a b c的值。
c
abc
3.已知
则 a5则2xyxa7b2324kkk,c8by, 3233且ck的3a值 2为b _c_

4.1 比例线段(1) 课件

4.1 比例线段(1) 课件

a 0.02米 2 = = b 0.03米 3
a 20毫 米 2 = = b 30毫 米 3
2.比例的基本性质:
a c = , ad=bc (abcd都不为零) b d
例1;根据下例条件,求a:b的值. a b (1)2a=3b; (2) 5 4 a c 2.已知 = , 判断下例比例是否成立, 并说明理由. (1) a b c d
线段b叫线段a、c的比例中项。
1.线段的比
定义:在同一长度单位下,两条线段 的长度的比叫做这两条线段的比。
即 果 同 长 单 量 线 a、 如 用 一 度 位 得 段 b的 长 分 是 n, 么 度 别 m、 那 a:b=m:n或 a m = 。 b n
a 在 a:b或 中 a叫 的 , 比 b
前 , 比 项 b叫 的 后 项
已知 线段a、b
a
b
量 它 的 度 得 们 长 a=2cm,b=3cm , 么 那 a、 条 段 比 是 们 度 比 b两 线 的 就 它 长 的 。 a 2 即a:b=2:3或 = b 3 如 改 米 毫 作 线 的 度 位 果 用 、 米 为 段 长 单 , 那 a、 条 段 比 别 : 么 b两 线 的 分 是
已知四个数a、b、c、d , a c 如果 = , 或 a:b=c:d, b d 那么 a、b、c、d 叫做组成比例的项, 线段 a、d 叫做比例外项,
线段 b、c 叫做比例内项,
线段 d 叫做 a、b、c的第四比例项.
如果作为比例内项的是相同的
线段,即
a b = b c
或a:b=b:c,那么
a 2 1 = = b 30 15
对吗? 为什么? 答: 不对.根据定义, 在同一长度单位 下,两条线段的长度的比叫做这两条 线段的比

理解成比例线段的概念

理解成比例线段的概念
若X:4=Y:5=Z:7则 (X+Y+Z)/Z=___
判断题
若ad=bc则a/b=c/d
若a:b=c:d则a:b=(a+c)/(b+d)
三.若a,b,c,d长分别为
2CM,1.5CM,5,25CM,7CM 则这四条线段不是成比例线段.
由ad=bc得出的比例式是唯一的.
若a/b=c/d则a2/b2=C2/d2
自学指导
二.认真阅读P95议一议上面的文
○ 字,理解比例线段的概念,画出
02

○ 键词,自学后比谁能灵活应用概
念.
想一想
y
F
8
7
y
A
6
4
5
3
2
C
1
B
O0 1 2 3 4 5 6 7 8 9 10 x
-1
D
-2
E
(图1)
4
3
H
2
1
G
O0 1 2 3 4 5 6 7 8 9 10 x
-1
-2
L
-3 -4
例 2 .( 1 ). 如图 4 3 ,
b
d
已知 a c 3 ,
由 a c bd
bd
求 ab和 cd ;
b
d
ab a b a 1 b bb b
c d c d c 1
( 2 ). 如果 a c k ( k 为常数
),
d 因此
dd d
bd
那么 a b c d 成立吗 ?
a 1 c 1
M
(图2)
❖1、线段CD与HL,OA与OF,BE与GM的长度各是多少?
❖2、线段CD与HL,OA与OF,BE与GM的比各是多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、理解比例的基本性质. 2、能根据比例的基本性质求比值. 3、能根据条件写出比例式或进行比例式简单的变形.
数学语言表示: 两 内项 的乘积等于两外项 的乘积 注意:
1、
2、
3、
计时器(点我)
作业题 1、2、3、4
作业题 5、6
返回(点我)
1、理解比例的基本性质. Байду номын сангаас、能根据比例的基本性质求比值. 3、能根据条件写出比例式或进行比例式简单的变形.
计时器(点我)
结合思考题自学P(96)--(97)课内练习前内容,并完成: 做一做 1、2 课内练习 1、2、3
1、比例有如下性质:
用数学语言怎么表示?
2、检验比例式变形的最好方法是什么?
显示答案(点我)
相关文档
最新文档