九年级数学上册231成比例线段1新版华东师大版

合集下载

23.1.1 成比例线段 说课稿-华东师大版九年级数学上册

23.1.1 成比例线段 说课稿-华东师大版九年级数学上册
线段的比和成比例线段是“数”的比和比例概念的拓展。
ห้องสมุดไป่ตู้学情分析
已有的知识水平:学生已经学习了全等图形的图形的概念,对两个图形的“形状相同”有一定的体会;学生已经在小学阶段接触了“线段的比”的概念;
已有的能力特征:有了一定的类比能力
课程标准与学习目标设置
【课标要求】
了解比例的基本性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割。
年级
九年级
科目
数学
课型
概念课
课时
1
主备
主说
课题
成比例线段
教材结构分析
继轴对称、平移和旋转之后,本章介绍的“相似”也是图形的一种变换。前三者保证了图形的形状和大小都不发生变化,而“相似变换”则是保证图形的形状不发生变化,但大小可能会发生变化。这是直线型研究的继续,即从几何中保距变换的研究进入保角变换的研究,具体表现在线段关系从“相等”发展为“成比例”,多边形从“全等”发展为“相似”。相似图形承接全等图形,图形的相似是对图形全等内容的进一步拓广和发展,全等是相似的特例。同时,相似是研究直线型图形的有效工具,是解直角三角形、学习三角函数知识和研究圆中线段关系的重要基础。
相似多边形的定义涉及比例线段,因此比例线段是研究相似多边形的必要准备。本章第一节首先介绍了成比例线段的概念、比例的基本性质,在此基础上先探索归纳出“平行线分线段成比例”的基本事实,然后根据“平行线分线段成比例”的基本事实推出结论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。用这一结论可以得出相似三角形判定定理的预备定理。“平行线分线段成比例”是本节的重点内容。
四基三点
基础知识:相似图形、线段的比、成比例线段的基本概念

华东师大版九年级数学上册第23章《图形的相似》PPT课件

华东师大版九年级数学上册第23章《图形的相似》PPT课件

AB AB

BC 之间的关系是什么?
BC
AB BC A' B' B'C'
归纳
两条线段的比就是它们长度的比;
像这样,对于四条线段a、b、c、d,如果其中两条线段的
长度的比等于另外两条线段的比, 如 a c (或a∶b=
bd
c∶d),那么,这四条线段叫做成比例线段,简称比例线 段.此时也称这四条线段成比例.
∴ ac bd
∴ 线段a、b、c、d是成比例线段.
• 注意:
• 1.若a:b=k , 说明a是b的k倍;
• 2.两条线段的比与所采用的长度单位无关,但求比时两 条线段的长度单位必须一致;
• 3.两条线段的比值是一个没有单位的正数;

4.除了a=b外,a:b≠b:a,
a b

b a
互为倒数.
三 比例的基本性质
k.
第23章 图形的相似
23.2 相似图形
学习目标
1.理解相似多边形的定义,并能根据定义判断两个多边形是 否相似;(重点)
2.掌握相似比的概念并会求相似比; (重点) 3.理解并且掌握相似多边形的性质与判定.(难点)
观察与思考 请观察下面几组图片,是我们前面学过的相似图形吗?
一 相似多边形的性质
a c ab cd bd b d
ab cd ab cd
等比性质:
a
c
...
n
a c ... n
a
(b+d+···+m≠0)
bd
m b d ... m b
当堂练习
1.下列各组数中一定成比例的是( B )
A.2,3,4,5

2022秋九年级数学上册 第23章 图形的相似 23.1成比例线段1成比例线段课件华东师大版

2022秋九年级数学上册 第23章 图形的相似 23.1成比例线段1成比例线段课件华东师大版
(3)a=1.1 cm,b=2.2 cm,c=3.3 cm,d=5.5 cm. _______不__是__成__比__例__线__段___________________
5.【中考·陇南】已知 a2=b3 (a≠0,b≠0),下列变形错误的 是( B )
A.
ab=23
B.2a=3b
C.
ba=32
D.3a=2b
2.对于给定的四条线段a、b、c、d,如果其中两条线段的 长度之比等于另外两条线段的长度之比,如 ab=dc (或a:b=c:d),那么,这四条线段叫做成比例线段,
简称比例线段,此时也称这四条线段成比例.
3.比例的基本性质:如果 =bc,那么__ab_=__dc___.
ab=dc
,那么__a_d_=__b_c_.如果ad
5-1 A. 2
3- 5 C. 2
5+1 B. 2
3+ 5 D. 2
【点拨】∵ BACB=AABC ,∴AB2=BC×AC.又∵AC=1,
AB=AC-BC,∴(1-BC)2=BC,解得BC= 3± 5.
又∵BC<AC=1,∴BC= 3- 5.故选C.
2
2
【答案】C
12.已知三条线段的长度分别是2 cm, 2 cm,4 cm.如果再
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/42022/3/42022/3/43/4/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/42022/3/4March 4, 2022 4、享受阅读快乐,提高生活质量。2022/3/42022/3/42022/3/42022/3/4

九年级数学上册第23章图形的相似23.1成比例线段23.1.2平行线分线段成比例同步练习华东师大版

九年级数学上册第23章图形的相似23.1成比例线段23.1.2平行线分线段成比例同步练习华东师大版

23.1.2 平行线分线段成比例知识点 1 平行线分线段成比例1.如图23-1-3,AD ∥BE ∥CF ,直线m ,n 与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,根据平行线分线段成比例,可得AB BC =()() ,若AB =5,BC =10,DE =4,可得()()=()(),解得EF =________.图23-1-32.如图23-1-4,在四边形ABCD 中,点E ,F 分别在AD 和BC 上,AB ∥EF ∥DC ,且DE =3,DA =5,CF =4,则FB 的长为( )A.32B.83C .5D .6图23-1-43.如图23-1-5,若AD ∥BE ∥CF ,直线l 1,l 2与平行线分别交于点A ,B ,C 和点D ,E ,F .若AB =BC ,则DE 与EF ________(填“相等”或“不相等”).图23-1-54.如图23-1-6,在四边形ABCD 中,AD ∥BC ,E 是AB 上一点,EF ∥BC 交CD 于点F .若AE =2,BE =6,CD =7,则FC =________.图23-1-65.如图23-1-7,已知AD ∥BE ∥CF ,它们依次交直线l 1,l 2于点A ,B ,C 和点D ,E ,F .如果AB =6,BC =10,那么DEDF的值是________.图23-1-76.[教材练习第1题变式]如图23-1-8,直线a ∥b ∥c .(1)若AC =6 cm ,EC =4 cm ,BD =8 cm ,则线段DF 的长度是多少厘米? (2)若AE ∶EC =5∶2,DB =5 cm ,则线段DF 的长度是多少厘米?图23-1-8知识点 2 平行线分线段成比例的推论7.[2016·兰州改编]如图23-1-9,在△ABC 中,因为DE ∥BC ,所以AD BD =( )( ).若AD BD =23,则AD BD =( )( )=________.图23-1-98.如图23-1-10,直线l 1∥l 2∥l 3,直线AC 与l 1,l 2,l 3分别交于点A ,B ,C ,直线DF 与l 1,l 2,l 3分别交于点D ,E ,F ,AC 与DF 相交于点G ,且AG =2,GB =1,BC =5,则DEEF的值为( )A. 12 B .2 C. 25 D. 35图23-1-109.如图23-1-11,在△ABC中,DE∥BC,且分别交AB,AC于点D,E,则下列比例式不正确的是( )A.ABAD=ACAEB.ABAC=ADAEC.ADBD=AEECD.ABDE=ACEC图23-1-1110.如图23-1-12,若AB∥DC,AC,BD相交于点E,且AE=2,EC=3,BD=10,则ED =________.图23-1-1211.如图23-1-13,在△ABC中,DE∥BC,且DB=AE.若AB=5,AC=10,求AE的长.图23-1-1312.如图23-1-14,已知AB∥CD∥EF,AD∶AF=3∶5,BE=10,那么BC的长为________.图23-1-1413.如图23-1-15,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A,B,C都在横格线上.若线段AB=4 cm,则线段BC=________cm.图23-1-1514. 如图23-1-16,AD为△ABC的中线,E为AD的中点,连结BE并延长交AC于点F,则CFAF=__________.15.如图23-1-17,在△ABC中,DF∥AC,DE∥BC,AE=4,EC=2,BC=8,求CF的长.图23-1-1716.如图23-1-18,BE平分∠ABC,DE∥BC交AB于点D,AC=8,AB=9,CE=4,求DE的长.图23-1-1817.对于平行线,我们有这样的结论:如图23-1-19①,AB∥CD,AD,BC交于点O,则AODO=BOCO.请你利用该结论解答下列问题:如图②,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.图23-1-19教师详答1.DE EF 5 10 4 EF 8 2.B [解析] ∵AB ∥EF ∥DC ,∴DE DA =CF CB .∵DE =3,DA =5,CF =4,∴35=4CB ,∴CB =203,∴FB =CB -CF =203-4=83.故选B.3.相等 [解析] 因为AD ∥BE ∥CF ,所以AB BC =DEEF.因为AB =BC ,所以DE =EF . 4. 214 [解析] 因为AD ∥EF ∥BC ,所以AE EB =DF FC .因为AE =2,BE =6,CD =7,所以26=7-FC FC ,所以FC =214. 5 . 38 [解析] ∵AD ∥BE ∥FC ,∴AB BC =DE EF.又∵AB =6,BC =10,∴DE EF =35,∴DE DF =38.6.解:(1)∵a ∥b ∥c ,∴BD DF =ACEC,即8DF =64,解得DF =163(cm). 故线段DF 的长度是163 cm.(2)∵a ∥b ∥c ,∴BF DF =AE EC =52,即5+DF DF =52,解得DF =103(cm). 故线段DF 的长度是103 cm.7.AE EC AE EC 238.D [解析] ∵AG =2,GB =1,∴AB =AG +GB =3.∵直线l 1∥l 2∥l 3,∴DE EF =AB BC =35.故选D.9.D 10.611.解:∵DE ∥BC ,∴AB DB =ACEC,∴5AE =1010-AE ,∴AE =103. 12. [解析] ∵AB ∥CD ∥EF ,∴BC BE =AD AF ,即BC 10=35,解得BC =6.13. 12 [解析] 如图,过点A 作AE BD 于点D .∵练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴AB BC =AD DE ,即4BC =26,∴BC =12(cm).14. 2 [解析] 如图,过点D 作∥,交于点G , 则AF FG =AE ED ,FG GC =BDDC.又∵E 为AD 的中点,AD 为△ABC 的中线, ∴AE =ED ,BD =DC , ∴AF FG =AE ED =1,FG GC =BD DC=1, ∴AF =FG ,FG =GC , ∴CF =2AF ,∴CF AF=2. 15.解:∵DE ∥BC ,∴AD AB =AE AC =46=23. ∵DF ∥AC ,∴AD AB =CF BC =23,∴CF 8=23,∴CF =163. 16.解:∵DE ∥BC , ∴AB DB =AC CE, ∴9DB =84,∴DB =92. ∵BE 平分∠ABC ,∴∠ABE =∠CBE . ∵DE ∥BC ,∴∠CBE =∠DEB , ∴∠ABE =∠DEB ,∴DE =DB =92.17.解:过点C 作CE ∥AB 交AD 的延长线于点E, 则 BD DC =ADDE.又∵BD =2DC ,AD =2, ∴DE =1. ∵CE ∥AB ,∴∠AEC =∠BAD =75°.又∵∠CAD=30°,∴∠ACE=75°,∴AC=AE=AD+DE=3.。

最新华东师大版九年级数学上册《平行线分线段成比例》教学设计

最新华东师大版九年级数学上册《平行线分线段成比例》教学设计

华师大版九年级上册23.1.2成比例线段教案 教学内容:课本P51页~P56页。

教学目标:1、理解平行线分线段成比例,会表述多种比例方式;2、掌握平行于三角形一边的直线分另两边成比例,会写出相应的比例线段; 3、体验数学的和谐美。

教学重点:平行线分线段成比例教学难点:对应线段的理解教学准备:课件教学方法:讲授法一、 复习与练习黄金分割:点P把线段AB分割成长、短两条线段,其中短段与和长段之比等于长段与全长之比,这种分割叫做黄金分割,这个比值称为黄金比,点P叫做线段AB的黄金分割点。

A B P求黄金比。

二、学习新知识1、平行线等分线段 如图所示:AD∥BE∥CF,AB=BC。

求证:DE=EF。

FE D C BA证明:过点E作GH∥AB,交直线AD于点G,交直线CF于点H。

∵AB∥GE,AG∥BF,∴四边形ABEG是平行四边形。

∴GE=AB,同理可得:EH=BC。

∵AB=BC,∴GE=EH。

∵AG∥BF,∴∠AGE=∠EHF。

在△DGE和△FHE中∵∠AGE=∠EHF,GE=HE,∠DEG=∠FEH,∴△DGE≌△FHE(ASA)∴DE=EF阅读P54页,线段的等分。

2、平行线分线段成比例1、如图,AF∥DE∥BC。

求证:AD、DB、FE、EC四条线段成比例。

证明:图形可得,11,33AD FE DB EC == ∴AD FE DB EC= ∴AD、DB、FE、EC四条线段成比例。

2、定理:平行线分线段成比例。

(1)文字表述:两条直线被一组平行线所截,所得的对应线段成比例。

(2)图形表述和符号表述: F E D C B AEC D B A C E B DA图1 图2 图3图1的符号表述:,,AB DE AB DE BC EF BC EF AC DF AC DF=== 图2与图3要求学生说。

3、应用(1)如图,已知在△ABC中,D、E分别是AB、AC上的点,且DE∥BC。

求证:AD AE DB EC= B C AD E B C A D E证明:过点A作BC的平行线。

第23章第2课时 23.1.2平行线分线段成比例 -华东师大版九年级数学上册课件

第23章第2课时 23.1.2平行线分线段成比例 -华东师大版九年级数学上册课件
相等
2.任意画一条与这组等间距的平行线相交的直 线l2,量一量直线l2被这组平行线截得的线段是 否相等.
相等
3.(1)如图1,小方格的边长都是1,直线
a∥b∥c,分别交直线m,n于点A1,A2,A3和
点B1,B2,B3. 问题:计算 和 的值,你有什么发现?
∵ =, =

(2)将直线b向下平移到如图2所示的位置,直 线m,n与直线b的交点分别为A4,B4.在问题(1) 中发现的结论还成立吗?如果将直线b平移到 其他位置呢?
2.如果图①中l1,l2两条直线相交,交点A刚
好落到直线l3上(如图②所示),则图中有哪些 比例线段?依据是什么?
依据:两条直线被一组平行线所截,所得的对 应线段成比例
3.通过上述探究,你能归纳出结论吗? 平行于三角形一边的直线截其他两边, 所得的对应线段成比例。
【及时反馈二】
1.如图所示,△ABC中,DE∥BC,AD=5,
段成比例
4.如图,直线l3∥l4∥l5,直线l1,l2与这三条 平行线分别交于点A,B,C和点D,E,F, (1)平行线分线段成比例的几何符号语言:
(2)“对应线段”成比例的表达形式: 上比下:
上比全:
下比全:
【及时反馈一】
1.如图,l1∥l2∥l3,AB=4,DE=3,EF=6. 求BC的长.
4.如图,延长正方形ABCD的一边CB至点E,ED 与AB相交于点F,过点F作FG∥BE交AE于点G. 求证:GF=FB.
证明: ∵ 四边形ABCD是正方形
8、心灵纯洁的人,生活充满甜蜜和喜悦。 40、不管现在有多么艰辛,我们也要做个生活的舞者。 64、才华是血汗的结晶。才华是刀刃,辛苦是磨刀石。 34、心作良田耕不尽,善为至宝用无穷。我们应有纯洁的心灵,去积善为大众。就会获福无边。 15、总不能流血就喊痛,怕黑就开灯,想念就联系,疲惫就放空,被孤立就讨好,脆弱就想家,不要被现在而蒙蔽双眼,终究是要长大,最漆黑的那段路终要自己 8、心灵纯洁的人,生活充满甜蜜和喜悦。 20、能力配不上野心,是所有烦扰的根源。这个世界是公平的,你要想得到,就得学会付出和坚持。每个人都是通过自己的努力,去决定生活的样子。31、不是井 不是成功来得慢,而是你努力的不够多。

23.1.2 平行线分线段成比例 (课件)2024-2025-华东师大版数学九年级上册

23.1.2 平行线分线段成比例 (课件)2024-2025-华东师大版数学九年级上册

交点处可看成
含一条隐形的平行线(如图 23.1-4).
课堂新授
例 3 如图23.1-5,已知AB∥CD,AD与BC相
知2-练
交于点O. 若BOOC=23,AD=10,则 AO=___4___. 解题秘方:利用平行线分线段成比 例的基本事实的推论解题 . 解:∵ AB∥CD,
∴OAOD=BOOC=23,即10A-OAO=23,解得 AO=4.
平行线 分线段 成比例
推论 对应线段 关键点 成比例
课堂新授
数学语言:如图23.1- 4, 若DE∥BC,则有AADB=AAEC或ADDB=AEEC或DABB=EACC.
知2-讲
课堂新授
特别提醒
知2-讲
1. 本推论的实质是平行线分线段成比例的基本事实中一组
平行线中的一条过三角形的一个顶点,一条在三角形一
边上的特殊情况.
2. 当被截的两条直
线相交时,其
课堂新授
知1-练
2-1. 如图,l1∥l2∥l3,若ABBC=23,DF=15,则DE=___6__.
课堂新授
知识点 2 平行线分线段成比例的推论
知2-讲
平行线分线段成比例的基本事实的推论 平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例 .
成比例线段不涉及平行线上的线段 .
课堂新授
知2-练
4-1. 如图,在△ABC中,MD//AB,MN//AE. 求证:CCDB=CCNE. 证明:∵MD∥AB,∴CCDB=CCMA . ∵MN∥AE,∴CCMA =CCNE. ∴CCDB=CCMA =CCNE,即CCDB=CCNE.
归纳总结
平行线分线段成比例
对应线段 基本事实 成比例 关键点

九年级数学上册23.1成比例线段教案华东师大版(2021-2022学年)

九年级数学上册23.1成比例线段教案华东师大版(2021-2022学年)

23.1 成比例线段23.1.1 成比例线段【知识与技能】1.掌握比例线段的概念及其性质.2.会求两条线段的比及判断四条线段是否成比例.【过程与方法】能够灵活运用比例线段的性质解决问题.【情感态度】感知知识的实际应用,增强对知识就是力量的客观认识,进一步加强理论联系实际的学习方法.【教学重点】线段的比和成比例线段,以及比例线段的基本性质.【教学难点】用引入比值k的方法,探索比例的性质.一、创设情境,导入新知1.如何确定四个数成比例?数的比例式有什么基本性质?2.下面格点中的两个矩形相似吗?二、合作探究,理解新知探究一:成比例线段1.做一做(1)①在上面的格点图中,如果设水平(或竖直)的相邻两格点间的距离为1,那么AB=________,BC=________,A′B′=________,B′C′=________;②计算错误!未定义书签。

=________,错误!未定义书签。

=________;③显然AB、BC、A′B′、B′C′不相等,那么它们之间有什么关系呢?学生通过交流,得出结论:错误!未定义书签。

=错误!未定义书签。

(2)思考:换成其他线段如AD、CD、A′D′、C′D′是否也有类似的结论?若有,是什么?错误!未定义书签。

=\f(CD,C′D′).2.结论线段的比:如果选用同一个长度单位度量两条线段AB、CD的长度,它们的长度比就是这两条线段的比.成比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比等于另两条线段的比,如错误!=错误!未定义书签。

(或a∶b =c∶d),那么,这四条线段叫做成比例线段,简称比例线段.此外也称这四条线段成比例.3.议一议(1)在上面的格点图中,如果把格点去掉,通过度量,你还能验证上面的结论成立吗?(2)如果在测量时,AB的长度单位采用厘米而A′B′的长度单位采用分米,那么它们的比有没有变化?(3)两条线段长度的比与所采用的长度单位有没有关系?4.知识运用例1:判断下列线段a、b、c、d是否是成比例线段:(1)a=4,b=6,c=5,d=10;(2)a=2,b=错误!未定义书签。

专题23.1成比例线段【十大题型】-2024-2025学年九年级数学上册举一反三系[含答案]

专题23.1成比例线段【十大题型】-2024-2025学年九年级数学上册举一反三系[含答案]

专题23.1 成比例线段【十大题型】【华东师大版】【题型1 由成比例线段直接求值】 【题型2 比例尺】【题型3 由比例的性质判断结论正误】【题型4 由比例的性质求参数的值】【题型5 由比例的性质求代数的值】【题型6 由比例的性质进行证明】 【题型7 由比例的性质比较大小】【题型8 比例的应用】【题型9 由黄金分割求值】【题型10 黄金分割的应用】知识点1:成比例线段1.比例的项:在比例式::a b c d =(即a cb d=)中,a ,d 称为比例外项,b ,c 称为比例内项.特别地,在比例式::a b b c =(即a bb c=)中,b 称为a ,c 的比例中项,满足2b ac =.2.成比例线段:四条线段a ,b ,c ,d 中,如果a 和b 的比等于c 和d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.【题型1 由成比例线段直接求值】【例1】(23-24九年级·上海宝山·期中)1.下列各组中的四条线段成比例的是( )A .2cm 3cm 4cm 6cm ,,,B .2cm 3cm 4cm 5cm ,,,C .1cm 2cm 3cm 4cm ,,,D .3cm 4cm 6cm 9cm ,,,【变式1-1】(23-24九年级·广东梅州·期中)2.根据45a b =,可以组成的比例有( )A .:5:4a b =B .:4:5a b =C .:4:5a b =D .:54:a b=【变式1-2】(23-24九年级·浙江嘉兴·期中)3.已知:1:2a b =,且210a b +=.(1)求a 、b 的值;(2)若c 是a 、b 的比例中项,,求c 的值.【变式1-3】(23-24九年级·全国·课后作业)4.如图,在Rt ABC △中,CD 是斜边AB 上的高线,试猜想线段AC ,AB ,CD ,BC 是否成比例.如果成比例,请写出这个比例式,并进行验证;如果不成比例,请说明理由.【题型2 比例尺】【例2】(2024·江苏泰州·三模)5.为了将优质教育资源更好的惠及广大人民群众,某校设有凤凰路校区与春晖路校区,杨老师欲从凤凰路校区骑行去春晖路校区,用手机上的地图软件搜索时,显示两个校区间骑行的实际路程为2.2km ,当地图上比例尺由11000∶变为1500∶时,则地图上两个校区的路程增加了cm .【变式2-1】(23-24九年级·江苏无锡·期末)6.在某市建设规划图上,城区南北长为120cm ,该市城区南北实际长为36km ,则该规划图的比例尺是 .【变式2-2】(23-24九年级·上海奉贤·期中)7.如果一幅地图的比例尺为1:50000,那么实际距离是3千米的两地在地图上的图距是( )A .6厘米B .15厘米C .60厘米D .150厘米【变式2-3】(23-24九年级·陕西西安·期末)8.西安市大雁塔广场占地面积约为667000m 2,若按比例尺1∶2000缩小后,其面积大约相当于( )A .一个篮球场的面积B .一张乒乓球台台面的面积C .《华商报》的一个版面的面积D .《数学》课本封面的面积知识点2:比例的性质比例的性质示例剖析(1)基本性质:()a cad bc bd bd=Û=¹0x yx y =Û3=223(2)反比性质:()a c b dabcd b d a c=Û=¹0x y x y23=Û=23(0)xy ¹(3)更比性质:a c ab b dc d=Û=或d c b a =()abcd ¹0x y x y 2=Û=233或32y x =(0)xy ¹(4)合比性质:a c a b c db d b d ++=Û=()bd ¹0x x y y y 2+2+3=Û=33(0)y ¹(5)分比性质:a c a b c dbd b d --=Û=()bd ¹0y y x x x 3-3-2=Û=22(0)x ¹(6)合分比性质:ac a b c db d a bc d++=Û=--(,,)bd a b c d ¹0¹¹x x y y x y 2+2+3=Û=3-2-3(,)y x y ¹0¹(7)等比性质:()a c mb d n b d n ==⋅⋅⋅=++⋅⋅⋅+¹0ac m ab d n b++⋅⋅⋅+⇒=++⋅⋅⋅+(0)b d n +++¹L 已知x y z234==,则当0x y z ++¹时,x y z x y z2342+3+4===++.【题型3 由比例的性质判断结论正误】【例3】(23-24九年级·江苏淮安·阶段练习)9.若34x y =,则下列各式中不正确的是( )A .74x y y +=B .14x y y -=C .43x y=D .2113x y x +=【变式3-1】(23-24九年级·河南平顶山·期中)10.下列结论中,错误的是( )A .若45a c =,则45a c =B .若16a b b -=,则76a b =C .若23a cb d ==(b ﹣d ≠0),则23a c b d -=-D .若34a b =,则a =3,b =4【变式3-2】(23-24九年级·山东泰安·期中)11.若a cb d=(a 、b 、c 、d 、m 均为正数),则下列结论错误的是( )A .ad bc=B .2222a cb d =C .22ad c b ad=D .a m cb m d+=+【变式3-3】(2024·甘肃陇南·一模)12.某校每位学生上、下学期各选择一个社团,下表为该校学生上、下学期各社团的人数比例.若该校上、下学期的学生人数不变,相较于上学期,下学期各社团的学生人数变化,下列叙述何者正确?( ) 舞蹈社溜冰社魔术社上学期345下学期432A .舞蹈社不变,溜冰社减少B .舞蹈社不变,溜冰社不变C .舞蹈社增加,溜冰社减少D .舞蹈社增加,溜冰社不变【题型4 由比例的性质求参数的值】【例4】(23-24九年级·河南郑州·期末)13.已知222a b ck b c a c a b===+++,则k =( )A .1B .1±C .1或2-D .2【变式4-1】(23-24九年级·安徽亳州·阶段练习)14.已知a ,b ,c 满足438324a b c +++==且12a b c ++=,试求a ,b ,c 的值.【变式4-2】(2024春·安徽蚌埠·九年级校考期末)15.已知a ,b ,c 为ABC V 的三边长,且36a b c ++=,345a b c ==.(1)求线段a ,b ,c 的长;(2)若线段x 是线段a ,b 的比例中顶(即a xx b=),求线段x 的长.【变式4-3】(23-24九年级·山东烟台·期中)16.如果()0a c ek b d f b d f===++¹,且()3a c e b d f ++=++,那么k 的值是( )A .2B .3C .13D .12【题型5 由比例的性质求代数的值】【例5】(23-24九年级·四川眉山·阶段练习)17.如果312234x y z +--==,且18x y z ++=,则2x y z --的值为 .【变式5-1】(23-24九年级·山东青岛·期末)18.已知()2520b a c b d d +=¹=,则22a c b d++的值为 .【变式5-2】(23-24九年级·陕西西安·期中)19.已知532a b c==.(1)求a bc+的值;(2)若29a b c +-=,求2a b c -+的值.【变式5-3】(23-24九年级·四川乐山·期末)20.已知a b c 、、满足112234a b c -+-==,试求222a b c +-的最大值 .【题型6 由比例的性质进行证明】【例6】(23-24九年级·山东淄博·期末)21.已知a ,b ,c ,d 为四个不为0的数.(1)如果3a b=,求a bb +与a b a b -+的值;(2)如果(),a ca b c d b d =¹¹,求证a c b a d c=--;(3)如果a c ab d b +=+,求证ac b d=.【变式6-1】(2024九年级·全国·专题练习)22.已知==ax by cz ,且1111x y z ++=.求证:()3323232a x b y c z a b c ++=++.【变式6-2】(23-24九年级·全国·单元测试)23.已知::a b c d =,且b nd ¹,求证:a a ncb b nd-=-.【变式6-3】(23-24九年级·重庆大渡口·期末)24.材料:思考的同学小斌在解决连比等式问题:“已知正数x ,y ,z 满足y z z x x yk x y z +++===,求2x y z --的值”时,采用了引入参数法k ,将连比等式转化为了三个等式,再利用等式的基本性质求出参数的值.进而得出x ,y ,z 之间的关系,从而解决问题.过程如下:解;设y z z x x yk x y z+++===,则有:y z kx +=,z x ky +=,x y kz +=,将以上三个等式相加,得()()2x k z k x y z ++=++.Q x ,y ,z 都为正数,\2k =,即2y zx+=,.\20x y z --=.仔细阅读上述材料,解决下面的问题:(1)若正数x ,y ,z 满足222x y zk y z z x x y===+++,求k 的值;(2)已知()()23a b b c c aa b b c c a +++==---,a ,b ,c 互不相等,求证:8950a b c ++=.【题型7 由比例的性质比较大小】【例7】(23-24九年级·河北保定·期末)25.若275x y z ==,设y A x y z =++,x z B y +=,x y zC x +-=,则A 、B 、C 的大小顺序为( )A .A B C>>B .A B C<<C .C A B>>D .A C B<<【变式7-1】(23-24九年级·浙江杭州·期中)26.如果a ,b ,c 满足b c a b ==,则a ,b ,c 之间的关系是( )A .a b c=+B .a b c >+C .a b c <+D .222a b c =+【变式7-2】(2024九年级·北京西城·专题练习)27.已知0257a b c ==¹,设1x a b c =++, a cy b +=, a b c z a +-=,试判断x ,y ,z 的大小关系.【变式7-3】(23-24九年级·广东珠海·期末)28.已知a ,b ,c ,d 都是互不相等的正数.(1)若2a b =,2cd =,则b a d c,a c b d (用“>”,“<”或“=”填空);(2)若,a c b d=请判断b a b +和dc d+的大小关系,并证明;(3)令,a b t cd==若分式232a c b da cb d ++-+--的值为3,求t 的值.【题型8 比例的应用】【例8】(2024·陕西西安·模拟预测)29.如图,以O 为支点,木棍OA 所受的重力为G .根据杠杆原理,在A 处需一竖直向上的拉力F 才能保持木棍不动,若向上的拉力F 与重力G 大小之比为3:7,6cm OD =,则CD 的长为 .【变式8-1】(2024春·四川成都·九年级校考期中)30.在同一时刻物高与影长成比例,小莉量得综合楼的影长为 6 米,同一时刻她量得身高 1.6米的同学的影长为 0.6 米,则综合楼高为米.【变式8-2】(2024春·广东茂名·九年级统考期中)31.装修一间客厅,用边长5分米的方砖铺地,需要80块,如果改用边长4分米的方砖铺地,需要多少块?【变式8-3】(2024春·四川成都·九年级成都七中校考期中)32.国家会展中心(上海)坐落于虹桥商务区核心区西部,与虹桥机场的直线距离仅有2.5公里,总建筑面积147万平方米,地上建筑面积127万平方米,是目前世界上面积第二大的建筑单体和会展综合体.小明在地图上量得国家会展中心(上海)距离虹桥机场的直线距离为0.5厘米,而量得国家会展中心(上海)与浦东机场的直线距离为9.7厘米,那么国家会展中心(上海)与浦东机场的实际直线距离有多少公里?(运用比例解答)知识点3:黄金分割若线段AB 上一点C ,把线段AB 分成两条线段AC 和BC (AC BC >),且使AC 是AB 和BC 的比例中项(即2AC AB BC =⋅)C 黄金分割,点C 叫线段AB 的黄金分割点,其中0.618AC AB AB »,BC AB =.AB »0382,AC 与AB 的比叫做黄金比.(注意:对于线段AB 而言,黄金分割点有两个.)【题型9 由黄金分割求值】【例9】(2024·内蒙古包头·三模)33.正五角星是一个非常优美的几何图形,在如图所示的正五角星中,以A 、B 、C 、D 、E 4个结论:①36A Ð=°,②PB =,③PA AD =,④PT PA =.请填写你认为正确的结论序号: .【变式9-1】(23-24九年级·河北保定·期末)34.如图,已知点C ,D 都是线段AB 的黄金分割点,如果4CD =,那么AB 的长度是( )A .2B .6-C .8+D .2【变式9-2】(23-24九年级·山东青岛·期末)35.射影中有一种拍摄手法叫黄金分割构图法,其原理是:如图,将正方形ABCD 的边BC 取中点O ,以O 为圆心,线段OD 为半径作圆,其与边BC 的延长线交于点E ,这样就把正方形ABCD 延伸为黄金矩形ABEF ,若4CE =,则AB = .【变式9-3】(23-24九年级·河南许昌·期末)36.如图,已知线段2AB =,经过点B 作BD AB ^,使12BD AB =,连接AD ,在AD 上截取DE BD =;在AB 上截取AC AE =,则:=AC AB .【题型10 黄金分割的应用】【例10】(2024九年级·黑龙江大庆·学业考试)37.古希腊时期,0.618»,称为黄金分割比例),如图,著名的“断臂维纳斯”便是如此.此外,最美若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm【变式10-1】(2024·广东·二模)38.如图,美术素描课堂上有很多关于黄金分割比的元素,比如脸部素描就需要考虑黄金分割比的问题,按照如下要求作出的人脸图像比较美观:(1)眉头、眼头、鼻翼在一条竖直直线上;(2)眉头和眉峰的水平距离(图中直线①和直线②的距离)和眼长大致相等(设此长度为a),眉头和眉尾的水平距离(图中直线①和直线③的距离)设为b,a与b的比例(3)眉尾、眼梢、鼻翼在同一直线上.某同学按照以上要求进行素描,已知他的素描作品中眼梢到眉尾的距离为2cm,则眼梢到鼻翼的距离为cm. 2.236»,结果保留两位小数)【变式10-2】(23-24九年级·山东德州·阶段练习)39.如图1在线段AC 上找一个点B ,B 把AC 分成AB 和BC 两段,其中AB 是较小的一段,满足AB BC BC AC =::,则B 为线段AC 的黄金分割点.黄金分割广泛存在于艺术、自然、建筑等领域,例如,枫叶的叶脉蕴含着黄金分割.如图2,B 为AC 的黄金分割点(AB BC >),AC 长度为15cm ,则AB 的长度cm ;(结果用根号表示)【变式10-3】(23-24九年级·陕西西安·阶段练习)40.鹦鹉螺是一类古老的软体动物.鹦鹉螺曲线的每个半径和后一个半径的比都是黄金比例,是自然界最美的鬼斧神工.如图,P 是AB 的黄金分割点(AP BP >),若线段AB 的长为10cm ,则BP 的长为 cm .(结果保留根号)1.A【分析】根据比例线段的概念逐项判断即可解答【详解】解:A .∵2634´=´,∴四条线段成比例,符合题意;B .∵2534´¹´,∴四条线段不成比例,不符合题意;C .∵1423´¹´,∴四条线段不成比例,不符合题意;D .∵3946´¹´,∴四条线段成比例,不符合题意.故选:A .【点睛】本题主要考查了比例线段,理解成比例线段的概念,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.2.A【分析】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.根据比例的性质,进行计算即可解答.【详解】解:Q 45a b =,\:5:4a b =,故选:A .3.(1)2a =,4b =;(2)c =±.【分析】本题考查了比例及比例中项,解题的关键是正确理解其概念.(1)利用:1:2a b =,可设a k =,2b k =,则410k k +=,然后解出k 的值即可得到a 、b 的值;(2)根据比例中项的定义得到2c ab =,即28c =,然后根据平方根的定义求解;【详解】(1)解:∵:1:2a b =,∴设a k =,2b k =,∵210a b +=,∴410k k +=,∴2k =,∴2a =,4b =;(2)∵c 是a 、b 的比例中项,∴28c ab ==,∴c =±4.线段AC ,AB ,CD ,BC 成比例,且AB BC AC CD=,理由见解析【分析】根据直角三角形的面积公式,得1122AB CD AC BC ⋅=⋅,整理变形即得答案.【详解】解:线段AC ,AB ,CD ,BC 成比例,且AB BC AC CD =(或AB AC BC CD =).验证如下:根据三角形的面积公式,得1122AB CD AC BC ⋅=⋅,所以AB CD AC BC ⋅=⋅,即AB BC AC CD =.【点睛】本题以直角三角形为依托,主要考查成比例线段的性质,即若a cb d =,则ad=bc ,反之也成立,即若ad=bc ,则a c b d=.解题的关键是由直角三角形的面积得出AB CD AC BC ⋅=⋅.5.220【分析】本题考查了比例尺的运用,掌握比例尺的计算方法是解题的关键.根据=图上距离比例尺实际距离进行计算即可求解,计算时注意单位的换算,单位要统一.【详解】解:实际路程为2.2220000km cm =,当比例尺为1:1000时,图示距离为2200002201000cm =,当比例尺为1:500时,图上距离为220000440500cm =,∴440220220cm -=,故答案为:220 .6.1:30000【分析】本题主要考查了比例尺.根据比例尺=图上距离:实际距离,列比例式求得这两地的实际距离.【详解】解:根据题意得:该规划图的比例尺是120cm :36km 120:36000001:30000==.故答案为:1:30000.7.A【分析】根据比例尺的定义:图上距离与实际距离的比直接计算即可得到答案;【详解】解:∵比例尺为1:50000,实际距离是3千米,∴图上距离300000(1:50000)6cm =´=,故选:A .8.C【分析】利用相似多边形的面积比等于相似比的平方,列比例式进行求解,再根据现实生活中的物体的面积,即可得出答案.【详解】设其缩小后的面积为xm 2 ,则x:667000=(1:2000) 2,x=0.16675m 2,其面积相当于报纸的一个版面的面积.故选C.【点睛】此题考查相似多边形的性质,正确估计图形的面积,和生活中的物体联系起来是本题的关键.9.B【分析】设3x k =,4y k =.代入选项计算结果,即可得到答案.【详解】解:设3x k =,4y k =,A .34744x y k k y k ++==,正确,故A 选项不符合题意;B .34144x y k k y k --==-,原式错误,故B 选项符合题意;C .44312343x k k k y =⋅==⋅=,正确,故C 选项不符合题意;D .23241133x y k k x k ++⋅==,正确,故D 选项不符合题意;故选:B .【点睛】本题考查比例的基本性质,解题的关键是利用换元法进行约分消元求值.10.D【分析】根据比例性质,化为乘积变形可判断A 正确,利用先化积,再化比例可判定B ,利用换元计算可判断C ,设比值,取k =1与k ≠1,可判断D .【详解】解:A 、若45a c =,则54a c =,而45a c =,54a c =正确,不合题意;B 、若16a b b -=,则6(a ﹣b )=b ,故6a =7b ,则76a b =,正确,不合题意;C 、若23a c b d ==(b ﹣d ≠0)2233a b c d ==,,则()22223333b d b d ac bd b d b d ---===---,正确,不合题意;D、若34ab=,设34a kb k==,,当k=1时,有a=3,b=4,当k≠1,a,b的值不是3与4,故此选项错误,符合题意.故选:D.【点睛】本题考查比例性质,等积化比例,比例化等积,合分比性质,掌握比例性质是解题关键.11.D【分析】把各个选项依据比例的基本性质和合比性质,即可判断求解.【详解】A、∵a cb d=,两边同乘以bd得:ad bc=,故A正确,不合题意;B、∵a cb d=,两边平方得:2222a cb d=,故B正确,不合题意;C、∵a cb d=,两边平方得:2222a cb d=,两边同乘以da得:22ad cb ad=,故C正确,不合题意;D根据a cb d=不能得出a m cb m d+=+,故D不正确,符合题意;故答案为:D.【点睛】本题主要考查了判断两个比例式是否能够互化的方法,即转化为等积式,及比例的合比性质判断是否相同即可.12.D【分析】若甲:乙:丙=a:b:c,则甲占全部的aa b c++,乙占全部的ba b c++,丙占全部的ca b c++.【详解】由表得知上、下学期各社团人数占全部人数的比例如下:∴舞蹈社增加,溜冰社不变.故选D.【点睛】本题考查了比例的性质.找出各社团人数占全部人数的比例是解题的关键.13.C【分析】本题考查了比例的性质,熟悉等比性质是解题的关键.分两种情况进行讨论:①当0a b c ++¹时,根据等比性质计算得出结果;②当0a b c ++=时,则a b c +=-,代入2c k a b=+计算得出结果.【详解】解:分两种情况:①当0a b c ++¹时,得2221a b c k b c a c a b++==+++++;②当0a b c ++=时,则a b c +=-,22c k a b ==-+;综上所述,k 的值为1或2-.故选:C .14.5a =,3b =,4c =【分析】本题主要考查了比例的性质,设438324a b c k +++===,得出34a k =-,23b k =-,48c k =-,根据91512a b c k ++=-=,求出3k =,即可得到答案,利用比例的性质设未知数是解题关键.【详解】解:设438324a b c k +++===,则34a k =-,23b k =-,48c k =-,∴91512a b c k ++=-=,解得:3k =,∴5a =,3b =,4c =.15.(1)91215a b c ===,,(2)x =【分析】(1)设345a b c k ===,则345a k b k c k ===,,,再结合题意可列出关于k 的等式,解出k 的值,即可求出线段a ,b ,c 的长;(2)由题意可直接得出912x x =,解出x 的值(舍去负值)即可.【详解】(1)由题意可设345a b c k ===,则345a k b k c k ===,,,∵36a b c ++=,∴34536k k k ++=,解得:3k =,∴91215a b c ===,,;(2)∵a x xb =,∴912x x =,整理,得:2108x =,解得:x =.【点睛】本题考查比例的性质,比例中项的概念.利用“设k 法”是解题关键.16.B【分析】本题考查了比例的性质,掌握比例的性质是解题的关键.根据比例的性质求得,,a bk c dk e fk ===,代入()3a c e b d f ++=++,即可求解.【详解】解:Q a c e k b d f===,,,a bk c dk e fk \===,Q ()3a c e b d f ++=++.()3bk dk fk b d f \++=++,3k \=,故选:B .17.15-【分析】此题考查了比例的性质,设312234x y z k +--===,得出23x k =-,31y k =+,42z k =+,再根据18x y z ++=,求出k 的值,从而得出x ,y ,z 的值,最后代入要求的式子进行计算即可得出答案.【详解】解:设312234x y z k +--===,则23x k =-,31y k =+,42z k =+,18x y z ++=Q ,23314218k k k \-++++=,2k \=,1x \=,7y =,10z =,2271015x y z \--=--=-;故答案为15-.18.25##0.4【分析】先求出2225d a c b ==,再根据比例的性质即可得.【详解】解:()2520a d d c b b +==¹Q ,2252a c d b =\=,2225a cb d +\=+,故答案为:25.【点睛】本题考查了比例的性质,熟练掌握比例的性质是解题关键.19.(1)4(2)814【分析】本题主要考查了比例的性质,通过532a b c ==,设出()5320a k b k c k k ===¹,,是解题的关键.(1)设()5320a k b k c k k ===¹,,,则532a b k k c k++=,据此可得答案;(2)设()5320a k b k c k k ===¹,,,由29a b c +-=得到5349k k k +-=,解方程求出94k =,则812103294a b c k k k k -+=-+==.【详解】(1)解:∵532a b c==,∴可设()5320a k b k c k k ===¹,,∴5342a b k k c k++==;(2)∵532a b c==,∴可设()5320a k b k c k k ===¹,,,∵29a b c +-=∴5349k k k +-=.∴94k =,∴812103294a b c k k k k -+=-+==.20.25【分析】设112234a b c k -+-===,得到关于k 的等式,利用配方法和非负数的性质即可求解.【详解】解:设112234a b c k -+-===,∴a -1=2k ,b +1=3k ,c -2=4k ,即a =2k +1,b =3k -1,c =4k +2,∴a 2+b 2−c 2= (2k +1)2+(3k -1)2−(4k +2)2=4k 2+4k +1+9k 2-6k +1-(16k 2+16k +4)=4k 2+4k +1+9k 2-6k +1-16k 2-16k -4=-3k 2-18k -2=-3(k 2+6k +9-9)-2=-3(k +3) 2+25∵(k +3) 2≥0,则-3(k +3) 2≤0,∴a 2+b 2−c 2的最大值为25,故答案为:25.【点睛】本题考查了比例的性质,完全平方公式,掌握配方法和非负数的性质是解题的关键.21.(1)4a b b+=,12a b a b -=+(2)见解析(3)见解析【分析】本题主要考查了分式的求值,比例的性质:(1)先根据已知条件得到14a b a b b +=+=,3a b =,再把3a b =代入a b a b -+中进行求解即可;(2)设a c k b d==,则a kb =,c kd =,再分别计算出a b a -和c d c -的值即可证明结论;(3)求出bc ad =,进而可得a cb d =。

华师版九年级数学上册第二十三章教学课件 成比例线段

华师版九年级数学上册第二十三章教学课件  成比例线段

,故不是成比例线段.
答案:C
感悟新知
知识点 3 比例的性质
知3-讲
1. 比例的基本性质
如果
a b
c d
,那么ad=bc;如果ad=bc,那么
a b
c d
.
变式应用: 若a,b,c,d满足ad=bc,则
a
b
c ,
d
b ,
d
.
c da ba c
感悟新知
知3-讲
2. 比例的基本性质推广
a
(1)合比性质:b
感悟新知
特别解读:
知2-讲
●在通常情况下,四条线段a,b,c,d 的单位应该一致,
但有时为了计算方便,也可以使a与b的单位一致,c与
d 的单位一致.
●线段a,b,c,d 成比例,只可以写成
ac bd
或a ∶
b=c ∶ d,即四条线段a,b,c,d 成比例是有顺序的,
不能随便更改位置.
感悟新知
知2-讲
a
b ∵
c ad b
,把a,b,c
c d
,且a=2
的长代入式中就可以求出线段d 的长. cm,b=4 cm,c=5 cm,∴ 2 5 .
4d
∴ d=10 cm.
答案:B
感悟新知
例4
[一题多解]
已知
a 3
b 4
c 5

0,求2aa-+b3+b c
知3-练
的值.
解题秘方:紧扣“比例的性质”用消元法或参数法求解.
比例的 性质
在同一单位长度下,两条线段长度的比叫做这两条线
段的比.
线段a
与线段b
的比记作“a b
”或“a∶b”.

新版华东师大版九年级数学上册第23章图形的相似23.1成比例线段同步检测题(附答案)

新版华东师大版九年级数学上册第23章图形的相似23.1成比例线段同步检测题(附答案)

第23章 图形的相似23.1.1 成比例线段知识点 1 线段的比1.已知线段a =20 cm ,b =30 cm ,则a ∶b =________,b ∶a =________.2.已知线段AB ,在BA 的延长线上取一点C ,使CA =3AB ,则线段CA 与线段CB 的比为( )A .3∶4B .2∶3C .3∶5D .1∶23.如图23-1-1,C 是线段AB 的中点,点D 在BC 上,AB =24 cm ,BD =5 cm. (1)AC ∶CB =________,AC ∶AB =________;(2)BC BD =______,CD AB =________,ADCD=______. 图23-1-1知识点 2 成比例线段的概念 4.线段a =8 cm ,b =30 cm ,c =10 cm ,d =24 cm 中,最短两条线段的比a ∶c =________,最长两条线段的比d ∶b =________,所以这四条线段________成比例线段(填“是”或“不是”).5.下列各组中的四条线段,是成比例线段的是( )A .3 cm ,6 cm ,12 cm ,18 cmB .2 cm ,3 cm ,4 cm ,5 cmC. 2 cm ,10 cm , 5 cm ,5 cmD .5 cm ,2 cm ,3 cm ,6 cm6.判断下列线段是不是成比例线段,若是,请写出比例式. (1)a =7 cm ,b =4 cm ,c =d =2 7 cm ; (2)a =20 mm ,b =8 m ,c =28 m ,d =7 cm. 知识点 3 比例的基本性质7.已知a b =cd ,若其中a =5 cm ,b =3 cm ,c =2 cm ,则可列比例式( )( )=( )( ),根据比例的基本性质,可得________,所以线段d =________ cm.8.已知x y =79,那么下列等式一定成立的是( )A .x =97y B .7y =9xC .7x =9yD .xy =639.若2x =5y ,则下列式子中错误的是( )A. y x =25 B. x -y y =32C.x +y x -y =73D. y -x x =3510. 画在图纸上的某一零件长 3.2 cm ,若比例尺是1∶20,则该零件的实际长度是__________.11.已知c 4=b 5=a6≠0,则b +c a 的值为________.12.已知a b =43,求a +b b 和a -b a的值.13. 等腰直角三角形斜边上的高与腰的长度之比是( )A.2∶1 B .1∶2 C .2∶ 2 D .1∶ 214.已知三个数2,2,4.若再添加一个数,就得到这四个数成比例,则添加的数是( )A .2 2B .2 2或22C .2 2,4 2或8 2D .2 2,22或4 2 15.若a b =cd ,则下列各式一定成立的有( )①a +b b =c +d d ;②a -b b =c -dd ; ③a a +b =c c +d ;④a a -b =c c -d . A .4个 B .3个 C .2个 D .1个16.[教材练习第2题变式]若a 5=b 3=c 2,且a -b +c =8,则a =________.17.已知AB A ′B ′=BC B ′C ′=ACA ′C ′=2,且△ABC 的周长为18 cm ,求△A ′B ′C ′的周长.18.如图23-1-2,若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB =10,APBP =AQ BQ =32.求线段PQ 的长. 图23-1-219.已知线段a =0.3 m ,b =60 cm ,c =12 dm. (1)求线段a 与线段b 的比;(2)如果a ∶b =c ∶d ,求线段d 的长. 20.已知x -y x +y =911,求下列各式的值:(1)xx +y ; (2)2x +y y -x. 21.已知△ABC 的三边长a ,b ,c 满足关系式a +43=b +32=c +84,且a +b +c =12,则这个三角形的面积是多少?22.阅读下列解题过程,然后解题:题目:已知x a -b =y b -c =zc -a (a ,b ,c 互不相等),求x +y +z 的值.解:设x a -b =y b -c =z c -a=k(k≠0),则x =k(a -b),y =k(b -c),z =k(c -a), ∴x +y +z =k(a -b +b -c +c -a)=k·0=0, ∴x +y +z =0.依照上述方法解答下面的问题:已知a ,b ,c 为非零实数,且a +b +c≠0,当a +b -c c =a -b +c b =-a +b +ca时,求(a +b )(b +c )(c +a )abc的值.参考答案1.2∶3 3∶22. A3.(1)1∶1 1∶2 (2)125 724 1974.4∶5 4∶5 是5.C [解析] 只有C 中210=55,为成比例线段. 6.[解析] 判断四条线段是不是成比例线段,可根据线段长度的大小关系,从小到大排列,判断较短的两条线段的比是否等于较长的两条线段的比,若比值相等则这四条线段是成比例线段.解:(1)因为b c =42 7=4×72 7×7=2 77,d a =2 77,所以这四条线段是成比例线段,比例式为b c =da.(2)将线段从小到大排列,得a =20 mm =0.02 m ,d =7 cm =0.07 m ,b =8 m ,c =28 m .因为a d =0.020.07=27,b c =828=27,所以这四条线段是成比例线段,比例式为a d =b c. 7.5 3 2 d 5d =6 658. B 9. D 10. 64 cm11. 32 [解析] 设c 4=b 5=a6=k ,则c =4k ,b =5k ,a =6k ,所以b +c a =5k +4k 6k =32.12.解:由已知可设a =4k ,b =3k (k ≠0), ∴a +b b =4k +3k 3k =7k 3k =73,a -b a =4k -3k 4k =k 4k =14. 13. D14. D [解析] 设这个数是x ,由题意,得 当2∶2=4∶x 时,则2x =4 2,解得x =2 2; 当2∶4=x ∶2时,则4x =2 2,解得x =22; 当2∶2=x ∶4时,则2x =8,解得x =4 2. 故选D. 15. A16.10 [解析] 由a 5=b 3=c 2,得b =3a 5,c =2a 5,由a -b +c =8,得a -3a 5+2a5=8,解得a =10.17.解:∵AB A ′B ′=BC B ′C ′=AC A ′C ′=2, ∴AB =2A ′B ′,BC =2B ′C ′,AC =2A ′C ′. ∵AB +BC +AC =18,∴2A ′B ′+2B ′C ′+2A ′C ′=18, ∴2(A ′B ′+B ′C ′+A ′C ′)=18, ∴A ′B ′+B ′C ′+A ′C ′=9, ∴△A ′B ′C ′的周长为9 cm.18.[解析] 根据AP BP =AQ BQ =32,分别求出BP ,BQ 的长,两者相加即可求出PQ 的长.解:∵AB =10,AP BP =AQ BQ =32,∴BP =4,BQ =20, ∴PQ =BP +BQ =24. 答:线段PQ 的长为24.19.解:a =0.3 m =3 dm ,b =60 cm =6 dm ,c =12 dm. (1)a ∶b =3∶6=1∶2. (2)∵a ∶b =c ∶d , ∴1∶2=12∶d , 解得d =24(dm).故线段d 的长是24 dm.20.解:由已知可得9(x +y )=11(x -y ),整理得x =10y .(1)x x +y =10y 10y +y =10y 11y =1011. (2)2x +y y -x =20y +y y -10y =21y -9y=-73.21.令a +43=b +32=c +84=k ,则a =3k -4,b =2k -3,c =4k -8,代入a +b +c =12,可得k =3,∴这个三角形的三边长为a =5,b =3,c =4. ∵a 2=b 2+c 2,∴这个三角形为直角三角形, ∴S =12bc =12×3×4=6.22.设a +b -c c =a -b +c b =-a +b +c a=k (k ≠0),则a +b -c =kc ①,a -b +c =kb ②,-a +b +c =ka ③, 由①+②+③,得a +b +c =k (a +b +c ). ∵a +b +c ≠0,∴k =1,∴a +b =2c ,b +c =2a ,c +a =2b , ∴(a +b )(b +c )(c +a )abc =2c ·2a ·2b abc=8.23.1.2 平行线分线段成比例知识点 1 平行线分线段成比例1.如图23-1-3,AD ∥BE ∥CF ,直线m ,n 与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,根据平行线分线段成比例,可得AB BC =()(),若AB =5,BC =10,DE =4,可得() ()=()(),解得EF =________. 图23-1-32.如图23-1-4,在四边形ABCD 中,点E ,F 分别在AD 和BC 上,AB ∥EF ∥DC ,且DE =3,DA =5,CF =4,则FB 的长为( )A.32B.83C .5D .6 图23-1-43.如图23-1-5,若AD ∥BE ∥CF ,直线l 1,l 2与平行线分别交于点A ,B ,C 和点D ,E ,F .若AB =BC ,则DE 与EF ________(填“相等”或“不相等”).图23-1-54.如图23-1-6,在四边形ABCD 中,AD ∥BC ,E 是AB 上一点,EF ∥BC 交CD 于点F .若AE =2,BE =6,CD =7,则FC =________.图23-1-65.如图23-1-7,已知AD ∥BE ∥CF ,它们依次交直线l 1,l 2于点A ,B ,C 和点D ,E ,F .如果AB =6,BC =10,那么DEDF的值是________.图23-1-76.[教材练习第1题变式]如图23-1-8,直线a ∥b ∥c .(1)若AC =6 cm ,EC =4 cm ,BD =8 cm ,则线段DF 的长度是多少厘米? (2)若AE ∶EC =5∶2,DB =5 cm ,则线段DF 的长度是多少厘米?图23-1-8知识点 2 平行线分线段成比例的推论7.[2019·兰州改编]如图23-1-9,在△ABC 中,因为DE ∥BC ,所以AD BD =( )( ).若AD BD =23,则AD BD =( )( )=________. 图23-1-98.如图23-1-10,直线l 1∥l 2∥l 3,直线AC 与l 1,l 2,l 3分别交于点A ,B ,C ,直线DF 与l 1,l 2,l 3分别交于点D ,E ,F ,AC 与DF 相交于点G ,且AG =2,GB =1,BC =5,则DEEF的值为( ) A. 12 B .2 C. 25 D. 35图23-1-109.如图23-1-11,在△ABC 中,DE ∥BC ,且分别交AB ,AC 于点D ,E ,则下列比例式不正确的是( )A.AB AD =AC AEB.AB AC =AD AEC.AD BD =AE ECD.AB DE =AC EC图23-1-1110.如图23-1-12,若AB ∥DC ,AC ,BD 相交于点E ,且AE =2,EC =3,BD =10,则ED =________.图23-1-1211.如图23-1-13,在△ABC 中,DE ∥BC ,且DB =AE .若AB =5,AC =10,求AE 的长.图23-1-1312.如图23-1-14,已知AB ∥CD ∥EF ,AD ∶AF =3∶5,BE =10,那么BC 的长为________.图23-1-1413.如图23-1-15,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A ,B ,C 都在横格线上.若线段AB =4 cm ,则线段BC =________cm.图23-1-1514. 如图23-1-16,AD 为△ABC 的中线,E 为AD 的中点,连结BE 并延长交AC 于点F ,则CFAF=__________.唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。

华师大版九年级上册23.1.1成比例线段课件

华师大版九年级上册23.1.1成比例线段课件

17.已知三个数 3,2, 6,请你再添上一个数 x 使它们能构 成一个比例式,请求出 x 的值,并写出相应的比例式.
解:若 x 是最大数,由
3x=2
6,得 x=2
2,比例式为
3 2
= 2
6 ;若 2
x 是最小数,由
6x=2
3,得 x=
2,比例式为
22=
3;若 6
x
不是最大数也不是最小数,由
2x=
• 1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” • 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 • 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 • 4、好的教师是让学生发现真理,而不只是传授知识。 • 5、数学教学要“淡化形式,注重实质.
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月上午7时39分21.11.807:39November 8, 2021
C.a+b b=52 D.a-a b=-2 12.北京到上海的空中距离约为1084公里,在一张比例尺为 1∶20 000 000的交通旅游图上,它们之间的距离大约相当于( A ) A.一根火柴的长度 B.一根钢笔的长度 C.一支铅笔的长度 D.一根筷子的长度
13.如图,一张矩形纸片 ABCD 的长 AB=a cm,宽 BC=b cm, 点 E,F 分别为 AB,CD 的中点,这张纸片沿直线 EF 对折后, 矩形 AEFD 的长与宽之比等于矩形 ABCD 的长与宽之比,则 a∶b 等于( A ) A. 2∶1 B.1∶ 2 C. 3∶1 D.1∶ 3
2.美是一种感觉,当人体下半身长与身高的比值越接近0.618 时,越给人一种美感.如图,某女士身高165 cm,下半身长x与 身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋 的高度大约为( C) A.4 cm B.6 cm C.8 cm D.10 cm

23.1.1.成比例线段

23.1.1.成比例线段


c d
(或a∶b=c∶d),那么,
这四条线段叫做成比例线段,简称比例
线段.此时也称这四条线段成比例.
用a、b、c、d ,表示四个数,上述四个
数成比例可写成怎样的形式?
如果
a b=
c d


a:b=c:d,
那么 a、b、c、d 叫做组成比例的项,
a、d 叫
C. a c 2e a - c b d 2f b - d
B. ac e bd f
D. 2a 2c e bd f
1.已知 x 3 ,求 x y 的值
y4
x y
变式:已知 x y 3,求 x 的值。 xy 4 y
2.已知x:y:z 3:4:5,求 x y 2z 的值 x y 2z
ad bc
在等式两边同减上ac,
∴ ac-ad=ac-bc, ∴ a(c-d)=(a-b)c,
由a b,且 a c ,知c d,从而a b 0,且c d 0, bd
∴两边同a 除以(c a-b)(c-d),
ab cd

达标检测
1.判断下列线段是否是成比例线段: (1)a=2cm,b=4cm,c=3m,d=6m; (2)a=0.8,b=3,c=1,d=2.4.
的前项和后项?
3、求线段的比时要注意哪些问题?
44、、什什么么叫做做成成比比例例线线段段??
5/25/2019
温故知新
1、比例的意义:表示两个_比__相等 的式子叫做比例;
2、比例的基本性质:比例的_两_内__项_ 的乘积等于_两_外__项__的乘积。
探究新知
由下面的格点图可知, AB
AB

23.1 2.平行线分线段成比例+课件+++2024-2025学年华东师大版九年级数学上册

23.1 2.平行线分线段成比例+课件+++2024-2025学年华东师大版九年级数学上册
新知要点
1.基本事实:平行线分线段成比例
成比例
两条直线被一组平行线所截,所得的对应线段____________.
对点小练
1.如图,直线a∥b∥c,分别交直线m,n于点A,C,E,B,D,F,下列结论不正确的是( B )

A. =


C. =


B. =

【举一反三】
(2024·青岛期末)如图,△ABC中,DE∥BC,AD∶BD=1∶3,则OE∶OB=( B )
A.1∶3
B.1∶4
C.1∶5
D.1∶6
【技法点拨】
平行于三角形一边的直线截三角形的两种基本图形
1.“A”字型

DE∥BC⇒ =

2.“X”字型

DE∥BC⇒ =

重点典例研析
【重点1】平行线分线段成比例定理(几何直观、推理能力、运算能力)
【典例1】(教材再开发·P53例3拓展)如图,已知直线l1,l2,l3分别且l1∥l2∥l3.
(1)如果AB=3,BC=6,DE=4,求EF的长;
(2)如果DE∶EF=2∶3,AC=25,求AB的长.
2.平行线分线段成比例
课时学习目标
1.掌握基本事实:两条直线被一组平行线
所截,所得的对应线段成比例
素养目标达成
几何直观、推理能力、运算能力
2.掌握平行于三角形一边的直线截其他两
边(或两边的延长线),所得的对应线段成比 几何直观、推理能力、运算能力

基础主干落实
重点典例研析
素养当堂测评
基础主干落实

【自主解答】(1)∵l1∥l2∥l3,∴ = ,

23.1 成比例线段 华东师大版数学九年级上册教案

23.1 成比例线段 华东师大版数学九年级上册教案

23.1 成比例线段1.成比例线段※教学目标※【知识与技能】理解并掌握线段的比,成比例线段等基本概念,掌握比例的基本性质.￿【过程与方法】￿1.经历比例性质的推导过程,能运用比例的基本性质推导出比例的其余性质.￿2.能运用比例的性质进行简单的变形;会判断已知线段是否成比例.￿【情感态度】￿通过问题的解决进一步激发学生的创新意识,培养学生坚忍不拔、勇于探索的学习品质.￿【教学重点】￿线段的比、成比例线段的概念,比例的基本性质.￿【教学难点】￿能运用比例的基本性质推导出比例的其余性质.￿※教学过程※￿一、情境导入￿观察下列两张照片,你有什么发现?请与同学交流.￿￿【点拨】像这种形状相同,大小不一定相同的图形叫相似形.￿【小结】相似形的定义:具有相同形状的图形叫相似形.￿为了研究相似图形,先研究与其密切相关的成比例线段.￿二、探索新知￿1.线段的比￿如图,下列格点图中的格点小正方形的边长都是1,试计算:￿(1)概念:一般地,若线段a、b的长度分别是m、n(单位相同),那么就说这两条线段的比是a:b=m:n,或写成,和数的比一样,a叫比的前项,b叫比的后项.￿￿(2)几点注意:①两条线段的比是一个无单位的数;②线段的比值是一个正数;③两条线段的长度单位不同时,求两条线段的比时必须要先统一长度单位;④只要两条线段的长度单位一样,两条线段的比与所采用的单位无关.￿2.成比例线段及有关概念￿由计算结果可知:￿￿对于给定的四条线段a、b、c、d,如果其中两条线段的长度之比等于另外两条线段的长度之比,如,那么,这四条线段叫做成比例线段,简称比例线段.此时也称这四条线段成比例.特别地,如果作为比例内项的是两条相同的线段,即,那么线段b叫做线段a和线段c的比例中项.￿￿【例1】判断下列线段￿a、b、c、d是否是成比例线段:￿(1)a=4,b=8,c=5,d=10;￿(2)分析:判断线段a、b、c、d是否是成比例线段,关键是看线段a、b、c、d中两两的比是否相等.需要特别注意的是不一定按顺序计算解:(1)∴线段a、b、c、d是成比例线段.￿(2)∴这四条线段是成比例线段.￿￿3.比例的性质￿(1)比例的基本性质:￿￿如果,那么ad=bc;如果ad=bc,那么￿￿(2)比例的合分比性质:￿￿如果￿【例2】已知:,求证:￿证明:(1)等式两边同加上1,得(2)￿等式两边同乘-1,得等式两边同加上1,得(3)比例的等比性质:￿如果那么证明如下:三、巩固练习￿1.已知线段a、b、c满足关系式,且b=4,那么ac= .2.判断下列线段a、b、c、d是否成比例线段:￿￿(1)a=2cm,b=4cm,c=3m,d=6m;￿(2)a=0.8,b=3,c=0.64,d=2.4.￿答案:1.16 2.(1)￿a、b、c、d是成比例线段(2)a、b、c、d是成比例线段￿四、应用拓展￿【例3】若,试确定下列各式的值:￿￿分析:由于式子当中出现了分子与分母的和差形式,故可尝试利用比例的合分比性质来解决问题.￿解:【例4】若,求k的值.￿分析:由于本题涉及了一组等比,故可尝试利用比例的等比性质来解题.￿解:当a+b+c=0时,a+b=-c,b+c=-a,a+c=-b,易得k=-1.当a+b+c≠0时,￿￿五、归纳小结￿1.求线段的比时,必须先统一长度单位.￿2.由ad=bc得到的比例式并不唯一,可以是等.￿￿3.利用比例的性质解题时,注意分母不能为零.￿※课后作业※￿课本第51页练习第3、4题￿习题23.1第4、5、6题.2.平行线分线段成比例￿※教学目标※【知识与技能】￿在理解的基础上掌握平行线分线段成比例定理和三角形一边的平行线的性质定理.￿【过程与方法】￿经历平行线分线段成比例定理和三角形一边的平行线的性质定理的探究过程,能探究并归纳出平行线分线段成比例定理和三角形一边的平行线的性质定理.能运用平行线分线段成比例定理和三角形一边的平行线的性质定理解决有关问题.￿【情感态度】￿通过定理的学习进一步掌握认识事物的一般规律是从特殊到一般,并进一步学会用类比的数学思想方法来研究问题和解决问题.￿【教学重点】￿理解并掌握平行线分线段成比例定理和三角形一边的平行线的性质定理,并能运用定理解决有关问题.￿【教学难点】￿平行线分线段成比例定理和三角形一边的平行线的性质定理的探究与归纳,以及如何将复杂的图形分解成一些简单的基本图形.￿※教学过程※￿一、复习引入￿翻开作业本,每一页都是由一些间距相等的平行线组成的.￿在作业本上任意画一条直线m与相邻的三条平行线交于A、B、C三点,得到两条线段AB、BC,那么可以发现所得的这两条线段相等,即AB=BC.同理可得DE=EF.由此我们可以得到￿￿二、探索新知￿如果选择作业本上不相邻的三条平行线,任意画两条直线m、n与它们相交.￿测量并计算:(1)m与n平行时,四条线段AD、DB、FE、EC的长度有什么关系;￿(2)m与n不平行时,四条线段AD、DB、FE、CE的长度有什么关系.￿￿1.平行线分线段成比例定理:￿两条直线被一组平行线所截,所得的对应线段成比例(简称“平行线分线段成比例”).￿用几何语言表示为:￿∵AD∥BE∥CF,￿∴2.三角形一边的平行线的性质定理:￿探索一:当上述图中的A点与F点重合时,如图,此时AD、DB、AE、EC这四条线段之间会有怎样的关系呢?￿￿探索二:如图,当直线m、n相交于第二条平行线上某点时,是否也有类似的成比例线段呢?￿￿三角形一边的平行线的性质定理:￿平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.￿用几何语言表示为:￿∵DE∥BC,￿∴∵DE∥BC,￿∴【说明】这两幅图可以简称为“A”型和“X”型.￿【例1】如图,,AB=4,DE=3,EF=6.求BC的长.￿分析:考虑到题目中有一组平行线,故可尝试利用平行线分线段成比例定理来解题.￿解:∵,∴(平行线分线段成比例).￿∵AB=4,DE=3,EF=6,￿∴.∴BC=8.￿￿【例2】如图,E为ABCD的边CD延长线上的一点,连结BE,交AC于点O,交AD 于点F.求证:分析:由于比例式中的线段都在同一条直线上,故应利用平行线分线段成比例定理分别找出的值.￿证明:∵AF∥BC,￿∴(平行线分线段成比例).￿∵AB∥CE,￿∴(平行线分线段成比例).￿∴.￿￿三、巩固练习￿1.如图,AD∥BE∥CF,直线与这三条平行线分别交于点A、B、C和点D、E、F.￿(1)已知AB=BC=4,DE=5,求EF的长;￿(2)已知AB=5,BC=6,DE=7,求EF的长.￿第1题图第2题图2.如图,AD∥BE∥CF,直线与这三条平行线分别交于点A、B、C和点D、E、F,AB=4,BC=3,DF=9.求EF的长.￿答案:1.(1)EF=5 (2)EF= 2.EF=￿￿四、应用拓展￿1.教材第53页“做一做”.￿2.已知:如图,,AB=3,BC=5,DF=12.求DE和EF的长.￿答案:2.DE=4.5,EF=7.5.￿￿五、归纳小结￿平行线分线段成比例定理的运用,关键是注意对应,另外,在应用此定理证明时,可能要借用中间比或是结合比例的性质进行综合应用.￿※课后作业※￿教材第55页习题23.1的第7题.￿。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.
a b

c d
=…mn =k⇒
a+b+…+m b+d+…+n
=k,仅在b+d+…+n≠0条件下才能
运用,否则需分类讨论. 牛牛文档分 享易错提示: 1.如四条线段a,b,d,c成比例,若a=4,b=8,d=5,则c= 10(错答52). 2.若b+a c=a+c b=a+b c=k,则k=-1或2(错答2).
解:添加2 3 cm,比例式为2 24z. (1)求2x3+y-2yz+z; (2)若 2x+y-z=6,求 3x+2y-z 的值. 解:(1)设x2=y3=4z =k,则x=2k,y=3k,z=4k,∴原式=4k+9k6-k+4k4k=154kk =154 (2)由4k+3k-4k=6,解得k=2,∴x=4,y=6,z=8,∴3x+2y-z=16
解得l1=40,l2=24,即△ABC和△ADE的周长分2-1∶1 的矩形叫黄金矩形,黄金矩形令人赏心悦目, 它给我们以协调匀称的美感.如图,如果在一个黄金矩形里面画一个正方形, 那么留下的矩形还是黄金矩形吗?请证明你的结论.
A.b,d,c,a成比例 B.d,b,a,c成比例 C.b,d,a,c成比例 D.b,c,d,a成比例 10.(原创题)已知线段a,b,c,d成比例,且a=x,b=2,c=1,d= x+1,则x的值为( A ) A.1 B.-1是黄金矩形.证明:∵
AB AD

5-1 2
,∴
FD DC

AD-AF AD-AB AB = AB =
52-1-1=
5-1 2 是△ABC 的三边,满足a+3 4=b+2 3=c+4 8,且 a+b+ c=12.
11.(练习题 3 变式)若xy=34,则下列各式中不正确的是( D ) A.x+y y=74 B.y-y x=4 C.x+x2y=1bb=59,则ba的值为____11_39___. 13.(2015·兰州)如果ba=dc=ef=k(b+d+f≠0),且 a+c+e=3(b+d+ f),那么 k=___3____. 14.已知三条线段的长分别为 1 cm,2 cm, 3 cm,请你添加一条线段, 使这四条,d成比例,其中a=3 cm,d=4 cm,c=6 cm,则b
等于( D )
A.8 cm
9 B.2 cm
2 C.9 cm
D.2 cm
4.在比例尺为1∶40000的工程示意图上,某地铁一号线的长度约为54.3
cm,它的实际长度约为( C )
b+3 c+8 3,所以a=5.同理 2 = 4 =3,解得b=3,c=4 (2)因为32+42=52,所
以b2+c2=a2条线段是否成比例的方法. (1)排:将四条线段统一单位,按大小顺序排列; (2)算:分别计算前两条长度比和后两条长度比; (3)判:判断这两个比是否相等. 牛牛文档分 享 牛牛文档分 享
7.已知ba=153,则aa- +bb的值是(
D
)
239 4 A.3 B.2 C.4 D.9 8.(2015·六盘水)已知4c=b5=6a≠0,则b+a c的值a=0.3 m,b=18 cm,c=0.4 m,d=24 cm,下 列说法中正确的为( C )
知识点❶:成比例线段
1.下列各组线段(单位:cm)中,是成比例线段的是( B )
A.1,2,3,4
B.1,2,2,4
C.3,5,9,13 D.1,2,2,3
2.(例题1变式)如果a=2,b=9,c=6,d=3,那么( D ) A.a,b,c,d成比例 B.a,c,b,d成比例
C.a,d,b,c成比例BC 中,AADB=DBCE=AACE=35,且△ABC 的周长与△ ADE 的周长相差 16 cm,求△ABC 和△ADE 的周长.
解:设△ABC的周长为l1,△ADE的周长为l2,依题意有 ll12=35, l1-l2=16,
A.0.2172 km B.2.172 km
C.21.72 影长成比例,如果高为1.25 m的竹竿的影长为 2.5 m,那么影长为30 m的旗杆的高度是( D )
A.20 m B.16 m C.18 m D.15 m 知识点❷:比例的基本性质 6.已知2x=5y(y≠0),则下列比例式成立的是( B ) A.2x=5y B.5x=2y C.xy=25 D.x2=5y
(1)试求 a,b,c 的值; (
a+4+b+3+c+8 a+4
解:(1)因为 3 = 2 = 4 ,所以
3+2+4= 3 ,即来自a+b+c+15 a+4
12+15 a+4 a+4
9
= 3 ,又因为a+b+c=12,所以 9 = 3 ,即 3 =
相关文档
最新文档