经典单方程计量经济学模型

合集下载

计量经济学 第三章

计量经济学 第三章
习题答案
3-2.答:变量非线性、系数线性;变量、系数均线性;变量、系数均 线性;变量线性、系数非线性;变量、系数均为非线性;变量、系数均 为非线性;变量、系数均为线性。 3-3.答:多元线性回归模型与一元线性回归模型的区别表现在如下几 方面:一是解释变量的个数不同;二是模型的经典假设不同,多元线性 回归模型比一元线性回归模型多了“解释变量之间不存在线性相关关
方和较大,但相对来说其AIC值最低,所以我们选择该模型为最优的模
型。
(4)随着收入的增加,我们预期住房需要会随之增加。所以可以预
期β3>0,事实上其估计值确是大于零的。同样地,随着人口的增加,
住房需求也会随之增加,所以我们预期β4>0,事实其估计值也是如
此。随着房屋价格的上升,我们预期对住房的需求人数减少,即我们预
其中:——某天慢跑者的人数 ——该天降雨的英寸数 ——该天日照的小时数 ——该天的最高温度(按华氏温度) ——第二天需交学期论文的班级数Байду номын сангаас
请回答下列问题:(1)这两个方程你认为哪个更合理些,为什么? (2)为什么用相同的数据去估计相同变量的系数得
到不同的符号? 3-18.对下列模型: (1)
(2) 求出β的最小二乘估计值;并将结果与下面的三变量回归方程的最小二 乘估计值作比较:
(1) 检验模型A中的每一个回归系数在10%水平下是否为零(括 号中的值为双边备择p-值)。根据检验结果,你认为应该把 变量保留在模型中还是去掉?
(2) 在模型A中,在10%水平下检验联合假设H0:i =0(i=1,5,6,7)。说明被择假设,计算检验统计值,说明其 在零假设条件下的分布,拒绝或接受零假设的标准。说明你 的结论。
(3) ,你认为哪一个估计值更好? 3-19.假定以校园内食堂每天卖出的盒饭数量作为被解释变量,盒饭 价格、气温、附近餐厅的盒饭价格、学校当日的学生数量(单位:千 人)作为解释变量,进行回归分析;假设不管是否有假期,食堂都营 业。不幸的是,食堂内的计算机被一次病毒侵犯,所有的存储丢失,无 法恢复,你不能说出独立变量分别代表着哪一项!下面是回归结果(括 号内为标准差):

李子奈《计量经济学》课后习题详解(经典单方程计量经济学模型:一元线性回归模型)【圣才出品】

李子奈《计量经济学》课后习题详解(经典单方程计量经济学模型:一元线性回归模型)【圣才出品】

2.下列计量经济学方程哪些是正确的?哪些是错误的?为什么?
(1)Yi=α+βXi,i=1,2,…,n;
(2)Yi=α+βXi+μi,i=1,2,…,n;
∧∧
(3)Yi=α+βXi+μi,i=1,2,…,n;

∧∧
(4)Yi=α+βXi+μi,i=1,2,…,n;
∧∧
(5)Yi=α+βXi,i=1,2,…,n;
2 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台
www.10Leabharlann
假定随机扰动项满足条件零均值、条件同方差、条件序列丌相关性以及服从正态分布。 (2)违背基本假设的计量经济学仍然可以估计。虽然 OLS 估计值丌再满足有效性,但 仍然可以通过最大似然法等估计方法或修正 OLS 估计量来得到具有良好性质的估计值。

4.线性回归模型 Yi=α+βXi+μi,i=1,2,…,n 的零均值假设是否可以表示为
1
n
n i 1
i

0 ?为什么?
n
1 0 答:线性回归模型 Yi=α+βXi+μi 的零均值假设丌可以表示为
i

n i1
原因:零均值假设 E(μi)=0 实际上表示的是 E(μi∣Xi)=0,即当 X 取特定值 Xi 时,
3.一元线性回归模型的基本假设主要有哪些?违背基本假设的计量经济学模型是否就 丌可以估计?
答:(1)针对普通最小二乘法,一元线性回归模型的基本假设主要有以下三大类: ①关于模型设定的基本假设: 假定回归模型的设定是正确的,即模型的变量和函数形式均为正确的。 ②关于自变量的基本假设: 假定自变量具有样本变异性,且在无限样本中的方差趋于一个非零的有限常数。 ③关于随机干扰项的基本假设:

第5章 经典单方程计量经济学模型-李子奈计量经济学课件

第5章 经典单方程计量经济学模型-李子奈计量经济学课件

第五章经典单方程计量经济学模型:专门问题§5.1 虚拟变量§5.2 滞后变量§5.3 设定误差§5.4 建模理论1§5.1 虚拟变量模型一、虚拟变量的基本含义二、虚拟变量的引入三、虚拟变量的设置原则2一、虚拟变量的基本含义•许多经济变量是可以定量度量的,如:商品需求量、价格、收入、产量等•但也有一些影响经济变量的因素无法定量度量,如:职业、性别对收入的影响,战争、自然灾害对GDP的影响,季节对某些产品(如冷饮)销售的影响等等。

•为了在模型中能够反映这些因素的影响,并提高模型的精度,需要将它们“量化”,35概念:同时含有一般解释变量与虚拟变量的模型称为虚拟变量模型或者方差分析(analysis-of variance: ANOVA )模型。

一个以性别为虚拟变量考察企业职工薪金的模型:ii i i D X Y µβββ+++=210其中:Y i 为企业职工的薪金,X i 为工龄, D i =1,若是男性,D i =0,若是女性。

6二、虚拟变量的引入• 虚拟变量做为解释变量引入模型有两种基本方式:加法方式和乘法方式。

ii i i X D X Y E 10)0,|(ββ+== 企业男职工的平均薪金为:ii i i X D X Y E 120)()1,|(βββ++== 上述企业职工薪金模型中性别虚拟变量的引入采取了加法方式。

在该模型中,如果仍假定E(µi )=0,则 企业女职工的平均薪金为:1、加法方式8 又例:在横截面数据基础上,考虑个人保健支出对个人收入和教育水平的回归。

教育水平考虑三个层次:高中以下,高中,大学及其以上模型可设定如下:ii i D D X Y µββββ++++=231210 这时需要引入两个虚拟变量:10• 还可将多个虚拟变量引入模型中以考察多种“定性”因素的影响。

如在上述职工薪金的例中,再引入代表学历的虚拟变量D 2:ii i D D X Y µββββ++++=231210⎩⎨⎧=012D 本科及以上学历本科以下学历职工薪金的回归模型可设计为:11•女职工本科以下学历的平均薪金:ii i X D D X Y E 13021)()1,0,|(βββ++===•女职工本科以上学历的平均薪金:ii i X D D X Y E 132021)()1,1,|(ββββ+++===ii i X D D X Y E 1021)0,0,|(ββ+===ii i X D D X Y E 12021)()0,1,|(βββ++===于是,不同性别、不同学历职工的平均薪金分别为:•男职工本科以下学历的平均薪金:•男职工本科以上学历的平均薪金:2、乘法方式•加法方式引入虚拟变量,考察:截距的不同,•许多情况下:往往是斜率就有变化,或斜率、截距同时发生变化。

第二章经典单方程计量经济学模型:一元线性回归模型

第二章经典单方程计量经济学模型:一元线性回归模型

第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的大体思想与大体方式。

第一,本章从整体回归模型与整体回归函数、样本回归模型与样本回归函数这两组概念开始,成立了回归分析的大体思想。

整体回归函数是对整体变量间关系的定量表述,由整体回归模型在假设干大体假设下取得,但它只是成立在理论之上,在现实中只能先从整体中抽取一个样本,取得样本回归函数,并用它对整体回归函数做出统计推断。

本章的一个重点是如何获取线性的样本回归函数,要紧涉及到一般最小二乘法(OLS)的学习与把握。

同时,也介绍了极大似然估量法(ML)和矩估量法(MM)。

本章的另一个重点是对样本回归函数可否代表整体回归函数进行统计推断,即进行所谓的统计查验。

统计查验包括两个方面,一是先查验样本回归函数与样本点的“拟合优度”,第二是查验样本回归函数与整体回归函数的“接近”程度。

后者又包括两个层次:第一,查验说明变量对被说明变量是不是存在着显著的线性阻碍关系,通过变量的t查验完成;第二,查验回归函数与整体回归函数的“接近”程度,通过参数估量值的“区间查验”完成。

本章还有三方面的内容不容轻忽。

其一,假设干大体假设。

样本回归函数参数的估量和对参数估量量的统计性质的分析和所进行的统计推断都是成立在这些大体假设之上的。

其二,参数估量量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性组成了对样本估量量好坏的最要紧的衡量准那么。

Goss-markov定理说明OLS估量量是最正确线性无偏估量量。

其三,运用样本回归函数进行预测,包括被说明变量条件均值与个值的预测,和预测置信区间的计算及其转变特点。

二、典型例题分析例一、令kids表示一名妇女生育小孩的数量,educ表示该妇女同意过教育的年数。

生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包括什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭露教育对生育率在其他条件不变下的阻碍吗?请说明。

第四章 经典单方程计量经济学模型:放宽基本假定的模型

第四章  经典单方程计量经济学模型:放宽基本假定的模型

第四章 经典单方程计量经济学模型:放宽基本假定的模型前两章计量经济学模型的回归基于若干基本假设,应用普通最小二乘法得到了线性、无偏、有效的参数估计量。

但实际的计量经济学问题中,完全满足这些基本假定的情况不多。

称不满足基本假定的情况为基本假定违背。

以一元为例,重述基本假定:① i X 为确定性变量,非随机的(i X 确定,且j X 间互不相关;若多元回归时相关,称为多重共线性:()1rk X k <+; 若存在一个或多个解释变量是随机变量,称为随机解释变量问题);② 随机干扰项具有0均值,同方差:20,i i D E μμμσ==(2i i D μσ=即所谓异方差)③ cov(,)0,i j i j μμ=∀≠,随机干扰项互相独立,无序列相关(()cov ,0i j μμ≠,序列相关)。

④ ()cov ,0,1,2,...,,1,2,...,ji i X j k i n μ===,解释变量与随机误差项间不相关,这样将j i X ,i μ对Y 的影响分开。

⑤ ()20,,1,2,...,iN i n μμσ=,由中心极限定理保证。

而①―④需要作出计量经济学意义的检验。

基于此,基本假定违背主要包括以下几种情况:1)随机干扰项序列存在异方差性(同方差);2)随机干扰项序列存在序列相关性(序列不相关);3)解释变量之间存在多重共线性(不相关);4)解释变量是随机变量,且与随机干扰项相关(解释变量确定,与随机干扰项不相关);5)模型设定有偏误(模型设定正确);6)解释变量的方差随着样本容量的增加而不断增加(方差趋于常值)。

在对计量经济学模型进行回归分析时,必须要进行计量经济学检验:检验是否存在一种或多种违背基本假定的情况。

若有违背情况,应用普通最小二乘法估计模型就不能得到无偏的、有效的参数估计量,OLS法失效,这就需要发展新的方法估计模型。

本章主要讨论前四种,后两种将在第五四章、第九章讨论。

4.1 异方差性(93页)一、异方差性(主要以一元为例,多元类似)1.异方差性概念(Heteroskedasticity):同方差性是指每个i 围绕其零平均值的方差,并不随解释变量X 的变化而变化,不论解释变量观测值是大还是小,每个i μ的方差保持相同,即 2i const σ=。

建立经典单方程计量经济学模型的步骤

建立经典单方程计量经济学模型的步骤

建立经典单方程计量经济学模型的步骤第一步:明确研究问题和目标在建立计量经济学模型之前,需要明确研究问题和目标。

这可以是一个经济学理论或假设的测试,也可以是对一些经济变量之间关系的探索性研究。

明确研究问题和目标有助于确定模型的范围和方向。

第二步:选择适当的模型类型根据研究问题和目标,选择适当的模型类型。

单方程计量经济学模型可以分为线性回归模型和非线性回归模型。

线性回归模型常用于描述两个或多个变量之间的线性关系。

非线性回归模型则更适合于描述复杂的非线性关系。

第三步:收集数据选择恰当的数据集并收集所需的数据。

计量经济学模型的建立需要依赖观测数据进行估计和验证。

数据的质量和可用性对模型的准确性和可解释性具有重要影响,因此需要注意选择合适的数据源并进行数据清洗和处理。

第四步:制定理论模型借助经济学理论和假设,建立起理论模型。

理论模型可以是一个经济关系的数学表达式,用来解释和预测经济变量之间的关系。

理论模型是建立计量模型的基础,它提供了对经济变量之间关系的初步认识和解释。

第五步:确定函数形式在建立经济计量模型时,需要确定函数形式。

函数形式决定了模型的线性或非线性特征,以及变量之间的函数关系形式。

常见的函数形式包括线性、对数线性、半对数线性等,根据实际情况选择最适合的函数形式。

第六步:估计参数利用最小二乘法等估计方法,对模型中的参数进行估计。

最小二乘法是一种常用的估计方法,通过最小化残差平方和来确定参数估计值。

除了最小二乘法,还可以使用极大似然估计等方法对参数进行估计和假设检验。

第七步:模型诊断和检验对建立的模型进行诊断和检验,以确定模型的有效性和适用性。

常见的模型诊断和检验方法包括残差分析、异方差性检验、多重共线性检验等。

模型诊断和检验是验证模型合理性和可解释性的重要步骤。

第八步:模型解释和预测根据估计得到的模型参数和结果,进行模型解释和预测分析。

根据模型的解释能力,评估模型对经济变量之间关系的解释能力。

通过模型的预测能力,对未来经济变量的走势进行预测和分析。

计量经济学 第三章、经典单方程计量经济学模型:多元线性回归模型

计量经济学 第三章、经典单方程计量经济学模型:多元线性回归模型

第三章、经典单方程计量经济学模型:多元线性回归模型一、内容提要本章将一元回归模型拓展到了多元回归模型,其基本的建模思想与建模方法与一元的情形相同。

主要内容仍然包括模型的基本假定、模型的估计、模型的检验以及模型在预测方面的应用等方面。

只不过为了多元建模的需要,在基本假设方面以及检验方面有所扩充。

本章仍重点介绍了多元线性回归模型的基本假设、估计方法以及检验程序。

与一元回归分析相比,多元回归分析的基本假设中引入了多个解释变量间不存在(完全)多重共线性这一假设;在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是否对被解释变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的内在联系。

本章的另一个重点是将线性回归模型拓展到非线性回归模型,主要学习非线性模型如何转化为线性回归模型的常见类型与方法。

这里需要注意各回归参数的具体经济含义。

本章第三个学习重点是关于模型的约束性检验问题,包括参数的线性约束与非线性约束检验。

参数的线性约束检验包括对参数线性约束的检验、对模型增加或减少解释变量的检验以及参数的稳定性检验三方面的内容,其中参数稳定性检验又包括邹氏参数稳定性检验与邹氏预测检验两种类型的检验。

检验都是以F检验为主要检验工具,以受约束模型与无约束模型是否有显著差异为检验基点。

参数的非线性约束检验主要包括最大似然比检验、沃尔德检验与拉格朗日乘数检验。

它们仍以估计无约束模型与受约束模型为基础,但以最大似然原χ分布为检验统计量理进行估计,且都适用于大样本情形,都以约束条件个数为自由度的2的分布特征。

非线性约束检验中的拉格朗日乘数检验在后面的章节中多次使用。

二、典型例题分析例1.某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为36.0.+=-10+094medufedu.0sibsedu210131.0R2=0.214式中,edu为劳动力受教育年数,sibs为该劳动力家庭中兄弟姐妹的个数,medu与fedu分别为母亲与父亲受到教育的年数。

建立经典单方程计量经济学模型的步骤和要点

建立经典单方程计量经济学模型的步骤和要点

建立经典单方程计量经济学模型的步骤和要点
1、确定研究对象和目标:首先需要明确研究的目的和研究对象,
并确定需要解决的问题和实现的目标。

2、收集数据:收集与研究对象和目标相关的数据,包括宏观经济
指标、市场数据、公司财务数据等。

3、确定自变量和因变量:根据研究目的和收集到的数据,选择合
适的自变量和因变量,自变量是影响因变量的变量,因变量是受自变量影响变化的变量。

4、模型设定和假设:根据经济学理论和实际情况,设定经典单方
程计量经济学模型的方程形式和假设条件,考虑线性或非线性关系、时间趋势、季节性等因素。

5、数据预处理:对收集到的数据进行预处理,包括缺失值填充、
异常值处理、数据转换等,以确保数据的准确性和可靠性。

6、模型拟合和参数估计:使用统计软件或编程语言进行模型拟合
和参数估计,根据设定的方程形式和假设条件,计算出自变量和因变量之间的参数估计值和误差等指标。

7、模型检验和调整:对拟合后的模型进行检验和调整,包括统计
显著性检验、经济意义检验、模型的多重共线性检验等,对不符合要求的模型进行修正和改进。

8、应用和解释:根据拟合好的经典单方程计量经济学模型,进行
应用和解释,包括预测未来趋势、政策评估、结构分析等。

计量经济学(内蒙古大学) 第八章 经典单方程计量经济学模型:专门问题(滞后变量模型)

计量经济学(内蒙古大学) 第八章 经典单方程计量经济学模型:专门问题(滞后变量模型)
内蒙古大学经济管理学院
第四章: 经典单方程计量经济学模型: 专门问题(滞后变量模型)
经世致用 管人悟道
内蒙古大学经济管理学院
在许多情况下被解释变量Y 不仅受到同期的解
释变量Xt 的影响,而且和X的滞后值Xt-1, Xt-2 ,
…,有很强的相关性 。
例如,人们的储蓄和当期的收入以及过去几期的收 入有着很强的相关性;固定资产的形成不仅取决 于现期投资额而且还取决于前几个时期的投资额 的影响等。这样的社会现象还有很多,有经济方 面的,也有其它领域的,对这些问题进行讨论就
经世致用 管人悟道
6
内蒙古大学经济管理学院
一、分布滞后模型的概念及相关问题
于是,由该例可以得到以下消费函数关系式
Yt 常量 0.4 X t 0.3X t 1 0.2 X t 2 ut
式中, Y=消费支出,X=收入。该方程就 是一个分布滞后模型,它表示收入对消费的 影响分布于不同时期。
在经济活动中,某一个经济变量的影响不仅 取决于同期各种因素,而且也取决于过去时期的各 种因素,有时还受自身过去值的影响。例如,居民 现期消费水平,不仅受本期居民收入影响,同时受 到前几个时期居民收入的影响。
把这些过去时期的变量,称作滞后变量, 把那些包括滞后变量作为解释变量的模型称作 滞后解释变量模型。
经世致用 管人悟道
5
内蒙古大学经济管理学院
一、分布滞后模型的概念及相关问题
什么是分布滞后模型? 例如:消费者每年收入增加10000元,假如,该
消费者把各年增加的收入按照以下方式分配:当年
增加消费支出4000元,第二年再增加消费支出3000
元,第三年再增加消费支出2000元,剩下的1000元 作为储蓄。第三年的消费支出不仅取决于当年的收 入,还与第一年和第二年的收入有关。当然,还可 以和前面更多期有关。

单方程计量经济学模型第二章经典单方程计量经济学模型

单方程计量经济学模型第二章经典单方程计量经济学模型

• 回归分析构成计量经济学的方法论基础, 回归分析构成计量经济学的方法论基础, 其主要内容包括: 其主要内容包括: • (1)根据样本观察值对经济计量模型参 数进行估计,求得回归方程; 回归方程; 回归方程 • (2)对用回归方程进行分析、评价及预 测。
例2.1中,个别家庭的消费支出为:
(*) 即,给定收入水平Xi ,个别家庭的支出可表示为两部分之和: (1)该收入水平下所有家庭的平均消费支出E(Y|Xi),称为 系统性( 确定性( 系统性(systematic)或确定性(deterministic)部分 ) 确定性 )部分。 (2)其他随机 非确定性 随机或非确定性 随机 非确定性(nonsystematic)部分µi。 部分
二、总体回归函数
例2.1:一个假想的社区有100户家庭组成,要研 : 究该社区每月家庭消费支出 家庭消费支出Y与每月家庭可支配收 家庭消费支出 家庭可支配收 入X的关系。 即如果知道了家庭的月收入,能否预测该社区 家庭的平均月消费支出水平。 为达到此目的,将该100户家庭划分为组内收入 差不多的10组,以分析每一收入组的家庭消费支出。
样本散点图近似于一条直线,画一条直线以尽好地拟合该 散点图,由于样本取自总体,可以该线近似地代表总体回归线。 该线称为样本回归线(sample regression lines)。 样本回归线( )。 样本回归线 记样本回归线的函数形式为: ˆ ˆ ˆ Yi = f ( X i ) = β 0 + β 1 X i 称为样本回归函数(sample regression function,SRF)。 样本回归函数( 样本回归函数 , )
四、样本回归函数(SRF) 样本回归函数( )
总体的信息往往无法掌握,现实的情况只能是在 一次观测中得到总体的一个样本。 问题: 问题:能从一次抽样中获得总体的近似的信息吗? 如果可以,如何从抽样中获得总体的近似信息? 2.2: 2.1 例2.2:在例2.1的总体中有如下一个样本, 问:能否从该样本估计总体回归函数PRF?

经典单方程计量经济学模型(异方差性)

经典单方程计量经济学模型(异方差性)

80%
适用范围
对数变换法适用于存在异方差性 的模型,尤其适用于解释变量和 被解释变量之间存在非线性关系 的情况。
04
异方差性与模型选择
异方差性与模型适用性
异方差性是指模型中误差项的 方差不为常数,而是随解释变 量的变化而变化。
在异方差性存在的情况下,经 典的单方程计量经济学模型可 能不再适用,因为模型假设误 差项的方差是恒定的。
为了使模型具有适用性,需要 选择能够处理异方差性的模型 ,例如广义最小二乘法、加权 最小二乘法等。
异方差性与模型预测能力
异方差性的存在会影响模型的预测能力,因为异方差性会导致模 型的残差不再独立同分布,从而影响模型的预测精度。
为了提高模型的预测能力,需要采取措施处理异方差性,例如使 用稳健的标准误、对误差项进行变换等。
在实践中,应该充分考虑异方差性的影响,采取适当 的措施进行修正,以提高模型的预测和推断能力。
02
异方差性的检验
图示检验法
残差图检验
通过绘制残差与拟合值的图形,观察残差的分布情况,判断是否 存在异方差性。如果残差随着拟合值的增加或减少而呈现有规律 的变化,则可能存在异方差性。
杠杆值图检验
将数据按照杠杆值(leverage)进行排序,并绘制杠杆值与残差的 图形。如果图形显示高杠杆值对应的点有异常的残差分布,则可能 存在异方差性。
经典单方程计量经济学模型(异 方差性)

CONTENCT

• 异方差性简介 • 异方差性的检验 • 异方差性的处理方法 • 异方差性与模型选择 • 经典单方程计量经济学模型中的异
方差性
01
异方差性简介
定义与特性
异方差性是指模型残差的方差不为常数,随着解释 变量的变化而变化。

第二章 经典单方程计量经济学模型:一元线性回归模型

第二章  经典单方程计量经济学模型:一元线性回归模型

同学问题(西经教材55页):21()()00,d d d d d dd d d d TE TE TE P P Q Q PQ P Q P Q P Q P Q P Q dTE dP Q P dQ ∆=-=+∆+∆-=∆+∆+∆∆∆→∆→∆∆∴=+ 时,也,为更高阶无穷小抹掉高阶无穷小F X Y ,()X 2Y2-:=F华尔街200809-10月流行语:假设去年您有1000美元,如果买了达美航空的股票,现在还能剩下49美元; 如果买了AIG 的股票,剩下约12美元; 如果买了房地美股票,剩下约2.5美元; 如果买1000美元的啤酒,喝光后再把易拉罐送去回收站,还能换回214美元!美国经济学家克鲁格曼获得2008年诺贝尔经济学奖 08-10-13 斯德哥尔摩10月13日电 瑞典皇家科学院13日宣布,将2008年诺贝尔经济学奖授予美国普林斯顿大学经济学家保罗·克鲁格曼,以表彰他在分析国际贸易模式和经济活动的地域等方面所作的贡献。

瑞典皇家科学院发表声明说,克鲁格曼整合了此前经济学界在国际贸易和地理经济学方面的研究,在自由贸易、全球化以及推动世界范围内城市化进程的动因方面形成了一套理论。

根据瑞典著名化学家、硝化甘油炸药发明人阿尔弗雷德·伯恩哈德·诺贝尔(1833-1896)1895年立下的遗嘱,诺贝尔奖项只包括化学奖、物理学奖、文学奖、医学奖与和平奖。

诺贝尔经济学奖是瑞典中央银行在1968年为纪念诺贝尔而增设的,1969年首次颁奖。

诺贝尔经济学奖可以颁发给单个人,也可以最多由3人分享,其主要目的是表彰有关人员在宏观经济学、微观经济学、新经济分析方法等领域所作的贡献。

今年诺贝尔奖每项奖金仍(金融危机对奖金没有影响)为1000万瑞典克朗(约合140万美元)。

信计03吴丽然:苏老师:你好,我是03信计的吴丽然,现在在西南交大读研,我现在学的是交通运输,跨专业考得好多铁路专业知识都不懂,好在数学基础还有学起什么来都不太难,尤其是一些模型看起来要比本专业的容易懂些,现在发现咱们以前学的好多课都很有用。

建立经典单方程计量经济学模型的步骤

建立经典单方程计量经济学模型的步骤

建立经典单方程计量经济学模型的步骤建立经典单方程计量经济学模型的步骤如下:1. 确定研究问题:首先要明确自己要研究的经济问题,例如研究某个产品的价格与销量之间的关系。

2. 收集数据:收集与研究问题相关的数据,包括价格、销量以及其他可能影响价格和销量的因素,如广告费用、市场规模等。

3. 确定模型形式:根据研究问题和收集到的数据,选择适合的模型形式。

常见的单方程计量经济学模型包括线性回归模型、非线性回归模型、时间序列模型等。

4. 假设设定:在建立模型之前,需要对模型中的关系进行假设设定。

例如,在研究价格与销量之间的关系时,可以假设价格对销量有正向影响。

5. 模型估计:利用收集到的数据,对确定的模型进行估计。

常用的估计方法包括最小二乘法、极大似然估计等。

6. 模型诊断:对估计的模型进行诊断,检验模型的拟合程度和可靠性。

常见的诊断方法包括残差分析、异方差性检验、多重共线性检验等。

7. 参数解释:根据估计结果,对模型中的参数进行解释。

解释参数可以帮助我们理解模型中各个变量之间的关系。

8. 假设检验:对模型的假设进行统计检验,以验证模型的合理性和有效性。

常用的假设检验包括t检验、F检验等。

9. 模型预测:利用估计得到的模型,进行预测和推断。

通过模型预测,可以对未来的价格和销量进行预测,为决策提供参考。

10. 敏感性分析:对模型的参数进行敏感性分析,检验模型结果的稳健性。

敏感性分析可以帮助我们评估模型的可靠性和鲁棒性。

11. 结果解释:根据模型估计和分析的结果,对研究问题进行解释和总结。

解释结果可以帮助我们回答研究问题,并提出政策建议。

以上是建立经典单方程计量经济学模型的一般步骤。

在实际应用中,可能还需要根据具体情况进行调整和补充。

通过建立合理的模型,我们可以更好地理解经济现象,为经济政策制定和实践提供支持。

计量经济学 第二章 经典单方程计量模型简化内容

计量经济学 第二章 经典单方程计量模型简化内容
2 2 i i i
• 3.拟合优度(拟合度) • ①R2指标是判断回归模型优劣的一个最基 本的指标,但比较笼统,不精细。 • ②在Eviews中就是回归结果中的第一个R2, 判断时要注意,其越接近1,说明模型总体 拟合效果越好。 • ③R2的正式名称是“决定系数”,但通常 称其为拟合度。
• 具体的,拟合优度的计算公式如下:
• 3.计量模型的设定 • (1)基本形式: • y x (2.3) • 这里是一个随机变量,称作随机扰动项, 它的数学期望为0,即 注意:上式中条件数学期望的含义是,在给 定x时,ε的平均值为0。试举现实中的例子 予以说明。 回归直线、回归模型概念说明
• 二.一个完美计量经济模型的假设 • 1.对模型提出一些假设(限制)的原因 • 保证模型设定具有较高的合理性,从而可用其进 行经济分析并有利于统计分析的进行。 • 2.基本假定 • (1)在x给定的条件下,ε的数学期望为0 • (2)在x给定的条件下, x与ε不相关 • (3)在x给定的条件下, ε的方差是一个常数 • (4)在x给定的条件下, ε的样本之间不存在序 列相关 • (5) N (0, 2 )
R
2
2 (Yi Y )
n
(Y Y )
i 1 i
i 1 n
1.它的直观的含义是:估计 出来的被解释变量的每个 值跟平均值的偏差之和与 真实的被解释变量样本值 跟平均值的偏差之和的比 例。 2.现实当中的理解:如果我们在做模型时 希望最有效的解释被解释变量的波动,那 么比较好的一个指标就是让R2最大。 但一定要注意,在实际应用当中,大部分 情况下,我们并不是关注整个模型,而只 是关注一个解释变量对被解释变量的影响。
12 1 L , , exp 2 2 2 2 2 2

经典单方程计量经济学模型放宽基本假定的模型重点

经典单方程计量经济学模型放宽基本假定的模型重点

第四章 经典单方程计量经济学模型:放宽基本假定的模型一、典型例题分析1、下列哪种情况是异方差性造成的结果? (1)OLS 估计量是有偏的(2)通常的t 检验不再服从t 分布。

(3)OLS 估计量不再具有最佳线性无偏性。

解答: 第(2)与(3)种情况可能由于异方差性造成。

异方差性并不会引起OLS 估计量出现偏误。

2、已知模型t t t t u X X Y +++=22110βββ222)(t t t Z u Var σσ==式中,Y 、X 1、X 2和Z 的数据已知。

假设给定权数t w ,加权最小二乘法就是求下式中的各β,以使的该式最小2221102)()(t t t t t t t t t X w X w w Y w u w RSS βββ---==∑∑(1)求RSS 对β1、β2和β2的偏微分并写出正规方程。

(2)用Z 去除原模型,写出所得新模型的正规方程组。

(3)把t t Z w /1=带入(1)中的正规方程,并证明它们和在(2)中推导的结果一样。

解答: (1)由2221102)()(t t t t t t t tt X w X w w Y w u w R S S βββ---==∑∑对各β求偏导得如下正规方程组:∑=---0)(2211t t t ttttt w X w Xw w Y w βββ ∑=---0)(12211t t t t ttttt X w X w Xw w Y w βββ ∑=---0)(12211t t t t ttttt X w X w Xw w Y w βββ(2)用Z 去除原模型,得如下新模型tt t t t t t t t Z uZ X Z X Z Z Y +++=22110βββ 对应的正规方程组如下所示:01)(22110=---∑t t t t t t t t Z Z X Z X Z Z Y βββ 0)(122110=---∑t t t t t t t t t Z X Z X Z X Z Z Y βββ 0)(222110=---∑tt t t t t t t t Z X Z X Z X Z Z Y βββ (3)如果用1tZ 代替(1)中的t w ,则容易看到与(2)中的正规方程组是一样的。

试述建立经典单方程计量经济学模型的步骤和要点

试述建立经典单方程计量经济学模型的步骤和要点

试述建立经典单方程计量经济学模型的步骤和要点建立经典单方程计量经济学模型的步骤和要点:一、模型选择建立经典单方程计量经济学模型的第一步是选择合适的模型。

模型的选择主要基于研究的问题和数据的可用性。

通常情况下,经济学家会选择一些统计学上比较成熟的模型,如线性回归模型、对数线性回归模型、二项式回归模型等。

二、假定检验建立经典单方程计量经济学模型的第二步是进行假定检验。

这是因为在建立经济模型时,经济学家通常需要做出一些假设,如误差项的独立性、正态性等。

而这些假设是否成立对于模型的结果有着决定性的影响,因此需要进行假定检验,验证这些假设是否成立。

三、变量选择建立经典单方程计量经济学模型的第三步是选择合适的自变量。

这需要经济学家根据自己的研究问题和数据的特点来确定。

通常情况下,我们会通过引入一些重要的解释变量来解释我们研究的现象,而这些变量可以是连续的,也可以是分类的。

四、模型估计建立经典单方程计量经济学模型的第四步是对模型进行估计。

在这一步中,我们需要选定一些估计方法,如最小二乘法、广义最小二乘法等。

估计的结果可以反映我们所研究的经济现象,并可以用于对未来的预测和政策制定等方面。

五、模型检验建立经典单方程计量经济学模型的第五步是进行模型检验。

这是因为,一个好的模型需要满足一些指标,如残差平稳性、拟合优度等。

在这一步中,经济学家需要利用检验方法来检验其所估计的模型是否合适,是否符合我们对经济学现象的理解。

六、模型应用建立经典单方程计量经济学模型的最后一步是在实际中对模型进行应用。

这包括使用模型进行预测、制定政策等。

在实际应用中,我们需要考虑到模型的局限性,如数据的质量、样本的局限性等因素。

总结经典单方程计量经济学模型是经济学研究中最常用的经济模型之一。

建立一个合适的经典单方程计量经济学模型需要经济学家通过选择合适的模型,做出正确的假设和选择自变量,然后进行模型估计,最后进行模型检验和应用。

在经济学研究中,建立合适的经典单方程计量经济学模型可以提高我们对经济现象的认识,并可以为决策者提供有益的参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 经典单方程计量经济学模型:多元线性回归模型3—1 解释下列概念 (1)多元线性回归模型解答:在现实经济活动中往往存在着一个变量受到其他多个变量的影响的现象,表现为在线性回归模型中有多个解释变量,这样的模型被称为多元线性回归模型,多元指多个解释变量。

(2)偏回归系数解答:在多元回归模型中,每一个解释变量前的参数即为偏回归系数,它测度了当其他解释变量保持不变时,该解释变量增加1个单位对被解释变量带来的平均影响程度。

(3)正规方程组解答:正规方程组指采用OLS 估计线性回归模型时,对残差平方和关于各参数求偏导,并令偏导数为零得到的一组方程,其矩阵形式为Y X X X '='βˆ(4)调整的多元可决系数解答:调整的多元可决系数2R ,又称独院判定系数,是一个用于描述伴随模型中解释变量的增加和多个解释变量对被解释变量的联合影响程度的量。

它与2R 有如下关系:11)1(122-----=k n n R R(5)多重共线性解答:多重共线性是多元回归中特有的一个概念,指多个解释变量间存在线性相关的情形。

如果存在完全的线性相关性,则模型的参数就无法求出,OLS 回归无法进行。

(6)联合假设检验解答:联合假设检验是相对于单个假设检验来说的,指假设检验中的假设有多个,不止一个。

如多元回归中的方程的显著性检验就是一个联合假设检验,而每个参数的t 检验就是单个假设检验。

(7)受约束回归解答:在世纪经济活动中,常常需要根据经济理论对模型中的变量参数施加一定的约束条件,对模型施加约束条件后进行回归,称为受约束回归。

(8)无约束回归解答:无约束回归是与受约束回归相当对的一个概念,无需对模型中变量的参数施加约束条件进行的回归称为无约束回归3—2 观察下列方程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是?(1)i i i X Y εββ++=310(2)i i i X Y εββ++=log 10 (3)i i i X Y εββ++=ln ln 10 (4)i i i X Y εβββ++=)(210 (5)i ii X Y εββ+=10(6)i i i i X Y εββ+-+=)1(10 (7)i ii i X X Y εβββ+++=1022110 解答:(1),(2),(3),(7)变量非线性,系数线性: (4)变量线性,系数非线性: (5),(6)变量和系数均为非线性。

3—4 为什么说最小二乘估计量是最优的线性无偏估计量?多元线性回归最小二乘估计的正规方程组,能解出唯一的参数估计的条件是什么?解答:在多元回归的参数模型中,在模型满足经典假设的条件下,参数的最小二乘估计量具有线性性、无偏性以及最小方差性,所以被称为最有线性无偏估计量(BLUE )。

对于多元线性回归最小二乘估计的正规方程组,能解出唯一的参数估计量的条件是1)(-'X X 存在,或者说各解释变量间不完全线性相关。

3—7 为什么从计量经济学模型得到的预测值不是一个确定的值?预测值的置信区间和置信的含义是什么?在相同的置信度下如何才能缩小置信区间?解答: 原因有两个:(1)模型中的参数估计量不确定,它们随着抽样的不同而不同;(2)其他随机因素的影响,即使找到了参数的真实值,由于其他随机因素的影响,也会使通过估计的模型得到的预测值具有不确定性。

正是由于预测值的不确定性,得到的仅仅是预测值的一个估计值。

真实的预测值仅以某一个置信度处于以该估计值为中心的一个区间中,预测值的置信区间指:在给定α-1的置信度下,被解释变量的预测值0Y 的置信区间为01020001020)(1ˆˆ)(1ˆˆX X X X t Y Y X X X X t Y ''+⨯+<<''+⨯---σσαα 预测值的置信度又称预测值的置信水平,指预测值出现在上述区间的概率,是表明预测值的可靠程度的量。

在相同的置信度下,通过增加样本容量,提高模型的拟合优度和提高样本观测值的分散度可以达到缩小置信区间的目的。

3—8 设模型i i X X Y μβββ+++=22110,试在下列条件下: (1)121=+ββ; (2)21ββ=,分别求出1β和2β的最小二乘估计量。

解答:(1)由条件121=+ββ,容易将原模型变换为如下一元回归:μββ+-+=-)(21102X X X Y因此∑∑---=2212211)())((ˆi i i i i i x x xy x x β∑∑----=2212212)())((1ˆi i i i i i x x xy x x β其中,小写字母表示对其均值的离差。

(2)由条件21ββ=,容易将原模型变换为如下一元回归:μββ+++=)(2110X X Y因此∑∑++=221211)()(ˆi i i i i x xy x xβ∑∑++=221212)()(ˆi i i i i x xy x x β3—9 假设要求你建立一个计量经济学模型来说明在学校跑到上慢跑半小时或半小时以上的人数,以便决定是否修建第二条跑道以满足所有锻炼者。

你通过整个学年收集数据,得到两个可能的解释性方程:3215.10.10.150.125ˆX X X Y +--= , 75.02=R (a) 4217.35.50.140.123ˆX X X Y -+-= , 73.02=R (b ) 其中,Y 为某天慢跑者的人数,1X 为该天的降雨量(单位:毫米),2X 为该天的日照时间(单位:小时),3X 为该天的最高温度(单位:华氏温度),4X 为第二天需交学期论文的班级数。

请回答下列问题:(1) 这两个方程你认为哪个更合理,为什么?(2) 为什么用相似的数据区估计想通过变量的系数却得到不同的符号?解答:(1)方程(b )更合理。

原因是方程(b )中参数估计值的符号与现实更接近,如与日照的小时数同向变化,天长则慢跑的人会多些;与第二天需交学期论文的班级数称反比变化,这一点在学校的跑到模型中是一个合理的解释变量。

方程(a )相对来说不太合理,因为日照小时数前的符号与预期的正号不相符,而且所选的变量“日照小时数”与“该天的最高温度”有较强的相关性。

(2)方程(a )和方程(b )中由于选择了不同的解释变量,如方程(a )选择的是“该天最高温度”而方程(b )选择的是“第二天需交学期论文的班级数”,由此造成2X 与这两个变量之间的关系不同,所以用相同的数据估计相同的变量得到不同的符号。

其中变量“日照小时数”与“该天的最高温度”的较强相关性在很大程度上导致了2X 的符号位负。

3—10 有人以校园内食堂每天卖出的盒饭数量作为被解释变量,以盒饭价格、气温、附近餐厅的盒饭价格、学校当日的学生数量作为解释变量,进行回归分析。

假设你看到如下的回归结果(括号中是标准差),但并不知道各解释变量是哪一项。

是判定每项结果对应着哪一个变量,说明理由。

43219.561.07.124.286.10ˆi i i i i X X X X Y -+++= (2.6) (6.3) (0.61) (5.9)63.02=R 35=n解答:答案并不唯一,猜测为:1X 为学生数量,2X 为附近餐厅的盒饭价格,3X 为气温,4X 为校园内食堂的盒饭价格。

理由是被解释变量应与学生数量成正比,并且应该影响显著;与本食堂盒饭价格成反比,这与需求理论相吻合;与附近餐厅的盒饭价格成正比,因为彼此是替代品;与气温的变化关系不是十分显著,因为大多数学生不会因为气温升高不去食堂吃饭。

3—11 下面给出依据15个观察值计算得到的数据:693.367=Y , 760.4021=X , 0.82=X∑=269.660422iy,∑=096.8485521ix, ∑=0.28022ix∑=346.747781ii xy ,∑=9.42502ii xy ,∑=0.479621ii xx其中小写字母代表了各值与样本值的离差。

(1)估计0β,1β,2β三个多元回归系数,求出2R 与2R 。

(2)求出1ˆβ,2ˆβ的标准差,并估计1β,2β在95%置信度下的置信区间。

(3)在显著性水平%5=α下,检验估计的每个回归系数的统计显著性。

(4)在%5=α下检验假设:所有的参数都为零。

解答:(1)易知7266.07578105506200.4796280096.848850.47969.4250280346.74778ˆ2212122212122211==-⨯⨯-⨯=--=∑∑∑∑∑∑∑∑i i i i i i i i i i i i i xx x x x x x x x y x x y β 7363.275781020735800.4796280096.848850.4796346.74778096.848559.4250ˆ2212122212112122==-⨯⨯-⨯=--=∑∑∑∑∑∑∑∑i i i i i i i i i i i i i xx x x x x x x x y x x y β1572.530.87363.2760.4027266.0693.367ˆˆˆ22110=⨯-⨯-=--=X X Y βββ 由于∑∑∑∑=--==ii i i iiii iy e x x y e e e e )ˆ(22112ββ∑∑∑--=22112ˆˆi i i i ix y x y yββ故9988.0ˆˆˆˆ11222112221122=+=---=-=∑∑∑∑∑∑∑i i i i i i i i i i i y x y x y y x y x y y TSS RSS R ββββ9986.01)1(122=----=kn n R R (2)如果记样本回归模型的离差形式为ii i i e x x y ++=2211ˆˆββ 则容易知12)()ˆ(-'=iii Var x x σβ , 2,1=i 由线性代数的知识易知⎪⎪⎪⎪⎪⎭⎫--- ⎝⎛---='∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑-)x x (x x x )x x (x x x x )x x (x x x x )x x (x x x i i i i i i i i i i i i i i i i i i i i i i 21222122221222121221222121212221221x)x ( 由于3821.6129.42507363.2346.747787266.0269.66042315ˆˆ32211222=⨯-⨯-=---=-=∑∑∑∑i i i i iix y x y y n eββσ于是0486.04796280096.848552803821.6)(22212221222ˆ1=-⨯⨯=-=∑∑∑∑i i i i i x x xx xS σβ8454.0479*******.84855096.848553821.6)(22212221212ˆ2=-⨯⨯=-=∑∑∑∑i i i i i x x xx xS σβ样本容量为12=n ,查5%显著性水平下自由度为15-2-1=12的分布表的临界值为179.2)12(025.0=t ,因此1β,2β在95%置信度的置信区间分别为25.306207.00486.0179.27266.01≤≤⨯±β或 5783.48941.08454.0179.27362.22≤≤⨯±β或(3)针对每个参数都为零的假设,易有下面的t 检验值:9509.140486.007266.01=-=βt2367.38454.007363.22=-=βt显然,两估计参数计算的t 值大于临界值2.179,拒绝它们各自为零的原假设。

相关文档
最新文档