大学数学——微积分 上 答案与提示

合集下载

高等数学课后习题答案--第一章

高等数学课后习题答案--第一章

《高等数学》习题参考资料第一篇 一元函数微积分第一章 极限与连续§1 函 数习 题1.确定下列初等函数的定义域:(1) 21)(2−−+=x x x x f ;(2)4)(2−=x x f ;(3) 21arcsin )(−=x x f ;(4)2)5lg()(x x x f −=;(5) 4lg )5lg()(2−−=x x x f ;(6)x x x f cos sin )(−=。

1. 【答案】(1) )},2()2,1()1,(|{:+∞∪−∪−−∞∈=x x D (2) )},2[]2,(|{:+∞∪−−∞∈=x x D (3) ]}3,1[|{:;−∈=x x D (4) )}5,0()0,(|{:∪−∞∈=x x D (5) ]}4,1[|{:∈=x x D (6)+ +∈=+∞−∞=U k k k x x D ππ452,412|:.2. 作出下列函数的图象:(1)|sin |sin )(x x x f −=;(2)|1|2)(−−=x x f ;(3)+−−=,1,1,21)(x x x x f .12,21,1||−<<−<<≤x x x 2 【答案】 (1)2(2)2 (3)3.判断下列函数的奇偶性:(1)x x x f ++−=11)(;(2)xxx f x x +−+−=11lg110110)(;(3)x x a a x f x x sin )(++=−;(4))1lg()(2x x x f ++=。

3. 【答案】 (1) 偶函数; (2) 偶函数; (3) 偶函数; (4) 奇函数 .4.证明:两个奇函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数。

4. 【答案】 设)(x f ,)(x h 是奇函数, )(x g 是偶函数,)()()(x h x f x f =,)()()(x g x f x G =, 于是)()()(x h x f x F −−=−))())(((x h x f −−=)()()(x F x h x f ==, 因此)(x F 是偶函数.)()()(x g x f x G −−=−)()(x g x f −=)(x G −=, 因此)(x G 是奇函数.5.设函数f 满足:D (f )关于原点对称,且()xc x bf x af =+1)(,其中a ,b ,c 都是常数,||||b a ≠,试证明f 是奇函数。

大学数学微积分练习题及答案

大学数学微积分练习题及答案

大学数学微积分练习题及答案本文为大学数学微积分练习题及答案的整理,旨在帮助读者巩固和提高微积分的知识和技能。

以下是一些常见的微积分练习题及其解答,供读者参考。

1. 求函数f(x) = 3x^2 - 2x + 1的导数。

解答:我们可以使用导数的定义来求解。

根据定义,导数f'(x)为函数在任意一点x处的斜率,可以通过求极限得到。

根据导数的性质,多项式的导数等于各项的导数之和。

因此,我们可以按照导数的定义,先求出各项的导数,然后相加得到f'(x)。

f'(x) = (3x^2)' - (2x)' + (1)'= 6x - 2所以,函数f(x) = 3x^2 - 2x + 1的导数为f'(x) = 6x - 2。

2. 求函数f(x) = e^x的不定积分。

解答:根据指数函数e^x的积分规则,不定积分∫e^xdx等于e^x再乘上一个常数C。

因此,∫e^xdx = e^x + C3. 求函数f(x) = sin(x)的定积分∫(0 to π/2)sinx dx。

解答:我们可以利用定积分的定义来求解。

根据定积分的定义,∫(0 to π/2)sinx dx表示在区间[0, π/2]上sinx的面积。

因为sinx在[0, π/2]上是正值,所以∫(0 to π/2)sinx dx等于sinx在[0, π/2]上的图像所围成的面积。

又因为sinx在[0, π/2]上是递增的,所以面积等于∫(0 to π/2)sinx dx等于单位圆上π/2对应的弧长,即π/2。

所以,∫(0 to π/2)sinx dx = π/2。

4. 求函数f(x) = x^3在[1, 2]上的平均值。

解答:函数f(x) = x^3在[1, 2]上的平均值可以通过计算积分的平均值得到。

根据积分的定义,函数在区间[1, 2]上的平均值等于函数在该区间上的积分除以区间的长度。

平均值= ∫(1 to 2)x^3 dx / (2 - 1)= [1/4*x^4] (1 to 2) / 1= (2^4-1^4) / 4= (16-1) / 4= 15/4所以,函数f(x) = x^3在[1, 2]上的平均值为15/4。

浙江大学浙大卢兴江版微积分答案

浙江大学浙大卢兴江版微积分答案

6 定积分及其应用习题6.11. (1)e 1- (2)13 (3)122. (1)24R p (2)72(3)03. (1)1201d 1x x +ò (2)10ò (3)(i )10d ()x a b a x +-ò 或 11d b ax b a x-ò (ii )[]1ln ()d e a b a x x +-ò 或 1ln d e ba x xb a -ò 习题6.21. (1)112300d d x x x x >蝌 (2)553233(ln )d (ln )d x x x x >蝌 (3)222200sinsin d d xx x x x pp >蝌 2. (1[]222,0,1x x ?(2)提示:分析函数2()1xf x x=+在[]0,2上的最大(小)值. 3. 提示:取()()g x f x = 4. 提示:利用积分中值定理或定积分的定义证明.5. 提示:令()()F x xf x =对()F x 在10,2轾犏犏臌上用罗尔定理。

6. 提示:证明在[]0,p 内至少存在两点12,x x 使12()()0f f x x ==.习题6.31. (1)(2)sin 2x x - (2)6233e cos()x x x -(3)[][]sin ln 1sincos cos 1sinsin x x x x -+-+ (4)2221()d 2()x f t t x f x +ò(5)1()d xf t t ò2. (1)23(2)1 (3)1 (4)24p (5)13. 提示:利用夹逼定理.4. 4()sin 21f x x p =--. 5. 提示:2()y f x ⅱ= 6. 提示:利用2[()()]d 0baf x tg x x -?ò,其中t 为任意常数.7.(1)741)1)33p -++ (2)2 (3)143p - (4)26p (5)14 (6)12(7)24e --8. 提示:利用泰勒公式()()22a b a b f x f f x x 骣骣++¢琪琪=+-琪琪桫桫,x 位于x 与2a b+之间. 习题6.41. (1)15 (2)2 (3)16 (4)p (53p(6)121e骣琪-琪桫 (7)24p (8)34 (9)352e 2727- (10)1ln 32- (11)3p -(12)8p(13)43p - (14)(ln 2-+ (15)()3e 15p - (16)13(提示:222101110111xx x x x x x e dx dx dx e e e ----=++++⎰⎰⎰) (17)1 (18)4π(提示:作变换2x t π=-) (19)2 (20)13(21)34p (22)当n 为偶数时:131222n n n n p ---g g L g g ;当n 为奇数时:131123n n n n ---g g L g g (23)ln 28p2. 713e-3. 提示:22()d ()d ()d a bbb a b aaf x x f x x f x x ++=+蝌?,对2()d ba b f x x +ò作变换()x a b t =+-.4. 若f 是连续偶函数,()()d xaF x f t t =ò不一定为奇函数. 例如:2311()d 13x F x x x x ==-ò5.1n (提示:对10()d x n n n t f x t t --ò作变换n nx t u -=,用洛必达法则或导数的定义.) 6. ()1cos113-(提示:用分部积分法) 7. 提示:用分部积分法 8. (0)2f =. 9.(1)2101, 1321d , 103231, 023p p p p x x p x p p p ì骣ï琪-+<-琪ï桫ïï+=-++-?íïïï+?ïïîò (2)411,01()221, 12x x x F x x x ì-+-?ï=íï-#î10. 提示:利用()tan f x x =在0,4p 轾犏犏臌的单调性. 习题6.51.(1)2565 (2)1 (3)2p(4)163 (5)12442,633S S p p =+=- (6)92 (7)238a p (8)1ln 22 (9)1122.(1)a (2)43p3.(1)2R p (2)1ln(224+ (3)6a (4)22p 4. 1ln 32-5. 4 7. 3163a 8. (1)22x V p =,22y V p = (2)56p (3)24p (4),33p p(5)23332325,6,7x y y a V a V a V a p p p ==== 9.2p10. 44815p11. (1)21)p (2)33211113ln 93222π⎡⎛+⎛⎫⎢ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦12. 22arcsin a a 骣+ 13. 2560g r (焦) 14. 0.5625 kg/m 2. 15. 3.675(焦) 16. 1674.667 g (焦) 17.22503h pr (焦) 18. ()343R H R H p w w +- 19. 212Mgh mgh +(焦)20.21.222k ph R k p ++ 22.()kmM a a l +,其中k 为万有引力常数 23. 22ln 12kM al a l骣琪+琪+桫,其中k 为万有引力常数 习题6.61.211=-ò用矩形公式,梯形公式和抛物线公式计算(8)n = 2. 3.141592 (可利用抛物线公式计算120d 1xx +ò)3. 周长204l p q =ò,用抛物线公式计算(16)n =深其近似值为22.1035.习题6.71. (1)收敛,13 (2)发散 (3)收敛,1ln 242p +(4(5 (6312p -(7)收敛,12(8)收敛,238- (9)收敛,2(10)收敛,83 (11)收敛,p (12)发散(13)收敛,79 (14)收敛,p (15)收敛,(ln 22p+(16)当1k £时发散,当1k >时,收敛于1(ln 2)1kk--2. 提示:作积分变换1xt = 3. 2a b ==- 4*.(1)收敛 (2)收敛 (3)发散 (4)发散 (5)收敛 (6)收敛 (7)收敛 (8)发散 (9)收敛 (10)当1p <且1q <时收敛,其他发散. (11)收敛 (12)收敛 (13)当1n m >+时收敛,当1n m ?时发散 (14)当12p <<时收敛,其他发散 (15)当3m <时收敛,当3m ³时发散 (16)当12n <<时收敛,其他发散. 5.(1)11(1)n n p +G + (2)(1)p G +6.(1)1!2m (2)12122m +⎛⎫Γ=⎪⎝⎭ (3)(1)!3m m m -g 7. (1)130(2)111,22B n 骣琪+琪桫 = 12!(21)!!n n n +⋅+。

卢兴江版微积分(上册)参考答案(4)

卢兴江版微积分(上册)参考答案(4)

4 微分中值定理及导数应用习题4.11.(1)4373,()f 为最小值。

(2),()2f 为最大值。

(3)1,()f 为最大值。

2.(1)(1)1f ,(2)4f ,3(2)(1)()()3221f f f f ;(2)(0)30,(0)0,()0363ff ff ff;(3)()14f ,()14f,()()444()(arccos)2()44f f f f ;(4)(1)(1)(1)1,(1)1,()(0)01(1)f f f f f f .3.2. 4. 提示:利用Lagrange 定理. 5. 提示:用反证法.6. 提示:利用Rolle 定理.7. 提示:对()()1f x F x x在0,1上用罗尔定理 8. 提示:利用Lagrange 定理. 9. 提示:f 在,a b 上有界. 10. 提示:证明()0f x .11.(1)不能,理由见(2); (2)112,233,323. 12. 4.13. (1)提示:利用“()0f x 则()f x C (常数)”的结论。

(2)提示:令22()1tan sec f x x x ,证明()0f x .14(1)提示:和差化积或直接用拉格朗日定理; (2)提示:利用Lagrange 定理.习题4.21. 提示:利用函数单调性定义和拉格朗日定理。

2.(1)单调减少. (2)单调增加. (3)单调增加. (4)单调增加.3.(1)在1(,)2内单调增加,在1(,)2内单调减少;(2)在,1或1,内单调减少, 在1,1内单调增加;(3)当0时,f 单调减少;当0α>时,f 在(0,)单调增加,在(,)单调减少;(4)在,1或0,1内单调减少,在1,0或1,内单调增加.4. 提示:设()()F x xf x ,证明F 在12(,)x x 内必取到F 在12,x x 上的最小值或者最大值.5.(3)提示:令()n f x x ,在,b a 上用拉格朗日定理。

微积分习题答案

微积分习题答案

习题1-11.(1) [-3,3];(2)(-∞,0)∪(2,+∞);(3)(-2,1);(4)(-1.01,-1)∪(-1,0.99)2.(1)[-1,0)∪(0,1);(2)(1,2];(3)[-6,1).3.(1)(-∞,1)∪(1,2],f(0)=0,f(2)=1.当a<0时,f(a)=1a,当0≤a≤1时,f(a)=2a,当1<a≤2时,f(a)=1.(2) (-2,2),f(0)=1,f((-a)2,当1<a<2时,f(a)=a2-1.4. 1.5.(1)偶函数;(2) 非奇非偶函数;(3) 奇函数.8.(1) y=13arcsinx2;(2) y=log2x1-x(3) f-1(x)=12(x+1),-1≤x≤1,2-2-x, 1<x≤2.9.(1)y=101+x2(-∞,+∞);(2)y=sinxln2,(-∞,+∞);(3)y=arctana2+x2(-∞,+∞).习题1-21. (1) y=3u,u=arcsinv,v=ax;(2)y=u3,u=sinv,v=lnx;(3)y=au,u=tanv,v=x2;(4)y=lnu,u=v2,v=lnw,w=t32.(1)[-1,1],(2)[2kπ,(2k+1)π],k∈Z;(3) [-a,1-a];(4)(-∞,-1].3. (1) φ(x)=6+x-x2;(2) g(x)=(1+x)2+(1+x)+1;(3) f(x)=x2-2.习题1-31. R(x)=4x-12x2.2.R(x)≈130x,117x+9100,0≤x≤700,700<x≤1000.3.L=L(Q)=-15Q2+8Q-50,=-Q5+8-50Q.习题2-1略.习题2-22.f(x)=-1,1,x≤0x>0,则limx→0f(x)=1,但limx→0-f(x)=-1,limx→0+f(x)=1,故limx→0f(x)不存在.3.limx→0(x2+a)=a,limx→0-e1x=0,a=0.2.,,,,,,,.3.(1)无穷大量.(2) x→0+时为无穷大量,x→1时为无穷小量.x→+∞时为无穷大量.(3)x→0+时为无穷大量,x→0-时为无穷小量.(4) 无穷小量.(5)无穷小量.(6) 无穷小量.习题2-45.(1)3/5;(2)0;(3)∞; (4) 1/3;(5) 4/36.(1) 16;(2) ∞;(3)3;(4)-22;(5)3x2.(6)43;(7)n(n+1)2;(8)1;(9)1;(10)-1;(11)0.习题2-51.53;2.25;3.1;4.22;5.212;6.e-1;7.e3;8.lna;9.2lna;10.0;11.e-12;12.1;13.1;14.1;15.e1e;16.e-1.习题2-63. tanx-sinx=O(x3)4.(1) ab;(2) k22;(3) 2;(4) 24;(5) 1;(6) 1;(7) 49;(8) 3.习题2-74. (1) x=1(可去),定义f(1)=2;x=2(第二类);(2) x=0(可去),定义f(0)=1;x=kπ,k≠0,为整数(第二类);(3) x=0(第一类;(4) x=2(第二类);x=-2(可去),定义f(-2)=0;(5) x=0(可去),定义f(0)=0.6.f(x)=sgnx,x=0(第一类),f(x)∈C[(-∞,0)∪(0,+∞)]7.(1)12;(2)3;(3)0;(4)π3;(5) 1.习题3-11.29.2.-1x20.3.4x-y-4=0,8x-y-16=04.(1)-f′(x0);(2) -f′(x0);(3) 2f′(x0)5.(1)12x;(2)-23x-53;(3)16x-56.6.连续但不可导.8.(1)f′(2) f′12,f′9.f′(x)=cosx,1,x<0,x≥0.10.a=2,b=-1.11.(1)在x=0处连续,不可导;(2) 在x=0处连续且可导;(3) 在x=1必连续,不可导.13.(1) -0.78m/s;(2) 10-gt;(3) 10g(s).14. dQdtt=t0.15.(1)limΔT→0Q(T+ΔT)-Q(T)ΔT;(2)a+2bT.习题3-21.(1) 3t;(2) xx+12xlnx;(3) 2xsin2x-2xsinx+cosx-x2cosx-sin2x+x2sin2x.(4) 1-sinx-cosx(1-cosx)2;(5) sec2x;(6)xsecxtanx-secxx2-3secx·tanx;(7) 1x1-2ln10+3ln2;(8) -1+2x(1+x+x2)2.2.(1)241+π2;(2)f′(0)=325,f′(2)=1715;(3)f′(1)=5.3.略.4.(1) 3e3x;(2) 2x1+x4;(3) 12x+1e2x+1;(4) 2xln(x+1+x2)+1+x2;(5) 2x·sin1x2-2xcos1x2;(6) -3ax2sin2ax3;(7) xx2·x2-1;(8) 2arcsinx24-x2;(9) lnxx·1+ln2x;(10) nsinn-1x·cos(n+1)x;(11) 11-x2+1-x2;(12) -1(1+x)2x(1-x);(13) -thx;(14)a2-x2.5.13.6.2x+3y-3=0; 3x-2y+2=0; x=-1; y=0.7. (1) 2xf′(x2);(2) sin2x[f′(sin2x)-f′(cos2x)].8.(1)-x2-ayy2-ax;(2) 1-yx(lnx+lny+1);(3) -ey+yexxey+ex;(4)x+yx-y;(5) ex+y-yx-ex+y.9.(1)x+2(3-x)4(x+1)512(x+2)-43-x-5x+1;(2) sinxcosxcos2xsinx-sinxln sinx;(3) e2x(x+3)(x+5)(x-4)2+1x+1-12(x+5)-12(x-4).10.(1)sinat+cosbtcosat-sinbt;(2) cosθ-θsinθ1-sinθ-θcosθ.11.3-2.习题3-31. f(n)(x)=(-1)n-1(n-1)!(1+x)n.2. y(n)=(-1)n·an·n!·(ax+b)-(n+1).f(n)(x)=(-1)n2·n!·1(x-1)n+1-1(x+1)n+13. (1) 0;(2) 4e,8e;(3) 7200,720.4. (1) -b4a2y3;(2) e2y(3-y)(2-y)3;(3) -2csc2(x+y)cot3(x+y);(4) 2x2y[3(y2+1)2+2x4(1-y2)](y2+1)3.5. (1) -1a(1-cost)2;(2) 1f″(t).6. (1) 4x2f″(x2)+2f′(x2);(2) f″(x)f(x)-[f′(x)]2f.习题3-41.(1) sint;(2) -1ωcosωt;(3) ln(1+x);(4) -12e-2x;(5) 2x;(6) 13tanx;(7) ln2x2;(8) -1-x2.2.(1)0.21,0.2,0.01;(2)0.0201,0.02,0.0001.3.(1)(x+1)exdx;(2) 1-lnx〖〗x2dx;(3) -12xsinxdx;(4) 2ln5·5ln tanx·1sin2xdx;(5) -12cscx2dx;(6) 8[xx(1+lnx)-12e2x]dx;(7) 121-x2arcsinx+2arctanx1+x2dx.4.(1) ey1-xeydx;(2)-b2xa2ydx;(3) 22-cosyds;(4)1-y21+2y·1-y2dx.5.(1) 2.0083;(2)-0.01;(3)0.7954.习题3-51.(1)1.1;(2)650;(3)650-50129.2.(1)96.56;(2)是,提高2.3.(1)a,axax+b,aax+b;(2) abebx,bx,b;(3) axa-1,a,ax.4.提高8%;提高16%.5.5.9.习题4-11.ξ=π2.2.(1)满足,有ξ=0;(2)不满足第二个条件,没有;(3) 不满足第一和第三个条件,有ξ=π2.3.有分别位于区间(1,2),(2,3),(3,4)内的三个根.4.ξ=33.习题4-21.(1)-35;(2)12;(3)mnam-n;(4)1a(5)0;(6)0;(7)1;(8) 32;(9) e;(10)e-2π;(11)1e;(12)∞(13)13;(14)e-12.2.m=-4,n=34.f″(x);习题4-31. xex=x+x2+x32!+…+xn(n-1)!+1(n+1)!(n+1+θx)eθxxn+1(0<θ<1).2.1x=-1-(x+1)-(x+1)2-…-(x+1)n+(-1)n+1(x+1)n+1[-1+θ(x+1)]n+2(0<θ<1).3.f(x)=-56+21(x-4)+37(x-4)2+11(x-4)3+(x-4)4.4.(1) 16(提示:只要将sinx展开成三次多项式即可).(2) 12(提示:令u=1x,再将ln(1+u)展开成二次多项式).习题4-41.(1)(-∞,-1)和(3,+∞)为增区间,(-1,3)为减区间,f(-1)=3为极大值,f(3)=-61为极小值.(2) (1,+∞)为增区间,(0,1)为减区间,f(1)=1为极小值.(3)(-∞,2)为增区间,(2,+∞)为减区间,f(2)=1为极大值.(4)(-∞,0)和(0,2)为增区间,(2,+∞)为减区间,f(2)=-4为极大值.5.当a=2时,f(x)在x=π3取极大值3.习题4-51. 15元2.x=αcPQ11-α3.(1)Q=3;(2)MC==64.(1) 1000件;(2) 6000件5. (1) 431.325吨(2) 12次(3) 30.452天(4) 136643.9元6.α=23(3-6)π.7.t=14r2.8.v=320000≈27.14(km/h)习题4-61.(1)在-∞,13下凸,13,+∞上凸,拐点13,227;(2) 在(-∞,-1)上凸,(-1,1)下凸,(1,+∞)上凸,拐点(-1,ln2)及(1,ln 2);(3)在(-∞,-2)上凸,(-2,+∞)下凸,拐点(-2,-2e-2);(4)在(-∞,+∞)下凸,无拐点;(5) 在(-∞,-3)上凸,(-3,6)上凸,(6,+∞)下凸,拐点6,227;(6) 在-∞,12上凸,12,+∞下凸,拐点12,earctan12.3.a=-32,b=92.4.(1)垂直渐近线x=0;(2) 水平渐近线y=0;(3) 水平渐近线y=0,垂直渐近线x=3;(4) 垂直渐近线x=12,斜渐近线y=12x+1〖〗4.5.(1)定义域(-∞,+∞),极大值f(1)=12,极小值f(-1)=-12,拐点3,34,-3,-34,渐近线y=0;(2) 定义域(-∞,+∞),极大值f(-1)=π2-1,极小值f(1)=1-π2,拐点(0,0),渐近线y=x+π,y=x-π;(3) 定义域(0,+∞),极大值f(1)=2e,拐点,2,4e2,渐近线y=0.习题5-11.(1)27x7〖〗2-103x32+C;(2) 2x-43x32+25x52+C;(3) 3xex1+ln3+C;(4)x+sinx2+C;(5)2x-523xln2-ln3+C;(6)-(cotx+tanx)+C.2.(1)y=x2-2x+1;(2) cosx+C;(3) x-sinx;(4) Q=100013P习题5-21.(1) 1a;(2) 17;(3)110;(4) -12;(5) 112;(6) 12;(7) -2;(8) 15;(9) -1;(10) -1;(11) 13;(12) 12;(13) -1;(14) 32.2.(1)15e5t+C;(2)-18(3-2x)4+C;(3)-12ln1-2x+C;(4)-12(2-3x)23+C;(5)-2cost+C;(6)lnlnlnx+C;(7)111tan11x+C;(8)-12e-x2+C;(9)lntanx+C;(10)-lncos1+x2+C;(11)arctanex+C;(12)-13(2-3x2)12+C;(13)-34ln1-x4+C;(14)12cos2x+C;(15)12arcsin2x3+149-4x2+C;(16)x22-92ln(x2+9)+C;(17)122ln2x-12x+1+C;(18) 13lnx-2x+1+C;(19) t2+14ωsin2(ωt+φ)+C;(20)-13ωcos3(ωt+φ)+C;(21)12cosx-110cos5x+C;(22)13sin3x2+sinx2+C;(23)14sin2x-124sin12x+C;(24)13sec3x-secx+C;(25)(arctanx)2+C;(26)-1arcsinx+C;(27)12(lntanx)2+C;(28)-1xlnx+C;(29)a22(arcsinxa-xa2a2-x2)+C;(30)x1+x2+C;(31)x9-9-3arccos3x+C;(32)12(arcsinx+lnx+1-x2)+C;(33)arcsinx-x1+1-x2+C;(34)arcsinxa-a2-x2+C;(35)-4-x2x-arcsinx2+C;(36)ln1+x+x2+2x-2xx2+2x+C;(37)-11+tanx+C;(38)x+lnx1+xex+C.习题5-31.(1)-xcosx+sinx+C;(2) -(x+1)e-x +C;(3) xarcsinx+1-x2+C;(4) sinx-cosx2e-x+C;(5) -217e-2xx2+4sinx2+C;(6) -12x2+xtanx+lncosx+C;(7) -t2+14e-2t+C;(8) x(arcsinx)2+21-x2arcsinx-2x+C;(9) 12-15sin2x-110cos2x)ex+C;(10) 3e3x(3x2-23x+2+C;(11) x2(coslnx+sinlnx)+C;(12) -12x2-32cos2x+x2sin2x+C;(13) 12(x2-1)ln(x-1)-14x2-12x+C;(14) x36+12x2sinx+xcosx-sinx+C;(15) -1x(ln3x+3ln2x+6lnx+6)+C;(16) -14xcos2x+18sin2x+C;(17) -12xcot2x-12x-12cotx+C;(18) 12x2ex2+C;(19) xlnlnx+C;(20) (1+ex)ln(1+ex)-ex+C;(21) 12tanxsecx-12lnsecx+tanx+C;(22) -ln(x+1+x22(1+x2)+x22+x2+C;(23) ex1+x+C;(24) x-121+x2earctanx+C.习题5-4(1) lnx+1x2-x+1+3arctan2x-13+C;(2) x33+x22+x+8lnx-3lnx-1-4lnx+1+C;(3) x-tanx+secx+C;(4)14lntanx2-18tan2x2+C.习题6-11.13(b3-a3)+b-a.2.(1)1;(2)14πa2.3.(1) ∫10x2dx较大;(2) ∫10exdx较大.4.(1) 6≤∫41(x2+1)dx≤51;(2)π9≤∫313xarctanxdx≤23π;(3) 2ae-a2<∫a-ae-x2dx<2a;(4)-2e2≤∫02ex2-xdx≤-2e-1〖〗4.习题6-21.(1)2x1+x4;(2) x5e-3x;(3) (sinx-cosx)cos(πsin2x);(4) sinx-xcosxx2.2.(1) -12;(2) 6;(3) 2.3.cosxsinx-1.4.当x=0时.5.(1) 23(8-33);(2) 16;(3) 1+π8;(4) 203.6.-32.习题6-31.(1)0;(2)51512;(3)16;(4)14;(5)π6-38;(6)2(3-1);(7)2-233;(8)π2;(9)12ln32;(10)ln2-13ln5;(11)7ln2-6ln(62+1);(12)43.2.(1)0;(2)0;(3)32π.习题6-42.(1)1-2e;(2) 14(e2+1);(3) 4(2ln2-1);(4) 14-133π+12ln32;(5) 15(eπ-2);(6) 2-34ln2;(7) π36-π4;(8) 12(esin1-ecos1+1);(9) ln2-12;(10) 12-38ln3.3.0.习题6-51.(1)1;(2)2;(3)43;(4)76;(5)12+ln2;(6)16;(7)e+1e-2;(8)b-a.2.(1)Vy=2π;(2) Vx=1287π,Vy=12.8π;(3) Vy=310π;(4) Vx=pa2π;(5)Vy=4π2.3.(1) a=1e,(x0,y0)=(e2,1);(2) S=16e2-12.4. 12ln2提示:f(x)=0,x1+x2, x≥0x<0.5. a=-4,b=6,c=0.6. 50;100.7. (1) Q=2.5,L=6.25;(2) 0.25.8.96.73习题6-61.(1)13;(2)发散;(3) 1a;(4)发散;(5) 发散;(6) π;(7)83;(8)1;(9)π2;(10)-1;(11)发散;(12) 1.2.当k>1时收敛于1(k-1)(ln2)12-1;当k≤1时发散;当k=1-1lnln2时取得最小值.3.n!.4.(1)π4;(2) π25.In=-(2n)!!(2n+1)!!=22n(n!)2〖〗(2n+1)!(n=0,1,2,…).6.(1)1nΓ1n;(2) Γ(α+1);(3) 1nΓm+1n;(4) 12Γn+12.习题7-11.略.2.(1) (a,b,-c),(-a,b,c),(a,-b,c);(2) (a,-b,-c),(-a,b,-c),(-a,-b,c);(3) (-a,-b,-c).3.坐标面: (x0,y0,0),(0,y0,z0),(x0,0,z0);坐标轴: (x0,0,0),(0,y0,0),(0,0,z0).4.x轴: 34, y轴: 41, z轴: 5.5.(0,1,-2).6.略.习题7-21.MA→=-12(a+b);MB→=12(a-b);MC→=12(a+b);MD→=12(b-a).2.略.3.(2,1,1).4.(16,0,-20).5.M1M2→=(1,-2,-2),M1M2→=3.13,-23,-23或-13,23,23.习题7-31.(1)1;(2)4;(3)28.2.(1)3,5i+j+7k;(2) -18,10i+2j+14k;(3) -10i-2j-14k.3.-32.4.±(62,82,0).5.14.6.略.7.45j-35k或-45j+35k.8.∠A=76°22′,∠B=79°2′,∠C=24°36′.习题7-41.3x-2y+5z-22=0.2.2x+9y-6z=121.3.略.4.x+z-1=0.5.x+y+z-2=0.6.2x+3y+z-6=0.7.(1) x=2;(2) x+3y=0;(3) x-y=0.8.13,23,-23.9.(1)互相垂直;(2) 互相平行;(3) 斜交(相交但不垂直).习题7-51.(1)x-23=y-31=z-11;(2) x-31=y-42=z+4-1;(3) x-21=y-20=z+1〖〗0;(4) x2=y-31=z+23.2.x+3-5=y=z-25,[JB({〗x=-3-5t,y=t,z=2+5t.3.x-2=y-23=z-4〖〗1.4.x-21=y+22=z3.5.x-10=y+37=z+2〖〗16.6.461,661,-361.7.B=1,D=-9.8.x-3-1=y-31=z1.9.φ=arcsin1310.10.4x-y-2z-1=0.11.y-z+3=0,x-y-z+1=0.12.5.13.(1)垂直,(2) 平行,(3) 重合.习题7-61.(x+1)2+(y+3)2+(z-2)2=32.2.以点(1,-2,-1)为球心,半径等于6的球面.3.(1) x23+y24+z24=1; x23+y24+z23=1;(2) x2-y2-z2=1; x2+y2-z2=1.4.(1)母线平行于z轴的椭圆柱面;(2) 母线平行于x轴的抛物柱面;(3) 椭圆锥面;(4) 旋转椭球面;(5) 双叶双曲面;(6) 圆锥面.5.3y2-z2=16, 3x2+2z2=166.x2+y2+(1-x)2=9,z=0;(1-z)2+y2+z2=9,x=0;x+z=1,y=0.7.(1)椭圆;(2) 双曲线;(3) 抛物线.8.略.习题8-11.(1)(x,y)x2a2+y2b2≤1;(2) {(x,y)x>y,且x-y≠1};(3) (x,y)-1≤yx≤1,且x≠0={x>0,-x≤y≤x;x<0,x≤y≤-x};(4){(x,y)x≥y,x2+y2≤1,y≥0}.2.(1)31;(2)1x3-4xy+12y2;(3)(x+y)3-2(x2-y2)+3(x-y)2.3.f(x)=(x+2)x,F(x,y)=y+x-1.4.略习题8-21.(1)不存在,(2) 存在.2.(1)0,(2)1,(3)2,(4)0.3.{(x,y)y2=2x,x∈R}.习题8-31.(1)z′x=y(1+x)y-1,z′y=(1+x)yln(1+x);(2) z′x=-yx2cotyx·sec2yx,z′y=1xcotyx·sec2yx;(3)z′x=-yx2+y2,z′y=xx2+y2;(4) u′x=-zlnyx2·yzx,u′y=zx·yzx-1,u′z=1xyzx·lny.2.-1,2.3.1,1+π6.4.略.5.偏导数存在.6.α=π4.7.Δz=-0.12,dz=-0.1.8.(1)du=dx-dy;(2)dz=-xy(x2+y2)3/2dx+xy(x2+y2)3/2dy.习题8-41.(1)2e2cost+3t2[3t-sint];(2)3-4t-3+32t12sec23t+2t2+t32.2.(1)z′u=(2xy-y2)cosv+(x2-2xy)sinv;(2) z′v=-(2xy-y2)usinv,z′y=euvx2+y2(ux+vy).3.(1)u x=1yf′1,u y=-xy2f′1+1zf′2,u z=-yz2f′2;(2)z x=2xf′,zy=2yf′;(3)u x=f′1+yf′2+yzf′3,u y=xf′2+xzf′3,u z=xyf′2.4.略.5.(1)dz=(x2+y2)sin(2x+y)2sin(2x+y)x2+y2(xdx+yd y)+cos(2x+y)ln(x2+y2)(2dx+dy);(2)du=1f(x2+y2-z2)dy-yf′(x2+y2-z2)f(x2+y2-z2)(2xd x+2ydy-2zdz).6.(1)z′x=ex+y+yzez-xy,z′y=ex+y+xzez-xy;(2)z x=zx+z,z y=z2y(x+z).7.略.8.z x=(vcosv-usinv)e-u,z y=(ucosv+vsinv)e-u.9.dudx=f′x+y2f′y1-xy+zf′zxz-x.习题8-51.(1)2z x2=12x2-8y2,2z y2=12y2-8x2,2z x y=-16xy;(2)2z x2=2xy(x2+y2)2,2z y2=-xy(x2+y2)2,2z xy=y2-x2(x2+y2)2;(3)2z x2=yxln2y,2zy2=x(x-1)yx-2;2z xy=yx-1(1+xlny);(4)2z x=1x,2z y2=-xy2,2z x y=1y.2.(1)2z x2=4xf″(x2+y2)+2f′(x2+y2),2z y2=4yf″(x2+y2)+2f′(x2+y2);(2)2z x2=y2f″11+2yf″12+f″22,2z y2=x2f″11+4xf″12+4f″22,2z x y=xyf″11+2yf′12+f′1+xf″21+2f″22.3.2z x2=z(2x-2-z2)x2(z-1)3,2z y2=z(2z-2-z2)y2(z-1)3,2z x y=-zxy(z-1)3.习题8-61.1+23.2.23.3.α=π4时取得最大值2;α=5π4时取得最小值-2;α=7π4时,方向导数为零.习题8-71.(1)极大值f(0,0)=3;(2) 极小值f12,-1=-e2;(3)极大值fa3,a3=a327(a>0),极小值fa3,a3=a327(a<0).2.极大值z(4,1)=7,最小值z43+223,-1≈-11.67.3.极小值z(2,2)=4.4.a≥12,最小距离为a-14;a≤12,最小距离为a.5.a的分法是三等分时,乘积最大为a327.6.x=100,y=25,f(100,25)=1250.7.x=70,y=30,λ=-72,L=145(万元).习题8-81.(1)∫1-1dx∫3-3f(x,y)dy, ∫3-3dy∫1-1f(x,y)dx;(2)∫40dx∫2xxf(x,y)dy, ∫40dy∫y14y2f(x,y)dx;(3)∫r-rdx∫r2-x20f(x,y)dy, ∫r0dy∫r2-y2-r2-y2f(x,y)dx.2.(1)∫10dx∫xx2f(x,y)dy;(2)∫a0dy∫a+a2-y2a-a2-y2f (x,y)dx;(3)∫10dy∫2-yyf(x,y)dx.3.(1)e-1e2;(2)2915;(3)-12;(4)23;(5)1-2π;(6)2πR22+R3;(7)364π2;(8)2-π2.4.5144.5.π.6.8π.7.SD=12e-1,VD=12e2-e-12.习题9-11.(1)a>1收敛;0<a≤1发散;(2) 发散;(3) 发散;(4) 收敛;(5) 发散;(6) 发散;(7) 发散;(8) 发散.2.(1)收敛,s=32;(2)收敛,s=14;(3)发散;(4) 发散.习题9-21.(1)收敛;(2) 发散;(3) 发散;(4) 收敛;(5) a>1,收敛;0<a≤1发散;(6) 发散;(7) 发散;(8) 收敛;(9) 发散;(10) 发散;(11) 收敛;(12) 收敛;(13) 收敛;(14) 收敛;(15) 收敛;(16) 收敛.习题9-31.(1)条件收敛;(2) 绝对收敛;(3) 绝对收敛;(4) 绝对收敛;(5) 绝对收敛;(6) 条件收敛;(7) 绝对收敛;(8) 条件收敛.习题9-41.(1)(-∞,+∞);(2) (-e,e);(3) (-2,2);(4) (-1,1);(5) (-4,0);(6) 12,3〖〗2.2.(1)-ln(1+x);x<1;(2)2x(1-x2)2,x<1;(3)当x≠0且x<1时,s(x)=1+1x-1ln(1-x);当x=0时,s(x)=0;(4)1+x(1-x)2,x<1.3.(1)1532;(2)12ln(1+2);(3)109;(4)4.习题9-51.(1)1-x22·2!+x42·4!-…+(-1)nx2n2·(2n)!+…(-∞<x<+∞);(2)∑∞n=1(-1)n-1(2n-1)!x22n-1(-∞<x<+∞);(3)∑∞n=1(-1)n-1x2n-1〖〗(n-1)!(-∞<x<+∞);(4)∑∞n=0x2n, x<1;(5)22∑∞n=0(-1)nx2n(2n)!+x2n+1(2n+1)!(-∞<x<+∞).2.(1)∑∞n=012n+1(x-1)n(-1<x<3);(2)∑∞n=0[JB((〗(-1)n2·x-π32n(2n)!+(-1)n+132x-π22n+1(2n+1)!(-∞<x<+∞);(3)∑∞n=0(-1)n12n+2-122n+3(x-1)n(-1<x<3);(4)∑∞n=0(-1)n3n+1(x-3)n(0<x<6).3.(1)2.71828;(2)0.25049.习题10-11.(1)一阶,(2) 二阶,(3) 三阶,(4) 一阶.2.略.3.y′=y-xx.4.y′=y-x+1.习题10-21.(1)(1-x)(1+y)=C(C为任意常数,以下C,C1,C2…均为任意常数);(2) 1-x2=lny+C;(3)y2=C(1-x2)-1;(4)secx+tany=C;(5)2y3+3y2-2x3-3x2=5;(6)(y+1)e-y=12(1+x2);(7)ey=12(e2x+1).2.T=T0e-kt+α(1-e-kt), k为比例系数.3.(1)y+x2+y2=Cx2;(2) y=2xarctan(Cx);(3) x3+y3=Cx2;(4) y=2x1+x2;(5) y=xe1-x;(6) (x+3)2+(y+1)2=Ce-arctanyx;(7) x+3y+2ln2-x-y=C.4.(1)y=Cex-12(sinx+cosx);(2) y=xn(C+ex);(3) x=2(y-1)+Ce-y;(4) x=y+Ccosy;(5) y=(x+1)ex;(6) y=2(1+x3)3(1+x2);(7) y=2lnx-x+2;(8) y=(1+sinx-xcosx)·e-x2;(9) y3=Cx3+3x4;(10) 1x2=1-y2+Ce-y2.5.y′=3yx2-2·yx,y-x=-x3y.6.x=ab+x0-abe-bt.7.f(x)=-2e-3x-1.8.C(x)=(x+1)[C0+ln(x+1)].9.x=ab(C0x0-a)1b+1·x0.习题10-31.(1)y=(x-3)ex+12C1x2+C2x+C3;(2) y=xarctanx-12ln(1+x2)+C1x+C2;(3) y=C1arctanx+C2;(4) y=-lnx+c1+c2;(5) 1+C1x2=(C2t+C2)2;(6)lny=C1(y-x)+C2.2.(1)y=16x3lnx-1136(x3-1);(2)y=lnx+12ln2x;(3) y=x.3.C1+C2ex+x.4.(1)y=(C1+C2x)e2x;(2)y=C1e-x+C2e2x;(3)y=9e-2x-8e-3x;(4)y=-13exxcos3x.5.(1)y=(1-12x)e-2x+C1e-5x+C2e2x;(2)y=(x+1)2+C1e2x+C2e4x;(3)y=118cosx+4sinx-18cos3x;(4)y=x+12x2e4x.6.f(x)=2(ex-x).7.a=-3,b=2,α=-1;y=C1ex+C2e2x+xex.8.φ(x)=12(sinx+cosx+ex).9.y=23e2x-23e-x-xe-x.10.y=-7e-2x+8e-x+(3x2-6x)e-x.11.s=mgkt-m2gk2(1-e-kmt).习题10-41.C(x)=3ex(1+2e3x)-1.2.R=abs0(ebt-1),S(t)=s0e-bt.3.Y(t)=Y0eγt,D(t)=αY0γeγt+βt+D0-αY0γ,limt→+∞D(t)Y(t)=α〖〗γ.4.(1)Y(t)=(Y0-Ye)eμt+Ye,Ye=b1-a,μ=1-aka,C(t)=a(Y0-Ye)eμt+Ye,I(t)=(1-a)(Y0-Ye)eμt;(2) limt→+∞Y(t)I(t)=11-a.5.y(6)=50001+11.5e-3(ln11.5-ln8).习题11-11.(3),(4).2.(1)一阶;(2) 五阶;(3) 三阶;(4) 六阶;(5) 二阶.3.(1)Δ2yt=2;(2)Δyt=(e-1)2et;(3)Δ2yt=6(t+1),Δ3yt=6;(4)Δ2yt=lnt2+4t+3t2+4t+4.4.略.习题11-21.yA(t)=A1+A2t+1(A1,A2为任意常数.以下A,A1,A2…均为任意常数).2.a(t)=-1+15,f(t)=1-1t·2t.3.略.4.(1)yt=A-13t+1;(2)yt=A-12t+79+13t ;(3)yt=A(-1)t+13·2t;(4)yt=A-13·2tcosπt.5.(1)yt=0.1×38t+0.1;(2)yt=12t-2+t;(3)yt=2t-t+4;(4)yt=(-4)t+sinπt.6.yt=A(-a)t+b1+a.7.(1)略;(2) yt=1y0-bC-aaCt+bC-a)-1,1y0+bat-1,当C≠a时,当C=a时.(3)yt=12t+1+32-1.习题11-31.(1)yA(t)=A1(-1)t+A212t;(2)yA(t)=(3)t(A1cosωt+A2sinωt),tanω=-2;(3)yA(t)=(A1+A2t)·4t;(4)yA(t)=A1cosπ3t+A2sinπ3t;(5)yA(t)=A1(1.8)t+A2(2.1)t;(6)yA(t)=A1[2(a+1)+2a+1)]t+A2[2(a+1)-2a+1]t.2.(1)yt=A15+172t+A25-172t-1;(2)yt=2tA1cosπ3t+A2sinπ3t+13(a+bt);(3)yt=A1+A2·2t+14×5t;(4)yt=A1+A2-13t+cosπ2t-2sinπ2t;(5)yt=A1(-1)t+A2(-2)t+t2-t+3;(6)yt=A1(-2)tt+A2·3t·t115t-225.3.(1)t=25t2+125t+64125+186125(-4)t;(2)t=4t+43(-2)t-43;(3)t=195130-20〖〗130(-4)t-92613t;(4)t=4+3212t+12-72t.习题11-41.Yt=(Y0-Ye)αt+Ye,Ye=1+β1-α;Ct=(Y0-Ye)αt+αI+β1-α.2.Yt=(Y0-Ye)·λt+Ye,其中λ=1+r(1-α),Ye=β1-α;Ct=α(Y0-Ye)λt+Ye;It=(1-α)(Y0-Ye)λt.3.Yt=Y0+βα·λt-βα,其中λ=δrδr-α;St=(αY0+β)·λt;It=1δ(αY0+β)·λt.4.Dn(t)=A1λt1+A2λt2,其中λ1,2=2[(ab+1)±1+2ab].5.Yt=(β)t(A1cosωt+A2sinωt)+α1-β,其中ω=arctan1β-1,0<ω<πUπ=(β)t+1[A1cosω(t-1)+A2sinω(t-1)]+αβ1-β;St=(β)t{A1[βcosω(t-1)-cosω(t-2)]+A2[βsinω(t-1)-sinω(t-2)]}.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

大学数学微积分第二版上册课后练习题含答案

大学数学微积分第二版上册课后练习题含答案

大学数学微积分第二版上册课后练习题含答案前言数学是一门抽象的学科,需要大量的练习才能真正理解和掌握。

微积分作为数学中的基础学科,更是如此。

本文将为大家提供大学数学微积分第二版上册的课后习题及其答案,供大家参考和练习。

课后习题及答案第一章函数与极限习题1.11.计算以下极限:1.$\\lim\\limits_{x\\rightarrow 1}\\frac{x-1}{x^2-1}$2.$\\lim\\limits_{x\\rightarrow 0}\\frac{\\sqrt{1+x}-1}{x}$3.$\\lim\\limits_{x\\rightarrow 0}(\\frac{1}{\\sin{x}}-\\frac{1}{x})$答案:1.$\\frac{1}{2}$2.$\\frac{1}{2}$3.02.求曲线$y=\\frac{1}{x}$与直线y=x在第一象限中形成的夹角。

答案:$\\frac{\\pi}{4}$3.证明:$\\lim\\limits_{x\\rightarrow 0}x\\sin\\frac{1}{x}=0$答案:对任意$\\epsilon>0$,取$\\delta=\\epsilon$,则当$0<|x|<\\delta$时,有$|x\\sin\\frac{1}{x}-0|<|x|<\\delta=\\epsilon$ 习题1.21.求下列函数的导数:1.y=2x3+3x2−4x+12.$y=\\frac{1}{2}x^3-x^2+2x-1$3.$y=\\frac{1}{\\sqrt{x}}+x\\ln{x}$答案:1.y′=6x2+6x−42.$y'=\\frac{3}{2}x^2-2x+2$3.$y'=-\\frac{1}{2x^{\\frac{3}{2}}}+\\ln{x}+1$2.求函数y=xe x在x=1处的导数。

答案:y′=e+13.求f(x)=|x−2|的导函数。

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第11章

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第11章
(3) a 1 , f (t ) 2 于是由非齐次方程的特解公式 (11 2 5) 有:
t t 1 t 1 1 1 yt (1)i 2t i 1 2t 1 ( )i 2t 2 3 i 0 i 0
由 (11 2 4) 式,得所给方程的通解
1 yt A(1)t 2t 3
(A 为任意常数)
*
(4)对应齐次差分方程为 yt 1 yt 0 ,其通解为 yt A , 设原方程特解为
yt 2t ( B1 cos πt B2 sin πt ) 代入原方程得:
2t 1[ B1 cos π(t 1) B2 sin π(t 1)] 2t ( B1 cos πt B2 sin πt ) 2t cos πt
yt 1
1 4 yt ,其中 3 3
1 4 a , b ,由通解公式 (11 2 7) 得原方程的通解为: 3 3
1 yt y A (t ) yt A( )t 1 (A 为任意常数) 3 1 3 t 1 3 1 (2)方程可化为 yt 1 yt ,其中 a , b0 , b1 ,故由通解公式 2 2 2 2 2 2 (11 2 9) 得方程的通解为: 3 1 1 1 t 1 7 t yt A( ) 2 2 2 t 即 yt A( )t . 1 1 1 2 9 3 2 1 (1 ) 2 1 2 2 2
t
(4) a 4 , π , b1 0 , b2 3 , D (4 cos π) sin π=9 0 ,且
2 2
由公式 (11 2 14) 得 = [0 (4 cos π) 3 sin π]=0 , = [3(4 cos π) 0 sin π]=1 , 方程通解为 yt A(4) sin πt ,以 t 0 时 y0 1 代入上式,得 A 1 ,故原方程特解为:

微积分答案

微积分答案

第一章 函数与极限1.2-1.3 数列和函数的极限一、 根据数列或函数极限的定义证明下列极限:1. 0)1(lim 2=-∞→n n n ; 2.521532lim =+-∞→n n n ; 3. 224lim 42x x x →--=-+; 4. 0cos lim =+∞→x x x ;5. 证明11lim=-+∞→x x x ,并求正数X ,使得当x X >时,就有01.0|11|<--x x.(X 2=101)二、设}{n x 为一数列.1. 证明:若ax n n =∞→lim ,则||||lim a x n n =∞→;2. 问:(1)的逆命题“若||||lim a x n n =∞→,则ax n n =∞→lim ”是否成立?若成立,证明之;若不成立,举出反例. (逆命题不成立。

反例:(1)nn x =-。

)三、判断下列命题的正误:1. 若数列}{n x 和}{n y 都收敛,则数列}{n n y x +必收敛; (正确)2. 若数列}{n x 和}{n y 都发散,则数列}{n n y x +必发散; (错误)3. 若数列}{n x 收敛,而数列}{n y 发散,则数列}{n n y x +必发散。

(正确) 四、证明:对任一数列}{n x ,若ax k k =-∞→12lim 且ax k k =∞→2lim ,则ax n n =∞→lim . 五、证明:A x f x =∞→)(lim 的充分必要条件是Ax f x =-∞→)(lim 且Ax f x =+∞→)(lim .六、根据函数的图形写出下列极限(如果极限存在):1. lim arctan x x π→-∞=-2,lim arctan x x π→+∞=2和lim arctan x x→∞不存在2. lim sgn 1x x →-∞=-,1lim sgn x x →+∞=和lim sgn x x→∞不存在3.lim x x e →-∞=,lim x x e →+∞=+∞和lim xx e →∞不存在七、证明:若)(lim 0x f x x →存在,则函数)(x f 在0x 的某个去心邻域内有界.八、证明:函数)(x f 当0x x →时的极限存在的充分必要条件是左极限,右极限均存在并且相等,即)(lim )(lim )(lim 0x f A x f A x f x x x x x x +-→→→==⇔=.九、设||)(x x f =,求0lim ()0x f x -→=,0lim ()0x f x +→=和0im ()0l x f x →=.十、设x x f sgn )(=,求0lim (1)x f x -→=-,0lim ()1x f x +→=和0lim ()x f x →不存在1.4 无穷小与无穷大一、填空题1. 当x →∞时,11-x 是无穷小;当1x →时,11-x 是无穷大.2. 当0x -→时,x e 1是无穷小;当0x +→时,xe 1是无穷大.3. 当1x →时,x ln 是无穷小;当0x +→时,x ln 是负无穷大;当x →+∞时,x ln 是正无穷大. 二、选择题当0→x 时,函数x x1cos1是(D ) (A )无穷小; (B )无穷大;(C )有界的,但不是无穷小; (D )无界的,但不是无穷大.三、证明函数x x x f sin )(=在)0(∞+,内无界,但当+∞→x 时,)(x f 不是无穷大. 四、判断下列命题的正确性:1. 两个无穷小的和也是无穷小. (正确)2. 两个无穷大的和也是无穷大. (错误)3. 无穷小与无穷大的和一定是无穷大. (正确)4. 无穷小与无穷大的积一定是无穷大. (错误)5. 无穷小与无穷大的积一定是无穷大. (错误)6. 无穷大与无穷大的积也是无穷大. (正确) 五、举例说明:1. 两个无穷小的商不一定是无穷小;2. 无限个无穷小的和不一定是无穷小. 六、根据定义证明:1. 当0→x 时,x x x f 1sin)(=为无穷小;2. 当+→0x 时,xe xf 1)(=为无穷大;3. 当-∞→x 时,xe xf =)(为无穷小.1.5 极限运算法则一、计算下列极限:1.22lim(31224)x x x →-+=2. 22131im 21l x x x x →-+=-3. 224im 4l 2x x x →-=-4. 11lim 1n x x n x →-=-(n 是正整数)5. 3131lim()111x x x →-=--6. 0233()lim 3h x h x x h →+-=二、计算下列极限:1. 211lim(3)6)(2x x x →∞-+=2. 2231lim 4134x x x x →∞+=+- 3. 2321lim 510x x x x x →∞++=-+4. 235lim 101x x x x →∞+-=+∞5.2221211lim 2(...)n n n n n →∞-+++=6. 221...lim (||1||1)1.1..1n nn a a a a b b b b b a →∞++++-<<=++++-, 7. 1123lim 2313n n n n n ++→∞+=+ 三、若0)1(lim 2=--+∞→b ax x x x ,求b a ,的值. (1,1a b ==-)四、若23)11(lim 21=---→x x x a x ,求a 的值. (2a =)五、计算下列极限:1. 2211lim 2x x x x x →++=+-∞2.2lim(543)x x x →∞--=∞3. 32251lim 465x x x x x →∞-+=++∞.六、计算下列极限: 1.211lim(1)cos10x x x →-=-2.301lim s ni x x x →=3. 2(1)arcta 0n lim x x x x →∞+=. 七、设2,1()5,1x x f x x x ⎧≤⎪=⎨->⎪⎩,分别求函数)(x f 在1-=x 与1=x 的左极限、右极限和极限.(4,1--,不存在)八、设11lim )(22+-=∞→nn n x x x f ,试求)(x f 的表达式. (1,1()0,11,1x f x x x ⎧-<⎪==⎨⎪>⎩)1.6 极限存在的两个准则两个重要极限一、利用夹逼定理求下列极限: 1. 222111lim(...)120n n n n n →∞+++=+++2.222111lim(...)120n n n n n n n n →∞+++=++++++3. 21lim (arctan )0x x x →∞=二、证明:332lim =+∞→n n n n .三、设12max{...}m a a a a =,,,(01,2,...,)k a k m >=,,证明:n a=.四、设1>a ,证明0lim=∞→nn a n五、利用数列的单调有界准则证明下列数列收敛,并求出极限:1. 12,n x x x ===...;(l i m 2n n x →∞=)2. 11121111111n n n x x x x x x x --==+=+++,,...,,....(lim n n x →∞=) 六、设11x a y b ==,(0)a b <<,n n n y x x =+1,21nn n y x y +=+. 1. 证明数列}{n x 单调增加,数列}{n y 单调减少且满足(1,2,...)n n x y n <=; 2. 证明数列}{n x 和}{n y 都收敛,并且有相同的极限.七、计算下列极限:1.0sin 33lim44x x x →=2. 0sin lim (,0)sin x x x ααββαβ→≠=3.lim sinx x xππ→∞=4. sin m1li x xx ππ→=-5.01cos lim arctan 12x x x x →-=6. 0lim x +→=7. 1lim 2s n 30i n n n →∞=.八、计算下列极限:1. 1lim(1)1nn n e→∞+=+2. 522lim(1)x x x e +→∞+=3.1x e →=4. 21lim()211x x x e x →∞-=+5. 2cot 2lim(1tan )x x x e →+=6.21lim(11)nn n →∞-=.九、已知2)1(lim 1=+→xx ax ,求a 的值. (ln 2a =)十、设⎪⎪⎩⎪⎪⎨⎧>-<=0cos 102sin )(2x x x x xxx f ,,,求(0)(0)f f -+,和)(lim 0x f x →. (2,2,2)十一、设⎪⎩⎪⎨⎧≥+<=00tan )(2x x x x xaxx f ,,,已知)(lim 0x f x →存在,求a 的值. (0a =)1.7 无穷小的比较一、比较下列各对无穷小:1. 221,(1)(1)x x x --→ (后者高阶) 2. 321,1(1)x x x --→ (同阶)3.21cos ,(0)x x x -→ (同阶) 4. 2tan sin ,(0)x x x x -→ (前者高阶) 二、证明:当0→x 时,有以下等价无穷小成立:1. arcsin x x ;2.3tan sin 2x x x -. 三、利用等价无穷小代换计算下列极限:1. 20arctan lim sin 1x x x x →=2. 21lim s n 0i x x x →∞=3.lim 12x +→=四、当0x →时,下列四个无穷小中,哪一个是比其他三个更高阶的无穷小?A.2x B.1cos x -1 D.tan x x - (D )五、证明:若α是β的高阶无穷小,则αββ+ 。

微积分1参考答案

微积分1参考答案

微积分1参考答案微积分1参考答案微积分1是大学数学中的一门重要课程,对于理工科学生来说尤为重要。

在学习微积分1的过程中,我们会遇到各种各样的问题,需要通过练习来巩固所学知识。

为了帮助大家更好地理解和掌握微积分1的知识,我将提供一些常见问题的参考答案,希望能对大家有所帮助。

1. 求函数f(x) = x^2在区间[1,3]上的定积分。

答案:首先,我们需要求出函数f(x)在区间[1,3]上的原函数F(x)。

由于f(x) = x^2,我们可以得到F(x) = (1/3)x^3。

然后,根据定积分的定义,我们可以得到定积分的值为F(3) - F(1) = (1/3) * 3^3 - (1/3) * 1^3 = 8 - 1/3 = 7 2/3。

2. 求函数f(x) = 2x在区间[0,4]上的定积分。

答案:同样地,我们需要求出函数f(x)在区间[0,4]上的原函数F(x)。

由于f(x) =2x,我们可以得到F(x) = x^2。

然后,根据定积分的定义,我们可以得到定积分的值为F(4) - F(0) = 4^2 - 0^2 = 16。

3. 求函数f(x) = sin(x)在区间[0,π]上的定积分。

答案:函数f(x) = sin(x)在区间[0,π]上的定积分可以表示为∫[0,π] sin(x) dx。

由于sin(x)的原函数为-cos(x),我们可以得到定积分的值为-cos(π) - (-cos(0)) = 1- (-1) = 2。

4. 求函数f(x) = e^x在区间[0,1]上的定积分。

答案:函数f(x) = e^x在区间[0,1]上的定积分可以表示为∫[0,1] e^x dx。

由于e^x的原函数为e^x,我们可以得到定积分的值为e^1 - e^0 = e - 1。

5. 求函数f(x) = 1/x在区间[1,2]上的定积分。

答案:函数f(x) = 1/x在区间[1,2]上的定积分可以表示为∫[1,2] 1/x dx。

高等数学一元微积分学课后练习题含答案

高等数学一元微积分学课后练习题含答案

高等数学一元微积分学课后练习题含答案概述高等数学一元微积分是大学数学中的重要课程,掌握好微积分理论和应用,对于理解和学习后续相关数学课程都有非常重要的作用。

在学习一元微积分的过程中,做好练习题也是非常重要的一环。

因此,本文档提供了一些高等数学一元微积分学课后练习题和答案,供大家练习和参考,希望能够帮助大家更好地掌握这门课程。

练习题与答案题目 1已知点A(0,1)和点B(2,5),则过点 A 且斜率为 3 的直线方程为?答案利用两点式,设所求直线方程为y=kx+1,则有:$$ k = \\frac{y_2 - y_1}{x_2 - x_1} = \\frac{5 - 1}{2 - 0} = 2 $$因为所求直线的斜率为 3,所以有k=3,代入上式得:y=3x+1所以答案为y=3x+1。

题目 2已知函数f(x)=x3−6x2+11x−6,求其零点。

答案为了求出函数f(x)的零点,我们需要通过解方程f(x)=0来得到。

对于一个三次函数,我们可以通过因式分解或利用根的判别式来求解。

首先,我们尝试对f(x)进行因式分解:f(x)=x3−6x2+11x−6=(x−1)(x−2)(x−3)因此,函数f(x)的零点为x=1,2,3。

题目 3求函数f(x)=x3−3x+2在[−1,2]上的最大值和最小值。

答案为了求出函数f(x)在[−1,2]上的最大值和最小值,我们需要使用微积分中的极值定理。

首先,求出函数f(x)的导数:f′(x)=3x2−3=3(x+1)(x−1)f′(x)在[−1,1]上是负数,在(1,2]上是正数,因此,f(x)在x=1处取得极大值,f(x)在x=−1和x=2处取得极小值。

当x=−1时,有f(−1)=(−1)3−3(−1)+2=6,即最小值为 6。

当x=1时,有f(1)=13−3(1)+2=0,即最大值为 0。

当x=2时,有f(2)=23−3(2)+2=4,即最小值为 4。

因此,函数f(x)在[−1,2]上的最大值为 0,最小值为 4。

大一上学期微积分练习题带答案

大一上学期微积分练习题带答案
(提示构造函数 )
16.设 ,且 ,则 , .
提示:构造函数 ,可以用罗尔定理证明.
17.设 ,且 ,则 , .
提示:构造函数 ,可以用罗尔定理证明.
18.设 , ,且 ,则 , .
提示:构造函数 ,则 可以用罗尔定理证明.
8.若 在点 处不连续,则 不存在.(√)
四、求下列各式的极限
1. ;2. ;3. ;
4#. ;5. ;6. ,7. ;8. ;9. ;
10. ;11. .12. .
13. (答:6);14. (答: );
15. .16. (作变量代换);17. ;
18.设函数 ,求 .【改】
19.已知 是多项式,且 ,又 ,求 .答案
提示:利用介值定理和中值定理证明, 在 上依次有最小值与最大值 ,
, ,再由罗尔中值定理得证.
12.证明不等式: .
提示:设 在 上利用拉格朗日定理证明.
13.证明不等式: .
提示: 在 上证明最小值是 即可.
14.证明:方程 在 内至少有一个根.
提示:设 在 上用介质定理证明.
15.设 , ,且 ,则 , .
(A) ;( B ) 为任意常数;
( C ) 为任意常数;( D ) 为任意常数.答案 (C)
13.设 在 上定义,在点 连续, ,则 是函数
的()
(A)第一类间断点;(B)第二类间断点;(C)连续点;(D)间断点,但类型不能确定.答案D
14.设 ,则 是 的( )
(A)跳跃间断点;(B)可去间断点;(C)连续点;(D)第二类间断点.答案A
提示:利用拉格朗日中值定理的推论证明设 证 恒成立.
9.证明方程 在 之间至少存在一个实根.
提示:设 在 上利用介质定理证明.注意介质定理的条件.

大学数学期末复习专题:微积分问题经典例题解析

大学数学期末复习专题:微积分问题经典例题解析

大学数学期末复习专题:微积分问题经典例题解析微积分作为数学的一个重要分支,是大学数学课程中的核心内容之一。

在期末复中,重点理解和掌握微积分的经典例题是非常重要的。

本文将对一些微积分经典例题进行解析,帮助同学们加深对这些题目的理解。

1.定积分问题例题1:已知函数 $f(x) = 2x^3 - 3x^2 + 1$,求 $f(x)$ 在区间 $[0.2]$ 上的定积分 $\int_0^2 f(x) dx$。

解析通过积分的定义,我们可以得到:int_0^2 f(x) dx = F(2) - F(0)$$其中 $F(x)$ 是函数 $f(x)$ 的原函数。

根据函数的求导规则,求得 $F(x)$ 的表达式为:F(x) = \frac{1}{2}x^4 - x^3 + x + C$$将 $x$ 的取值代入 $F(x)$ 中,我们可得:F(2) - F(0) = (4 - 8 + 2 + C) - (0 - 0 + 0 + C) = -2$$所以,函数 $f(x)$ 在区间 $[0.2]$ 上的定积分为 $-2$。

例题2:已知函数 $f(x) = \sqrt{x+1}$,求 $f(x)$ 在区间 $[0.3]$ 上的定积分 $\int_0^3 f(x) dx$。

解析首先,我们可以直接计算函数 $f(x)$ 的原函数 $F(x)$ 如下:F(x) = \frac{2}{3}(x+1)^{\frac{3}{2}} + C$$将 $x$ 的取值代入 $F(x)$,可得:F(3) - F(0) = \frac{2}{3}(4^{\frac{3}{2}} - 1)$$经过计算,得出定积分 $\int_0^3 f(x) dx$ 的值为$\frac{2}{3}(4^{\frac{3}{2}} - 1)$。

2.导数和极值问题例题3:已知函数 $f(x) = x^3 - 6x^2 + 9x + 2$,求函数 $f(x)$ 的极值点和极值。

大学微积分(常见问题与解答)

大学微积分(常见问题与解答)

辅导答疑第一章微积分的基础和研究对象1. 问:如何理解微积分(大学数学)的发展历史?微积分与初等数学的主要区别是什么?答:微积分的基础是---集合、实数和极限,微积分的发展历史可追溯到17世纪,在物理力学等实际问题中出现大量的(与面积、体积、极值有关的)问题,用微积分得到了很好的解决。

到19世纪,经过无数数学家的努力,微积分的理论基础才得以奠定。

可以说,经过300多年的发展,微积分课程的基本内容已经定型,并且已经有了为数众多的优秀教材。

但是,人们仍然感到微积分的教与学都不是一件容易的事,这与微积分学科本身的历史进程有关。

微积分这座大厦是从上往下施工建造起来的。

微积分从诞生之初就显示了强大的威力,解决了许多过去认为高不可攀的困难问题,取得了辉煌的胜利,创始微积分数学的大师们着眼于发展强有力的方法,解决各式各样的问题,他们没来得及为这门学科建立起严格的理论基础。

在以后的发展中,后继者才对逻辑细节作了逐一的修补。

重建基础的细致工作当然是非常重要的,但也给后世的学习者带来了不利的影响,今日的初学者在很长一段时间内只见树木不见森林。

微积分重用极限的思想,重用连续的概念,主要是在研究函数,属于变量数学的范畴。

而初等数学研究不变的数和形,属于常量数学的范畴。

2.问:大学数学中研究的函数与初等数学研究的函数有何不同之处?答:在自然科学,工程技术甚至社会科学中,函数是被广泛应用的数学概念之一,其意义远远超过了数学范围,在数学中函数处于基础核心地位。

函数不仅是贯穿中学《代数》的一条主线,它也是《大学数学》这门课程的研究对象。

《大学数学》课程中,将在原有初等数学的基础上,对函数的概念、性质进行重点复习和深入的讨论,并采用极限为工具研究函数的各种分析性质,进而应用函数的性质去解决实际问题。

第二章微积分的直接基础-极限1.问:阿基里斯追赶乌龟的悖论到底如何解决的?答:阿基里斯追赶乌龟的悖论是一个很有趣的悖论。

如果芝诺的结论是正确的,则追赶者无论跑得多么快也追不上在前面跑的人,这显然与我们在生活中经常见到的现象相违背。

大学数学2015-2016(1) 微积分B(1) 练习题参考答案

大学数学2015-2016(1) 微积分B(1) 练习题参考答案
x x 0 x 0 x 0 x 0
而 f (0) a, 故要使 lim f ( x) lim f ( x) f (0) ,须且只须 a 1 .
x 0 x 0
所以当且仅当 a 1 时,函数 f ( x) 在 x 0 处连续. (2)因为 lim f ( x) lim
5 t
1 t lim 1 t t
5
e 5 . e
1 2x
(13)因为 (1 2 x)
(1 2 x) lim e
x 0
x 1 6 2 x sin x
e
1
x 1 6 ln(1 2 x ) 2 x sin x
3 2
所以方程 x 4 x 1 0 在 (0,1) 内至少有一个根.
3 2
(2)设 f ( x ) e 3 x ,则 f ( x ) 在 [0,1] 上连续,
x
且 f ( 0) 1 0, f (1) e 3 0 ,故由零点定理知方程在 (0,1) 内至少有一个根.
x 0
所以, lim f ( x) 0 ,且 f (0) 0 ,因此,函数在 x 0 处连续.
x 0
f ( x) f (0) f ( x) f (0) 1 , f ' (0) lim 1 , x 0 x 0 x0 x0 所以函数在 x 0 处可导. f ' (0) lim
18、 y
1 2 1 x ,所以 y ( 4 ) x 2 2 2
1
1
x4

1 , 4
所以切线方程为 y 2
1 ( x 4) ,法线方程为 y 2 4( x 4) . 4

大学数学基础教程课后答案(微积分)

大学数学基础教程课后答案(微积分)

z c -a
-b a x
O
b y
(4) D = ( x, y, z ) x ≥ 0, y ≥ 0, z ≥ 0, x 2 + y 2 + z 2 < 1
{
}
z 1
O x 1

y
2
4.求下列各极限: (1) lim 1 − xy 1−0 = =1 2 2 x +y 0 +1 ln( x + e y ) = ln( 1 + e 0 ) = ln 2 1+ 0
4
t t t t z x = −2 sin 2( x − ), z t = sin 2( x − ), z xt = 2 cos 2( x − ), z tt = − cos 2( x − ) 2 2 2 2 t t 2 z tt + z xt = −2 cos 2( x − ) + 2 cos 2( x − ) = 0 . 2 2 y x 1 y 1 x e , z y = e x , dz = − 2 e x dx + e dy ; 2 x x x x
(1)为使函数表达式有意义,需 y − 2 x ≠ 0 ,所以在 y − 2 x = 0 处,函数间
(2)为使函数表达式有意义,需 x ≠ y ,所以在 x = y 处,函数间断。 习题 1—2 1.( 1) z =
x y + y x
∂z 1 y ∂z 1 x = − 2; = − . ∂x y x ∂y x y 2 (2) ∂z = y cos( xy) − 2 y cos( xy) sin( xy) = y[cos( xy) − sin( 2 xy)] ∂x ∂z = x cos( xy) − 2 x cos( xy) sin( xy) = x[cos( xy) − sin( 2 xy)] ∂y (3) ∂z = y (1 + xy) y −1 y = y 2 (1 + xy) y −1 , ∂x lnz= yln(1+xy),两边同时对 y 求偏导得 1 ∂z x = ln( 1 + xy) + y , z ∂y 1 + xy

大学微积分(常见问题与解答)

大学微积分(常见问题与解答)

辅导答疑第一章微积分的基础和研究对象1. 问:如何理解微积分(大学数学)的发展历史?微积分与初等数学的主要区别是什么?答:微积分的基础是---集合、实数和极限,微积分的发展历史可追溯到17世纪,在物理力学等实际问题中出现大量的(与面积、体积、极值有关的)问题,用微积分得到了很好的解决。

到19世纪,经过无数数学家的努力,微积分的理论基础才得以奠定。

可以说,经过300多年的发展,微积分课程的基本内容已经定型,并且已经有了为数众多的优秀教材。

但是,人们仍然感到微积分的教与学都不是一件容易的事,这与微积分学科本身的历史进程有关。

微积分这座大厦是从上往下施工建造起来的。

微积分从诞生之初就显示了强大的威力,解决了许多过去认为高不可攀的困难问题,取得了辉煌的胜利,创始微积分数学的大师们着眼于发展强有力的方法,解决各式各样的问题,他们没来得及为这门学科建立起严格的理论基础。

在以后的发展中,后继者才对逻辑细节作了逐一的修补。

重建基础的细致工作当然是非常重要的,但也给后世的学习者带来了不利的影响,今日的初学者在很长一段时间内只见树木不见森林。

微积分重用极限的思想,重用连续的概念,主要是在研究函数,属于变量数学的范畴。

而初等数学研究不变的数和形,属于常量数学的范畴。

2.问:大学数学中研究的函数与初等数学研究的函数有何不同之处?答:在自然科学,工程技术甚至社会科学中,函数是被广泛应用的数学概念之一,其意义远远超过了数学范围,在数学中函数处于基础核心地位。

函数不仅是贯穿中学《代数》的一条主线,它也是《大学数学》这门课程的研究对象。

《大学数学》课程中,将在原有初等数学的基础上,对函数的概念、性质进行重点复习和深入的讨论,并采用极限为工具研究函数的各种分析性质,进而应用函数的性质去解决实际问题。

第二章微积分的直接基础-极限1.问:阿基里斯追赶乌龟的悖论到底如何解决的?答:阿基里斯追赶乌龟的悖论是一个很有趣的悖论。

如果芝诺的结论是正确的,则追赶者无论跑得多么快也追不上在前面跑的人,这显然与我们在生活中经常见到的现象相违背。

大学数学微积分求导习题及答案

大学数学微积分求导习题及答案

大学数学微积分求导习题及答案导言微积分是数学中的一门重要学科,求导是微积分中最基础的概念之一。

掌握求导的方法和技巧对于解决数学和物理问题至关重要。

以下是一些大学数学微积分中常见的求导题及其答案,供同学们练和参考。

题与答案1. 求导基本法则题:求函数 $f(x) = 3x^2 + 5x - 2$ 的导数。

答案:根据求导的基本法则,对于多项式函数求导,可以按照如下步骤进行:1. 按指数降低幂次,得到 $f'(x) = 6x + 5$。

2. 链式法则题:求函数 $g(x) = \sin(2x)$ 的导数。

答案:根据链式法则,对于复合函数求导,可以按照如下步骤进行:1. 令 $u = 2x$,则 $g(x) = \sin(u)$。

2. 求出 $u$ 对 $x$ 的导数,得到 $\frac{du}{dx} = 2$。

3. 求出 $g(u)$ 对 $u$ 的导数,得到 $\frac{dg}{du} = \cos(u)$。

4. 根据链式法则,$g(x)$ 对 $x$ 的导数为 $\frac{dg}{dx} =\frac{dg}{du} \cdot \frac{du}{dx} = 2\cos(2x)$。

3. 三角函数的导数题:求函数 $h(x) = \cos^2(x)$ 的导数。

答案:根据求导的基本法则和三角函数的导数公式,对于幂函数求导可以按照如下步骤进行:1. 使用恒等式 $\cos^2(x) = \frac{1 + \cos(2x)}{2}$ 将 $h(x)$ 转化为两个简单函数的和。

2. 求出 $\cos(2x)$ 的导数,得到 $\frac{d}{dx}(\cos(2x)) = -2\sin(2x)$。

3. 求出 $\frac{1 + \cos(2x)}{2}$ 的导数,得到$\frac{1}{2}\left(0 - 2\sin(2x)\right) = -\sin(2x)$。

4. 因此,$h(x)$ 的导数为 $h'(x) = -\sin(2x)$。

高等数学上册教材答案

高等数学上册教材答案

高等数学上册教材答案从数学的角度来看,高等数学是大学数学的一部分,涉及到微积分、线性代数、数理方程等内容。

作为一门重要的基础课程,高等数学对于大学生的学习和发展具有重要的作用。

本文将从不同章节的题目给出相应的答案,方便读者对高等数学上册教材进行学习和复习。

1. 微积分基础1.1 线性函数和导数题目1:给定函数f(x) = 3x - 2,求f(x)在x = 2处的导数。

答案:根据导数的定义,导数可以通过求函数在某个点的斜率来计算。

对于线性函数f(x) = 3x - 2,则斜率为函数的系数,即导数为3。

1.2 导数的运算法则题目2:计算函数f(x) = x^2 - 3x + 2的导数。

答案:根据导数的运算法则,对于多项式函数f(x) = x^n,其导数为f'(x) = nx^(n-1)。

对于给定函数f(x) = x^2 - 3x + 2,可以按照此法则进行运算,得到f'(x) = 2x - 3。

2. 函数的极限与连续性2.1 函数的极限题目3:计算函数f(x) = (x^2 - 4)/(x - 2)在x = 2处的极限。

答案:通过将x = 2代入函数,可以得到0/0的形式,这是一个不确定型。

利用极限运算法则,可以对函数进行化简,得到f(x) = x + 2。

当x趋近于2时,f(x)也趋近于4。

因此,f(x)在x = 2处的极限为4。

2.2 函数的连续性题目4:判断函数f(x) = sin(x)在x = 0处是否连续。

答案:函数f(x) = sin(x)是一个基本的三角函数,对于所有的实数x,它的值都是存在的。

因此,在x = 0处,函数f(x)是连续的。

3. 导数的应用3.1 取消极限与导数的关系题目5:计算函数f(x) = (1 + x)^(1/x)当x趋近于0时的极限。

答案:可以通过计算导数的方式来求解。

首先对函数取对数,得到ln(f(x)) = ln((1 + x)^(1/x))。

高等数学经济应用数学基础微积分课后习题答案

高等数学经济应用数学基础微积分课后习题答案

高等数学经济应用数学基础微积分课后习题答案标题:高等数学经济应用数学基础微积分课后习题答案详解高等数学是大学数学的重要组成部分,它在经济、物理、工程等领域都有着广泛的应用。

在经济应用数学基础微积分课程中,学生需要掌握微积分的基本概念和技能,包括极限、导数、微分、积分等。

本文将对这些基本概念和技能进行详细的解释,并给出一些相应的例题和答案。

一、极限极限是微积分的基础,它描述了一个变量在趋近于某个值时变化的趋势。

在数学上,我们用lim表示极限,记作lim f(x) = A,其中f(x)是自变量x的函数,A是一个常数。

例1:求lim(x->0) sin(x)/x。

解:当x趋近于0时,sin(x)和x都趋近于0,因此我们可以使用洛必达法则来求解。

将分子和分母分别求导,得到lim(x->0) cos(x)/1 = 1。

二、导数导数描述了一个函数在某一点的变化率,记作f'(x)。

如果f'(x)是一个常数,那么f(x)就是线性的;如果f'(x)不是常数,那么f(x)就是非线性的。

例2:求f(x) = x^3的导数。

解:f'(x) = 3x^2。

三、微分微分是导数的逆运算,它描述了一个函数在某一点的微小变化。

记作df(x) = f'(x)dx。

例3:求f(x) = x^3的微分。

解:df(x) = 3x^2dx。

四、积分积分是微分的逆运算,它可以将一个函数的微小变化累积起来,得到这个函数的积分。

记作∫f(x)dx。

例4:求∫(x^2)dx。

解:∫(x^2)dx = (1/3)x^3+C,其中C为常数。

以上就是微积分的基本概念和技能,通过这些例题和答案,我们可以更好地理解和掌握这些概念和技能,为后续的学习和应用打下坚实的基础。

经济应用数学基础教案标题:经济应用数学基础教案一、文章类型与目标本文将提供一份全面的经济应用数学基础教案,旨在为教师提供教学指导,帮助学生掌握与经济相关的数学基础知识,为进一步学习经济学、金融学等专业课程打下坚实的基础。

微积分(上册)习题参考答案

微积分(上册)习题参考答案

参考答案0. 预备知识习题0.11.(a )是 (b )否 (c )是 (d )否2.(a )否 (b )否 (c )否 (d )是 (e )否 (f )否 (g )是 (h )否 (i )是3. {}{}{}{}{}{}{}{}{}{}{}{}{},1,2,3,4,1,2,1,3,1,4,2,3,2,4,3,4,1,2,3,1,2,4,1,3,4f , {}{}2,3,4,1,2,3,4.4. 11,,0,1,2,3,4A B禳镲?--睚镲铪 ,10,1,4A C 禳镲-=--睚镲铪 ,11,,0,1,2,74A D A 禳镲?=--睚镲铪.5. 1,32A Bx x R x 禳镲??<睚镲铪, {,12}A B x x R x =危 ,{},23A B x x R x -=?<.6~15. 略。

16. 证明:先证()()()A B C A B A C --?惹.若()x A B C ?-,则,x A x B C 蜗-①如果x C Î,则,x A B C 蜗-;②如果x C Ï,则x B Ï,所以x AB ?,也有()()x A B AC ?惹,因此有()()()A B C A B A C --?惹.再证()()()A B C A C A B C --惹?-.若()()x A B A C ¢?惹,则,x A B ¢?或x A C ¢吻.①如果x A C ¢吻,有x C ¢Î,所以,x B C ¢?,又x A ¢Ï,于是()x A B C ¢?- ②如果x A C ¢锨,x A B ¢?,则有x A ¢Î,x C ¢Ï,x B ¢Ï,所以,x B C ¢?,于是()x A B C ¢?-. 因此有()()()A B A C A B C -惹?-.综上所述,()()()A B C A B A C --=-惹,证毕. 17~19. 略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

烆15狓,
狓≥1600.

大 学 数 学 ——— 微 积 分 上
(3)21000 元 .
习题13
1.略 .
2.(1)0. (2)1. (3)1. (4)2. (5)发 散 .
(6)|狇|<1时,lim狇狀=0;狇=1时,lim狇狀=1;狇=-1时,lim狇狀 不存在.
狀→ ∞
狀→ ∞
狓狀
=2狀π

狔狀
=2狀π+
π 2

习题16
1.(1)-1.
(2)0.
(3)-
1 2

(4)12

(5)3狓2

(6)1.
(7)-2.
(8)0.
(9)16

(10)64. (11)-1. (12)1. (13)12 . (14)2.
2.(1)∞ . (2)∞ .
3.(1)0. (2)1.
2.犽=2.
习题18
1.狓2-狓3 是 高 阶 无 穷 小 .
2.当 狓→1时,无穷小1-狓 与1-狓3 同阶,与1-狓3 等价. 3.略 .
4.(1)1 2
. (2)2. (3)-
1 4

5.(1)3 2 阶.
(2)4阶.提示:sin2狓-tan2狓=(sin狓-tan狓)(sin狓+tan狓),sin狓-tan狓 是狓 的3阶无穷小.
4.(1)不 一 定 . (2)一 定 不 存 在 . (3)不 一 定 .
(4)不一定.如取 犳(狓)=1,犵(狓)在点 狓0 极限不存在,则lim犳(狓)犵(狓)=lim犵(狓)极 限 不 存 在.


犳(狓)=sin
1 狓
,犵(狓)=狓,则lim犳(狓)犵(狓)=lim狓sin
狓→0
狓→0
(6)狓=0 是 第 一 类 间 断 点 .
3.犪= -1.
4.(1)在点 狓0 处不连续. (2)在点 狓0 处不连续.
烄狓, |狓|<1, 5.犳(狓)=烅 0, |狓|=1,狓=±1为第一类间断点.
答案与提示
答案与提示
习题11
1.{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}, .
2.犃∪犅= {1,2,3,5};犃∩犅= {1,3};犃∪犅∪犆= {1,2,3,4,5,6};犃∩犅∩犆= ;犃\犅= {2}.
3.犃∪犅= {-3,-2,-1,0,1,2,4,6,9};犃∩犅= {0,2,4},犃\犅= {6,9}.
习题1 9
1~4.略 . 5.对给定ε=0.001,取δ= 15ε=0.0002.提示:因为 狓→2,所以|狓-2|<1,即不 妨 设 1<狓<3.于
是 ,|狓2 -4|=|狓+2||狓-2|<5|狓-2|.
习题1 10
1.(1)犳(狓)在 [0,2]上 连 续 . (2)犳(狓)在 (- ∞ ,-1)与 (-1,+ ∞ )上 连 续 ,狓= -1 为 跳 跃 间 断 点 .
3.(1)+

,狓=0.
(2)-

,狓=0.
(3)+

,狓=

π 2

4.(1)0. (2)2π .
5.狓狀
=1 2狀π+
π 2

,犳(狓狀)=2狀π+
π 2


(狀→

);狔狀
=2狀1π时
,犳(狔狀
)=0





由此 犳(狓)在区间(0,1)上既不是无穷大也不是无穷小.
6.提

:类



5,取
{e2狓 ,狓≤0,
4.犳[犵(狓)]= 3e狓 ,0<狓≤ln2.
5.犳[犳(狓)]=1,狓∈ (- ∞ ,+ ∞ ).
△6~△7.略 .
烄90,
0≤狓≤100,
△8.(1)狆=烅90-0.01(狓-100),75,100<狓<1600,
烆75,
狓≥1600.
烄30,
0≤狓≤100,
(2)犔= (狆-60)狓=烅31狓-0.01狓2 ,100<狓<1600,
1 狓
=0




.如
犵(狓)为



数 ,而lim犳(狓)=0,则 一 定 有lim犳(狓)犵(狓)=0. 5.犪=1,犫= -1.

答案与提示
习题17
1.(1)π. (2)1. (3)32 . (4)狓. (5)π. (6)2. (7)1e . (8)e4. (9)e-狓. (10)1. (11)e-1 . (12)e.
4.犃∪犅=犚;犃∩犅= {狓|-1≤狓<3};犃\犅= {狓|狓≥3}.
5.略 .
6.(1)狓> -1. (2)狓≠0 且 -1≤狓≤1.
7.(1)不 相 同 . (2)不 相 同 . (3)不 相 同 . (4)相 同 .
8.(1)偶 函 数 . (2)非 奇 函 数 ,也 非 偶 函 数 . (3)偶 函 数 . (4)奇 函 数 .
( ) (4)犇=[1,4].53π
,犽=0,±1,±2,… .
2.(1)[1,2]. (2)[0,+ ∞ ). (3)[2狀π,(2狀+1)π](狀=0,±1,… ).
(4)若
0<犪≤
1 2
,则
犪≤狓≤1-犪;若犪>
1 2
,则






义.
3.φ(狓)=狓狓+4,φ(狓-1)=狓狓-+13.
狀→ ∞
3.略 .
习题14
1.(1)0,狔=0. (2)0,狔=0. (3)1,狔=1. 2.(1)2. (2)1. (3)5. (4)1. 3.犳(0+ )=2,犳(0- )=-1;lim犳(狓)不存在.
狓→0
习题15
1.略 . 2.(1)无 穷 小 量 . (2)无 穷 大 量 . (3)无 穷 大 量 . (4)无 穷 小 量 .
2.(1)狓=1 是 函 数 的 第 二 类 无 穷 间 断 点 .
(2)狓= -1 是 函 数 的 第 一 类 可 去 间 断 点 ;狓=2 为 第 二 类 间 断 点 .
(3)狓=0

狓=犽π+
π 2






;狓=犽π
(犽≠0)为



间断


(4)狓=0 是 第 一 类 间 断 点 .
(5)狓= -4 是 第 一 类 间 断 点 .
(5)非 奇 函 数 ,也 非 偶 函 数 . (6)偶 函 数 . (7)奇 函 数 . (8)奇 函 数 .
9.略 .
10.犳(-1)=2,犳(1)=1.
11.略 .
{ 12.(1)狔=狓2-1. (2)狔=11-+狓狓. (3)狔=
狓+1,狓< -1,
槡3狓, 狓≥0.
习题12
1.(1)[-2,4]. (2)(- ∞ ,-1)∪ (1,3). (3)[-4,-π]∪ [0,π].
相关文档
最新文档