初中数学--培优专题13-等腰三角形(含答案)(2)

合集下载

初中数学 等腰三角形存在性问题(含答案)

初中数学  等腰三角形存在性问题(含答案)

等腰三角形存在性问题几何图形存在性问题是中考二次函数压轴题一大常见类型,等腰三角形、直角三角形、平行四边形、矩形、菱形、正方形等均有涉及,本系列从等腰三角形开始,逐一介绍各种问题及常规解法.等腰三角形存在性问题【问题描述】如图,点A坐标为(1,1),点B坐标为(4,3),在x轴上取点C使得△ABC是等腰三角形.【几何法】“两圆一线”得坐标(1)以点A为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有AB=AC;(2)以点B为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有BA=BC;(3)作AB的垂直平分线,与x轴的交点即为满足条件的点C,有CA=CB.【注意】若有三点共线的情况,则需排除.作图并不难,问题是还需要把各个点坐标算出来,可通过勾股或者三角函数来求.C 21+23,0()C 11-23,0()C 1H =C 2H =13-1=23作AH ⊥x 轴于H 点,AH =1AC 1=AB=4-1()2+3-1()2=1334C C 、同理可求,下求5C .显然垂直平分线这个条件并不太适合这个题目,如果A 、B 均往下移一个单位,当点A 坐标为(1,0),点B 坐标为(4,2)时,可构造直角三角形勾股解:故C 5坐标为(196,0)解得:x =1363-x ()2+22=x 2设AC 5=x ,则BC 5=x ,C 5H =3-x AH =3,BH =2而对于本题的5C ,或许代数法更好用一些.【代数法】表示线段构相等(1)表示点:设点5C 坐标为(m ,0),又A 点坐标(1,1)、B 点坐标(4,3), (2)表示线段:5AC =5BC(3)分类讨论:根据55AC BC =,(4)求解得答案:解得:236m =,故5C 坐标为23,06⎛⎫⎪⎝⎭. 【小结】几何法:(1)“两圆一线”作出点;(2)利用勾股、相似、三角函数等求线段长,由线段长得点坐标.代数法:(1)表示出三个点坐标A 、B 、C ;(2)由点坐标表示出三条线段:AB 、AC 、BC ; (3)根据题意要求取①AB =AC 、②AB =BC 、③AC =BC ; (4)列出方程求解.问题总结:(1)两定一动:动点可在直线上、抛物线上;(2)一定两动:两动点必有关联,可表示线段长度列方程求解; (3)三动点:分析可能存在的特殊边、角,以此为突破口.【2018泰安中考】如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点(4,0)A -、(2,0)B ,交y 轴于点(0,6)C ,在y 轴上有一点(0,2)E -,连接AE . (1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形?若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【分析】(1)233642y x x =--+;(2)可用铅垂法,当点D 坐标为()2,6-时,△ADE 面积最大,最大值为14; (3)这个问题只涉及到A 、E 两点及直线x =-1(对称轴)①当AE =AP 时,以A 为圆心,AE 为半径画圆,与对称轴交点即为所求P 点. ∵AE=1AP AH =3,∴1PH故(1P -、(21,P-. ②当EA =EP 时,以E 点为圆心,EA 为半径画圆,与对称轴交点即为所求P 点. 过点E 作EM 垂直对称轴于M 点,则EM =1,34P M P M ===,故(31,2P --、(41,2P --.③当P A =PE 时,作AE 的垂直平分线,与对称轴交点即为所求P 点. 设()51,P m -,()()2225140P A m =-++-,()()2225=102P E m --++ ∴()22921m m +=++,解得:m =1. 故()51,1P -.综上所述,P 点坐标为(1P -、(21,P -、(31,2P --+、(41,2P --、()51,1P -.【补充】“代数法”用点坐标表示出线段,列方程求解亦可以解决.【2019白银中考(删减)】如图,抛物线24y ax bx =++交x 轴于(3,0)A -,(4,0)B 两点,与y 轴交于点C ,连接AC ,BC .点P 是第一象限内抛物线上的一个动点,点P 的横坐标为m .(1)求此抛物线的表达式;(2)过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q .试探究点P 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标,若不存在,请说明理由;【分析】(1)211433y x x =-++;(2)①当CA =CQ 时,∵CA =5,∴CQ =5,考虑到CB 与y 轴夹角为45°,故过点Q 作y 轴的垂线,垂足记为H ,则CH QH ==,故Q点坐标为-⎝⎭. ②当AC =AQ 时,考虑直线BC 解析式为y =-x +4,可设Q 点坐标为(m ,-m +4),AQ =5=,解得:m =1或0(舍),故Q 点坐标为(1,3).③当QA =QC 时,作AC 的垂直平分线,显然与线段BC无交点,故不存在. 综上所述,Q点坐标为⎝⎭或(1,3).【2019盐城中考删减】如图所示,二次函数2(1)2y k x =-+的图像与一次函数2y kx k =-+的图像交于A 、B 两点,点B 在点A 的右侧,直线AB 分别与x 、y 轴交于C 、D 两点,其中0k <. (1)求A 、B 两点的横坐标;(2)若OAB ∆是以OA 为腰的等腰三角形,求k 的值.【分析】(1)A 、B 两点横坐标分别为1、2; (2)求k 的值等价于求B 点坐标,B 点横坐标始终为2,故点B 可以看成是直线x =2上的一个动点, 满足△OAB 是以OA 为腰的等腰三角形, 又A 点坐标为(1,2),故OA = ①当OA =OB时,即OB =记直线x =2与x 轴交点为H 点, ∵OH =2,∴BH =1,故B 点坐标为(2,1)或(2,-1),k =-1或-3. ②当AO =AB 时,易知B 点坐标为(2,0),k =-2. 综上所述,k 的值为-1或-2或-3.【2018贵港中考(删减)】如图,已知二次函数2y ax bx c =++的图像与x 轴相交于(1,0)A -,(3,0)B 两点,与y 轴相交于点(0,3)C -.(1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图像上任意一点,PH x ⊥轴于点H ,与线段BC 交于点M ,连接PC .当PCM ∆是以PM 为一腰的等腰三角形时,求点P 的坐标.【分析】(1)223y x x =--;(2)①当PM =PC 时,(特殊角分析)考虑∠PMC =45°,∴∠PCM =45°,即△PCM 是等腰直角三角形,P 点坐标为(2,-3);②当MP =MC 时,(表示线段列方程)设P 点坐标为()2,23m m m --,则M 点坐标为(),3m m -, 故线段()()223233PM m m m m m =----=-+ 故点M 作y 轴的垂线,垂足记为N ,则MN =m , 考虑△MCN是等腰直角三角形,故MC =,∴23m m -+,解得3m =0(舍), 故P点坐标为(3-.综上所述,P 点坐标为(2,-3)或(3-.【2019眉山中考删减】如图,在平面直角坐标系中,抛物线249y x bx c =-++经过点(5,0)A -和点(1,0)B .(1)求抛物线的解析式及顶点D 的坐标;(2)如图,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作DMN DBA ∠=∠,MN 交线段AD 于点N ,是否存在这样点M ,使得DMN ∆为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由.【分析】(1)241620999y x x =--+,顶点D 坐标为()2,4-;(2)考虑到∠DAB =∠DBA =∠DMN ,即有△BMD ∽△ANM (一线三等角).①当MD =MN 时,有△BMD ≌△ANM , 可得AM =BD =5,故AN =BM =1;②当NM =ND 时,则∠NDM =∠NMD =∠DAB , △MAD ∽△DAB ,可得AM =256,116BM = ∴AN AMBM BD=,即2561156AN =, 解得:5536AN =.③当DM =DN 时,∠DNM =∠DMN =∠DAB ,显然不成立,故不存在这样的点M . 综上,AN 的值为1或5536.【2019葫芦岛中考(删减)】如图,直线4y x =-+与x 轴交于点B ,与y 轴交于点C ,抛物线2y x bx c =-++经过B ,C 两点,与x 轴另一交点为A .点PBC 上由点B 向点C 运动(点P 不与点B 和点C 重合),设运动时间为t 秒,过点P 作x 轴垂线交x 轴于点E ,交抛物线于点M .(1)求抛物线的解析式;(2)如图,连接AM 交BC 于点D ,当PDM ∆是等腰三角形时,直接写出t 的值.【分析】(1)234y x x =-++;(2)①考虑到∠DPM =45°,当DP =DM 时,即∠DMP =45°,直线AM :y =x +1,联立方程:2341x x x -++=+, 解得:13x =,21x =-(舍). 此时t =1.②当PD=PM时,∠PMD=∠PDM=67.5°,∠MAB=22.5°,考虑tan∠22.5°1,直线AM:)11 y x=+,联立方程:)23411 x x x-++=解得:15x=21x=-(舍).此时t1 -.综上所述,t的值为11.附:tan22.5°1.221122.5°22.5°45°45°tan22.51︒==【总结】具体问题还需具体分析题目给的关于动点的条件,选取恰当的方法,可减轻计算量.。

等腰三角形含练习答案

等腰三角形含练习答案

等腰三角形知识点一:等腰三角形有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角, 腰与底边的夹角叫做底角. 等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合. 特别的:(1)等腰三角形是轴对称图形.(2)等腰三角形两腰上的中线、角平分线、高线对应相等.简称等腰三角形三线合一.1.△ABC 中,AB=AC.(1)若∠B=50°, 则∠C=__ ,∠A=___ (2)若∠A=100°, 则∠B=__ ,∠C=__2. (1) 等腰三角形的一个内角为50°,则另两个角为 (2) 等腰三角形的一个内角为100°,则另两个角为__ . (3) 等腰三角形的一个内角为90°,则另两个角为___ 归纳:已知等腰三角形的一个内角的度数,求其它两角时, (a)若已知角为钝角或直角,则它一定是顶角; (b)若已知角为锐角,它可能是顶角,也可能是底角。

例1、等腰三角形的顶角为70°,底角为_______.。

2、在三角形ABC 中,AB=AC,BAC ∠=90°,AD是BC边上的高,则BAC ∠=_____ BD=____=______3、如图2,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD 图中共有几个等腰三角形?分别写出它们的顶角和底角。

4、如图,在△ABC 中,AB=AD=DC,BAD ∠=36°,求B ∠和C ∠度数。

DCABCD B A例1 如图所示,在Rt△ABC中,∠BCA是直角,E是AC上的一点,ED⊥AB于D,BD=BC,CD、BE交于点F.求证:CD⊥BE.思路:由BD=BC知△BCD是等腰三角形,所以要证明CD⊥BE只需证明BE是△BCD的底边上的中线或者顶角的平分线即可。

初三中考一轮复习(14)等腰三角形与直角三角形 题型分类 含答案(全面 非常好)

初三中考一轮复习(14)等腰三角形与直角三角形  题型分类 含答案(全面 非常好)

【重点考点例析】考点一:角的平分线例1 如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.故答案为:15.对应训练1.如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ= °.1.35考点二:线段垂直平分线例2 如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC= .故答案为:70°.对应训练2.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm2.C考点三:等腰三角形性质的运用例3 如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°故选A.对应训练3.如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD= .3.44°考点四:等边三角形的判定与性质例4 如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 度.故答案为:15.对应训练4.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE= .4.3考点五:三角形中位线定理例5 如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B.60°C.70°D.80°故选C.对应训练5.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.5.3考点六:直角三角形例6 将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cm B.6cm C.32cm D.62cm故选:D.对应训练6.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()+1 D.3 +1A.2 B.23C.336.D考点七:勾股定理例7 矩形的两邻边长的差为2,对角线长为4,则矩形的面积为.思路分析:设矩形一条边长为x,则另一条边长为x-2,然后根据勾股定理列出方程式求出x的值,继而可求出矩形的面积.解:设矩形一条边长为x,则另一条边长为x-2,由勾股定理得,x2+(x-2)2=42,整理得,x2-2x-6=0,解得:x=1+7或x=1-7(不合题意,舍去),另一边为:7-1,则矩形的面积为:(1+7)(7-1)=6.故答案为:6.点评:本题考查了勾股定理及矩形的性质,难度适中,解答本题的关键是根据勾股定理列出等式求处矩形的边长,要求同学们掌握矩形面积的求法.对应训练7.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E 的面积是.7.10【聚焦山东中考】2.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.132.C3.如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()A.32B.52C.3 D.43.C4.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠AB.BD平分∠ABCC.S△BCD=S△BODD.点D为线段AC的黄金分割点4.C5.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,3),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.85.C6.在等腰△ABC中,AB=AC,∠A=50°,则∠B= .6.65°7.(2013•滨州)在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为.7.268.如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为.8.159.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.9.210.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC 为度.10.10811.我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”).已知等边三角形的边长为2,则它的“面径”长可以是(写出1个即可).11.2,3(或介于2和3之间的任意两个实数)12.操作发现将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合.问题解决将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD 交于点O,连接CD,如图②.(1)求证:△CDO是等腰三角形;(2)若DF=8,求AD的长.12.解;(1)由图①知BC=DE,∴∠BDC=∠BCD,∵∠DEF=30°,∴∠BDC=∠BCD=75°,∵∠ACB=45°,∴∠DOC=30°+45°=75°,∴∠DOC=∠BDC,∴△CDO是等腰三角形;(2)如图,作AG⊥BC,垂足为点G,DH⊥BF,垂足为点H,在Rt△DHF中,∠F=60°,DF=8,∴DH=43,HF=4,在Rt△BDF中,∠F=60°,DF=8,∴DB=83,BF=16,。

初二数学等腰三角形的性质试题答案及解析

初二数学等腰三角形的性质试题答案及解析

初二数学等腰三角形的性质试题答案及解析1.如图,在△ABC中,已知∠B和∠C的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为().A.9B.8C.7D.6【答案】A【解析】根据△ABC中,∠ABC和∠ACB的平分线相交于点F,可得∠DBF=∠FBC,∠ECF=∠FCB,再根据两直线平行内错角相等,可得∠DFB=∠FBC,∠EFC=∠FCB,则有∠DBF=∠DFB,∠EFC=∠ECF,根据等角对等边可得BD=FD,EC=EF,然后利用等量代换即可求出线段DE的长.∵BF为∠ABC的平分线,CF为∠ACB的平分线,∴∠DBF=∠FBC,∠ECF=∠FCB,∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB,∴∠DBF=∠DFB,∠EFC=∠ECF,∴BD=FD,EC=EF,则DE=DF+FE=BD+CE=9,故选A.【考点】本题主要考查角平分线的性质,平行线的性质,等腰三角形的性质点评:解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用性质和已知条件计算.2.△ABC中,AB=AC,∠A=∠C,则∠B=_______.【答案】60°【解析】由AB=AC根据等边对等角可得∠B=∠C,即可得到∠A=∠B=∠C,再根据三角形的内角和180°即可求得结果。

∵AB=AC,∴∠B=∠C,∵∠A=∠C,∴∠A=∠B=∠C,∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°,故答案为60°.【考点】本题考查的是等腰三角形的性质,三角形的内角和定理点评:解答本题的关键是根据等边对等角得到∠A=∠B=∠C.3.等腰三角形的顶角的度数是底角的4倍,则它的顶角是________.【答案】120°【解析】设底角是x°,则顶角是4x°,根据三角形的内角和为180°,即可列出方程,解出即可。

中考数学复习----《等腰三角形》知识点总结与专项练习题(含答案解析)

中考数学复习----《等腰三角形》知识点总结与专项练习题(含答案解析)

中考数学复习----《等腰三角形》知识点总结与专项练习题(含答案解析)知识点总结1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。

其中相等的两边叫做腰,另一边叫做底。

两腰构成的夹角叫做顶角,腰与底构成的夹角叫做底角。

2.等腰三角形的性质:①等腰三角形的两腰相等。

②等腰三角形的两底角相等。

(简称“等边对等角”)③等腰三角形底边的中线、高线以及顶角平分线相互重合。

(简称底边上三线合一)3.等腰三角形的判定:①有两条边相等的三角形是等腰三角形。

②有两个底角相等的三角形是等腰三角形。

(等角对等边)③若一个三角形某一边上存在“三线合一”,则三角形是等腰三角形。

练习题1、(2022•黑龙江)如图,△ABC中,AB=AC,AD平分∠BAC与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若△ABC的面积是24,PD=1.5,则PE的长是()A.2.5 B.2 C.3.5 D.3【分析】如图,过点E作EG⊥AD于G,证明△EGP≌△FDP,得PG=PD=1.5,由三角形中位线定理可得AD的长,由三角形ABC的面积是24,得BC的长,最后由勾股定理可得结论.【解答】解:如图,过点E作EG⊥AD于G,∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD,∴∠PDF=∠EGP=90°,EG∥BC,∵点E是AB的中点,∴G是AD的中点,∴EG=BD,∵F是CD的中点,∴DF=CD,∴EG=DF,∵∠EPG=∠DPF,∴△EGP≌△FDP(AAS),∴PG=PD=1.5,∴AD=2DG=6,∵△ABC的面积是24,∴•BC•AD=24,∴BC=48÷6=8,∴DF=BC=2,∴EG=DF=2,由勾股定理得:PE==2.5.故选:A.2、(2022•淄博)某城市几条道路的位置关系如图所示,道路AB∥CD,道路AB与AE的夹角∠BAE=50°.城市规划部门想新修一条道路CE,要求CF=EF,则∠E的度数为()A.23°B.25°C.27°D.30°【分析】先根据平行线的性质,由AB∥CD得到∠DFE=∠BAE=50°,根据等腰三角形的性质得出∠C=∠E,再根据三角形外角性质计算∠E的度数.【解答】解:∵AB∥CD,∴∠DFE=∠BAE=50°,∵CF=EF,∴∠C=∠E,∵∠DFE=∠C+∠E,∴∠C=∠DFE=×50°=25°,故选:B.3、(2022•鞍山)如图,在△ABC中,AB=AC,∠BAC=24°,延长BC到点D,使CD=AC,连接AD,则∠D的度数为()A.39°B.40°C.49°D.51°【分析】利用等边对等角求得∠B=∠ACB=78°,然后利用三角形外角的性质求得答案即可.【解答】解:∵AB=AC,∠BAC=24°,∴∠B=∠ACB=78°.∵CD=AC,∠ACB=78°,∠ACB=∠D+∠CAD,∴∠D=∠CAD=∠ACB=39°.故选:A.4、(2022•荆州)如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是()A.60°B.70°C.80°D.90°【分析】过点C作CD∥l1,利用平行线的性质可得∠1+∠2=∠ACB,再由等腰三角形的性质可得∠ACB=∠ABC,从而可求解.【解答】解:过点C作CD∥l1,如图,∵l1∥l2,∴l1∥l2∥CD,∴∠1=∠BCD,∠2=∠ACD,∴∠1+∠2=∠BCD+∠ACD=∠ACB,∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=40°,∴∠ACB=(180°﹣∠BAC)=70°,∴∠1+∠2=70°.故选:B.5、(2022•台湾)如图,△ABC中,D点在AB上,E点在BC上,DE为AB的中垂线.若∠B=∠C,且∠EAC>90°,则根据图中标示的角,判断下列叙述何者正确?()A.∠1=∠2,∠1<∠3 B.∠1=∠2,∠1>∠3C.∠1≠∠2,∠1<∠3 D.∠1≠∠2,∠1>∠3【分析】根据线段垂直平分线的性质,等腰三角形的性质解答即可.【解答】解:∵DE为AB的中垂线,∴∠BDE=∠ADE,BE=AE,∴∠B=∠BAE,∴∠1=∠2,∵∠EAC>90°,∴∠3+∠C<90°,∵∠B+∠1=90°,∠B=∠C,∴∠1>∠3,∴∠1=∠2,∠1>∠3,故选:B.6、(2022•宜宾)如图,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AEDF的周长是()A.5 B.10 C.15 D.20【分析】由于DE∥AB,DF∥AC,则可以推出四边形AFDE是平行四边形,然后利用平行四边形的性质可以证明▱AFDE的周长等于AB+AC.【解答】解:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∠B=∠EDC,∠FDB=∠C∵AB=AC,∴∠B=∠C,∴∠B=∠FDB,∠C=∠EDC,∴BF=FD,DE=EC,∴▱AFDE的周长=AB+AC=5+5=10.故选:B.7、(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm 【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当3cm是腰长时,3,3,5能组成三角形,当5cm是腰长时,5,5,3能够组成三角形.则三角形的周长为11cm或13cm.故选:D.8、(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB ⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【分析】根据等腰三角形的性质求出AC,根据勾股定理求出OC,根据坐标与图形性质写出点A的坐标.【解答】解:设AB与x轴交于点C,∵OA=OB,OC⊥AB,AB=6,∴AC=AB=3,由勾股定理得:OC===4,∴点A的坐标为(4,3),故选:D.9、(2022•泰安)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°【分析】利用等腰三角形的性质得到∠C=∠BAC=25°,利用平行线的性质得到∠BEA=95°,再根据三角形外角的性质即可求解.【解答】解:如图,∵AB=BC,∠C=25°,∴∠C=∠BAC=25°,∵l1∥l2,∠1=60°,∴∠BEA=180°﹣60°﹣25°=95°,∵∠BEA=∠C+∠2,∴∠2=95°﹣25°=70°.故选:A.10、(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数是()A.30°B.40°C.50°D.60°【分析】设底角的度数是x°,则顶角的度数为(2x+20)°,根据三角形内角和是180°列出方程,解方程即可得出答案.【解答】解:设底角的度数是x°,则顶角的度数为(2x+20)°,根据题意得:x+x+2x+20=180,解得:x=40,故选:B.11、(2022•广安)若(a﹣3)2+5−b=0,则以a、b为边长的等腰三角形的周长为.【分析】先求a,b.再求第三边c即可.【解答】解:∵(a﹣3)2+=0,(a﹣3)2≥0,≥0,∴a﹣3=0,b﹣5=0,∴a=3,b=5,设三角形的第三边为c,当a=c=3时,三角形的周长=a+b+c=3+5+3=11,当b=c=5时,三角形的周长=3+5+5=13,故答案为:11或13.12、.(2022•岳阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD=.【分析】根据等腰三角形的性质可知D是BC的中点,即可求出CD的长.【解答】解:∵AB=AC,AD⊥BC,∴CD=BD,∵BC=6,∴CD=3,故答案为:3.13、(2022•苏州)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为.【分析】由等腰△ABC是“倍长三角形”,可知AB=2BC或BC=2AB,若AB=2BC=6,可得AB的长为6;若BC=3=2AB,因1.5+1.5=3,故此时不能构成三角形,这种情况不存在;即可得答案.【解答】解:∵等腰△ABC是“倍长三角形”,∴AB=2BC或BC=2AB,若AB=2BC=6,则△ABC三边分别是6,6,3,符合题意,∴腰AB的长为6;若BC=3=2AB,则AB=1.5,△ABC三边分别是1.5,1.5,3,∵1.5+1.5=3,∴此时不能构成三角形,这种情况不存在;综上所述,腰AB的长是6,故答案为:6.14、(2022•云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是.【分析】分∠A是顶角和底角两种情况讨论,即可解答.【解答】解:当∠A是顶角时,△ABC的顶角度数是40°;当∠A是底角时,则△ABC的顶角度数为180°﹣2×40°=100°;综上,△ABC的顶角度数是40°或100°.故答案为:40°或100°.15、(2022•滨州)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C的大小为.【分析】根据等腰三角形的性质和三角形内角和得到∠B=∠C=30°.【解答】解:∵AB=AC且∠BAC=120°,∴∠B=∠C=(180°﹣∠BAC)=×60°=30°.故答案为:30°.11。

初二数学等腰三角形试题答案及解析

初二数学等腰三角形试题答案及解析

初二数学等腰三角形试题答案及解析1.如图,已知在△ABC中,AB=AC=10cm,BC=12cm,点E、F都在中线AD上,连接EB、EC、FB、FC,则图中阴影部分的面积为.【答案】24cm2【解析】根据等腰三角形的性质求得△ABC底边上的高线AD的长度,然后求图中阴影部分,即三个等高三角形的面积和.解:∵在△ABC中,AB=AC=10cm,BC=12cm,AD是中线,∴AD⊥BC,BD=CD=BC=6cm,∴AD=8cm(勾股定理),∴S阴影=S△ABE+S△EFC+S△BDE=BD•(AE+EF+FD)=BD•AD=×6cm×8cm=24cm2.故答案是:24cm2.点评:本题考查了等腰三角形的性质、三角形的面积.解答此题时,可以发现图中阴影部分的面积实际上是由三个等高不等底的三角形的和,而这三个三角形的底边的和恰好是等腰△ABC的高线AD的长度.2.如图,在△ABC中,B是AC上一点,AD=BD=BC,若∠C=25°,则∠ADB= .【答案】80°【解析】首先利用等腰三角形的性质得到∠C=∠BDC,利用三角形的外角的性质得到∠A和∠ABD的度数,从而确定∠ADB的度数.解:∵BD=BC,∠C=25°,∴∠C=∠BDC=50°,∴∠ABD=∠C+∠BDC=50°,∵AD=BD,∴∠A=∠DBA=50°,∴∠ADB=180°﹣∠A﹣∠DBA=80°,答案为:80°.点评:本题考查了等腰三角形的性质,解答过程中两次运用“等边对等角”,难度不大.3.已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是.【答案】20【解析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20;点评:本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.4.如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,D、E为垂足,BD与CE交于点O,则图中全等三角形共有对.【答案】3【解析】根据等腰三角形性质推出∠ABC=∠ACB,根据垂线定义证∠ADB=∠AEC,∠BEO=∠CDO,根据AAS证△BEC≌△BDC,根据AAS证△ADB≌△AEC,根据AAS证△BEO≌△CDO即可解:有3对:理由是∵AB=AC,∴∠ABC=∠ACB,∵BD⊥AC,CE⊥AB,∴∠BDC=∠BEC=90°,∵BC=BC,∴△BEC≌△BDC,∵∠ADB=∠AEC,∠A=∠A,AB=AC,∴△ADB≌△AEC,∴AD=AE,∴BE=DC,∵∠EOB=∠DOC,∠BEC=∠BDC,∴△BEO≌△CDO,故答案为:3.点评:本题主要考查对全等三角形的性质和判定,等腰三角形性质,垂线定义等知识点的理解和掌握,能推出证三角形全等的三个条件是解此题的关键.5.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为.【答案】11或13【解析】分3是腰长与底边两种情况讨论求解.解:①3是腰长时,三角形的三边分别为3、3、5,能组成三角形,周长=3+3+5=11,②3是底边长时,三角形的三边分别为3、5、5,能组成三角形,周长=3+5+5=13,综上所述,这个等腰三角形的周长是11或13.故答案为:11或13.点评:本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.6.已知等腰三角形的两条边长分别为3和7,那么它的周长等于.【答案】17【解析】分两种情况讨论:当3是腰时或当7是腰时.根据三角形的三边关系,知3,3,7不能组成三角形,应舍去.解:当3是腰时,则3+3<7,不能组成三角形,应舍去;当7是腰时,则三角形的周长是3+7×2=17.故答案为:17.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.此类题不要漏掉一种情况,同时注意看是否符合三角形的三边关系.7.已知等腰三角形一腰上的中线将它周长分成18cm和12cm两部分,则这个等腰三角形的底边长是.【答案】6cm或8cm【解析】设等腰三角形的腰长、底边长分别为xcm,ycm,根据题意列二元一次方程组,注意没有指明具休是哪部分的长为18,故应该列两个方程组求解.解:∵等腰三角形的周长是18cm+12cm=30cm,设等腰三角形的腰长、底边长分别为xcm,ycm,由题意得或,解得或∴等腰三角形的底边长为6cm或8cm.(1分)故答案为:6cm或8cm.点评:此题主要考查等腰三角形的性质,解二元一次方程组和三角形三边关系的综合运用,此题的关键是分两种情况分析,求得解之后注意用三角形三边关系进行检验.8.等腰三角形的一边是2cm,另一边是9cm,则这个三角形的周长是 cm.【答案】20【解析】本题可先根据三角形三边关系,确定等腰三角形的腰和底的长,然后再计算三角形的周长.解:当腰长为4时,则三角形的三边长为:2、2、9;∵2+2<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+2=20.故答案为:20.点评:本题考查了等腰三角形的性质和三角形的三边关系;对于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,直角三角形ABC中,∠BAC=90°AD⊥BC,AE是BC边上的中线,①若∠C=40°,则∠DAE= °;②若∠DAE=20°,则∠C= °.【答案】10°,35°【解析】利用∠C=40°,可先求∠BAC,再利用AE是∠BAC的角平分线,可求∠EAC,在Rt△ADC中,可求∠DAC,从而可求∠DAE.解:①∵直角三角形ABC中,∠BAC=90°AD⊥BC,AE是BC边上的中线∠C=40°,∴BE=AE=CE,∴∠EAC=∠C=40°,∠DAC=50°,∴∠DAE=∠DAC﹣∠EAC=50°﹣40°=10°,②∵∠DAE=20°,∴∠AEC=70°∴∠C=∠EAC=35°,故答案为10°,35°.点评:本题利用了三角形内角和定理、角平分线定理.三角形的内角和等于180°.10.如图,在△ABC中,AB=AC,∠BAD=15°,且AE=AD,则∠CDE= °.【答案】7.5°【解析】根据等腰三角形性质推出∠1=∠2,∠B=∠C,根据三角形的外角性质得到∠1+∠3=∠B+15°,∠2=∠C+∠3,推出2∠3=15°即可.解:∵AD=AE,AC=AB,∴∠1=∠2,∠B=∠C,∵∠1+∠3=∠B+∠BAD=∠B+15°,∠2=∠1=∠C+∠3,∴∠C+∠3+∠3=∠B+15°,2∠3=15°,∴∠3=7.5°,即∠CDE=7.5°,故答案为:7.5°.点评:本题主要考查对等腰三角形的性质,三角形的外角性质等知识点的理解和掌握,熟练地运用性质进行推理是解此题的关键.11.如图,在△ABC中,已知BA=BC,∠B=120°,AB的垂直平分线DE交AC于点D.(1)求∠A的度数;(2)若AC=6cm,求AD的长度.【答案】(1)30°(2)2cm【解析】(1)根据等腰三角形的两个底角相等、三角形内角和定理来求∠A的度数;(2)连接BD.根据线段垂直平分线的性质知△ABD是等腰三角形;然后利用(1)中的∠A=∠C=30°和已知条件∠B=120°可以推知△CDB是直角三角形,利用30度角所对的直角边是斜边的一半即可求得BD与CD间的数量关系;最后利用等腰三角形ABD的两腰相等(AD=BD)通过等量代换即可求得AC=3AD,从而求得线段AD的长度.解:(1)∵在△ABC中,已知BA=BC,∴∠A=∠C(等边对等角);又∵∠B=120°,∴∠A=(180°﹣120°)=30°(三角形内角和定理);(2)连接BD.∵AB的垂直平分线DE交AC于点D,∴AD=BD,∠A=∠ABD=30°,∴∠CBD=90°;由(1)知∠A=∠C=30°,∴BD=CD(30°所对的直角边是斜边的一半),∴CD=2AD=2BD,∴AC=AD+CD=AD+2AD=3AD;又∵AC=6cm,∴AD=2cm.点评:本题综合考查了等腰三角形的性质、含30度角的直角三角形以及三角形内角和定理.解答(2)题时,要充分利用等腰三角形的“三线合一”的性质.12.如图,AB=AC,∠C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.【答案】21°【解析】求出∠ABC,根据三角形内角和定理求出∠A,根据线段垂直平分线得出AD=BD,求出∠ABD,即可求出答案.解:∵AB=AC,∠C=67°,∴∠ABC=∠C=67°,∴∠A=180°﹣67°﹣67°=46°,∵EF是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=46°,∴∠DBC=67°﹣46°=21°.点评:本题考查了线段垂直平分线,三角形的能或定理,等腰三角形的性质和判定等知识点,关键是求出∠ABC和∠ABD的度数,题目比较好.13.如图,△ABC中,AB=AC,BD平分∠ABC交AC于点D,若∠A=52°,则∠BDC等于()A.84°B.64°C.52°D.32°【答案】A【解析】根据角平分线的性质,依据∠A=52°,AB=AC,可求得△ABC中三个内角的度数,然后根据三角形的外角性质可求出∠BDC=∠A+∠ABD.解:∵△ABC中,AB=AC,∠A=52°,∴∠ABC=∠C=(180﹣∠A)÷2=64°;又∵BD平分∠ABC交AC于点D,∴∠ABD=32°,∴∠BDC=∠A+∠ABD=32°+52°=84°.故选A.点评:主要考查了等腰三角形的性质.解题时,需要熟知三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.14.下列性质中,等腰三角形具有而直角三角形不一定具有的是()A.任意两边之和大于第三边B.内角和等于180°C.有两个锐角的和等于90°D.有一个角的平分线垂直于这个角的对边【答案】D【解析】根据等腰三角形与直角三角形的性质作答.解:A、对于任意一个三角形都有两边之和大于第三边,不符合题意;B、对于任意一个三角形都有内角和等于180°,不符合题意;C、只有直角三角形才有两个锐角的和等于90°,不符合题意;D、等腰三角形顶角的平分线垂直于顶角的对边,而直角三角形(等腰直角三角形除外)没有任何一个角的平分线垂直于这个角的对边,符合题意.故选D.点评:本题主要考查了三角形的性质,等腰三角形与直角三角形的性质的区别.15.如图,在四边形ABCD中,△ABC与△ADC关于对角线AC对称,则以下结论正确的是()①AC平分∠BAD②CA平分∠BCD③BD⊥AC④BE=DE.A.①②③④B.①②③C.①②D.④【答案】A【解析】根据轴对称的性质推出△ABC≌△ADC,推出∠BAC=∠DAC,∠BCA=∠DCA,AD=AB,根据等腰三角形性质求出BE=DE,AE⊥BD,根据以上结论判断即可.解:∵△ABC与△ADC关于对角线AC对称,∴△ABC≌△ADC,∴∠BAC=∠DAC,∠BCA=∠DCA,∴①正确;②正确;AB=AD,∴BE=DE,AE⊥BD,∴④正确;即BD⊥AC,∴③正确.故选A.点评:本题主要考查对轴对称的性质,全等三角形的性质和判定,等腰三角形的性质等知识点的理解和掌握,能推出△ABC≌△ADC是解此题的关键.16.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,AD=8cm,BC=6cm,点E、F是AD上的两点,则图中阴影部分的面积是()A.48B.24C.12D.6【答案】C【解析】根据等腰三角形性质求出BD=DC ,AD ⊥BC ,推出△CEF 和△BEF 关于直线AD 对称,得出S △BEF =S △CEF ,根据图中阴影部分的面积是S △ABC 求出即可.解:∵AB=AC ,AD 是∠BAC 的平分线,∴BD=DC=8,AD ⊥BC , ∴△ABC 关于直线AD 对称, ∴B 、C 关于直线AD 对称, ∴△CEF 和△BEF 关于直线AD 对称, ∴S △BEF =S △CEF ,∵△ABC 的面积是×BC×AD=×8×6=24,∴图中阴影部分的面积是 S △ABC =12.故选C .点评:本题主要考查对等腰三角形性质,三角形的面积,轴对称性质等知识点的理解和掌握,能求出图中阴影部分的面积是S △ABC 是解此题的关键.17. 已知等腰三角形的一个外角等于140°,则这个三角形的三个内角的度数分别是( )A .20°、20°、140°B .40°、40°、100°C .70°、70°、40°D .40°、40°、100°或70°、70°、40°【答案】D【解析】由于140°的外角不明确等腰三角形顶角和底角的外角,故应分两种情况讨论.解:(1)当40°角是顶角时,另两个底角度数为70°,70°;(2)当40°角是底角时,另两个底角度数为40°,100°.故选D .点评:本题考查了等腰三角形的性质及三角形内角和定理;等腰三角形的角度计算,要注意区别顶角,底角的不同情况,不要漏解.18. 如图,△ABC 中,D 为AB 上一点,E 为BC 上一点,且AC=CD=BD=BE ,∠A=50°,则∠CDE 的度数为( )A .50°B .51°C .51.5°D .52.5°【答案】D【解析】根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB ,∠BDE=∠BED ,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE ,根据平角的定义即可求出选项. 解:∵AC=CD=BD=BE ,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB ,∠BDE=∠BED ,∵∠B+∠DCB=∠CDA=50°, ∴∠B=25°, ∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA ﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D .点评:本题主要考查对等腰三角形的性质,三角形的内角和定理,三角形的外角性质,邻补角的定义等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.19.如图,在△ABC中,AB=AC,AB的垂直平分线交BC于D,M是BC的中点,若∠BAD=30°,则图中等于30°的角的个数是()A.1个B.2个C.3个D.4个【答案】D【解析】本题先运用线段垂直平分线的性质得出∠BAD=∠ABD=∠C,又因为△ABC为等腰三角形可得AM⊥BC,然后证得△ADM∽△ACM,然后可求解.解:已知AB的垂直平分线交BC于D可得∠BAD=∠B=30°又因为△ABC为等腰三角形,所以∠BAD=∠ABD=∠CM为等腰三角形△ABC的中线,故AM⊥BC∴△ADM∽△ACM,∴∠DAM=∠C=30°.故选D.点评:本题先看清图中三角形的关系,再根据线段垂直平分线的性质以及等腰三角形中线的性质求解,难度一般.20.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°【答案】B【解析】由已知条件可得到∠2=∠B,∠1=∠BCA,在△ABC中,由∠1+∠ACB+∠B=180°,可推出结论.解:∵AB=BC,∴∠1=∠BCA,∵AB=AD,∴∠B=∠2,∵∠1+∠B+∠ACB=180°,∴2∠1+∠2=180°.故选B.点评:本题考查了对等边对等角和三角形内角和定理的应用.。

人教版 八年级数学 13.3 等腰三角形 培优训练(含答案)

人教版 八年级数学 13.3 等腰三角形 培优训练(含答案)

人教版八年级数学13.3 等腰三角形培优训练一、选择题(本大题共10道小题)1. 如图,已知P A=PB,在证明∠A=∠B时,需要添加辅助线,下面有甲、乙两种辅助线的作法:甲:作底边AB的中线PC;乙:作PC平分∠APB交AB于点C.则()A.甲、乙两种作法都正确B.甲的作法正确,乙的作法不正确C.甲的作法不正确,乙的作法正确D.甲、乙两种作法都不正确2. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是()A. 20或16B. 20C. 16D. 以上答案均不对3. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 104. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°5. 如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD6. 如图所示,△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为E. 若AE=1,则△ABC的边长为()A. 2B. 4C. 6D. 87. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°8. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形()A.0个B.1个C.2个D.3个9. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是()A. 6B. 7C. 8D. 910. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题(本大题共6道小题)11. 如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE 折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=________°.12. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.13. 在△ABC中,若∠A=100°,∠B=40°,AC=5,则AB=________.14. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.15. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.16. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.三、解答题(本大题共4道小题)17. 如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点E,DF⊥AC 于点F.求证:DE=DF.18. 如图,在等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE ⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,求BF的长.19. 如图,将一张长方形的纸条ABCD沿EF折叠,若折叠后∠AGC′=48°,AD交EC′于点G.(1)求∠CEF的度数;(2)求证:△EFG是等腰三角形.20. 如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DF=2DC.人教版八年级数学13.3 等腰三角形培优训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】B【解析】∵|x -4|+y -8=0,∴x -4=0,y -8=0,解得x =4,y =8.分两种情况讨论:①当4为腰时,根据三角形三边关系知4+4=8,∴这样的等腰三角形不存在;②当8为腰时,则有4+8>8,这样能够组成等腰三角形,∴此三角形的周长是8+8+4=20.3. 【答案】C 【解析】∵AB =AC ,AD 平分∠BAC ,∴根据等腰三角形三线合一性质可知AD ⊥BC ,BD =CD ,在Rt △ABD 中,AB =5,AD =3,由勾股定理得BD =4,∴BC =2BD =8.4. 【答案】C[解析] ∵OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,∴∠AOM =∠BOM =25°,MA =MB.∴∠OMA =∠OMB =65°.∴∠AMB =130°.∴∠MAB =12×(180°-130°)=25°.故选C.5. 【答案】D[解析] 选项A 由等角对等边可得△ABC 是等腰三角形;选项B 由所给条件可得△ADB ≌△ADC ,由全等三角形的性质可得AB =AC ;选项C 由垂直平分线的性质可得AB =AC ;选项D 不可以得到AB =AC. 6. 【答案】B7. 【答案】A[解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A.8. 【答案】D[解析] ∵∠BAC =72°,∠C =36°,∴∠ABC =72°.∴∠BAC =∠ABC. ∴CA =CB.∴△ABC 是等腰三角形.∵∠BAC 的平分线AD 交BC 于点D ,∴∠DAB=∠CAD=36°.∴∠CAD=∠C.∴CD=AD,∴△ACD是等腰三角形.∵∠ADB=∠CAD+∠C=72°,∴∠ADB=∠B.∴AD=AB.∴△ADB是等腰三角形.9. 【答案】C10. 【答案】D[解析] ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.二、填空题(本大题共6道小题)11. 【答案】120[解析] 由于△ABC是等边三角形,所以∠A=60°.所以∠ADE+∠AED=120°.因为将△ADE折叠,使点A落在BC边上的点F处,所以∠ADE=∠EDF,∠AED=∠DEF.所以∠ADF+∠AEF=2(∠ADE+∠AED)=240°.所以∠BDF+∠CEF=360°-(∠ADF+∠AEF)=120°.12. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.13. 【答案】514. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC. ∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.15. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.16. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.三、解答题(本大题共4道小题)17. 【答案】证明:连接AD.∵AB=AC,D为BC的中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.18. 【答案】解:(1)证明:如图,过点D作DM∥AB,交CF于点M,则∠MDF=∠E.∵△ABC是等边三角形,∴∠CAB=∠CBA=∠C=60°.∵DM∥AB,∴∠CDM=∠CAB=60°,∠CMD=∠CBA=60°.∴△CDM是等边三角形.∴CM=CD=DM.在△DMF 和△EBF 中,⎩⎨⎧∠MDF =∠E ,DF =EF ,∠DFM =∠EFB ,∴△DMF ≌△EBF(ASA).∴DM =BE. ∴CD =BE.(2)∵ED ⊥AC ,∠CAB =∠CBA =60°, ∴∠E =∠FDM =30°. ∴∠BFE =∠DFM =30°. ∴BE =BF ,DM =MF.∵△DMF ≌△EBF ,∴MF =BF. ∴CM =MF =BF.又∵BC =AB =12,∴BF =13BC =4.19. 【答案】解:(1)∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠BEG =∠AGC′=48°. 由折叠的性质得∠CEF =∠C′EF , ∴∠CEF =12(180°-48°)=66°. (2)证明:∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠GFE =∠CEF. 由折叠的性质得∠CEF =∠C′EF , ∴∠GFE =∠C′EF.∴GE =GF ,即△EFG 是等腰三角形.20. 【答案】证明:∵△ABC 是等边三角形, ∴∠A =∠B =∠ACB =60°. ∵DE ∥AB ,∴∠EDC =∠B =60°,∠DEC =∠A =60°. ∵EF ⊥DE ,∴∠DEF =90°. ∴∠F =90°-∠EDC =30°.∵∠ACB=∠EDC=∠DEC=60°,∴△EDC是等边三角形.∴DE=DC. ∵∠DEF=90°,∠F=30°,∴DF=2DE=2DC.。

八年级数学竞赛培优训练 等腰三角形 含解析

八年级数学竞赛培优训练   等腰三角形  含解析

第4讲等腰三角形【思维入门】1.已知等腰△ABC中,腰AB=8,底BC=5,则这个三角形的周长为() A.21B.20C.19D.182.若等腰三角形的顶角为40°,则它的底角度数为() A.40°B.50°C.60°D.70°3.如图1-4-1,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°图1-4-14.如图1-4-2,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°图1-4-25.如图1-4-3,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是____.图1-4-36.如图1-4-4,在△ABC 中,AB =AC ,BD =CD ,DE ⊥AB ,DF ⊥AC ,垂足分别为点E ,F .求证:△DEB ≌△DFC .【思维拓展】7.如图1-4-5,已知在△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,且OM ∥AB ,ON ∥AC ,若CB =6,则△OMN 的周长是()图1-4-5A .3B .6C .9D .128.如图1-4-6,AB =AC ,AD =DE =EC =BC ,则∠ABC 的度数为 ( ) A .30° B .40° C .45°D .60°图1-4-69.如图1-4-7,在等腰△ABC 中,AB =AC ,∠A =20°,D 是 AB 边上的一点,AD =BC ,连结CD ,则∠BDC =____. 10.如图1-4-8,△ABC 与△CDE 均是等边三角形,若∠AEB =145°,则∠DBE 的度数是____.图1-4-4图1-4-7图1-4-811.如图1-4-9,正六边形被三组平行线分割成小的正三角形,则图中所有正三角形的个数是____.12.如图1-4-10,△ABC 中,AB =AC .∠A =36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作(画图不要求使用圆规,以下问题中所指的等腰三角形个数均不包括△ABC ):(1)在图①中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角的度数分别是____度和____度;(2)在图②中画2条线段,使图中有4个等腰三角形;(3)继续以上操作发现:在△ABC 中画n 条线段,则图中有____个等腰三角形,其中有____个黄金等腰三角形.图1-4-10 【思维升华】图1-4-913.三角形三边的长分别为a,b,c,且ab+ac=b+cb+c-a,则三角形是()A.等边三角形B.直角三角形C.以a为腰的等腰三角形D.以a为底的等腰三角形14.如图1-4-11,已知P为等腰△ABC内的一点,AB=BC,∠BPC=108°,D为AC的中点,BD与PC交于点E,如果点P为△ABE的内心,则∠P AC=____.15.如图1-4-12,一个六边形的内角都相等,其中四条边的长分别是3,7,4,8,则另外两条边的长度的和a+b等于____.图1-4-1216.如图1-4-13,在等腰△ABC中,AB=AC,∠BAC=100°,延长AB到D,使AD=BC,连结CD,则∠BCD的度数是____.图1-4-13第4讲等腰三角形【思维入门】1.已知等腰△ABC中,腰AB=8,底BC=5,则这个三角形的周长为(A) A.21B.20C.19D.182.若等腰三角形的顶角为40°,则它的底角度数为(D) A.40°B.50°C.60°D.70°3.如图1-4-1,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是(C)A.45°B.54°C.40°D.50°图1-4-14.如图1-4-2,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为(B)A.30°B.40°C.45°D.60°图1-4-25.如图1-4-3,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是__30°__.图1-4-36.如图1-4-4,在△ABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E,F.求证:△DEB≌△DFC.证明:∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∵BD=CD,∴△DEB≌△DFC(AAS).【思维拓展】7.如图1-4-5,已知在△ABC中,BO平分∠ABC,CO平分∠ACB,且OM∥AB,ON∥AC,若CB=6,则△OMN的周长是(B)图1-4-4图1-4-5A.3 B.6C.9 D.12【解析】∵BO平分∠ABC,∴∠ABO=∠MBO,又OM∥AB,∴∠ABO=∠MOB,∴∠MBO=∠MOB,∴OM=BM,同理ON=CN,∵BC=6,则△OMN的周长=OM+MN+ON=BM+MN+NC=BC=6.8.如图1-4-6,AB=AC,AD=DE=EC=BC,则∠ABC的度数为(B) A.30°B.40°C.45°D.60°图1-4-69.如图1-4-7,在等腰△ABC中,AB=AC,∠A=20°,D是AB边上的一点,AD=BC,连结CD,则∠BDC=__30°__.10.如图1-4-8,△ABC与△CDE均是等边三角形,若∠AEB=图1-4-7145°,则∠DBE 的度数是__85°__.图1-4-8第10题答图【解析】 如答图,∵等边△ABC 和等边△DCE , ∴∠ACB =∠DCE =∠ABC =60°, 在△ACE 与△BCD 中, ∵∠ACB =∠ECD ,∴∠ACB -∠ECB =∠ECD -∠ECB , ∴∠1=∠2,而AC =BC ,EC =DC , ∴△ACE ≌△BCD ,∴∠AEC =∠BDC =60°+∠3,∴∠AEB =360°-∠AEC -∠CED -∠BED , 则360°-∠AEC -∠CED -∠BED =145°, 360°-(60°+∠3)-60°-∠BED =145°, 360°-120°-(∠3+∠BED )=145°, 360°-120°-(180°-∠DBE )=145°, 解得∠DBE =85°.11.如图1-4-9,正六边形被三组平行线分割成小的正三角形,则图中所有正三角形的个数是__38__.【解析】 设正六边形的边长为2,那么边长为1的正三角形的个数有24个,边长为2的正三角形有12个,边长为3的正三角形的个数有2个,共计38个.12.如图1-4-10,△ABC中,AB=AC.∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作(画图不要求使用圆规,以下问题中所指的等腰三角形个数均不包括△ABC):(1)在图①中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角的度数分别是__108__度和__36__度;(2)在图②中画2条线段,使图中有4个等腰三角形;(3)继续以上操作发现:在△ABC中画n条线段,则图中有__2n__个等腰三角形,其中有__n__个黄金等腰三角形.图1-4-10解:(1)如答图①所示;(2)如答图②所示.①②第12题答图【思维升华】13.三角形三边的长分别为a,b,c,且ab+ac=b+cb+c-a,则三角形是(C)A.等边三角形B.直角三角形C.以a为腰的等腰三角形D.以a为底的等腰三角形【解析】通分得acbc+abbc=b+cb+c-a,ac+ab bc=b+cb+c-a,a(b+c)(b+c-a)=bc(b+c),a(b+c-a)=bc,ab+ac-a2-bc=0,a(b-a)+c(a-b)=0,(a-c)(b-a)=0,a-c=0或b-a=0.即a=c或b=a.此时三角形是等腰三角形且a一定是腰.14.如图1-4-11,已知P为等腰△ABC内的一点,AB=BC,∠BPC=108°,D为AC的中点,BD与PC交于点E,如果点P为△ABE的内心,则∠P AC=__48°__.【解析】由题意可得∠PEA=∠PEB=∠CED=∠AED.而∠PEA+∠PEB+∠AED=180°.所以∠PEA=∠PEB=∠CED=∠AED=60°.从而可得∠PCA=30°.又∠BPC=108°,所以∠PBE=12°,从而∠ABD=24°.所以∠BAD=90°-24°=66°.∠P AE=12(∠BAD-∠CAE)=12(66°-30°)=18°,所以∠P AC=∠P AE+∠CAE=18°+30°=48°.15.如图1-4-12,一个六边形的内角都相等,其中四条边的长分别是3,7,4,8,则另外两条边的长度的和a+b等于__11__.图1-4-12【解析】延长a,7,8三条边(两边延长)就会得到一个正三角形,正三角形边长=3+7+4=14,b=14-4-8=2,a=14-3-b=9,a+b=11.16.如图1-4-13,在等腰△ABC中,AB=AC,∠BAC=100°,延长AB到D,使AD=BC,连结CD,则∠BCD的度数是__10°__.图1-4-13【解析】以BC为一边在△ABC外作等边△BCE,连结AE,∴BE=CE=BC,∠BEC=∠BCE=60°,∵AB=AC,AE=AE,∴△ABE≌△ACE,∴∠CEA=∠BEA=12×60°=30°,∵∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACE=∠BAC=100°,∵AD=CE,AC=AC,∴△ACE≌△CAD,∴∠D=∠CEA=30°,在△ACD中,∠ACD=180°-∠D-∠BAC=50°,∴∠BCD=∠ACD-∠ACB=10°.。

培优专题讲解-等腰三角形(含解答)-

培优专题讲解-等腰三角形(含解答)-

等腰三角形专题练习题等腰三角形是一种特殊的三角形,它具有一般三角形的性质,同时,还具有自身的特殊性,这些特殊性使它比一般三角形应用更加广泛.等腰三角形的性质和判定为证明两个角相等和两条线段相等提供了依据.等腰三角形是轴对称图形,底边上的高所在直线是它的对称轴,对于某些含有(或隐含)等腰三角形条件的问题,可以作等腰三角形底边上的高或构建等腰三角形、等边三角形找到解决问题的途径.例1如图1-1,△ABC中,AB=BC,M、N为BC边上两点,且∠BAM=∠CAN,MN=AN,求∠MAC的度数.练习11.如图1-2,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于().A.7.5° B.10° C.12.5° D.18°1-22.如图1-3,AA′、BB′分别是△ABC的外角∠EAB和∠CBD的平分线,且AA′=AB=B′B,A′、B、C在一直线上,则∠ACB的度数是多少?1-33.如图1-4,等腰三角形ABC中,AB=BC,∠A=20°.D是AB边上的点,且AD=BC,•连结CD,则∠BDC=________.1-4例2 如图1-5,D是等边三角形ABC的AB边延长线上一点,BD•的垂直平分线HE•交AC延长线于点E,那么CE与AD相等吗?试说明理由.练习21.已知如图1-6,在△ABC中,AB=CD,D是AB上一点,DE⊥BC,E为垂足,ED•的延长线交CA的延长线于点F,判断AD与AF相等吗?1-6 1-7 1-82.如图1-7,△ABC是等腰直角三角形,∠BAC=90°,点D是△ABC内一点,且∠DAC=∠DCA=15°,则BD与BA的大小关系是()A.BD>BA B.BD<BA C.BD=BA D.无法确定3.已知:如图1-8,在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=•AC,•延长BE交AC于F,AF与EF相等吗?为什么?例3已知:如图1-9,△ABD和△BEC均为等边三角形,M、N分别为AE和DC•的中点,那么△BMN是等边三角形吗?说明理由.练习31.已知:如图1-10,在等边三角形ABC中,BD=CE=AF,AD与BE交于G,BE与CF•交于H,CF与AD交于K,试判断△GHK的形状.1-102.已知:如图1-11,△ABC是等边三角形,E是AC延长线上的任意一点,选择一点D,•使△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,那么△CMN•是等边三角形吗?为什么?1-113.已知:如图1-12,等边三角形ABC,在AB上取点D,在AC上取点E,使AD=AE,作等边三角形PCD、QAE和RAB,则以P、Q、R为顶点的三角形是等边三角形,请说明理由.1-12例4已知:如图1-13,等腰△ABC中,AB=AC,∠A=100°,∠ABC的平分线交AC于E,试比较AE+BE与BC的大小?练习41.如图1-14,在△ABC中,AB=AC,P为底边BC上的一点,PD⊥AB于D,PE⊥AC于E,•CF⊥AB于F,那么PD+PE与CF相等吗?1-142.已知:如图1-15,△ABC和△ADE都是等边三角形.B、C、D在一条直线上,•说明CE与AC+CD相等的理由.1-153.已知:如图1-16,△ABC是等边三角形,延长AC到D,•以BD•为一边作等边三角形BDE,连结AE,则AD_______AE+AB.(填“>”或“=”或“<”)1-16例5已知:如图1-17,△ABC中,AB=AC,CE是AB边上的中线,延长AB到D,使BD=AB,那么CE是CD的几分之几?练习51.如图1-18,D、E分别是等边三角形ABC两边BC、AC上的点,且AE=CD,连结BE、•AD交于点P.过B作BQ⊥AD于Q,请说明BP是PQ的2倍.2.如图1-19,在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC,CE⊥BE,那么CE•是BD的几分之几?1-193.已知:如图1-20,在△ABC中,AB=AC,AD和BE是高,它们相交于H,且AE=BE,•那么AH是BD的________倍.1-20答案:例1分析AB=AC,MN=AN可知△ABC和△AMN均为等腰三角形,充分利用等腰三角形的性质寻找所求角间的关系.解:设∠BAM=∠CAN=α,∠AMN=β,1-1∵MN=AN , ∴∠AMN=∠MAN=β. 设∠ABC=γ, 在△ABC 中, ∠ABC+∠BCA+∠CAB=180°,由于∠BCA=∠CAB=2α+β, ∴4α+2β+γ=180°. 在△ABM 中,β=α+γ,∴4α+2β+(β-α)=180°. 即3(α+β)=180°. ∴α+β=60°,故∠MAC=60°.例2 分析 要说明似乎没有任何关系的两条线段相等,往往需要做一些工作,如添加辅助线,构造全等三角形等,从而达到解决问题的目的. 解:延长AD 到F ,使AF=EF , ∵△ABC 是等边三角形, ∴AB=AC ,∠A=60°. ∴△AEF 是等边三角形. ∴EA=EF ,∠AEF=∠A=60°. 又∵EH 垂直平分BD , ∴EB=ED ,∠EBD=∠EDB . ∴△EAD ≌△EFB . ∴AD=BF .又∵BF=AF-AB=AE-AC=CE , ∴AD=CE .例3 分析 要说明一个三角形是等边三角形,•只要能够证明这个三角形满足“三条边相等或三个角相等或一个角是60°的等腰三角形”即可.本题只需利用三角形全等证得BM=BN ,且∠MBN=60°即可. 解:在△ABE 和△DBC 中,∵∠ABE=60°+∠DBE ,∠DBC=60°+∠DBE , ∴∠ABE=∠DBC . ∵AB=BD ,BE=EC . ∴△ABE ≌△DBC . ∴AE=DC ,∠MEB=∠NCB .又∵M 、N 分别是AE 和DC 的中点, ∴ME=NC ,又△BEC 为等边三角形, ∴BE=BC .∴△MBE ≌△NBC ,BM=BN .∴∠MBN=∠MBE-∠NBE=∠NBC-∠NBE=60°.1-51-9∴△BMN 为等边三角形.例4 分析 说明一条线段的长是否等于其他两条线段长的和,•常常采用截取等长线段的方法,将那些本来没有关系的线段放在条线段上,这样可迎刃而解. 解:在BC 上截取BF=BE ,BD=BA ,连结FE 、DE ,∵AB=AC ,∠A=100°,∴∠ABC=∠C=40°,又BE 平分∠ABC , ∴∠1=∠2=12∠ABC=20°. ∵BF=BE ,∴∠BEF=∠5=80°. 在△BAE 和△BDE 中, BA=BD ,∠1=∠2,BE=BE . ∴△BAE ≌△BDE . ∴AE=DE ,∠3=∠A=100°. ∴∠4=180°-∠3=180°, ∴∠4=∠5,DE=FE ,AE=FE . 又∠6=∠5-∠C=80°-40°=40°, ∴∠6=∠C ,∴FE=FC .故AE+BE=FC+BF=BC .例5 分析 延长线段到倍长,再证明三角形全等,往往是说明线段倍分关系的重要途径和必要手段.解:延长CE 到F ,使EF=CE ,连结BF ,CE 是AB 的中线,∴AE=EB . 又∠FEB=∠AEC ,∴△EBF ≌△EAC ,∴∠EBF=∠A . BF=AC=BD .在△FBC 和△DBC 中, FB=BD ,BC=BC .∴∠FBC=∠FBE+∠EBC . =∠A+∠ACB . ∠DBC=∠A+∠ACB .∴∠FBC=∠DBC . ∴△BCF ≌△BCD .∴CF=CD=2CE ,故CE=12CD .练习11.解:设∠DEC=x , ∵AD=AE , ∴∠ADE=∠AED .∴x=∠AEC-∠ADE=(∠B+30°)-∠ADE=(∠B+30°)-(∠C+x )1-131-17∵AB=AC,∴∠B=∠C∴2x=30°,x=15°,故选C.2.解:∵AB=BB′,∴∠BAB′=∠BB′A,∠B′BD=∠BAB′+∠BB′A=2∠BAB′.又∠CBB′=∠DBB′,∴∠ACB=∠CBB′+∠CB′B=3∠CAB.设∠CAB=x,∴∠ACB=3x,∠CBD=4x,又AA′=AB,∴∠A′=∠ABA′=∠CBD=4x.∵AA′平分∠EAB.∴∠A′AB=12(180°-x).又∠A′AB=180°-(∠A′+∠ABA′)=180°-8x∴12(180°-x)=180°-8x.∴x=12°,故∠ACB=36°.3.解:如图,作△AED≌△BAC,连结EC.则∠AED=∠BAC=20°,∠DAE=∠ADE=∠B=∠ACB=80°.∴∠CAE=∠DAE-∠BAC=80°-20°=60°.又∵AB=AE=AC,∴△ACE是正三角形,AE=EC=ED.∴∠DEC=∠AEC-∠AED=40°.∴∠EDC=12(180°-∠DEC)=70°.∴∠BDC=180°-(∠ADE+∠EDC)=30°.练习21.解:∵AB=AC,∴∠B=∠C.∵DE⊥BC,∴∠DEB=∠FEC=90°.在Rt△DEB与Rt△FEC中,∵∠B=∠C,∴∠BDE=∠F.∵∠FDA=∠BDE,∴∠FDA=∠F,故AD=AF.2.解:以AD为边在△ADB内作等边△ADE,连结BE.则∠1=∠2=∠3=60°.∴AE=ED=AD.∵∠DAC=15°,∴∠EAB=90°-∠1-∠DAC=15°.∴∠DAC=∠EAB.又∵DA=AE,AB=AC,∴△EAB≌△DAC.∴∠EBA=∠DCA=15°.∴∠BEA=180°-∠EBA-∠EAB=150°.∵∠BED=360°-∠BEA-∠AED=150°.∴∠BEA=∠BED.又∵EB=EB,AE=ED.∴△BEA≌△BED,∴BD=BA.故选择C.3.解:延长AD到G,使DG=AD,连结BG,∵BD=DC,∠BDG=∠CDA,AD=DG,∴△ADC≌△BDE.∴AC=BG,∠G=∠EAF,又∵BE=AC,∴BE=BG.∴∠G=∠BED,而∠BED=∠AEF,∴∠AEF=∠AFE,故FA=FE.练习31.解:∵△ABC是等边三角形,∴AB=BC=CA∠ABC=∠ACB=∠BAC=60°.又∵BD=AF=CE,∴△ABD≌△BCE≌△CAF.∴∠1=∠2=∠3.∴∠BAC-∠1=∠ABC-∠2=∠ACB-∠3.即∠CAK=∠ABG=∠BCH.又∵AB=BC=CA,∴△ABG≌△BCH≌△CAK.∴∠AGB=∠BHC=∠CKA.即∠KGH=∠GHK=∠GKH.故△GKH是等边三角形.2.解:由于△ABC与△CDE均为等边三角形,A、C、E三点共线,得知:CA=CB,CD=CE,∠ACD=∠BCE,故△ACD≌△BCE.∴∠ADC=∠BEC,AD=BE.又DM=12AD,EN=12BE,∴△DCM≌△ECN.∴∠DCM=∠ECN,CM=CN.又∠ECN+∠NCD=∠ECD=60°,∴∠NCM=∠MCD+∠NCD=60°.∴△CMN是等边三角形.3.解:连结BP.∵△ABC与△CDP均为等边三角形,∴AC=BC,CD=CP,∠ACB=∠DCP=60°.∴∠1=∠2,∴△ADC≌△BPC.∴∠CBP=∠DAC=60°.∵∠RBP=∠RBA+∠ABC+∠CBP=60°+60°+60°=180°,∴R、B、P三点共线.又∵∠RAQ=∠RAB+∠BAC+∠CAQ=60°+60°+60°=180°,∴R、A、Q三点共线.而AQ=AE=AD=BP,∴RQ=RA+AQ=RB+BP=RP.又∠R=60°,∴△PQR是等边三角形.故以P、Q、R为顶点的三角形是等边三角形.练习41.解:∵S△ACB=S△APB+S△APC,即12AB·CF=12AB·PD+12AB·PE.∴CF=PD+PE.2.解:∵AC=AB,∠CAE=∠BAD,AE=AD,∴△AEC≌△ADB.∴CE=BD.又∵BD=BC+CD=AC+CD.∴CE=AC+CD.3.解:∵△ABC和△BDE均为等边三角形.∴∠ABE=60°-∠EBC=∠CBD,AB=BC,BE=BD.∴△ABE≌△CBD.∴AE=CD.又∵AB=AC,∴AD=AC+CD=AB+AE.练习51.解:∵∠CAB=∠C=60°,AE=CD,AB=AC,∴△ADC≌△BEA,∴∠CAD=∠EBA.又∠BPQ=∠PAB+∠PBA=∠PAB+∠CAD=60°,∴在Rt△PQB中,∠PBQ=30°,∴BP=2PQ.2.解:延长CE交BA的延长线于F,∵∠1=∠2,∠BEC=∠BEF=90°,BE=BE,∴△BEC≌△BEF.∴BC=BF,CE=EF,∴CE=12 CF.又∵∠2+∠3=90°,∠4+∠5=90°,∠3=∠4,∴∠2=∠5,且AB=AC.∴Rt△AFC≌Rt△ADB.∴CF=BD.故CE=12 BD.3.解:∵AB=AC,AD⊥BC,∴BD=DC,∠DAC+∠C=90°.又∵BE⊥AC,∴∠EBC+∠C=90°.∴∠DAC=∠EBC.在△AEH和△BEC中,∵∠DAC=∠EBC,AE=BE.∠AEH=∠BEC=90°,∴△AEH≌△BEC,∴AH=BC.又BC=2BD,故AH=2BD.。

部编版人教初中数学八年级上册《13.3 等腰三角形 同步练习题及答案》最新精品优秀测试题

部编版人教初中数学八年级上册《13.3 等腰三角形 同步练习题及答案》最新精品优秀测试题

前言:该同步练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。

以高质量的同步练习题助力考生查漏补缺,在原有基础上更进一步。

(最新精品同步练习题)13.3等腰三角形基础巩固1.(知识点2)下列能判定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C.AB=AC=2,BC=4D.AB=3,BC=7,周长为102.(题型一)如图13-3-1,O是△ABC的两条垂直平分线的交点,∠BAC=70°,则∠BOC=()图13-3-1A.120°B.125°C.130°D.140°3.(知识点1)如图13-3-2,D是Rt△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.若α=10°,则β的度数是()图13-3-2A.40°B.50°C.60°D.不能确定4.(知识点3)已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P与P关于OA对称,则P1,O,P2三点所组成的三角形是()2A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形5.(知识点3)如图13-3-3,M,N是△ABC的边BC上的两点,且BM=MN=NC=AM=AN,则∠BAN= .图13-3-3 图13-3-46.(知识点1)如图13-3-4,在△ABC中,D是BC边上一点,且BA=BD,∠DAC=12∠B,∠C=50°,则∠BAC的度数为 .7.(题型一)如图13-3-5,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC= °.图13-3-5 图13-3-68.(知识点2)如图13-3-6,在△ABC中,BC=5 cm,BP,CP分别是∠ABC 和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是 cm.9.(知识点1)如图13-3-7,在△ABC中,AB=AC,BE=EC.求证:∠ABE=∠ACE.图13-3-710.(知识点1)如图13-3-8,在△ABC中,AB=AC,AD是△ABC的中线,E 是AC的中点,连接DE,DF⊥AB于点F.求证:∠BDF=∠ADE.(注:直角三角形斜边上的中线等于斜边的一半)图13-3-8能力提升。

七年级数学尖子生培优竞赛专题辅导第十三讲 等腰三角形和直角三角形(含答案)

七年级数学尖子生培优竞赛专题辅导第十三讲 等腰三角形和直角三角形(含答案)

第十三讲 等腰三角形和直角三角形趣题引路】2001年山东聊城中考有一道题:如图13-1,AOB 是一个钢架,且∠AOB =10°,为使钢架更加坚固,需在其内部添加一些钢管EF 、FG 、GH 、……,添加的钢管长度都与OE 相等,则最多能添加这样的钢管多少根?O图13-1ABE G HM此问题实际上是问能组成多少个等腰三角形,注意到每添一根,所得的等腰三角形的顶角的外角就增大10°,而极限值为90°,故最多添8根.本节我们研究等腰三角形和直角三角形的性质及应用.知识拓展】等腰三角形和直角三角形都是特殊三角形,因此它们在具有一般三角形性质的同时还具有一般三角形不具备的性质,这些特性在几何证明中有着重要的应用价值.两者也是研究其他三角形和多边形的基础。

1.等腰三角形的性质:底角相等;顶角的平分线、底边上的高、底边上的中线三线合一;是以顶角平分线所在的直线为对称轴的轴对称图形;2.等边三角形具有等腰三角形的一切性质,且每个角为60°;3.直角三角形的性质:两个锐角互余;斜边大于直角边;两条直角边的平方和等于斜边的平方,斜边上的中线等于斜边的一半;如果有一个锐角是30°,那么它所对的直角边等于斜边的一半.方法上,构造等腰三角形或直角三角形是常见的解题策略之一;利用勾股定理,列方程求线段长更体现了方程的思想。

一、等腰三角形的性质例1】 有多少个边长为整数且周长为2004的等腰三角形?解析】 利用周长可得腰底间等量关系,利用三角形三边之间的关系,可找到腰底间不等关系,从而确定腰(或底)的范围。

解:设腰长为x ,底长为y ,则有220042x y x y +=⎧⎨>⎩由此得2x <2004<4x , ∴501<x <1002, ∵x 为整数.∴x =502,503…1001,满足条件的等腰三角形有1001-501=500个.点评】 相等关系、不等关系可以互相转化,注意挖据题中隐藏条件:两腰之和大于底边.例2】(扬州市竞赛题)如图13-2,在△ABC 中,已知AB =AC ,且过△ABC 某一顶点的直线可将△ABC 分成两个等腰三角形,试求△ABC 各内角的度数.图13-2GCBAFCBAE CB AAD解析】 因为等腰三角形有腰底之分,所以许多问题的答案都有多种情形.这里符合题意的图形有如图13-2所示4种情况。

等腰三角形典型例题练习含答案

等腰三角形典型例题练习含答案

添加标题
添加标题
性质:两腰相等,底边与两腰之间 的比例为固定值
应用:在几何问题和实际问题中, 利用等腰三角形的边长比例解决问 题
等腰三角形的边长计算
等腰三角形的两 腰相等,底边与 两腰之间的夹角 相等。
等腰三角形的边 长关系可以根据 勾股定理进行计 算。
等腰三角形的高、 中线和角平分线 等性质可用于计 算边长。
等腰三角形的角度关系
第四章
等腰三角形的角度性质
等腰三角形的顶角与底角互 补,即它们的角度之和为 180度。
等腰三角形的两个底角相等, 即两个角大小相等。
等腰三角形的一个角为顶角, 其余两个角为底角,且三个 角度之和为180度。
等腰三角形的一个角为底角, 其余两个角为顶角,且三个 角度之和为180度。
等腰三角形的角度计算
等腰三角形两底角相等,角度和为180度 顶角与底角的角度关系:顶角 = 180度 - 2 × 底角度数 等腰三角形的高、中线和角平分线重合 等腰三角形中的角度计算可以通过三角函数或勾股定理进行求解
等腰三角形的角度证明
等腰三角形两底角相等,证明方法 为取等腰三角形ABC,作底边BC的 中点D,连接AD,则 ∠BAD=∠CAD。
自然界:蜂巢、蜘蛛网等自然现象 中经常出现等腰三角形的形状。
添加标题
添加标题
添加标题
添加标题
建筑学:等腰三角形在建筑设计中 有广泛的应用,如金字塔、塔楼等。
艺术创作:等腰三角形在绘画、雕 塑和图案设计中常被用作基本构图 元素。
等腰三角形在实际问题中的应用
桥梁设计:利用等腰三角形的性质,实现桥梁的稳定和平衡 建筑结构:等腰三角形在建筑设计中用于增强结构的稳定性 机械零件:等腰三角形的特殊性质使其在某些机械零件中具有特殊用途 自然界中的等腰三角形:例如蜂巢、蜘蛛网等自然现象中存在等腰三角形的实际应用

初二数学等腰三角形的判定试题答案及解析

初二数学等腰三角形的判定试题答案及解析

初二数学等腰三角形的判定试题答案及解析1.如图,在△ABC中,OB、OC分别是∠B和∠C的角平分线,过点O作EF∥BC,交AB、AC于点E、F,如果AB=10,AC=8,那么△AEF的周长为.【答案】18【解析】利用已知给出的平行线及角平分线的性质可得到许多对角是相等的,根据等校对等边的性质可得线段相等,进行等量代换周长可得.解:∵EF∥BC,∴∠2=∠3.又BO是∠ABC的平分线,∴∠1=∠3.∴∠2=∠1.于是EO=EB.同理,FO=FC.△AEF的周长为:(AE+EO)+(AF+FO)=(AE+EB)+(AF+FC)=10+8=18.故答案为18.点评:本题考查了平行线的性质和角平分线的定义及等腰三角形的判定;根据等角对等边,可以将周长转化为三角形两边长,有效的对线段进行转移是正确解答本题的关键.2.如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,有下列结论:①∠ACD=∠B;②CH=CE=EF;③AC=AF;④CH=HD;⑤BE=CH.其中你认为正确的有.(填序号就可以)【答案】①②③【解析】①由CD是斜边AB上的高,∠ACB=90°,得到∠ACD+∠BCD=90°,∠BCD+∠B=90°,即可得到答案;②由角平分线的性质得到CE=EF,根据三角形的外角性质能求出∠CHE=∠CEA,推出CH=CE即可得到答案;③根据直角三角形全等的判定定理HL即可;④⑤根据边得关系即可判断.解:①∵CD是斜边AB上的高,∠ACB=90°,∴∠CDB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴①正确;②∵AE平分∠CAB,∴∠CAE=∠BAE,∵∠C=90°,EF⊥AB,∴CE=FE,∵∠CHE=∠CAE+ACD,∠CEA=∠BAE+∠B,∠ACD=∠B,∴∠CHE=∠CEA,∴CH=CE,即:CH=CE=EF,∴②正确;③∵在Rt△ACE和Rt△AFE中AE=AE,CE=EF,∴Rt△ACE≌Rt△AFE,∴AC=AF,∴③正确;④∵CH=EF,∴CH≠HD,∴④错误;⑤∵在Rt△BFE中,BE>EF,而EF=CH,∴⑤错误;故答案为:①②③.点评:本题主要考查了角平分线的性质,等腰三角形的性质和判定,全等三角形的性质和判定,三角形的外角性质等知识点,解此题的关键是综合运用性质进行证明.此题题型较好,综合性强.3.如果一个三角形三边长为a、b、c,且满足(a+b+c)(a﹣c)=0,则该三角形的形状是.【答案】等腰三角形【解析】根据(a+b+c)(a﹣c)=0得到a=c,从而可以判定该图形的形状.解:∵(a+b+c)(a﹣c)=0,∴a+b+c=0或a﹣c=0,∵a、b、c,为三角形三边,∴a+b+c=0(舍去),∴a=c∴该三角形为等腰三角形,故答案为:等腰三角形.点评:本题考查了等腰三角形的判定,两条边相等的三角形是等腰三角形.4.如图,是两个完全相同且有一个角为60°的直角三角形所拼而成,则图中等腰三角形有个.【答案】3【解析】等腰三角形的判定定理问题,图中两个60°的直角三角形,可得∠B=∠C=30°∠D=∠AMD=60°,∠F=∠ANF=60°,由此可确定等腰三角形.解:如图所示,∵∠B=∠C=30°,∴AB=AC,∴△ABC是等腰三角形,∵∠D=∠AMD=60°,∠F=∠ANF=60°,∴AD=AM,AF=AN,∴△ADM、△ANF是等腰三角形,△ADM,△AFN,△ABC均为等腰三角形,共有三个.故填3.点评:本题考查了等腰三角形的判定及三角形内角和定理;求得各角的度数是正确解答本题的关键.5.在△ABC中,∠A=40°,当∠B= 时,△ABC是等腰三角形.【答案】40°或70°或100°【解析】分为两种情况:(1)当∠A是底角,①AB=BC,根据等腰三角形的性质求出∠A=∠C=40°,根据三角形的内角和定理即可求出∠B;②AC=BC,根据等腰三角形的性质得到∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,根据等腰三角形的性质和三角形的内角和定理即可求出∠B.解:(1)当∠A是底角,①AB=BC,∴∠A=∠C=40°,∴∠B=180°﹣∠A﹣∠C=100°;②AC=BC,∴∠A=∠B=40°;(2)当∠A是顶角时,AB=AC,∴∠B=∠C=(180°﹣∠A)=70°.故答案为:40°或70°或100°.点评:本题主要考查对等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能进行分类讨论,并求出各种情况时∠B的度数是解此题的关键.6.在△ABC中,AB=AC,∠A=36°,BD是∠ABC的平分线,则图中共有个等腰三角形.【答案】3【解析】AB=AC,∠A=36°,BD是∠ABC的平分线,求出∠ABC,∠C,∠BDC,∠ABD,∠DBC的度数,即可得到∠A=∠ABD,∠BDC=∠C,根据等角对等边即可得出答案.解:∵AB=AC,∠A=36°,∴∠ABC=∠C=(180°﹣36°)=72°,∵BD是∠ABC的平分线,∴∠ABD=∠CBD=∠ABC=36°,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,AD=BD,∵AB=AC,∴等腰三角形有:△ABC,△ADB,△BDC3个.故答案为:3.点评:本题主要考查了三角形的内角和定理,等腰三角形的性质和判定,三角形的外角性质等知识点,解此题的关键是求出各个角的度数.7.如图所示,在长方形ABCD的对称轴l上找点P,使得△PAB、△PBC、△PDC、△PAD均为等腰三角形,则满足条件的点P有个.【答案】5【解析】利用分类讨论的思想,此题共可找到5个符合条件的点:一是作AB或DC的垂直平分线交l于P;二是在长方形内部在l上作点P,使PA=AB,PD=DC,同理,在l上作点P,使PC=DC,AB=PB;三是如图,在长方形外l上作点P,使AB=BP,DC=PC,同理,在长方形外l上作点P,使AP=AB,PD=DC.解:如图,作AB或DC的垂直平分线交l于P,如图,在l上作点P,使PA=AB,同理,在l上作点P,使PC=DC,如图,在长方形外l上作点P,使AB=BP,同理,在长方形外l上作点P,使PD=DC,故答案为5.点评:此题主要考查学生对等腰三角形判定的理解和掌握,此题难度较大,需要利用分类讨论的思想分析解答.8.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=8,BC=5,则BD的长为.【答案】A【解析】延长BD与AC交于点E,由题意可推出BE=AE,依据等角的余角相等,即可得等腰三角形BCE,可推出BC=CE,AE=BE=2BD,根据AC=8,BC=5,即可推出BD的长度.解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=8,BC=5,∴CE=5,∴AE=AC﹣EC=8﹣5=3,∴BE=3,∴BD=1.5.故选A.点评:本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.9.如图,已知△ABC中,AC+BC=24,AO、BO分别是角平分线,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为.【答案】24【解析】根据AO、BO分别是角平分线和MN∥BA,求证△AON和△BOM为等腰三角形,再根据AC+BC=24,利用等量代换即可求出△CMN的周长解:AO、BO分别是角平分线,∴∠OAN=∠BAO,∠ABO=∠OBM,∵MN∥BA,∴∠AON=∠BAO,∠MOB=∠ABO,∴AN=ON,BM=OM,即△AON和△BOM为等腰三角形,∵MN=MO+ON,AC+BC=24,∴△CMN的周长=MN+MC+NC=AC+BC=24.故答案为:24.点评:此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证△AON和△BOM为等腰三角形,难度不大,是一道基础题.10.如图:在△ACB中,点D是AB边上一点,且∠ACB=∠CDA,∠CAB的平分线分别交CD、BC于点E、F.(1)作出∠CAB的平分线AE;(2)试说明△CEF是什么三角形?并证明你的结论.【答案】见解析【解析】(1)根据角平分线定义画出图形即可;(2)根据角平分线定义推出∠CAE=∠DAE,根据三角形内角和定理得出∠ACB=∠CDA,求出∠CFA=∠AED,推出∠CFE=∠CEF,根据等角对等边推出CE=CF即可.解:(1)如图所示:;(2)△CEF是等腰三角形.证明:∵AE是∠CAB的平分线,∴∠CAE=∠DAE,∵∠CAE+∠ACB+∠CFE=180°∠DAE+∠CDA+∠AED=180°,∵∠ACB=∠CDA,∴∠CFA=∠AED,∵∠AED=∠CEF,∴∠CFE=∠CEF,∴CE=CF,即△CEF是等腰三角形.点评:本题考查了等腰三角形的判定,三角形的内角和定理,角平分线定义等知识点,注意:等角对等边.11.如图,在△ABC中,∠B=∠C=30°,D是BC的中点,连接AD,求∠BAD与∠ADC的度数.【答案】60°【解析】因为∠B=∠C=30°,所以△ABC是等腰三角形,又因为D是BC的中点,所以AD⊥BC (三线合一)即∠ADC=90°,所以△ADB,△ADC是直角三角形,利用三角形内角和是180°求∠BAD=60°.解:∵△ABC中,∠B=∠C=30°,∴AB=AC,∵D是BC的中点,∴AD⊥BC,∴∠ADC=90°∠ADB=90°,∴∠BAD=∠ADB﹣∠B,=90°﹣30°,=60°.点评:本题考查等腰三角形的判断方法:等角对等边和等腰三角形的一个重要性质:“三线合一”是一小型的综合题.12.如图,四边形ABCD中,∠ABC=∠ADC=90°,E是对角线AC的中点,连接BE、DE(1)若AC=10,BD=8,求△BDE的周长;(2)判断△BDE的形状,并说明理由.【答案】(1)△BDE的周长为18(2)见解析【解析】(1)根据直角三角形斜边上的中线的性质求出ED、BE的值,再代入BD+DE+BE求出即可;(2)根据直角三角形斜边的中线性质求出DE=BE=AC,根据等腰三角形的判定即可得出答案.解:(1)∵∠ABC=∠ADC=90°,E是对角线AC的中点,AC=10,∴DE=AC=5,BE=AC=5,∴△BDE的周长为BD+DE+BE=8+5+5=18,答:∴△BDE的周长为18.(2)△BDE是等腰三角形,理由是:∵∠ABC=∠ADC=90°,E是对角线AC的中点,∴DE=AC,BE=AC,∴DE=BE,∴△BDE是等腰三角形.点评:本题考查了直角三角形斜边的中线和等腰三角形的判定的应用,直角三角形斜边的中线等于斜边的一半,有两边相等的三角形是等腰三角形.13.已知等腰三角形ABC,∠A是顶角,且∠A等于∠C的一半,BD是△ABC的角平分线,则该图中共有等腰三角形的个数是()A.4个B.3个C.2个D.1个【解析】由已知条件,利用三角形的内角和定理及角平分线的性质得到各角的度数,根据等腰三角形的定义及等角对等边得出答案.解:∵AB=AC,∴△ABC是等腰三角形,∵∠A是顶角,且∠A等于∠C的一半,∴∠A+∠C+∠ABC=∠A+2∠A+2∠A=180°,∴∠A=36°,∠C=∠ABC=72°,BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故选B.点评:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.14.在△ABC中,已知∠A=∠B,且该三角形的一个内角等于100°.现有下面四个结论:①∠A=100°;②∠C=100°;③AC=BC;④AB=BC.其中正确结论的个数为()A.1个B.2个C.3个D.4个【答案】B【解析】假如∠A=100°,求出∠B=100°,不符合三角形的内角和定理,即可判断①;假如∠C=100°,能够求出∠A、∠B的度数;关键等腰三角形的判定推出AC=BC,即可判断③④.解:∠A=∠B=100°时,∠A+∠B+∠C>180°,不符合三角形的内角和定理,∴①错误;∠C=100°时,∠A=∠b=(180°﹣∠c)=40°,∴②正确;∵∠A=∠B,∴AC=BC,③正确;④错误;正确的有②③,2个,故选B.点评:本题考查了等腰三角形的判定和三角形的内角和定理等知识点的应用,能根据定理进行说理是解此题的关键,分类讨论思想的运用.15.如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有()A.3个B.4个C.7个D.8个【解析】根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选D.点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.16.在等边△ABC所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形.这样的点一共有()A.1个B.4个C.7个D.10个【答案】D【解析】本题利用了等边三角形是轴对称图形,三条高所在的直线也是对称轴,也是边的中垂线.解:在等边△ABC中,三条边上的高交于点O,由于等边三角形是轴对称图形,三条高所在的直线也是对称轴,也是边的中垂线,点O到三个顶点的距离相等,△ADB,△BOC,△AOC是等腰三角形,则点O是满足题中要求的点,高与顶角的两条边成的锐角为30°,以点A为圆心,AB为半径,做圆,延长AO交圆于点E,由于点E在对称轴AE上,有EC=EB,AE=AC=AB,△ECB,△AEC,△ABE都是等腰三角形,点E也是满足题中要求的点,作AD⊥AE交圆于点D,则有AC=AD,AD=AB,即△DAB,△ADC是等腰三角形,点D也是满足题中要求的点,同理,作AF⊥AE交圆于点F,则点F也是满足题中要求的点;同理,以点B为圆心,AB为半径,做圆,以点C为圆心,AB为半径,做圆,都可以分别得到同样性质的三个点满足题中要求,于是共有10个点能使点与三角形中的任意两个顶点所组成的三角形都是等腰三角形.故选D.点评:本题容易找出三条边上的高交于点O,是满足题中要求的点,其它点容易漏掉,这样的点不一定是等腰三角形的顶角所在的点,也可以是底角所在的点,明白这点后,就要做圆来找到所要求的点.17.若△ABC的三边长分别为a,b,c,且满足(a﹣b)•(a2+b2﹣c2)=0,则△ABC是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】D【解析】了解等腰三角形和直角三角形判定标准,是解题的关键.解:∵(a﹣b)•(a2+b2﹣c2)=0,∴(a﹣b)=0或(a2+b2﹣c2)=0,即a=b或a2+b2=c2,∴△ABC是等腰三角形或直角三角形.故选D.点评:本题利用了等腰三角形的判定和勾股定理的逆定理求解.18.如图,∠C=90°,AB的垂直平分线交BC于D,连接AD,若∠CAD=20°,则∠B=()A.20°B.30°C.35°D.40°【答案】C【解析】由已知条件,根据线段垂直平分线的性质得到线段及角相等,再利用直角三角形两锐角互余得到∠B=(180°﹣∠ADB)÷2答案可得.解:∵DE垂直平分AB,∴AD=DB∴∠B=∠DAB∵∠C=90°,∠CAD=20°∴∠B=(180°﹣∠C﹣∠CAD)÷2=35°故选C点评:本题考查了线段垂直平分线的性质、等腰三角形的判定与性质及三角形内角和定理;解决本题的关键是利用线段的垂直平分线性质得到相应的角相等,然后根据三角形的内角和求解.19.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为()A.5B.6C.7D.8【答案】A【解析】根据OB和OC分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DO,OE=EC.然后即可得出答案.解:∵在△ABC中,OB和OC分别平分∠ABC和∠ACB,∴∠DBO=∠OBC,∠ECO=∠OCB,∵DE∥BC,∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,∴DB=DO,OE=EC,∵DE=DO+OE,∴DE=BD+CE=5.故选A.点评:此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.20.已知a,b,c为△ABC的三边且(a﹣b)(b﹣c)=0,则△ABC为()A.等腰三角形B.等边三角形C.直角三角形D.无法确定【答案】A【解析】根据(a﹣b)(b﹣c)=0,得到a=b或b=c,从而判定三角形ABC的形状.解:∵(a﹣b)(b﹣c)=0,∴(a﹣b)=0或(b﹣c)=0,∴a=b或b=c∴△ABC为等腰三角形.故选A.点评:本题考查了等腰三角形的判定,解题的关键是根据题目提供的式子判定a=b或b=c.。

等腰三角形培优题目有答案

等腰三角形培优题目有答案

等腰三⾓形培优题⽬有答案2014.3.29 等腰三⾓形1.等腰三⾓形⼀腰上的⾼与另⼀腰的夹⾓为30°则顶⾓的度数为什么?2.等腰三⾓形顶⾓为α,⼀条腰上的⾼与底边所夹的⾓是β,则β与α的关系式为β=___________。

图1解答:如图1,AB=AC ,BD ⊥AC 于D ,作底边BC 上的⾼AE ,E 为垂⾜,则可知∠EAC=∠EAB =12α,⼜∠EAC C C =-=-9090°∠,∠°∠β,所以∠,EAC ==ββα12。

3.如图1,在△ABC 中,∠A=36°,AB=AC ,∠ABC 的平分线BE 交AC 于E .(1)求证:AE=BC ;(2)如图(2),过点E 作EF ∥BC 交AB 于F ,将△AEF 绕点A 逆时针旋转⾓α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(1)证明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°,⼜∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠BEC=180°﹣∠C﹣∠CBE=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BC.(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,∵在△CAE′和△BAF′中,∴△CAE′≌△BAF′,∴CE′=BF′.4.如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三⾓形.证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三⾓形.5.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂⾜为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直⾓三⾓形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).6.如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OC=6,OA=8,直线MN的解析式为y=﹣x+6 在直线MN上存在点P,使以点P,B,C三点为顶点的三⾓形是等腰三⾓形,请直接写出P点的坐标.解答:(1)∵A(8,0),C(0,6),∴根据题意知B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6)当以点P,B,C三点为顶点的三⾓形是等腰三⾓形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=64,解得,a=,则P2(﹣,),P3(,);③当PB=BC时,(a﹣8)2+(﹣a+6﹣6)2=64,解得,a=,则﹣a+6=﹣,∴P4(,﹣).综上所述,符合条件的点P有:P1(4,3),P2(﹣,)P3(,),P4(,﹣).8.已知:如图,△ABC中,AB=AC,CE⊥AE于E,CE BC12,E在△ABC外,求证:∠ACE=∠B。

培优专题等腰三角形含答案

培优专题等腰三角形含答案

BC ,垂足为M 。

求证: M 是BE 的中点。

1•如△ ABC 中,AB = AC ,/ A = 36 BD 、CE 分别为/ ABC 与/ ACB 的角平分线,且相【分类解读】例1.如图,已知在等边三角形 ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且 CE = CD , DM 丄例2.如图,已知: 厶ABC 中,AB =AC , D 是BC 上一点,且 AD = DB , DC =CA ,求.BAC 的度数。

例 3.已知:如图, ABC 中,AB = AC , CD _ AB 于 D 。

求证:.BAC = 2 DCB 。

4、中考题型:交于点F ,则图中的等腰三角形有( )A. 6个B. 7个C. 8个D. 9个9、等腰三角形EDA2I【实战模拟】1.选择题:等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为A. 2cmB. 8cmC. 2cm 或8cm 3cm,则腰长为()D.以上都不对3.求证:等腰三角形两腰中线的交点在底边的垂直平分线上4. ABC 中,AB =AC,- A =120 ,AB 的中垂线交AB 于D,交CA1 DE BC。

2 延长线于E,求证:2.)已知:如图,在△ ABC中,AB = AC, D是BC的中点,DE丄AB , DF丄AC , E、F分别是垂足。

求证:AE = AF。

5、题形展示:例1.如图,. ABC 中,AB=AC, . A =100,BD 平分.ABC。

求证:AD ■ BD = BC。

CB分析:欲证本题结论,实际上就是证明的判定角等,那么问题就转化为证含有【试卷答案】1. B2. 分析:结合三角形内角和定理,计算图形中角的度数是等边三角形性质的重要应用。

解:因为:ABC 是等边三角形所以 AB 二 BC ,ABC 二 60因为BD 二BC ,所以AB 二BD所以.3=/2在 ABD 中,因为.CBD =90,. ABC =60所以.ABD =150,所以.2 =15所以.1 二/2 • • ABC 二 753•分析:首先将文字语言翻译成数学的符号语言和图形语言。

中考数学复习《等腰、等边及直角三角形》经典题型(含答案)

中考数学复习《等腰、等边及直角三角形》经典题型(含答案)

中考数学复习《等腰、等边及直角三角形》经典题型(含答案)知识点一:等腰和等边三角形1.等腰三角形定义:有两条边相等的三角形叫等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;注意:1.实际解题中的一个常用技巧是,构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用的构造方法有:1)、“角平分线+平行线”构造等腰三角形。

2)、“角平分线+垂线”构造等腰三角形。

3)、用“垂直平分线”构造等腰三角形;4)、用“三角形中角的2倍关系”构造等腰三角形。

2.当等腰三角形的腰和底不明确时,需分类讨论.变式练习1:如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.3.三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.变式练习2:如右图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.变式练习3:一个等腰三角形的两边长分别为3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17【解析】A ①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17,故这个等腰三角形的周长是17.变式练习4:如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为 __7__.变式练习5:一个等腰三角形的两边长分别为4,8,则它的周长为( C )A.12 B.16 C.20 D.16或202.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.变式练习1:△ABC中,∠B=60°,AB=A C,BC=3,则△ABC的周长为9.变式练习2:在等边△ABC中,点D,E分别在边BC,AC上,若CD=2,过点D 作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在Rt△DEF,∵∠DEF=90°,DE=2,∴DF=2DE=4,∴EF=DF2-DE2=42-22=2 3.变式练习3:如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=__2__.知识点二:角平分线和垂直平分线1.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.21P C OBAPCO B A注意:(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.变式练习:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.知识点三:直角三角形的判定与性质1.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .2.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.3.直角三角形相似判定定理1).斜边与一条直角边对应成比例的两直角三角形相似。

初中数学培优专题学习专题13 三角形的基本知识

初中数学培优专题学习专题13 三角形的基本知识

专题13 三角形的基本知识阅读与思考三角形是最基本的几何图形,是研究复杂几何图形的基础,许多几何问题都可转化为三角形的问题来解.三角形基本知识主要包括三角形基本概念、三角形三边关系定理及推论、三角形内角和定理及推论等,它们在线段和角度的计算、图形的计数等方面有广泛的应用.解与三角形的基本知识相关的问题时,常用到数形结合及分类讨论法,即用代数方法解几何计算题及简单的证明题,对三角形按边或按角进行恰当分类.应熟悉以下基本图形:图4图3图2图1CDBAD CBADCBA DCOBA例题与求解【例1】 在△ABC 中,∠A =50°,高BE ,CF 交于O ,则∠BOC =________.(“东方航空杯”——上海市竞赛试题)解题思路:因三角形的高不一定在三角形内部,故应注意符合题设条件的图形多样性.【例2】 等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这个等腰三角形底边的长为( )A .17cmB .5cmC .5cm 或17cmD .无法确定(北京市竞赛试题)解题思路:中线所分两部分不等的原因在于等腰三角形的腰与底的不等,应分情况讨论.【例3】 如图,BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,BE 与CF 交于G ,若∠BDC =140°,∠BGC =110°,求∠A 的大小.(“希望杯”邀请赛试题)解题思路:运用凹四边形的性质计算.GC DBEF A【例4】 在△ABC 中,三个内角的度数均为正数,且∠A <∠B <∠C ,4∠C =7∠A ,求∠B 的度数.(北京市竞赛试题)解题思路:把∠A ,∠C 用∠B 的代数式表示,建立关于∠B 的不等式组,这是解本题的突破口.【例5】 (1)周长为30,各边长互不相等且都是整数的三角形共有多少个?(2)现有长为150cm 的铁丝,要截成)2(>n n 小段,每段的长不小于1cm 的整数,如果其中任意3小段都不能拼成三角形,试求n 的最大值.此时有几种方法将该铁丝截成满足条件的n 段.(江苏省竞赛试题)解题思路:对于(1),不妨设三角形三边为a ,b ,c ,且c b a <<,由条件及三角形三边关系定理可确定c 的取值范围,从而可以确定整数c 的值. 对于(2),因n 段之和为定值150cm ,故欲使n 尽可能的大,必须使每段的长度尽可能的小.这样依题意可构造一个数列.【例6】 在三角形纸片内有2 008个点,连同三角形纸片的3个顶点,共有2 011个点,在这些点中,没有三点在一条直线上.问:以这2 011个点为顶点能把三角形纸片分割成多少个没有重叠部分的小三角形?(天津市竞赛试题)解题思路:本题的解题关键是找到规律:三角形内角每增加1个内点,就增加了2个三角形和3条边.能力训练A 级1.设a ,b ,c 是△ABC 的三边,化简c b a c b a --+++=____________.2.三角形的三边分别为3,a 21-,8,则a 的取值范围是__________.3.已知一个三角形三个外角度数比为2:3:4,这个三角形是_______(按角分类)三角形.4.如图,∠A +∠B +∠C +∠D +∠E 的度数为____________. (“缙云杯“试题)EDCBAHDCMG BAEC BA(第4题) (第5题) (第6题)5.如图,已知AB ∥CD ,GM ,HM 分别是∠AGH ,∠CHG 的角平分线,那么∠GMH =_________.T ED GHCBA F21AC EDB(第7题) (第9题) 6.如图,△ABC 中,两外角平分线交于点E ,则∠BEC 等于( )A .)90(21A ∠-︒ B .A ∠+︒2190 C .)180(21A ∠-︒ D .A ∠-︒21180 7.如图,在△ABC 中,BD ,BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H .下列结论:①∠DBE =∠F ;②2∠BEF =∠BAF +∠C ;③∠F =21(∠BAC -∠C );④∠BGH =∠ABE +∠C . 其中正确的是( )A .①②③B .①③④C .①②③D .①②③④8.已知三角形的每条边长的数值都是2 001的质因数,那么这样的不同的三角形共有( ) A .6个 B .7个 C .8个 D .9个 9.如图,将纸片△ABC 沿着DE 折叠压平,则( ) A .∠A =∠1+∠2 B .∠A =21(∠1+∠2)C .∠A =31(∠1+∠2) D .∠A =41(∠1+∠2)(北京市竞赛试题)10.一个三角形的周长是偶数,其中的两条边分别是4和1 997,则满足上述条件的三角形的个数是( ) A .1个 B .3个 C .5个 D .7个(北京市竞赛试题)11.如图,已知∠3=∠1+∠2,求证:∠A +∠B +∠C +∠D =180°.(河南省竞赛试题)321EG FDCBA12.平面内,四条线段AB ,BC ,CD ,DA 首尾顺次连接,∠ABC =24°,∠ADC =42°. (1)∠BAD 和∠BCD 的角平分线交于点M (如图1),求∠AMC 的大小.(2)点E 在BA 的延长线上,∠DAE 的平分线和∠BCD 平分线交于点N (如图2),求∠ANC .CDBAEND CBA图1 图213.三角形不等式是指一个三角形的两边长度之和大于第三边的长度.在下图中,E 位于线段CA 上,D 位于线段BE 上.(1)证明:AB +AE >DB +DE ; (2)证明:AB +AC >DB +DC ;(3)AB +BC +CA 与2(DA +DB +DC )哪一个更大?证明你的结论; (4)AB +BC +CA 与DA +DB +DC 哪一个更大?证明你的结论.(加拿大埃蒙德顿市竞赛试题)E DCBAB 级1.已知三角形的三条边长均为整数,其中有一条边长是4,但不是最短边,这样的三角形的 个数有_______个.(“祖冲之杯”邀请赛试题)2.以三角形的3个顶点和它内部的9个点共12个点为顶点能把原三角形分割成______个没有公共部分的小三角形.3.△ABC 中,∠A 是最小角,∠B 是最大角,且有2∠B =5∠A ,若∠B 的最大值是m ,最小值是n ,则=+n m ___________.(上海市竞赛试题)4.如图,若∠CGE =α,则∠A +∠B +∠C +∠D +∠E +∠F =_______.(山东省竞赛试题)αGFEDCBADA 2A 1CBA(第4题) (第5题)5.如图,在△ABC 中,∠A =96°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于1A 点,BC A 1∠与CD A 1∠的平分线相交于2A 点,依此类推,BC A 4∠与CD A 4∠的平分线相交于5A 点,则5A ∠的大小是( )A .3°B .5°C .8°D .19.2°6.四边形ABCD 两组对边AD ,BC 与AB ,DC 延长线分别交于点E ,F ,∠AEB ,∠AFD 的平分线交于点P .∠A =64°,∠BCD =136°,则下列结论中正确的是( )①∠EPF =100°; ②∠ADC +∠ABC =160°; ③∠PEB +∠PFC +∠EPF =136°; ④∠PEB +∠PFC =136°.A .①②③B .②③④C .①③④D .①②③④FEDPCBA7.三角形的三角内角分别为α,β,γ,且γβα≥≥,βα2=,则β的取值范围是( ) A .4536≤≤β B .6045≤≤β C .9060≤≤β D .3245≤≤β(重庆市竞赛试题)8.已知周长小于15的三角形三边的长都是质数,且其中一边的长为3,这样的三角形有( ) A .4个 B .5个 C .6个 D .7个(山东省竞赛试题)9.不等边△ABC 的两条高的长度分别为4和12,若第三条高的长也是整数,试求它的长.(第三十二届美国邀请赛试题)10.设m ,n ,p 均为自然数,满足p n m ≤≤且15=++p n m ,试问以m ,n ,p 为三边长的三角形有多少个?11.锐角三角形用度数来表示时,所有角的度数为正整数,最小角的度数是最大角的度数的41,求满足此条件的所有锐角三角形的度数.(汉城国际数学邀请赛试题)12.如图1,A 为x 轴负半轴上一点,B 为x 轴正半轴上一点,C (0,-2),D (-2,-2). (1)求△BCD 的面积;(2)如图2,若∠BCO =∠BAC ,作AQ 平分∠BAC 交y 轴于P ,交BC 于Q .求证:∠CPQ =∠CQP ;(3)如图3,若∠ADC =∠DAC ,点B 在x 轴正半轴上运动,∠ACB 的平分线交直线AD 于E ,DF ∥AC交y 轴于F ,FM 平分∠DFC 交DE 于M ,EDMFBCF ∠∠-∠2的值是否发生变化?证明你的结论.x图313.如图1,),0(m A ,)0,(n B .且m ,n 满足0)42(32≤-+-n m.图1 图2(1)求A ,B 的坐标;(2)C 为y 轴正半轴上一动点,D 为△BCO 中∠BCO 的外角平分线与∠COB 的平分线的交点,问是否存在点C ,使∠D =41∠COB .若存在,求C 点坐标; (3)如图2,C 为y 轴正半轴上A 的上方一动点,P 为线段AB 上一动点,连CP 延长交x 轴于E ,∠CAB 和∠CEB 平分线交于F ,点C 在运动过程中FECOABO ∠∠+∠的值是否发生变化?若不变求其值;若变化,求其范围.。

初中数学--培优专题13-等腰三角形(含答案)(2)

初中数学--培优专题13-等腰三角形(含答案)(2)

9、等腰三角形【知识精读】(―)等腰三角形的性质1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。

等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。

(二)等腰三角形的判定1. 有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

2. 定理及其推论的作用。

等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。

3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题, 在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合, 添加辅助线时, 有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况 来定。

【分类解析】例1.如图,已知在等边三角形 ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD , DM 丄BC ,垂足为M 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9、等腰三角形【知识精读】(―)等腰三角形的性质1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。

等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。

(二)等腰三角形的判定1. 有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

2. 定理及其推论的作用。

等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。

3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题, 在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合, 添加辅助线时, 有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况 来定。

【分类解析】例1.如图,已知在等边三角形 ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD , DM 丄BC ,垂足为M 。

求证:M 是BE 的中点。

分析:欲证M 是BE 的中点,已知 DM 丄BC ,所以想到连结 BD ,证BD = ED 。

因为△1 1 ABC 是等边三角形,/ DBE = / ABC ,而由CE = CD ,又可证/ E = / ACB ,所以/ 1 22=/ E ,从而问题得证。

证明:因为三角形ABC 是等边三角形,D 是AC 的中点1所以/ 1= — / ABC2又因为CE = CD ,所以/ CDE = Z E 所以/ ACB = 2/ E 即/ 1=Z E所以BD = BE ,又DM 丄BC ,垂足为 M 所以M 是BE 的中点(等腰三角形三线合一定理)例 2.如图,已知: ABC 中,AB 二 AC , D 是 BC 上一点,且 AD 二 DB , DC 二 CA , 求.BAC 的度数。

DE分析:题中所要求的.BAC在. ABC中,但仅靠AB =AC是无法求出来的。

因此需要考虑AD =DB和DC =CA在题目中的作用。

此时图形中三个等腰三角形,构成了内外角的关系。

因此可利用等腰三角形的性质和三角形的内外角关系定理来求。

解:因为AB =AC,所以.B因为AD = DB,所以一B = . DAB = . C ;因为CA二CD,所以.CAD - CDA (等边对等角)而ZADC Z B /DAB所以ADC =2 B, DAC =2. B所以BAC =3 B又因为.B • C BAC =180即.B • . C • 3. B =180 所以.B =36即求得.BAC =108说明1.等腰三角形的性质是沟通本题中角之间关系的重要桥梁。

把边的关系转化成角的关系是此等腰三角形性质的本质所在。

本条性质在解题中发挥着重要的作用,这一点在后边的解题中将进一步体现。

2. 注意“等边对等角”是对同一个三角形而言的。

3. 此题是利用方程思想解几何计算题,而边证边算又是解决这类题目的常用方法。

例3•已知:如图,ABC 中,AB=AC,CD_AB 于D。

求证:BAC =2 DCB。

于是想到构造它的一半,再证与• DCB的关系。

证明:过点A作AE _ BC于E,幕AB二AC1所以• 1=2 BAC (等腰三角形的三线合一性质)2因为• 1 B =90分析:欲证角之间的倍半关系,结合题意,观察图形, BAC是等腰三角形的顶角,又CD _ AB,所以.CDB =90所以.3 • . B = 90 (直角三角形两锐角互余)所以.1-/3 (同角的余角相等)即BAC =2. DCB说明:1•作等腰三角形底边高线的目的是利用等腰三角形的三线合一性质,构造角的倍半关系。

因此添加底边的高是一条常用的辅助线;2. 对线段之间的倍半关系,常采用“截长补短”或“倍长中线”等辅助线的添加方法,对角间的倍半关系也同理,或构造“半”,或构造“倍”。

因此,本题还可以有其它的证法,如构造出.DCB的等角等。

4、中考题型:角平分线,且相交于点F,则图中的等腰三角形有分析:由已知条件根据等腰三角形的性质和三角形内角和的度数可求得等腰三角形有8个,故选择C。

2.)已知:如图,在△ ABC中,AB = AC , D是BC的中点,DE丄AB , DF丄AC , E、F 分别是垂足。

求证:AE = AF 。

证因为AB =AC,所以.B = . C1•如图,△ ABC 中,AB = AC,/ A = 36°,BD、CE分别为/ ABC与/ ACB的A. 6个B. 7个 D. 9个C. 8个又因为DE _ AB, DF _ AC所以.BED =/CFD =90又D是BC的中点,所以DB二DC所以DEB 三CFD(AAS)所以BE =CF,所以AE = AF说明:证法二:连结AD,通过GAED三:AFD证明即可5、题形展示:例 1.如图,:ABC 中,AB = AC, A =100,BD 平分.ABC。

求证:AD BD =BC。

分析一:从要证明的结论出发,在BC上截取BF二BD,只需证明CF二AD,考虑到-1= 2,想到在BC上截取BE = BA,连结DE,易得,则有AD = FD,只需证明DE = CF,这就要从条件出发,通过角度计算可以得出CF = DF二DE。

证明一:在BC上截取BE二BA,BF二BD,连结DE、DF在ABD 和EBD 中,BA =BE, 1-^2,BD =BDABD 三EBD(SAS).AD =DE,BED =100 . DEF =80又AB 二AC,A =1001ABC 二C (180 -100 ) = 402丿丿 1 Q Q1-^2 40 =202而BD 二BF/ 丿1© 丿1<JQQBFD "BDF (180 - 2) (180 -20 ^80DEF = DFE =80 DE = DFDFE =80 , C =40FDC - DFE「/C =80 —40 =40FDC "C . DF 二FC . AD 二DE 二DF 二FCBC 二BF FC 二BD AD即AD BD = BC分析二:如图,可以考虑延长BD到E,使DE = AD,这样BD + AD=BD+DE=BE,只需证明BE = BC,由于―2 = 20,只需证明E = . BCE = 80—、一Q -Q -Q Q . <5易证.EDC =/ADB =180 -100 -20 =60 , BDC =120,故作• BDC 的角平分线,则有,ABD二:FBD,进而证明,DEC二DFC,从而可证出.E =80:证明二:延长BD到E,使DE = AD,连结CE,作DF平分.BDC交BC于F。

由证明一知:• 1 = • 2 = 20 , ■ A =100则有.3 =180 -100 -20 =60 , ■ 6二/3 = 60 , ■ BDC =180 -60 =120 DF 平分.BDC 也4 =603 =/4 =/5 =/6 =60 ,在ABD 和FBD 中1-^2, BD =BD , 3 "4A BD 三F BD(A S A.AD = FD, BF^ A =100 ,而AD 二DE, DF 二DE在DEC 和DFC 中,DE 二DF, 5= 6, DC 二DCD EC二D FQS AS. 0 Q Q QE=/DFC=180 - BFD =180 -100 =80在BCE 中,2 =20 , 3 =80BCE=80 , E = BCEBC = BE, AD BD 二 BC说明: “一题多证”在几何证明中经常遇到,它是培养思维能力提高解题水平的有效途径,读者在以后的几何学习中要善于从不同角度去思考、 去体会,进一步提高自身的解题能力。

【实战模拟】则腰长为()3. 求证:等腰三角形两腰中线的交点在底边的垂直平分线上4. ABC 中,AB =AC , A ^120,AB 的中垂线交 AB 于D ,交CA 延长线于E ,求证: DE 」BC 。

2ABl I【试题答案】1. B2. 分析:结合三角形内角和定理,计算图形中角的度数是等边三角形性质的重要应用。

解:因为ABC 是等边三角形1.选择题:等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为 3cm ,A. 2 cmB. 8cmC. 2cm 或 8cmD.以上都不对2.如图,「'ABC 是等边三角形, .CBD =90,BD 二 BC ,则.1 的度数是B所以AB =BC,ABC =60因为BD二BC,所以AB二BD所以.3 — 2在:ABD 中,因为.CBD =90,. ABC =60所以.ABD =150 •,所以.2 =15所以.1 =/2 • . ABC =753. 分析:首先将文字语言翻译成数学的符号语言和图形语言。

已知:如图,在ABC中,AB = AC,D、E分别为AC、AB边中点,BD、CE交于O点。

求证:点O在BC的垂直平分线上。

B C分析:欲证本题结论,实际上就是证明OB =OC。

而OB、OC在ABC中,于是想到利用等腰三角形的判定角等,那么问题就转化为证含有• 1 2的两个三角形全等。

证明:因为在ABC中,AB =AC所以• ABC =/ACB (等边对等角)又因为D、E分别为AC、AB的中点,所以DC二EB (中线定义)在BCD和CBE中,DC =EB(已证)±DCB =NEBC(已证)、BC =CB(公共边)所以BCD 二CBE(SAS)所以• 1=2 (全等三角形对应角相等)。

所以OB =0C (等角对等边)。

即点O在BC的垂直平分线上。

说明:(1)正确地理解题意,并正确地翻译成几何符号语言是非常重要的一步。

相关文档
最新文档