大学物理第13章 真空中的静电场(场强)
大学物理第13章_真空中的静电场(场强)
dl
则
q dq dl 2R
1 dq 0 dE r 2 40 r
O
x
dE
dE
dE x x
由对称性有
R
E dE x dE cosi 1 q cos l dl i 2 40 2R r
r
P
cos x r r x R
实验规律 场的 性质 场与物质的相 互作用
静电场:相对于观察者静
止的电荷所产生的电场
§1-1电荷.库仑定律
一.两种电荷 1.自然界只存在两种 电荷,同种电荷相排 斥,异种电荷相吸引
2.美国物理学家富兰克林首先称其为正 电荷和负电荷
3.带电的物体叫带电体 4.质子和电子是自然界存在的最小正、负电 荷,其数值相等,常用+e和-e表示
1986年 e 的推荐值为
e 1.60217733 10
C(库仑)为电量的单位
19
C
二.电荷量子化 1.实验表明:任何带电体或其它微观粒 子所带的电量都是 e 的整数倍
----物体所带电荷量量值不连续
2.电荷量子化:电荷量不连续的性质
三.电荷守恒定律 常见的两种起电方式: 摩擦起电 摩擦起电的本质:电子从一个 物体转移到另一个物体
定义:电场强度
F E q0
单位:牛顿/库仑(N/C)或伏特/米(V/m) 三.场强叠加原理 设空间有点电荷q1、q2 、q3 … qn
P点处的试探电荷 q0 所受电场力为
n F F1 F2 Fn Fi
i 1
F F1 F2 Fn P点的场强为 E q0 q0 q0 q0
大学物理2知识点总结
dt D
t
4、全电流定律:
L
B d l 0 ( Ic Id )
( B
2 )
全电流总连续。 Id 与Ic的区别: 5、 长直平行电流间单位长度上的相互作用力:
dF dl
0 I1I2
2 d
同向相吸反向相斥
直 电 流
圆 电 流
电流分布 一段导线
q
0
高斯面内自由 电荷的代数和
4、电容器及其电容 (1)定义: C = Q/U (2)平板电容器: 串联:
1 C
n
C
S
d
(3)电容器的串、并联:
i1
1 C
i
并联:C
1 Q 2 C
2
i1
n
C
i
W (4)电容器的能量 :
1 2
CU
2
2
1 2
UQ
5、电场能量密度: w
1 2
D d
k 加强 2 k 1 ) 减弱 ( 2
(k=0,1,2…)
5、薄膜干涉 的一般公式(⊥入射):
2n2e
2
k , k 1,2 明
(2 k 1)
2
——( )
, k 0 ,1 暗
加不加,看条件
均匀 B 中,起、止点一样的任意导线平动,ε一样。
(2)一段导体转动(转轴∥
1 2
2
均匀 B
)
B L (轴位于端点且⊥导体)
若导体与轴不⊥,可将其等效为在⊥轴方向 的投影的转动。 (3)线圈转动 (转轴⊥均匀
大学物理(二)答案
大学物理(二)练习册 参考解答第12章 真空中的静电场一、选择题1(A),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B), 二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aa⎰⋅==00d /(U 0=0).(2). ()042ε/q q +, q 1、q 2、q 3、q 4 ;(3). 0,λ / (2ε0) ; (4). σR / (2ε0) ; (5). 0 ; (6).⎪⎪⎭⎫ ⎝⎛-π00114r r qε ; (7). -2³103V ; (8).⎪⎪⎭⎫ ⎝⎛-πb a r r q q 11400ε(9). 0,pE sin α ; (10). ()()j y x i xy40122482+-+-- (SI) ;三、计算题1. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:在O 点建立坐标系如图所示. 半无限长直线A ∞在O 点产生的场强:()j i R E -π=014ελ半无限长直线B ∞在O 点产生的场强:()j i R E +-π=024ελ四分之一圆弧段在O 点产生的场强:()j i R E +π=034ελ由场强叠加原理,O 点合场强为: ()j i RE E E E +π=++=03214ελBA∞O BA∞∞2. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C .(1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;(2) 假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0ε=8.85³10-12 C 2²N -1²m -2)解:(1) 设电荷的平均体密度为ρ,取圆柱形高斯面如图(1)(侧面垂直底面,底面∆S 平行地面)上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:⎰⎰E²S d =E 2∆S -E 1∆S =(E 2-E 1) ∆S高斯面S 包围的电荷∑q i =h ∆S ρ由高斯定理(E 2-E 1) ∆S =h ∆S ρ /ε 0∴() E E h1201-=ερ=4.43³10-13C/m 3(2) 设地面面电荷密度为σ.由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 由高斯定理⎰⎰E²S d =∑i1qε-E ∆S =S ∆σε01∴ σ =-ε 0 E =-8.9³10-10C/m 33. 带电细线弯成半径为R 的半圆形,电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.解:在φ处取电荷元,其电荷为d q =λd l = λ0R sin φ d φ它在O 点产生的场强为R R qE 00204d sin 4d d εφφλεπ=π= 在x 、y 轴上的二个分量d E x =-d E cos φ, d E y =-d E sin φ 对各分量分别求和⎰ππ=000d cos sin 4φφφελR E x =0 RRE y 000208d sin 4ελφφελ-=π=⎰π∴ j Rj E i E E y x008ελ-=+=(2)2(1)4. 一“无限长”圆柱面,其电荷面密度为: σ = σ0cos φ ,式中φ 为半径R 与x 轴所夹的角,试求圆柱轴线上一点的场强.解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为λ = σ0cos φ R d φ, 它在O 点产生的场强为:φφεσελd s co 22d 000π=π=R E它沿x 、y 轴上的二个分量为: d E x =-d E cos φ =φφεσd s co 220π-d E y =-d E sin φ =φφφεσd s co sin 20π 积分:⎰ππ-=2020d s co 2φφεσx E =2εσ0)d(sin sin 2200=π-=⎰πφφεσy E∴ i i E E x02εσ-==5. 一半径为R 的带电球体,其电荷体密度分布为4πRqr =ρ (r ≤R ) (q 为一正的常量)ρ = 0 (r >R )试求:(1) 带电球体的总电荷;(2) 球内、外各点的电场强度;(3) 球内、外各点的电势.解:(1) 在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为 d q = ρd V = qr 4πr 2d r /(πR 4) = 4qr 3d r/R 4 则球体所带的总电荷为 ()q r r Rq V Q rV===⎰⎰34d /4d ρ(2) 在球内作一半径为r 1的高斯球面,按高斯定理有4041241211d 414Rqr r r Rqr E r r εε=π⋅π=π⎰得402114R qr E επ=(r 1≤R),1E方向沿半径向外.在球体外作半径为r 2的高斯球面,按高斯定理有 0222/4εq E r =π得22024r q E επ=(r 2 >R ),2E方向沿半径向外.(3) 球内电势⎰⎰∞⋅+⋅=RR r r E r E U d d 2111⎰⎰∞π+π=RRr r rq r Rqrd 4d 4204021εε40310123Rqr R qεεπ-π=⎪⎪⎭⎫ ⎝⎛-π=3310412R r R qε ()R r ≤1 球外电势 2020224d 4d 22r q r rq r E U r Rr εεπ=π=⋅=⎰⎰∞()R r >26. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为ρ=kx (0≤x ≤b ),式中k 为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;(2) 平板内任一点P 处的电场强度; (3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2/ (4ε0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有()022εεk S b x d x kSSE E x==+'⎰得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-bx , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为i xx E012εσ='圆盘在该处的场强为i x R x x E⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴ i xR xE E E 220212+=+=εσ该点电势为 ()220222d 2xR R xR x x U x+-=+=⎰εσεσ8.一真空二极管,其主要构件是一个半径R 1=5³10-4m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5³10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6³10-19C)解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有 2πrE = λ/ ε0得到 E = λ / (2πε0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R B A B A rr r E U U ελ120ln 2R R ελπ-= 得到()120/ln 2R R UUAB-=πελ, 所以 ()rR R UUE AB1/ln 12⋅-=在阴极表面处电子受电场力的大小为()()11211/c R R R U U e R eE F A B ⋅-===4.37³10-14N 方向沿半径指向阳极.四 研讨题1. 真空中点电荷q 的静电场场强大小为 241rq E πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而0d d d ≠⋅'-⋅=⋅⎰⎰⎰cb a d l E l E l E按静电场环路定理应有0d =⋅⎰l E,此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?参考解答:由电势的定义: ⎰⋅=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
真空中的静电场
r x R
dq( xi R) dE 4 0 ( x 2 R2 )3 / 2
R R(cos j sin k )
x E i 2 2 3/ 2 4 0 ( x R )
•若
Q
y
o
x R
Q E 2 4 0 x Q 2 4 0r
x
x
z
qi
fi q
f E q
i 1
n
fi
E Ei
E
i 1
q
i 1
n
ir
q
i n
或:
4 0ri
qi
3
ri
—场强叠加原理!
3. 任意带电体的场强
若为电荷连续分布的带电体,如图示
可以把带电体切割成无穷多个电荷 元,每个电荷元可看
在一个和外界没有电荷交换的系统内,正负电荷的代 数和在任何物理过程中保持不变。 讨论
q const.
i i
•电荷守恒定律是物理学 中普遍的基本定律 •电荷可以成对产生或湮 灭,保持代数和不变
-e +e
-e
+e
•电中性-物体带等量的正 负电荷 •物质的原子构成与带电 —原子的电中性、离子等
1. 点电荷的场强
根据库仑定律和场强的定义
q
Q r
er
Qq f e 2 r 4 0r
球对称
f E q E
Q 4 0r
e 2 r
E( x, y, z) E(r )
E(r)
const. r c
2. 点电荷系的场强 如果带电体由 n 个点电荷组 成,如图 由电力叠加原理:
7.真空中的静电场 大学物理习题答案
l
xd x
2
k l a ( ln ) 4 0 a la
方向沿 x 轴正向。
7-4 一半径为 R 的绝缘半圆形细棒,其上半段均匀带电量+q,下半段均匀带电量-q,如图 7-4 所示,求半 圆中心处电场强度。 解:建立如图所示的坐标系,由对称性可知,+q 和-q 在 O 点电场强度沿 x 轴的分量之和为零。取长为 dl 的线元,其上所带电量为
大学物理练习册—真空中的静电场
库仑定律 7-1 把总电荷电量为 Q 的同一种电荷分成两部分, 一部分均匀分布在地球上, 另一部分均匀分布在月球上, 24 使它们之间的库仑力正好抵消万有引力, 已知地球的质量 M=5.98l0 kg, 月球的质量 m=7.34l022kg。 (1)求 Q 的最小值; (2)如果电荷分配与质量成正比,求 Q 的值。 解: (1)设 Q 分成 q1、q2 两部分,根据题意有 k
x
d 时 2
1 E d S 2 E1S 2 xS , E1 x 1 S 0 0
28
大学物理练习册—真空中的静电场
x
d 时 2
1 d d E d S S 2 2 E 2 S 0 2 2 S , E 2 0
r R sin , x R cos
x
d E
sin cos d 2 0
因为球面上所有环带在 O 处产生的电场强度方向相同, E 2 0
2 0
sin cos d i i 4 0
7-6 一无限大均匀带电薄平板,面电荷密度为 ,平板中部有一半径为 R 的圆孔, 如图 7-6 所示。求圆孔 中心轴线上的场强分布。 (提示:利用无穷大板和圆盘的电场及场强叠加原理) 解:利用补偿法,将圆孔看作由等量的正、负电荷重叠而成,即等效为一个 完整的带电无穷大平板和一个电荷面密度相反的圆盘叠加而成。 R 无穷大平板的电场为
大学物理 库仑定律 电场
v dE =
+ +++ v dq+ + v ++ r + dE +++ q +++ P ++
dq ρ= dV
(电荷体密度) 电荷体密度)
v v 1 ρ er E=∫ dV 2 4π ε0 r V
v v E = ∫ dE = ∫
v 1 er dq 2 4π ε0 r
dq 电荷面 ●电荷面密度 σ = ds v v 1 σ er ds E=∫ 2 4π ε0 r S
第十三章
大学物理
13.2
真空中的库仑定律
Coulomb law in vacuum
1. 库仑定律 2. 点电荷模型 3. 静电力的叠加原理
第十三章
大学物理
库仑定律与真空中的介电常数 一 库仑定律与真空中的介电常数
(1785年,库仑通过实验得到) 年 库仑通过实验得到)
表述: 表述:略 矢量表达式: 矢量表达式
+q v l r 电偶极子矢径 l 称电偶极子矢径
l 2 r+ = r− = r + ( ) 2
2
1 q E− = 2 4 πε0 r−
4πε 0 2 l 2 r + 4 E = E + cos θ + E − cos θ = 2 E + cos θ
=2 1 4πε 0 ⋅ q l 2 (r + ) 4
v F12
v r1
v r2
真空中
q1
v r21
v q q2 ∧ F = k 1 2 r21 21 r21
第13章-静电场中的导体和电介质汇总
(2)空腔内电场强度处处为零,或者说,空腔内的电势处处相等。
证明:在导体内部作一个包围内表面的闭
q
合曲面,由静电平衡v条件,此曲面
上各点的电场强度 E 0,则通过
Ò闭S合Ev曲d面Sv的 0电通量所为以零,即q:i 0
S
假设导体空腔内表面上分布有等量异号的 电荷,是否可以?
屏蔽作用──导体壳内所包围的区域不受外电场的影响。
第13章 静电场中的导体和电介质
本章重点: 本章作业:
§13.1 静电场中的导体
一、导体的静电平衡条件
导体在静电场中,两侧出现正、负电
荷的现象叫做静电感应现象。产生的
电荷称为感应电荷。产生外电场的
电荷称为施感电荷。
静电平衡时:
E E0 E 0
E0
E0
E0
静电平衡时,要求表面电荷也不能移动.即表面处的静电场
( R1 r R2 ) (r R2 )
q
R2
R1
R
(2)根据静电平衡条件和电势的定义可得电势的分布为
R
R1
R2
R1 q
U1
r
E1dr
R
E2dr
E3dr
R1
E4dr
R2
R
4π0r 2 dr
R2
4π0r 2 dr
1
4π 0
q R
q R1
qQ R2
(r R)
U2
R1
E2dr
E2
则面元dS所受的电场力为 单位面积上受到的电场力为
F
2
2 0
E2 en
dS
2 2 0
d Sen
例题13-3 半径为R的孤立金属球,接 地,与球心相距 l 处有一点电荷+q, 求球 上的感应电荷q′。
大学物理13章答案
第13章 静电场中的导体和电介质13.1一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E r πε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04c q U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl . 设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为 ⎰⋅=ΦSdD d 012d d d 2S S S rlDπ=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少? [解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离图13.3球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q q U r a b πεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q =3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少? (2)A 板电势为多少? [解答](1)设A 的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为σ1S 和q 2 = σ2S ,q 1 = 在B 、C 板上分别感应异号电荷-q 1和-q 2,由电荷守恒得方程q = q 1 + q 2 = σ1S + σ2S . ① A 、B 间的场强为 E 1 = σ1/ε0, A 、C 间的场强为 E 2 = σ2/ε0.设A 板与B 板的电势差和A 板与C 板的的电势差相等,设为ΔU ,则ΔU = E 1d 1 = E 2d 2, ②即 σ1d 1 = σ2d 2. ③解联立方程①和③得σ1 = qd 2/S (d 1 + d 2),所以 q 1 = σ1S = qd 2/(d 1+d 2) = 2×10-8(C);q 2 = q - q 1 = 1×10-8(C).B 、C 板上的电荷分别为q B = -q 1 = -2×10-8(C); q C = -q 2 = -1×10-8(C). (2)两板电势差为ΔU = E 1d 1 = σ1d 1/ε0 = qd 1d 2/ε0S (d 1+d 2), 由于 k = 9×109 = 1/4πε0, 所以 ε0 = 10-9/36π,因此 ΔU = 144π = 452.4(V). 由于B 板和C 板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A ,带电量为q ,在它的附近放一块与A 平行的金属导体板B ,板B 有一定的厚度,如图所示.则在板B 的两个表面1和2上的感应电荷分别为多少?[解答]由于板B 原来不带电,两边感应出电荷后,由电荷守恒得 0. ①q 1 + q 2 = 虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S ,则面电荷密度分别为σ1 = q 1/S 、σ2 = q 2/S 、σ = q/S ,图13.42 图13.5它们产生的场强大小分别为E 1 = σ1/ε0、E 2 = σ2/ε0、E = σ/ε0.在B 板内部任取一点P ,其场强为零,其中1面产生的场强向右,2面和A 板产生的场强向左,取向右的方向为正,可得E 1 - E 2 – E = 0,即 σ1 - σ2 – σ = 0,或者说 q 1 - q 2 + q = 0. ② 解得电量分别为q 2 = q /2,q 1 = -q 2 = -q /2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V ,两板间相距为 1.2mm ,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0. 由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0. 由于两板带等量异号的电荷,所以 σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d , 所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m -2),σ2 = -σ3 = -8.84×10-7(C·m -2).13.7一球形电容器,内外球壳半径分别为R 1和R 2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214R C R R πε=-表示. (提示:可看作两个球电容器的并联,且地球半径R >>R 2)[一:并联电容法.在外球外面再接一个半径为R 3壳,外壳也接地.内球壳和外球壳之间是容为 104C πε=壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-图13.6202214R R R πε=-.方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-.根据高斯定理可得两球壳之间的场强为122002`44R q q E r R r πεπε==-,负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r=⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰1212021202()11()44R q R R q R R R R πεπε-=-=球面间的电容为202214R q C U R R πε==-.13.8球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为12012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为 ε1S/d 1和C 2 = ε2S/d 2. C 1 = 总电容的倒数为122112*********d d d d C C C S S S εεεεεε+=+=+=,总电容为122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍? [解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为 ⎰⋅=ΦS d S D d12d d d 2S S S rlDπ=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl ,根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLRU E r r r λπε=⋅==⎰⎰⎰E l21ln 2R R λπε=.电容为212ln(/)q l C U R R πε==.在真空时的电容为00212ln(/)l q C U R R πε==,所以倍数为C/C 0 = ε/ε0.13.11在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布;(2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为 Dr S D SSd 24d d π==⋅=Φ⎰⎰S D高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P ,所以 P = D - ε0E =031(1)4rQ r επ-r .在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以 D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0.(2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为`101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1.两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2.13.13一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d .13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d .(2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U .当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为 W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d .(3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ; 介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ①由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ②解联立方程得01112211/C U C Q Q C C C C ==++,真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S d εσε===++.同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S d εεσε==++.13.15平行板电容器极板面积为200cm 2,板间距离为 1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少? [解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=-20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2V V W w V E Vε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰. 当R = b 时,能量为210ln4l b W a λπε=;当R =22200ln48l l b W a λλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l , 根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln44bV aQ Q bW W r lr l a πεπε===⎰⎰. (3)由公式W = Q 2/2C 得电容为222ln(/)Q l C W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=,得1212120PFC C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U 1 = Q/C 1 = CU/C 1 = 600(V); 第二个电容器两端的电压为U 2 = Q/C 2 = CU/C 2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。
大学物理教案真空中的静电场
真空中的静电场一、教学目标1. 了解静电场的基本概念,掌握电场强度、电势和电势差等基本物理量。
2. 学习静电场的叠加原理,理解高斯定律及其应用。
3. 掌握静电场的能量和能量密度,了解静电场的几种常见分布。
4. 能够运用所学知识分析解决实际问题,提高学生的科学素养。
二、教学内容1. 静电场的基本概念电场强度电势电势差2. 静电场的叠加原理场强的叠加电势的叠加3. 高斯定律高斯定律的表述应用高斯定律求解电荷分布4. 静电场的能量和能量密度静电场的能量能量密度5. 静电场的几种常见分布均匀电场非均匀电场点电荷电场线性电场三、教学方法1. 采用讲授法,系统地介绍静电场的基本概念、叠加原理、高斯定律、能量和能量密度以及常见分布。
2. 利用多媒体动画和图片,直观地展示静电场的现象,增强学生的理解。
3. 结合实际例子,让学生学会分析解决实际问题。
4. 布置适量练习题,巩固所学知识。
四、教学环境1. 教室环境舒适,通风良好。
2. 教学设备:计算机、投影仪、黑板、粉笔。
3. 教材、教案、练习题等相关教学资源。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习题:检查学生对静电场基本概念、叠加原理、高斯定律、能量和能量密度的掌握程度。
3. 课后反馈:收集学生对教学内容的意见和建议,不断改进教学方法。
4. 期中考试:评估学生在静电场部分的知识水平和应用能力。
六、教学内容6. 静电场中的电势能和势能曲线静电势能的概念势能曲线的绘制与分析静电力做功与势能变化的关系7. 静电场的能量与能量守恒静电场的能量表达式能量守恒在静电场中的应用静电场的能量与电场强度、电势的关系8. 电场线与等势面电场线的定义与性质等势面的概念与绘制电场线与等势面的关系及其在静电场中的应用9. 静电场的边界条件狄拉克原理边界条件的数学表达应用边界条件解静电场问题10. 静电场的数值计算方法有限差分法有限元法蒙特卡洛法数值计算方法在静电场中的应用实例七、教学方法1. 采用案例分析法,深入讲解静电场中的电势能和势能曲线,让学生理解静电力做功与势能变化的关系。
大学物理13 静电场中的导体和电介质
不是都平行于E
;
有极分子也有位移极化,不过在静电场中主要是取向极化,
但在高频场中,位移极化反倒是主要的了。
34
均匀电介质在静电 场中
E0
–
–
E'
+– +–
E0
+ E' +
– 取向极化
+
P分
–
?
位移极化
+
电介质极化:在外电场作用下,电介质产生一附加电场或电
介质表面出现束缚电荷的现象。
B
上的电荷消失。两球的电势分别为
A
UA
q
4 0
1 R0
1 R1
q R0
U B U R1 U R2 0
R2 R1 q
两球电势差仍为:
UA
UB
q
4 0
1 R0
1 R1
由结果可以看出,不管外球壳接地与否,两球的电势 差恒保持不变。当q为正值时,小球的电势高于球壳;当q 为负值时,小球的电势低于球壳。
3
§1 导体的静电平衡
一. 导体的静电平衡
1. 静电感应现象:
电场一般利用带电导体形成。
有导体存在时电场的性质?
在静电场力作用下,导体中自由电子在电场力的作用下
作宏观定向运动,使电荷产生重新分布的现象。
Ε 0
-
Ε 0
- + -+
E内 0
-
-+
2. 静电平衡状态:
导体内部和表面无自由电荷的定向移动 —称电场和导体之间达到静电平衡
大学物理 真空中的静电场
电荷守恒定律说明:物质带电现象的本质是电荷的转移。 二、真空中的库仑定律:点电荷的相互作用规律 1、点电荷(理想化模型) 点电荷:没有形状和大小的带电体。 对实际带电体,当其线度比电荷间距小很多时,可视为点 电荷。 2、库仑定律 真空中,两个静止的点电荷之间相互作用力的大小,与 它们的电量的乘积成正比,与它们之间距离的平方成反比。 作用力的方向沿着它们的联线。同号电荷相斥,异号电荷相 吸。 q1 q 2 r 数学表述: f k
q0 放在电场中P点,受力 F ,而比值 F / q0 。与q0 无关。
单位:N/C 或 V/m
3) 点电荷 q 在外电场 E 中受电场力 F = q E
三、电场强度的计算
1. 点电荷Q 所产生电场的电场强度
试探电荷q 在点电荷Q 的电场中受力为 F
由电场强度定义:
Q
r0
+
P
F
2
dS 4 r
0
4r
2
q
q
0
2) 通过包围一个点电荷的任意闭合曲面的电通量
q Φe E dS E dS S S 0
具有相同立体角的不同曲面dS 和dS 的电通量相同。 3) 通过不包围点电荷的任意闭合曲面的电通量
S q S
n E E1 E 2 E 3 E n E i i 1
F1
q0
F2
Q1 Q2 r0 i
Qi
Fi
即: E
Qi 4 r 2 ri i 1 0 i 1
n
所以,电场强度满足矢量叠加原理
3. 电荷连续分布的带电体所产生的电场强度 若电荷连续分布,可在带电体上取微元电荷 dq,由点 电荷的场强公式写出场强,根据场强叠加原理求矢量和 (即求积分)
大学物理13章习题详细答案
习题1313-3.如习题13-3图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。
设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差。
(2)板B 接地时,两板间的电势差。
[解] (1)两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为因而板间电场强度为 SQ E 02ε=电势差为 SQdEd U 0AB 2ε== (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为 故板间电场强度为 SQ E 0ε=电势差为 SQdEd U 0AB ε== B A-Q/2Q/2Q/2Q/2A B -QQ13-4 两块靠近的平行金属板间原为真空。
使两板分别带上面电荷密度为σ0的等量异号电荷,这时两板间电压为U 0=300V 。
保持两板上电量不变,将板间空间一半如图习题13-4图所示充以相对电容率为εr =5的电介质,试求(1) 金属板间有电介质部分和无电介质部分的E,D 和板上的自由电荷密度σ; (2) 金属板间电压变为多少?电介质上下表面束缚电荷面密度多大?13-5.如习题13-5图所示,三个无限长的同轴导体圆柱面A 、B 和C ,半径分别为R A 、R B 、R C 。
圆柱面B 上带电荷,A 和C 都接地。
求B 的内表面上线电荷密度λ1和外表面上线电荷密度λ2之比值λ1/λ2。
[解] 由A 、C 接地 BC BA U U = 由高斯定理知 r E 01I 2πελ-=rE 02II 2πελ= AB 0101I BA ln 2d 2d ABA BR Rr r U R R R R πελπελ=-==⎰⎰r E IIIB C 0202II BC ln 2d 2d CB CBR R r r U R R R R πελπελ===⎰⎰r EBC 02A B 01ln 2ln 2R R R R πελπελ= 因此 AB BC 21ln :ln:R R R R =λλ13-6.如习题13-6图所示,一厚度为d 的无限大均匀带电导体板,单位面积上两表面带电量之和为σ。
真空中静电场场强的计算
q 4 0 r
q
图4
即:U ( z )
4 0 ( z 2 R 2 )
1
2
所以 P 点电场强度:
U qz E U k k z 4 0 ( R 2 z 2 ) 3 2
1.4、补缺法 有些带电体具有一定的规则缺陷, 求解该类带电体的场强分布, 行之有效的方法是补缺 法, 该方法的基本思想是: 先将原带电体的规则缺陷补全, 使之成为一个完整的规则带电体, 再在原带电体的规则缺陷处叠加一个与原带电体缺陷形状相同但带异号电荷的规则带电体, 也就是说, 将原带电体视为由两个带异号电荷的规则带电体叠加而成, 原带电体激发的电场 与两个规则带电体分别激发的电场叠加等同。 而对两个规则带电体, 其激发电场的场强分布 已知或易于求解,这样可简化原场强的求解。 例 1.4、在半径为 R1,电荷体密度为 的均匀带电球体内,挖 去一个半径为 R2 的球体空腔, 空腔中心 O2 与带电球体中心 O1 间的距 离为 b, 且 R1>b>R2, 如图 5 所示。 求空腔内任一点 p 的电场强度 E 。 解:这是一个电荷非对称分布的问题,不能直接用高斯定理求 解。 但半径为 R1 的球和半径为 R2 的空腔是球对称的, 利用这一特点, 把带电体看成半径为 R1 的均匀带电+ 的球体与半径为 R2 的均匀带 电- 的球体迭加,这相当于空腔处补上电荷体密度分别为 和 的两个球体,这时 空腔内任一点 p 的场强: 图5
������������������ cos ������ 4������������������ 2 ������������������ sin ������ 4������������������ 2
D������������ = ������������ sin ������ =
大学物理静电场复习总结
UR 0
rR:
ln r 20 R
rR: 0
rR: 0
R
rrR:
R 2 20r
rˆ
rR:
r 20
rˆ
UR 0 rR:
R2 ln R 0
20 r
rR: (R2 r2)
40
静电场中的导体与电介质
基本概念和基本规律
1. 导体静E E 内 表 电平 0面 衡导 的条件体表 导导体体是表面 等面势 是体 等势面
一、基本概念和基本规律
1. 电容的定义: C Q U
2.
ห้องสมุดไป่ตู้
1
电容器的串联:C
1 Ci
并联:CCi
3. 电容器的能量:W1CU 2Q21QU 2 2C 2
4. 电场能量密度:w1E rD r1E2
2
2
任意电场的能量:
WV
1Er 2
r DdV
5. 求电容器电容的步骤: ur 假定极板带电Q 板间的 E
板间的 U
q 4 0 r
ln a 2 0 r q R2 x2
R
0
r [1 x20
x
]i
x2R2
(
20
R2x2x)
E
i
x 20
x
E
0
i
场源电荷(+)
E
U
R q
r
rR: rR:
q 4 0r
2
rˆ
qr 40 R3 rˆ
q
rR:
rR:84 q00Rr (3Rr22)
Rr rR: rˆ 2 0r
4. 高斯定理:
rr
e r SE r dS1
EdS
第13章静电场电势 清华大学版大学物理
功能问题是物理学的各个研究领域的 重要关注点, 重要关注点, 本章将讨论电场力做功的 性质,给出静电场的环路定理, 性质,给出静电场的环路定理,揭示静电 场有势性,并进一步讨论静电场的能量。 场有势性,并进一步讨论静电场的能量。
第13章 电势 章
13.1 13.2 13.3 13.4 13.5 13.6 13.7 静电场的保守性 电势差和电势 电势叠加原理 电势梯度 电荷在外电场中的静电势能 电荷系的静电能 静电场的能量
二、 静电场环路定理
L1 P2 L2
A = ∫ Fdr = ∫ q Edr 12
0
P1
=∫
p2 p1 ( L ) 1
p2 p1 ( L ) 1
v r p1 q0 E ⋅ dr + ∫
p2 ( L2 )
v r q0 E ⋅ dr
=∫
v r p2 q0 E ⋅ dr − ∫
p2 ( L2 )
v r q0 E ⋅ dr = 0
O
q
当静电场是由点电荷产生的 当静电场是由点电荷产生的
A12 = ∫
( p2 ) ( p1 )
r 1
v r
P1
v dr
q0 L dr
θ
v E
q0 E ds cosθ =
∫
r2 r1
q0qd r 4πε 0 r 2
cosθds = dr
q0 q 1 1 ( − ) = 4πε 0 r1 r2
只与P 位置有关, 只与 1、P2位置有关, 而与路径L无关 而与路径 无关
在点电荷系q 产生的电场中, 在点电荷系 1、q2、… 、qn产生的电场中, 移动q 移动 0,电场力做功 v r p2 v r p2 A12 = ∫ F ⋅ dr = ∫ q0 E ⋅ dr
《大学物理》真空中的静电场练习题及答案解析
《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。
(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。
(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。
(B )通过S 面的电通量不变,P 点的电场强度变化。
(C )通过S 面的电通量改变,P 点的电场强度不变。
(D )通过S 面的电通量改变,P 点的电场强度变化。
6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E = ∫ dExi + ∫ dEy j + ∫ dEzk
[例3]设有一长为L的均匀带电q的直线, 3]设有一长为 的均匀带电q的直线, 设有一长为L 求直线中垂线上一点的场强 建立如图坐标系, 解 : 建立如图坐标系 , y O为直线中点,P为直线 为直线中点, dy 中垂线上任一点 y r P x 任取一长为dy的 任取一长为dy的 θ O x θ 电荷元dq 电荷元dq L o dE
−q
l
+q
解 :(1) 设 两 电 荷 延长线上任一点 A 到电偶极子中 的距离为r 点O的距离为r
l
−q O
E−
+q
E+
A
r
x
+q和-q在A点处的场强大小分别为: +q和 点处的场强大小分别为:
q E+ = 2 4πε0 (r −l / 2)
方向沿x 方向沿x轴正向
1
q E− = 2 4πε0 (r + l / 2)
实验: 实验: 将同一试探电荷 q0 放入 电场的不同地点: 电场的不同地点: 电场中某点P 电场中某点P处放置不 + 同电量的试探电荷: 同电量的试探电荷:
q0 q0 B + q0 A
C
q0
q0 2F 2q q0
3F
P
所受电场力方向不变, 所受电场力方向不变,大小成比例地变化
----电场力 ----电场力不能反映某点的电场性质 电场力不能反映某点的电场性质
定义: 定义:电场强度
F E= q0
单位:牛顿/库仑(N/C)或伏特/ 单位:牛顿/库仑(N/C)或伏特/米(V/m) 三.场强叠加原理 设空间有点电荷q 设空间有点电荷q1、q2 、q3 … qn P点处的试探电荷 q0 所受电场力为
F = F + F2 +⋯+ Fn= ∑Fi 1
i=1
n
Fn F F F2 1 P点的场强为 E = = + +⋯+ q0 q0 q0 q0
∴E = E1 + E2 +⋯+ En = ∑Ei
i=1
n
场强叠加原理:电场中任一点处的场 场强叠加原理: 强等于各个点电荷单独存在时 单独存在时在该点 强等于各个点电荷单独存在时在该点 各自产生的场强的矢量和
或
1 2 pe 与电矩的方向一致 EA = 3 4πε0 r
E+
θ
(2) 设电偶极子中垂线上任一 点B到 O点的距离为 r EB 则
y
B
q E+ = E− = 2 2 4πε0 (r + l / 4)
1
E−
r
−q O +q
E 方向上, 在 y 方向上, +和 E− 的分量相互抵消
∴EB = E+ cosθ + E− cosθ = 2E+ cosθ l/2 ∵cosθ = 2 2 r + (l / 2) 1 ql ∴EB = ⋅ 2 2 3/ 2 4πε0 r + (l / 2)
3.带电的物体叫带电体 质子和电子是自然界存在的最小正、 4.质子和电子是自然界存在的最小正、负电 数值相等,常用+e和 荷,其数值相等,常用+e和-e表示
1986年 1986年 e 的推荐值为
e =1.60217733×10
C(库仑)为电量的单位 库仑)
−19
C
二.电荷量子化 1.实验表明 实验表明: 1.实验表明:任何带电体或其它微观粒 子所带的电量都是 e 的整数倍 ----物体所带电荷量量值不连续 ----物体所带电荷量量值不连续 2.电荷量子化: 2.电荷量子化:电荷量不连续的性质 电荷量子化
P点的总场强为
ri E = E1 + E2 +⋯+ En = ∑ 2 πε0ri i=1 4
----点电荷系的场强 ----点电荷系的场强
n
qi
0
[例2]如图,一对等量异号电荷+q和-q,其 2]如图 一对等量异号电荷+ 如图, 间距离为l且很近, 间距离为l且很近,这样的点电荷系称为 电偶极子。 为电偶极矩, 电偶极子。定义 pe=ql 为电偶极矩,简 称电矩, 方向由- 指向+ 称电矩,是矢量 ,方向由-q指向+q。 (1)两电荷延长线上任一点 两电荷延长线上任一点A 求(1)两电荷延长线上任一点A的电场强 (2)两电荷连线中垂线上任一点 两电荷连线中垂线上任一点B 度;(2)两电荷连线中垂线上任一点B的 电场强度. 电场强度.
----真空介电常量 真空介电常量
说明: 说明: 对于不能抽象为点电荷 的带电体, 点电荷的带电体 对于不能抽象为 点电荷 的带电体 , 不 能直接应用库仑定律计算相互作用力 库仑定律表达式中引入“ 库仑定律表达式中引入“4π”因子,称 因子, 为单位制的有理化, 为单位制的有理化 , 这可使以后的推 导结果简单些
n
n
j ≠i
j ≠i
-----静电力叠加原理 -----静电力叠加原理
§1-2 电场 电场强度
一.电场 历史上的两种观点: 历史上的两种观点: 超距的观点: 超距的观点:电荷 电荷 电场的观点: 场 电场的观点: 电荷 电荷 近代物理的观点认为:凡是有电荷存在 近代物理的观点认为: 的地方, 的地方,其周围空间便存在电场
[例1]氢原子中电子与质子之间的距离为 5.3×10-11m , 试计算电子和质子之间的 静电力和万有引力各为多大? 静电力和万有引力各为多大?已知引力 常数G=6 常数G=6.7×10-11 N⋅m2/kg 2 解: 由库仑定律,电子与质子之间的静 由库仑定律, 电力大小为
1 e 1 9 ( .6×10 ) Fe = . 2 = 9.0×10 × −11 2 (5.3×10 ) 4πε0 r −8 = 8.1×10 N
2.库仑定律: 1785年库仑(法)通过扭秤 2.库仑定律 1785年库仑 库仑定律: 年库仑( 静止点电荷之间相互作 实验得到两个静止点电荷 实验得到两个静止点电荷之间相互作 用的基本规律: 用的基本规律: F q1 12
y q2 q q2 F = k 1 3 r21 F21 21 r21 r r 21 1 或 r2 q q2 o 1 F =k r21 O 21 2 x r 21 z
1 dq 0 dE = r 2 4 0r πε
P
dq
Q
整个带电体在P 整个带电体在P点产生的总场强为
1 dq 0 r E = ∫ dE = ∫ 2 4πε0 r
根据电荷分布的情况, 根据电荷分布的情况,dq 可表示为
λdl 线分布 分 dq =σds 面 布 ρdv 体 布 分
在直角坐标系中
四.场强的计算 1.点电荷的场强
+
q
P
r
P点的试探电荷q0所受的电场力为 点的试探电荷q
1 qq0 0 F= r 2 4πε0 r
由场强的定义可得P 由场强的定义可得P点的场强为
F 1 q 0 E= = r ----点电荷的场强 ----点电荷的场强 2 q0 4πε0 r
讨论: 讨论: 的大小与 q 成正比,而与 r2成反比 成正比, E E 的方向取决于 q 的符号 q>0 的方向(背向q E的方向沿 r 的方向(背向q)
方向沿x 方向沿x轴负向
1
q 1 1 − ∴EA = E+ − E−= (r −l / 2)2 (r + l / 2)2 4πε0 2qrl = 4 2 2 4πε0r (1− l / 2r) (1+ l / 2r)
因 pe=ql,当 r>>l 时有 =ql, >>l
1 2ql 1 2 pe 方向沿x 方向沿x方向 = EA = 3 3 4πε0 r 4πε0 r
q<0: E <0: 的方向与 r的方向相反(指向q) 的方向相反(指向q
+
−
点电荷的场是辐射状球对称分布电场
2.点电荷系的场强 2.点电荷系的场强 设空间电场由点电荷q 设空间电场由点电荷q1、q2、…qn激发 则各点电荷在P点激发的场强分别为: 则各点电荷在P点激发的场强分别为:
q1 0 1 qn 0 E1 = r ,⋯En = rn 1 2 2 4πε0 r 4πε0 rn 1 1
静电场: 静电场:相对于观察者静 止的电荷所产生的电场
§1-1电荷.库仑定律 电荷.
一.两种电荷 1.自然界只存在两种 1.自然界只存在两种 电荷, 电荷,同种电荷相排 斥,异种电荷相吸引 +
+
+
−
2.美国物理学家富兰克林首先称其为正 2.美国物理学家富兰克林首先称其为 美国物理学家富兰克林首先称其为正 电荷和 电荷和负电荷
其中
o =r r
----单位矢量 r ----单位矢量
q1q2 ∵r21 = −r ∴F = −F21 = k 3 r 12 12 12 r 12 9 2 2 3.实验测得 k = 8.9875×10 N⋅ m /C 实验测得 9 2 2 ≈ 9.0×10 N⋅ m /C 1 4.k常用常数 ε0 表示:k = 常用常数 表示: 4πε0 -12 C2/N⋅m2 其中 ε0=8.85×10
[
]
当 r>>l 时 >>l
1 ql 1 pe EB = 3 = 3 4πε0 r 4πε0 r
即 方向沿x 方向沿x负方向
pe EB = − 与电矩的方向相反 3 4πε0 r 1
3.连续分布电荷的场强 3.连续分布电荷的场强 dq在 在带电体上任取一个电荷元 dq,dq在 某点P 某点P处的场强为 r
静电场的主要表现: 静电场的主要表现: 1 力:放入电场中的任何带电体都要受 到电场所作用的力----电场力 到电场所作用的力 电场力 带电体在电场中移动时, 2 功:带电体在电场中移动时,电场力 对它作功 感应和极化: 3 感应和极化:电场中的导体或介质将 分别产生静电感应现象或极化现象