九年级上册数学期末试卷及答案浙教版
浙教版九年级上册数学期末考试试题含答案
浙教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.在平面直角坐标系中,下列二次函数的图象开口向上的是()A .2y =B .221y x x =-++C .22y x x=-+D .20.5y x x=-+2.下列属于随机事件的是()A .从装满红球的口袋随意摸一个球是红球B .抛一个硬币,正好反面朝上C .从一副扑克牌任抽2张都是红心5D .抛一枚骰子两次出现点数之和为133.已知34x y =,则下列结论一定成立的是()A .3x =,4y =B .1y x -=C .34x y=D .74x y y +=4.Rt ABC ∆中,斜边12AB =,其重心与外心之间的距离为()A .2B .3C .4D .65.若点A 在⊙O 内,点B 在⊙O 外,OA =3,OB =5,则⊙O 的半径r 的取值范围是()A .0<r <3B .2<r <8C .3<r <5D .r >56.在平面直角坐标系中,将抛物线()21y x =+向右平移2个单位,再向下平移4个单位,得到的抛物线解析式是()A .()234y x =+-B .()214y x =--C .()234y x =++D .()214y x =-+7.角α,β满足045αβ<<<︒︒,下列是关于角α,β的命题,其中错误..的是()A .0sin α<<B .0tan 1β<<C .cos sin βα<D .sin cos βα<8.已知二次函数()()20y a x m a =->的图象经过点()1,A p -,()3,B q ,且p q <,则m 的值不可能...是()A .2-B .C .0D .529.如图,30MAN ∠=︒,O 是MAN ∠内部一点,O 与MAN ∠的边AN 相切于点B ,与边AM相交于点C ,D ,AB =OE CD ⊥于E ,OB =,则弦CD 的长是()A .B .C .4D .10.如图,E ,F ,G ,H 分别是矩形ABCD 四条边上的点,连结EG ,HF 相交于点O ,//EG AD ,//FH AB ,矩形BFOE ∽矩形OGDH ,连结AC 交EG ,FH 于点P ,Q .下列一定能求出BPQ ∆面积的条件是()A .矩形BFOE 和矩形OGDH 的面积之差B .矩形ABCD 与矩形BFOE 的面积之差C .矩形BFOE 和矩形FCGO 的面积之差D .矩形BFOE 和矩形EOHA 的面积之差二、填空题11.比例式453x=中x 的值等于___________.12.为估计种子的发芽率,做了10次试验.每次种了1000颗种子,发芽的种子都是950颗左右,预估该种子的发芽率是___________.13.如图,点D 在钝角ABC 的边BC 上,连接AD ,45B ∠=︒,CAD CDA ∠=∠,:5:7CA CB =,则CAD ∠的余弦值为__________.14.如图,直线AB 与抛物线2y ax bx c =++(0a >)相交于()2,5A -,()5,12B 两点,点P 是抛物线上位于直线AB 下方的点,则点P 的横坐标m 的取值范围是___________.15.如图,点A ,B ,C 都在O 上,2tan 3ABC ∠=,将圆O 沿BC 翻折后恰好经过弦AB 的中点D ,则BCAB的值是___________.16.如图,矩形OABC 中,3OA =,5AB =,抛物线2y x bx c =++的顶点为P ,且经过点(),M m n 和()4,N m n +,其中点M ,N 位于矩形OABC 的内部(不含边界),则MNP ∆的面积是___________,b c +的取值范围是___________.三、解答题17.计算:22sin 60cos 303tan 45︒+︒+︒.18.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得元购物券,最多可得元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.19.由36个边长为1的小正方形组成的66⨯网格中,线段AB 的两个端点在格点上.(1)如图1,C ,D 也在格点上,连结AB ,CD 相交于点O ,求AOBO的值和OC 的长;(2)如图2,仅用无刻度直尺在线段AB 上找一点M ,使得23AM MB =.20.如图,在东西方向的海岸线l 上有长为300米的码头海岸AB ,在码头的最西端A 处测得轮船M 在它的北偏东45︒方向上;同一时刻,在A 处正东方向距离A 处50米的C 处测得轮船M 在北偏东37︒方向上.(1)求轮船M 到海岸线l 的距离;(结果保留整数米)(2)如果轮船M 沿着南偏东22︒的方向就行,那么该轮船能否行至码头海岸AB 靠岸?请说明理由.(参考数据:sin 370.60︒≈,tan 370.75︒≈,sin 220.37︒≈,tan 220.40︒≈)21.如图,在锐角ABC ∆,4AB BC ==,以BC 为直径画O 交AC 于点D ,过点D 作DE AB ⊥于点E .(1)求证:DE 是O 的切线;(2)当4AC AE =时,求阴影部分弓形的面积.22.(1)抛物线y =ax 2+c 经过点A (2,3),点B (-1,-3)两点,求该抛物线的解析式.(2)如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管应多长?23.ABC ∆和ADE ∆均是等腰直角三角形,其中90ACB AED ∠=∠=︒.如图1,开始时,//DE AC ,现在固定ABC ∆将ADE ∆绕着点A 按顺时针方向旋转α(0180α︒<<︒).(1)当ADE ∆中的DE 边旋转到与ABC ∆的某条边平行时,旋转角α的度数是;(2)如图2,连结BD ,CE ,求证:ABD ACE ∆∆∽;(3)若2AB AD =,在ADE ∆的旋转过程中,当C ,D ,E 三点在同一条直线上时,请画出图形求DBC ∠的度数.24.定义:若一个三角形存在两个内角之差是第三个内角的两倍,则称这个三角形为关于第三个内角的“差倍角三角形”.例如,在ABC ∆中,100A ∠=︒,60B ∠=︒,20C ∠=︒,满足2A B C ∠-∠=∠,所以ABC ∆是关于C ∠的“差倍角三角形”.(1)若等腰ABC ∆是“差倍角三角形”,求等腰三角形的顶角A ∠的度数;(2)如图1,ABC ∆中,3AB =,8AC =,9BC =,小明发现这个ABC ∆是关于C ∠的“差倍角三角形”.他的证明方法如下:证明:在BC 上取点D ,使得1BD =,连结AD ,(请你完成接下去的证明)(3)如图2,五边形ABCDE 内接于圆,连结AC ,AD 与BE 相交于点F ,G , AB BCDE ==,ABE ∆是关于AEB ∠的“差倍角三角形”.①求证:四边形CDEF 是平行四边形;②若1BF =,设AB x =,CDEFAEGS y S ∆=四边形,求y 关于x的函数关系式.参考答案1.A 【分析】二次函数y =ax 2+bx +c (a ≠0),①当a >0时,抛物线y =ax 2+bx +c (a ≠0)的开口向上;②当a <0时,抛物线y =ax 2+bx +c (a ≠0)的开口向下,据此判断即可.【详解】解:A 、∵a0,∴2y =的图象开口向上,故本选项符合题意;B 、∵a =﹣1<0,∴y =﹣x 2+2x +1的图象开口向下,故本选项不符合题意;C 、∵a =﹣2<0,∴y =﹣2x 2+x 的图象开口向下,故本选项不符合题意;D、∵a=﹣0.5<0,∴y=﹣0.5x2+x的图象开口向下,故本选项不符合题意;故选:A.【点睛】本题考查二次函数的图象和性质,解答本题的关键是明确题意,利用二次函数的性质解答.2.B【分析】根据事件发生的可能性大小判断.【详解】解:A、从装满红球的口袋随意摸一个球是红球,是必然事件;B、抛一枚硬币,正好反面朝上,是随机事件;C、从一副扑克牌中任抽2张都是红心5,是不可能事件;D、抛一枚骰子两次出现点数之和为13,是不可能事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.D【分析】根据比例的基本性质以及合比性质进行判断,即可得出结论.【详解】解:A.由34xy=,不能得到x=3,y=4,故本选项错误;B.由34xy=,不能得到y﹣x=1,故本选项错误;C.由34xy=,可得4x=3y;由34xy=,可得xy=12,故本选项错误;D.由34xy=,可得3114xy+=+,即74x yy+=,故本选项正确.故选:D.【点睛】本题主要考查了比例的性质.利用“两内项之积等于两外项之积”是解题的关键.4.A【分析】根据直角三角形的性质得到162CD AB==,根据重心的性质求解即可;【详解】∵直角三角形的外心是斜边的中点,∴162CD AB==,∵M是Rt ABC∆的重心,∴123DM DC==;故答案选A.【点睛】本题主要考查了直角三角形的性质,三角形的重心和三角形的外心,准确计算是解题的关键.5.C【分析】直接根据点与圆的位置关系的判定方法求解.【详解】解:∵点A在半径为r的⊙O内,点B在⊙O外,∴OA小于r,OB大于r,∵OA=3,OB=5,∴3<r<5.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.6.B 【分析】找出抛物线的顶点坐标,将其按要求平移后可得出新抛物线的顶点坐标,进而即可得出抛物线的解析式.【详解】解:∵抛物线y=(x+1)2的顶点坐标为(-1,0),∴平移后抛物线的顶点坐标为(1,-4),∴平移后抛物线的解析式为y=(x-1)2-4.故选:B .【点睛】本题考查了二次函数图象与几何变换,通过平移顶点找出平移后抛物线的解析式是解题的关键.7.C 【分析】由角α,β满足045αβ<<<︒︒,确定锐角三角函数的增减性,sin α随α的增大而增大,cos β随β的增大而减小,tan β随β的增大而增大,利用45°函数值的分点即可确定答案.【详解】解:角α,β满足045αβ<<<︒︒,sin α随α的增大而增大,cos β随β的增大而减小,tan β随β的增大而增大,A.∵sin 45=2︒,∴0<sin α<2,选项A 正确,不合题意;B .∵tan 45=1︒,∴0tan 1β<<,选项B 正确,不合题意;C .sin 45=2︒,cos 45=2︒,cos ,sin 22βα><,cos sin βα>,选项C 不正确,符合题意;D .sin 45=2︒,cos 45=2︒,cos 22αβ><,sin cos βα<,选项D 正确,不符合题意.【点睛】本题考查锐角三角函数值的大小比较问题,掌握函数的增减性质利用45°函数值的特殊关系是解题关键.8.D 【分析】根据二次函数图象上点的坐标特征得到m +1<3﹣m 或m ≤﹣1,解得即可.【详解】解:∵二次函数y =a (x ﹣m )2(a >0),∴抛物线的开口向上,对称轴为直线x =m ,∵图象经过点A (﹣1,p ),B (3,q ),且p <q ,∴m +1<3﹣m 或m ≤﹣1解得m <1,故选:D .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.9.C 【分析】延长BO 交AM 点F ,计算BF ,后计算OB ,OC ,OE ,最后,运用垂径定理计算即可.【详解】如图,延长BO 交AM 点F ,连接OC ,∵O 与MAN ∠的边AN 相切,∴∠ABF=90°,∵30MAN ∠=︒,AB =∴BF=3,∠AFB=60°,∠FOE=30°,设EF=x ,则OF=2x ,,∵OB =,∴OB=3x ,∴BF=OB+OF=5x ,∴,∴∴,⊥,∵OE CD∴在直角三角形OCE中,=,根据垂径定理,得CD=2CE=4,故选C.【点睛】本题考查了切线的性质,直角三角形的性质,垂径定理,会用延长线段BO构造特殊的直角三角形是解题的关键.10.A【分析】设BF=a,BE=b,BE=b,AE=kb,根据△AEP∽△ABC,△FQC∽△ABC,分别用含a、b、k的式子表示出EP、FQ,利用割补法表示出△BPQ面积,即可求解.【详解】解:设BF=a,BE=b,BE=b,AE=kb,∵EP∥BC,∠AEP=∠ABC=90°,∴△AEP∽△ABC,∴==1AE EP k AB BC k +,∴()111k k EP BC k a ka k k ==+=++ ,同理,△FQC ∽△ABC ,∴==1FQ FC k AB BC k +,∴()111k k FQ BA k b kb k k ==+=++ ,∵BPQ ABC ABP BQCS S S S =--△△△△()()()()1111111222k a k b k b ka k a kb =++-+-+ ()2112ab k =-,∵2BEOF HOGD S ab S k ab ==矩形矩形,,∴ BPQ S ()12BEOFHOGD S S =-矩形矩形.故选:A【点睛】本题为三角形相似知识的综合,综合性较强,根据题意设出参数,根据相似表示出相关线段,恰当利用割补法进行转换是解题关键.11.154【分析】根据比例的性质列出方程,通过解方程求得x 的值即可.【详解】解:∵453x=,∴4x =15,解得x =154,故答案为:154.【点睛】本题主要考查了比例的性质.利用“两内项之积等于两外项之积”列出方程是解题的关键.12.95%【分析】根据发芽率的意义,求出发芽的种子数占实验种子总数的百分比即可.【详解】解:(950×10)÷(1000×10)×100%=95%,故答案为:95%.【点睛】本题考查频率估计概率,理解发芽率的意义是正确计算的前提.13【分析】作AH ⊥BC 于H ,设AC═CD=5k ,则BC=7k ,设AH=BH=x ,在Rt △ACH 中,利用勾股定理求得x 的值(x 用k 表示,求得的值需淘汰不构成钝角三角形的值),然后表示AD ,DH ,利用余弦的定义即可求得.【详解】解:如图作AH ⊥BC 于H ,∵CAD CDA ∠=∠,:5:7CA CB =,设AC═CD=5k ,BC=7k ,∵∠B=45°,∠AHB=90°,∴AH=BH ,设AH=BH=x ,在Rt △ACH 中,∵AH 2+HC 2=AC 2,∴x 2+(7k-x )2=(5k )2,解得x=3k 或4k ,当x=4k 时,即AH=4k ,HC=7k-4k=3k ,AH>HC ,此时根据大边对大角,∠HAC<∠HCA ,又∠HAC+∠HCA=90°,∴∠HAC<45°,∴∠BAC<90°,与△ABC 为钝角三角形矛盾,故x=4k 舍去,当x=3k 时,∴BH=AH=3k ,HC=7k-3k=4k ,DH=k ,∴AD ==,∴cos cosDH CAD ADH AD ∠=∠==【点睛】本题考查解直角三角形,等腰三角形的判定定理,勾股定理,一元二次方程的应用等.解决本题的关键是作辅助线构造直角三角形,注意作辅助线时尽量不要破坏已给的角.14.25m -<<【分析】先求出直线AB 的解析式为:7y x =+,点P 是抛物线上位于直线AB 下方的点,点P 的横坐标满足27x ax bx c +>++,由27x ax bx c +=++的两根为x 1=-2,x 2=5,不等式的解集是25x -<<,点P 的横坐标m 的取值范围即可求出.【详解】解:直线AB 与抛物线2y ax bx c =++(0a >)相交于()2,5A -,()5,12B 两点,设直线AB 的解析式为:y kx b =+,由直线过A 、B 代入解析式得25512k b k b -+=⎧⎨+=⎩,解得17k b =⎧⎨=⎩,直线AB 的解析式为:7y x =+,点P 是抛物线上位于直线AB 下方的点,点P 的横坐标满足27x ax bx c +>++,由27x ax bx c +=++的两根为x 1=-2,x 2=5,不等式的解集是25x -<<.∴点P 的横坐标m 的取值范围是25m -<<.故答案为:25m -<<.【点睛】本题考查直线解析式的求法,方程的解,利用图像解不等式,掌握直线解析式的求法,方程的解,利用图像解不等式,根据点P 的位置构造不等式27x ax bx c +>++是解题关键.15.4【分析】如图,连接AC ,CD ,过点C 作CE ⊥AB 于E .设AD =DB =2a .想办法用a 表示BC 即可解决问题.【详解】解:如图,连接AC ,CD ,过点C 作CE ⊥AB 于E .∵D 为AB 的中点,设AD =DB =2a∵∠ABC =∠CBD ,∴ AC CD=,∴CA =CD ,∵CE ⊥AD ,∴AE =ED =a ,∴BE =DE +DB =3a ,∵2tan 3∠==C EC EB AB ,∴EC =2a ,∴BC =,∴44BC AB a ==,【点睛】本题考查圆周角定理,圆心角、弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.842b c -<+<【分析】根据题意,先把抛物线的一次项系数和常数项用含,m n 的式子表示出来,从而表示出点P 的坐标,再利用两点间的距离求出MN 的长,和点P 到MN 的距离,即可求出三角形的面积;再根据点M ,N 在矩形内部求出,m n 的范围,进而可求b c +的范围【详解】点M 和点N 的纵坐标均为n 可知,M 与N 关于对称轴对称,点M (m 、n )点N (4m +、n )∴MN 的距离为:44m m +-=∴点P 的横坐标为:2m + 抛物线2y x bx c =++的对称轴为:2bx =-22b m ∴-=+24b m ∴=--将点M (m 、n )代入2y x bxc =++得:2m bm c n ++=,则24c m m n =++①,点P 为抛物线的顶点,则点P 的纵坐标为:22244416164444ac b c m m c m m a ----==---,将①式代入得P 点的坐标为(2m +、4n -)∴点P 到MN 的距离为:()44n n --=14482PMN S ∴=⨯⨯=△2224424b c m m m n m m n +=--+++=++- ②点M 在矩形的内部,045m m >⎧∴⎨+<⎩01m ∴<< 点N 在矩形的内部03n ∴<<代入②式有:42b c -<+<故答案为:①8;②42b c -<+<【点睛】本题考查了二次函数的性质以及二次函数图像上点的特征,解题关键是用含,m n 式子表示出点P 的坐标,结合题意求出,m n 的范围17.74【分析】分别把各角的三角函数值代入原式,再由二次根式混合运算的法则进行计算即可.【详解】解:原式22122⎛=⨯- ⎝⎭,314+,74=.【点睛】本题考查了特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.18.(1)20,80;(2)58.【分析】(1)若两次都转向“10元”,该顾客最少可得20元购物券,若两次都转向“40元”,最多可得80元购物券.(2)画树状图或列表即可求得所有等可能的结果与该顾客所获购物券金额不低于50元的情况,然后利用概率公式求解即可求得答案.【详解】解:(1)画树状图得:则该顾客最少可得20元购物券,最多可得80元购物券;故答案为:20,80;(2)画树状图得:∵共有16种等可能的结果,该顾客所获购物券金额不低于50元的有10种情况,∴该顾客所获购物券金额不低于50元的概率为:105168=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.(1)34,157;(2)见解析【分析】(1)由//AB CD ,可证AOC BOD ∆∆∽,由性质知34AO CO AC BO DO BD ===,由勾股定理求出22345CD =+=,利用比例即可求出CO 的长;(2)从A 向左取两个格为E ,过B 向右取三个格为F ,连结EF 交AB 与点M ,构造相似,利用相似比即可求出M 满足条件.【详解】解:(1)由图知:3AC =,4BD =,∵//AB CD ,∴A B∠=∠,C D∠=∠.∴AOC BOD∆∆∽,∴34 AO CO ACBO DO BD===,∵5 CD=,∴31577 CO CD==,(2)从A向左取两个格为E,过B向右取三个格为F,连结EF交AB与点M,∵AE∥BF,∴∠A=∠B,∠E=∠F,∴△AEM∽△BFM,∴AE AM2== BF BM3,如图,点M是所求作的点.【点睛】本题考查网格作图问题,与平行线性质,相似三角形的判定与性质,掌握网格作图经常利用相似或全等解决问题.20.(1)轮船M到海岸线l的距离为200米;(2)该轮船能行至码头海岸AB靠岸【分析】(1)过点M作MD⊥AC交AC的延长线于D,设DM=x,解直角三角形即可得到结论;(2)作∠DMF=22°,交l于点F.解直角三角形即可得到结论.【详解】解:(1)过点M作MD⊥AC交AC的延长线于D,设DM=x,∵在Rt △CDM 中,CD=DM•tan ∠CMD=x•tan37°,又∵在Rt △ADM 中,∠MAC=45°,∴AD=DM ,∵AD=AC+CD=50+x•tan37°,∴50+x•tan37°=x ,∴50502001tan 3710.75x ︒=≈=--,答:轮船M 到海岸线l 的距离约为200米;(2)作∠DMF=22°,交l 于点F ,在Rt △DMF 中,DF=DM•tan ∠FMD=DM•tan22°≈200×0.40=80(米),∴AF=AC+CD+DF=DM+DF≈200+80=280<300,所以该轮船能行至码头AB 靠岸.【点睛】本题考查了解直角三角形的应用-方向角问题,读懂题目信息并作出辅助线构造成直角三角形是解题的关键.21.(1)见解析;(2)23π【分析】(1)连接OD ,由等腰三角形的性质得到,∠A =∠C,∠ODC =∠C ,∠A =∠ODC,可得OD ∥AB,根据平行线的性质得到OD ⊥DE ,于是得到DE 是⊙O 的切线;(2)根据等腰三角形的性质得到AD =CD ,根据直角三角形的性质得到∠ADE =30°,求得∠A =60°,然后根据扇形和三角形的面积公式即可得到结论.【详解】解:(1)连结OD ,∵OD OC =,∴∠=∠C ODC .∵AB BC =,∴C A ∠=∠.∴A ODC ∠=∠.∴OD ∥AB .∵DE AB ⊥,∴DE OD ⊥,而OD 是圆O 的半径,∴DE 是O 的切线.(2)连结BD ,∵BD ⊥AC ,AB =BC ,∴AD =CD ,∵AC =4AE ,∴AD =2AE ,∵∠AED =90°,∴∠ADE =30°,∴∠A =60°,∴∠ABD =∠CBD =30°,∴∠COD =60°,AD =CD =12AB =2,BD =2AB =∴2602112360223S BD CD ππ⨯⨯=-⨯⨯⋅=-阴影【点睛】本题考查了切线的判定和性质,等腰三角形的性质,直角三角形的性质,扇形面积的计算,正确的作出辅助线是解题的关键.22.(1)y=2x 2-5;(2)2.25m.【分析】(1)把点A (2,3),点B (-1,-3)代入y=ax 2+c ,解方程组即可得到结论;(2)先求出顶点坐标,然后设抛物线的解析式为y=a (x-1)2+3(0≤x≤3),将(3,0)代入求得a 值,则x=0时得的y 值即为水管的长.【详解】解:(1)把点A (2,3),点B (-1,-3)代入y=ax 2+c 得,433a c a c +=⎧⎨+=-⎩,解得:25a c =⎧⎨=-⎩,∴该抛物线的解析式为:y=2x 2-5;(2)∵在距池中心的水平距离为1m 时达到最高,高度为3m ,∴抛物线的顶点坐标为(1,3),∴设抛物线的解析式为:y=a (x-1)2+3(0≤x≤3),代入(3,0)求得:a=-.将a 值代入得到抛物线的解析式为:y=34-(x-1)2+3(0≤x≤3),令x=0,则y=94=2.25.故水管长为2.25m ;【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.23.(1)45︒或90︒;(2)见解析;(3)图见解析,15DBC ∠=︒或75︒.【分析】(1)分2种情况进行讨论:AB ∥DE 、BC ∥DE ,分别画出图形,计算出度数即可;(2)根据等腰直角三角形的性质得出2AC AE AB AD ==,∠BAC=∠DAE=45°,即可得出∠BAD=∠CAE ,从而证得△ABD ∽△ACE ;(3)由(2)可知,△ABD ∽△ACE ,得到∠ABD=∠ACE=90°,根据AB=2AD 得出∠ACE=30°,即可得出∠DBC=15°或75°.【详解】解:(1)当△ADE 中的DE 边旋转到与△ABC 的某条边平行时,旋转角α的度数是45°,90°.①当AB ∥DE 时,α=45°;②当DE ∥BC 时,α=90°;∴旋转角α的所有可能的度数为45°,90°.故答案为45°,90°;(2)∵△ABC 和△ADE 均是等腰直角三角形,其中∠ACB=∠AED=90°.∴22AC AE AB AD ==,∠BAC=∠DAE=45°,∴∠BAC+∠DAC=∠DAE+∠DAC ,即∠BAD=∠CAE ,∴△ABD ∽△ACE ;(3)如图,由BAD CAE ∆∆∽得,ABD ACE ∠=∠,2ACABAE AD ==.在Rt ACE ∆中,90AEC ∠=︒,2AC AE =,∴30ACE ∠=︒,∴30ABD ACE ∠=∠=︒.∴453015DBC ∠=︒-︒=︒.如图,在BAD CAE ∆∆∽得,ABD ACE ∠=∠,2AC AB AE AD==.在Rt ACE ∆中,90AEC ∠=︒,2AC AE =,∴30ACE ∠=︒,∴30ABD ACE ∠=∠=︒.∴453075DBC ∠=+=︒︒︒.∴15DBC ∠=︒或75︒.【点睛】本题考查了作图-旋转变换,等腰直角三角形的性质,三角形相似的判定和性质,熟练掌握性质定理是解题的关键.24.(1)108A ∠=︒;(2)见解析;(3)①见解析;②22421x y x -=-【分析】(1)利用“差倍角三角形”的意义,建立方程求解,即可得出结论;(2)先判断出∠C=∠BAD ,进而判断出∠CAD=∠ADC ,即可得出结论;(3)①先判断出∠CAD=∠ABE ,进而得出AC ∥DE ,即可得出结论;②先判断出△ABF ∽△EBA ,得出BE=x 2进而得出CD=x 2-1,AE=x 2-1,AF=21x x-,再判断出221-x x ,即可得出结论【详解】解:(1)设等腰三角形的顶角∠A 为2x ,则等腰三角形的底角为90°-x ,∵等腰△ABC 是“差倍角三角形”,∴90°-x-2x=2×2x ,∠A=2x=108°,∴顶角∠A 的度数为108°;(2)∵3AB =,1BD =,9BC =,∴ABBDBC AB =.又∵B B ∠=∠,∴BAD BCA ∆∆∽.∴BAD C ∠=∠.设BAD C α∠=∠=.∵8CA CD ==,∴1902DAC ADC α∠=∠=︒-.∴3902B α︒∠=-,1902BAC α∠=︒+.∴2BAC B C ∠-∠=∠.∴ABC ∆是差倍角三角形.(3)①证明:连结CE ,∵»»BC DE =,∴ECD BEC ∠=∠,∴BE CD ∥.∵ AB BC DE ==,∴AEB BAC DAE ∠=∠=∠.∵ABE ∆是关于AEB ∠的差倍角三角形,∴2FAG BAE BAC DAE BAE AEB ABE ∠=∠-∠-∠=∠-∠=∠.∴FAG ABE ADE ∠=∠=∠.∴//AC DE .∴四边形CDEF 是平行四边形②∵∠BAF=∠AEB ,∠ABF=∠EBA ,∴△ABF ∽△EBA ,∴ABBF AFBE AB AE ==,∴2221AB x BE x BF ===,∴EF=BE-BF=x 2-1,∵四边形CDEF 是平行四边形,∴CD=EF=x 2-1,∵ AE CD =,∴AE=CD=x 2-1,∴222(1)1AB AE x x x AF BE x x ⋅--===,过点B 作BM ⊥AC 于M ,EN ⊥AC 于N,∴BM ∥EN ,∴△BFM ∽△EFN ,∴211BM BF EN EF x ==-,∴211BM ENx =-过点G 作GH ⊥AE 于H ,∵∠BAC=ACB=∠AEG=∠EAG ,∴△ABC ∽△AGE ,∴BM ACGH AE =,∴22222112111(1)EN x x x x GH GH x x x ---===--,∴221EN x GH x -=,∴22222221421112CDEFAEGS DE EN DE EN x x xyS AE GH x x xAE GH∆⋅--===⋅=⋅=--⋅四边形.【点睛】此题是圆的综合题,主要考查了相似三角形的判定和性质,圆周角定理,新定义,平行四边形的判定和性质,构造出相似三角形判断出221EN xGH x-=是解本题的关键.。
浙教版九年级上册数学期末考试卷(附答案)
浙教版九年级上册数学期末考试卷(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.一天晚上,小丽在清洗两只颜色分别是粉色和白色的有盖茶杯时,突然停电了,小丽只好将杯盖和茶杯随机地搭配在一起,则其颜色搭配一致的概率是()A.1B.C.D.2.如图,△ABC中,点E、F在BC边上,点D,G分别在AB,AC边上,四边形DEFG是矩形,若矩形DEFG 面积与△ADG的面积相等,设△ABC的BC边上高AH与DG相交于点K,则的值为()A. 1:1B. 1:2C. 2:3D. :33.如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=25°,则∠CAD的度数是()A. 25°B. 60°C. 65°D. 75°4.抛物线的顶点坐标为()A. (2 ,5)B. (-5 ,2)C. (5 ,2)D. (-5 ,-2)5.在硬地上掷1枚图钉,通常会出现两种情况:“钉尖着地”与“钉尖不着地”.任意重复抛掷1枚图钉很多次时,你认为是哪种情况的可能性大()A. 钉尖着地B. 钉尖不着地C. 一样大D. 不能确定6.如图所示,将绕点按顺时针旋转一定角度得到,点的对应点恰好落在边上,若,,则的长为()A. B. C. D.7.一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )A. 2πB. 4πC. 12πD. 24π8.如图所示:∠CAB=∠BCD,AD=2,BD=4,则BC=()A. B. C. 3 D. 69.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有()A. 1个B. 2个C. 3个D. 4个10.如图,在平面直角坐标系中,将点绕原点顺时针旋转90°得到点,则的坐标为()A. B. C. D.二、填空题(共6题;共24分)11.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是________.12.如图是某市1月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择1月1日至1月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量是重度污染的概率是________.13.如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为________度.14.如图,抛物线与直线的两个交点坐标分别为,,则方程的解是________.15.如图,在△ABC中,D,E两点分别在边BC,AB上,DE∥AC,过点E作EF∥DC,交∠ACB的平分线于点F,连结DF,若∠EDF=∠B,且BC=4,BD=1,那么EF的长度是________.16.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为________ .三、解答题(共8题;共66分)17.如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的顶点上.(1)以点O为位似中心,在网格图中作△A′B′C′(在位似中心的同侧)和△ABC位似,且位似比为1 2;(2)连结(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).18.如图1,在平面直角坐标系中,直线l与x轴、y轴分别交于点B(4,0)、C(0,3),点A为x轴负半轴上一点,AM⊥BC于点M交y轴于点N,满足4CN=5ON.已知抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的函数关系式;(2)连接AC,点D在线段BC上方的抛物线上,连接DC、DB,若△BCD和△ABC面积满足S△BCD=S△ABC,求点D的坐标;(3)如图2,E为OB中点,设F为线段BC上一点(不含端点),连接EF.一动点P从E出发,沿线段EF以每秒1个单位的速度运动到F,再沿着线段FC以每秒个单位的速度运动到C后停止.若点P在整个运动过程中用时最少,请直接写出最少时间和此时点F的坐标.19.某水果专卖店5月份销售芒果,采购价为10元/kg,上旬售价是15元/kg,每天可卖出450kg.市场调查反映:如调整单价,每涨价1元,每天要少卖出50kg;每降价1元,每天可多卖出150kg.调整价格时也要兼顾顾客利益。
浙教版初中数学九年级第一学期期末考试试卷附参考答案
第一学期期末考试初三数学试卷一、选择题: (每题 3 分,共 30 分)1. Rt △ ABC 中,∠ C=90°, AB=13, BC=5,则 tan A () A .5B .5C .12D .1312131312请认真审题,仔细答题,相信你必定会有优秀的表现 !2. 已知两圆半径分别为2cm 和 3cm ,当两圆外切时,它们的圆心距d 知足()A. d5cm B. d5cm C. d 1cmD. d1cm3. 在反比率函数 yk(k 0) 的图像上有两点 ( 1, y 1) , ( 1, y 2) , 则 y 1y 2的值是()x4A .正数B .负数C .非正数D .不可以确立4. 如图 , 小明周末到外婆家 , 走到十字路口处 , 记不清前方哪条路是往外婆家的, 那么他能一次选对路的概率是 ( )b5E2RGbCAPA.1B.1 C.1432AE DB C ( 第 4题图)( 第 5题图)( 第6题图) (第 7 题图) p1EanqFDPw5.以下图, 在房屋外的屋檐E 处安有一台监督器, 房屋前有一面落地的广告牌, 那么监督器的盲区在 ()DXDiTa9E3dA. △ACEB. △BFDC. 四边形 BCEDD.△ABD6.函数 yax 2 bx c 的图像以下图,这个函数的分析式为()A. y x 2 2x 3B. y x 2 2x 3C. yx 2 2 x 3D.yx 22x 37.如图,在△ ABC 中, AB=AC ,∠ A=36o , BD 均分∠ ABC , DE ∥ BC ,那么在以下三角形中,与RTCrpUDGiT△ EBD 相像的三角形是( ) A. △ ABC B. △ADE C. △ DAB D. △ BDC8.已知一个圆锥的底面积是全面积的1, 那么这个圆锥的侧面睁开图的圆心角是()3A. 60 oB. 90ooD. 180oA D9. 如图,正方形ABCD 的边长为 1, E 、 F 分别是边 BC 和 CD 上的动点yxFBCE(不与正方形的极点重合) ,不论 E 、F 如何动,一直保持 AE ⊥ EF 。
浙教版九年级上册数学期末考试试题及答案解析
浙教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列事件中,属于必然事件的是( )A .小明买彩票中奖B .在—个只有红球的盒子里摸球,摸到了白球C .任意抛掷一只纸杯,杯口朝下D .任选三角形的两边,其差小于第三边2.下列各式中正确的是( )A .tan 45︒=B .cos 451︒=C .1sin 302︒=D .tan 60︒ 3.下列关于相似三角形的说法,正确的是( )A .等腰三角形都相似B .直角三角形都相似C .两边对应成比例,且其中一组对应角相等的两个三角形相似D .一条直角边和斜边对应成比例的两个直角三角形相似4.已知二次函数的图象过点(1,4)P ,对称轴为直线2x =,则这个函数图象必过点( ) A .(1,4)- B .(0,3) C .(2,4) D .(3,4) 5.如图,在△ABC 中,BD 平分∠ABC 交AC 于点D .过点D 作DE ∥BC 交AB 于点E ,若AE :BE =3:2,且△ADE 的面积为3,则△BCD 的面积为( )A .253B .193C .163D .1036.下列函数图象经过变换后,过原点的是( )A .21(1)22y x =--向右平移3个单位B .21(1)22y x =--向左平移3个单位C .22(1)1y x =+-向上平移1个单位D .22(1)1y x =+-关于x 轴作轴对称变换 7.如图,点C DEFG 、、、、均在以AB 为直径的O 上,其中20,AGC ︒∠=10BFE ︒∠=,则CDE ∠=( )A .115︒B .120︒C .135︒D .150︒8.已知(,)M b m 和(1,)N b n +是二次函数2y x bx c =-+(其中,b c 是常数)上不同的两点,则判断m 和n 的大小关系正确的是( )A .0b >时,m n >B .0b <时,m n <C .1b >-时,m n <D .1b <时,m n > 9.如图,四边形ABCD 内接于O ,对角线AC BD ⊥于点E ,若AD 的长与O 的半径相等,则下列等式正确的是( )A .2222BC AB CD =+B .222322BC AB CD =+ C .222433BC AB CD =+ D .222544BC AB CD =+10.如图,在ABC 中,90A ︒∠=,2AB AC ==.以BC 的中点O 为圆心的圆弧分别与AB 、AC 相切于点D 、E ,则图中阴影部分的周长是( )A .2πB .24π+ C .22π+ D .14π-二、填空题11.如图,D 是ABC 的边BC 上一点,4AB =,2AD =,DAC B ∠=∠.如果ABD △的面积为15,那么ACD △的面积为______.12.某单位工会组织内部抽奖活动,共准备了100张奖券,设特等奖1名,一等奖10名,二等奖20个,三等奖30个,已知每张奖券获奖可能性相同,则抽一张奖券获得特等奖或一等奖的概率是_____.13.已知()()()1233,,0.5,,2,y y y --是抛物线224y x x m =--+上的点,则将123,,y y y 按从小到大排列为_______.14.如图,已知等边ABC 以C 为旋转中心,按逆时针方向旋转()0180αα︒︒<<,得到DEC ,若CD AB ⊥,等边三角形边长为1,则点A 的运动路径长为_______.15.已知在Rt ABC 中,4,3AC BC ==,则sin A =______.16.如图,在等腰ABC 中,1AB AC AD ==,平分BAC ∠,点E 在BA 的延长线上,ED EC DE =,交AC 于点F ,则图中与AFE △相似的三角形为________;AF 的长为_______.三、解答题17.计算下列各式的值:(1)sin 45cos60cos 45︒︒-︒.(2)2cos 45tan 60cos30︒+︒︒.18.已知有一个30度的角,两个45度的角,一个60度的角,(1)从中任取两个角,请用树状图或列表求出两个角恰好互余的概率;(2)已知在Rt ABC 中,902C BC A ︒∠==∠,,是上面四个角中的一个,求边AB 的长.19.如图,在矩形ABCD 中,AC 是它的一条对角线.(1)过点B 、D 两点分别作BE ⊥AC ,DF ⊥AC ,垂足分别为E 、F ,连接DE 、BF ;(保留作图痕迹,不写作法);(2)求证:四边形BEDF 是平行四边形.20.一位运动员推铅球,铅球经过的路线为如图所示的抛物线,(1)求铅球所经过路线的函数表达式;(2)求出铅球的落地点离运动员有多远.21.如图,在ABC 中,AB AC =,以AB 为直径的O 分别交BC AC 、于点D E 、,连结EB 交OD 于点F .(1)求证:OD BE ⊥(2)连结AD ,交BE 于点G ,若AGE DGF ≌,且2AB =,求AE 的长.22.已知二次函数2y x bx c =-++(其中b c ,是常数)(1)已知函数过点(2,3),求出b 和c 满足的关系式;(2)若1c b =-,求证:不论b 为何值,该函数图象与x 轴一定有交点;(3)四位同学在研究此函数时,甲发现当0x =时,5y =;乙发现函数的最大值是9;丙发现函数图象的对称轴是2x =;丁发现4x =是方程20x bx c -++=的一个根.已知这四位同学中只有一位发现的结论是错误的,请直接写岀错误的那个同学是谁,并根据另三位同学的表述求出此函数表达式.23.在平面直角坐标系中,将抛物线1C :2(1)1y x =--向左平移2个单位,向下平移3个单位得到新抛物线2C .(1)求新抛物线2C 的表达式;(2)如图,将OAB 沿x 轴向左平移得到O A B '''△,点A(0,5)的对应点A '落在平移后的新抛物线2C 上,求点B 与其对应点B '的距离.24.如图,AB 是O 的直径,4AB =,P 是AB 延长线上一点,且1BP =,过点P 作一直线,分别交O 于C ,D 两点,已知30P ∠=︒.(1)求CD 与PC 的长;(2)连结BC ,AD ,求圆内接四边形ABCD 的面积.25.如图,抛物线y =﹣x 2+bx +c 与x 轴交于A (2,0),B (﹣4,0)两点.(Ⅰ)求抛物线的解析式;(Ⅱ)若抛物线交y 轴于点C ,在抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出点Q 的坐标;若不存在,请说明理由;(Ⅲ)在抛物线第二象限的图象上是否存在一点P ,使得△PBC 的面积最大?若存在,请直接写出点P 的坐标和△PBC 面积的最大值;若不存在,请说明理由.参考答案1.D【解析】根据事件发生的可能性大小判断.【详解】解:A、小明买彩票中奖,是随机事件,不符合题意;B、在—个只有红球的盒子里摸球,摸到了白球,是不可能事件,不符合题意;C、任意抛掷一只纸杯,杯口朝下,是随机事件,不符合题意;D、任选三角形的两边,其差小于第三边,是必然事件,符合题意;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.C【分析】根据特殊角的三角函数即可求解【详解】A ,∵tan45∘=1∴A错误B,∵ cos45∘∴ B 错误C ,∵sin30∘=1 2∴C正确D ,∵tan60∘∴D错误故选:C.【点睛】本题考查了特殊角的三角函数值,基础题,熟记特殊角的三角函数值是解题的关键.3.D【分析】根据相似三角形的判定定理进行判定即可.【详解】A.两个等腰直角三角形相似一定成立,本选项错误;B.所有的等腰直角三角形都相似,本选项错误;C.两边对应成比例且其夹角相等的两个三角形相似,本选项错误;D.一条直角边和斜边对应成比例的两个直角三角形相似,本选项正确;故选D.【点睛】本题考查了相似三角形的判定,属于基础题目,熟练掌握相似三角形的判定方法是关键.4.D【分析】根据抛物线的对称轴即可以得到点P关于对称轴的对称点.【详解】∵抛物线对称轴为直线x=2,并且图像过点P(1,4)∴P(1,4)关于直线x=2的对称点为(3,4)故选:D.【点睛】本题考查了抛物线的图像和性质,根据二次函数的对称轴求出点P关于对称轴的对称点的坐标,是解题关键.5.D【分析】先由DE∥BC证明△ADE∽△ACB,由此得△ADE与△ACB的面积之比为:9:25,再由AE:BE=3:2得△ADE与△DEB的面积之比为:9:6,故△ADE与△DCB的面积之比为:9:10,即可得到答案.【详解】解:∵AE:BE=3:2,∴AE:BA=3:5,∵DE ∥BC ,∴△ADE ∽△ACB ,∴△ADE 与△ACB 的面积之比为:9:25,∵AE :BE =3:2,∴△ADE 与△DEB 的面积之比为:9:6,∴△ADE 与△DCB 的面积之比为:9:10,∵△ADE 的面积为3,∴△BCD 的面积为103, 故选:D .【点睛】本题考查了相似三角形的性质与判定,掌握相似三角形的性质是解题的关键.6.B【分析】求出变化后的解析式,再代入(0,0)即可.【详解】解:A 选项,21(1)22y x =--向右平移3个单位后的解析式为:21(4)22y x =--,当x=0时,y=6,不经过原点;B 选项,21(1)22y x =--向左平移3个单位后的解析式为:21(2)22y x =+-,当x=0时,y=0,经过原点;C 选项,22(1)1y x =+-向上平移1个单位后的解析式为:22(1)y x =+,当x=0时,y=2,不经过原点;D 选项,22(1)1y x =+-关于x 轴作轴对称变换后的解析式为:22(1)1y x =-++,当x=0时,y=-1,不经过原点;故选:B .【点睛】本题考查了二次函数的几何变换,根据变换条件确定解析式是解题关键.7.B【分析】利用圆周角定理求出∠CGE ,再利用圆内接四边形的的对角互补的性质求解即可.【详解】解:如图,连接BG ,GE .∵AB 是直径,∴∠AGB=90°,∵∠BFE=∠BGE=10°,∠AGC=20°,∴∠CGE=90°-20°-10°=60°,∵∠EGC+∠CDE=180°,∴∠CDE=180°-60°=120°,故选:B .【点睛】本题考查圆周角定理,圆内接四边形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.8.C【分析】根据已知函数解析式,可确定函数开口方向和对称轴,根据二次函数的性质可得距离对称轴越远的点函数值越大,由此列出不等式,判断即可.【详解】解:∵二次函数2y x bx c =-+(其中,b c 是常数),∴该函数的开口向上,对称轴为22b b x -=-=,且距离对称轴越远的点,函数值越大, 当122b b b ++<时,M 点距离对称轴远,此时1b <-,故当1b <-时,m n >,没有符合条件的选项;当122b b b ++>时,N 点距离对称轴远,此时1b >-,故当1b >-时,m n <,C 选项符合条件;故选:C .【点睛】本题考查二次函数的性质,理解当a>0时,二次函数开口向上,且距离对称轴越远的点函数值越大,当a<0时,二次函数开口向下,且距离对称轴越远的点函数值越小是解题关键. 9.C【分析】连接,OA OD ,可证OAD △为等边三角形,得到60AOD ∠=︒,再由圆周角定理解得1302ABD ACD AOD ∠=∠=∠=︒,结合题意,及30°角所对的直角边等于斜边的一半,解得12AE AB =,12DE CD =,最后在t R ABE 中,在t R CDE 中,在t R BCE 中分别用勾股定理整理出三边关系,即可解题.【详解】连接,OA OD ,AD 的长与O 的半径相等,OAD ∴为等边三角形,60AOD ∴=︒∠1302ABD ACD AOD ∴∠=∠=∠=︒ AC BD90AEB AED ∴∠=∠=︒12AE AB ∴= 9060BAC ABD ∴∠=︒-∠=︒60BDC BAC ∴∠=∠=︒30DCE ∴∠=︒12DE CD ∴= 在t R ABE 中,222BE AE AB +=,2234BE AB = 在t R CDE 中,222CE DE CD +=,2234CE CD = 在t R BCE 中,222BE CE BC +=,234AB ∴ 2234CD BC += 222433BC AB CD ∴=+故选:C .【点睛】本题考查圆周角定理、含30°角的直角三角形、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.10.C【分析】连接OD 、OE ,根据切线的性质得到OD ⊥AB ,OE ⊥AC ,则四边形OEAD 为正方形,而AB=AC=2,O 为BC 的中点,则OD=OE=1,再根据正方形的面积公式和扇形的面积公式,利用C 阴影部分=AE+AD+L 扇形OED ,进行计算即可.【详解】解:连接OD 、OE ,∴ OD ⊥AB ,OE ⊥AC ,90A ∠=︒,OE=OD,∴四边形OEAD 为正方形,AB=AC=2,O 为BC 的中点,∴AE=AD=OD=OE=12AC =1, ∴C 阴影部分=AE+AD+L 扇形OED =9011121802ππ︒⨯++=+︒, 故选C .【点睛】 本题考查了弧长公式、正方形的判定及性质、切线定理,熟练掌握公式和定理是解题的关键. 11.5【分析】先证明△ACD ∽△BCA ,再根据相似三角形的性质得到:△ACD 的面积:△ABC 的面积为1:4,再结合△ABD 的面积为15,然后求出△ACD 的面积即可.【详解】∵DAC B ∠=∠,C C ∠=∠,∴ACD BCA △∽△,∵4AB =,2AD =, ∴ACD ACD ABC ABD ACDS S S S S =+△△△△△ 21154ACD ACD S AD S AB ⎛⎫=== ⎪+⎝⎭△△, ∴ACD △的面积5=,故答案是:5.【点睛】本题主要考查了相似三角形的判定和性质、掌握相似三角形的面积比等于相似比的平方是解答本题的关键.12.11100【分析】直接利用概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数,从而可得答案.【详解】 解:抽一张奖券获得特等奖或一等奖的概率11011.100100+==故答案为11100. 【点睛】 本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.掌握公式是解题的关键.13.312y y y <<【分析】先求出抛物线的对称轴和开口方向,根据二次函数的增减性即可得到答案.【详解】解:抛物线224y x x m =--+的开口向下,对称轴是直线()41,22x -=-=-⨯- 当x >1-时,y 随x 的增大而减小,∵()()()1233,,0.5,,2,y y y --为抛物线224y x x m =--+上的三个点,∴点()13,y -关于对称轴1x =-的对称点是()11y ,,0.5-<1<2,∴3y <1y <2y ,故答案为3y <1y <2y .【点睛】本题考查了二次函数图象上点的坐标特征和二次函数的增减性,能熟记二次函数的性质是解此题的关键.14.16π 【分析】在等边△ABC 中,由CD ⊥AB 可得∠ACD=30°,然后根据弧长公式可求解.【详解】解:∵△ABC 是等边三角形∴∠ACB=60°∵CD ⊥AB∴∠ACD=12∠ACB=160302⨯︒=︒∴点A 的运动路径长为30111806ππ⨯= 故答案为:16π.【点睛】此题主要考查了弧长的求法,得到∠ACD=30°是解答此题的关键.15.34或35【分析】根据 AC=4,BC=3 因此分 AB ,AC 为斜边两种情况讨论,当AB 时,利用勾股定理求出斜边AB , sinA=BCAB ;当AC 为斜边时,,再由 sinA= BCAC 即可得.【详解】∵AC=4,BC=3(1)当 AB 为斜边为斜边,由勾股定理,则∴sinA=BCAB =35(2)当AC 为斜边, 则 sinA=34BC AC =综上,答案为 34或35.【点睛】本题考查了直角三角形中锐角三角函数,熟记锐角三角函数的计算方法是解题关键. 16.AEC . 14【分析】根据等边对等角可证明ECA FEA ∠=∠,结合FAE EAC ∠=∠即可证明~AFE AEC ;作EG CD ⊥交CD 于点G ,由//AD EG 得2BABDAE GD ==求得12AE =,由~AFE AEC 得AFAEAE AC =代入相关数值即可得到结论.【详解】解:AB AC =,ABC ACB ∴∠=∠,∵ED EC =∴EDC ECD ∠=∠ECD ECA ACD EDC EBD BED ∠=∠+∠∠=∠+∠,,ECA FEA ∴∠=∠,FAE EAC ∠=∠,~AFE AEC ∴,如图,作EG CD ⊥交CD 于点G ,ED EC =,1122GD GC CD BD ∴===, //AD EG ,2BA BD AE GD∴==, 解得12AE =, ~AFE AEC ,AF AE AE AC∴=,解得14AF =. 故答案为:AEC ,14. 【点睛】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.17.(1)(2)2 【分析】(1)根据特殊锐角三角函数值代入计算即可;(2)根据特殊锐角三角函数值代入计算即可.【详解】解:(1)sin45cos60cos45︒︒-︒12=(2)2cos45tan60cos30︒+︒︒2=+⎝⎭1322=+2=.【点睛】本题考查了特殊角的三角函数值,掌握特殊锐角的三角函数值是解答此题的关键.18.(1)两个角恰好互余的概率为13;(2)边AB的长为4或【分析】(1)列举出所有可能的情况,确定两个角恰好互余的数量,根据概率公式计算即可;(2)分三种情况,利用锐角三角函数及直角三角形30度角的性质分别求解.【详解】(1)列树状图如下:共有12种等可能的情况,其中两个角恰好互余的有4种,∴P(两个角恰好互余)=412=13;(2)分三种情况:当30A∠=︒时,AB=2BC=4;当45A∠=︒时,sin45BCAB===︒;当60A∠=︒时,sin60BCAB===︒;∴边AB的长为4或【点睛】此题考查列举法求事件的概率,锐角三角函数求边长,直角三角形30度角的性质,熟记各知识点并综合应用是解题的关键.19.(1)见解析;(2)见解析【分析】(1)利用基本作图求解;(2)先根据矩形的性质得到AB =CD ,AB ∥CD ,再证明BE ∥DF ,接着证明△ABE ≌△CDF ,从而得到BE =DF ,然后根据平行四边形的判定方法得到结论.【详解】解:(1)如图,BE 和DF 为所作;(2)证明:∵四边形ABCD 为矩形,∴AB =CD ,AB ∥CD ,∴∠EAB =∠FCD ,∵BE ⊥AC ,DF ⊥AC ,∴BE ∥DF ,∠AEB =∠DFC =90°,在△ABE 和△CDF 中,EAB FCD AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (AAS ),∴BE =DF ,而BE ∥DF ,∴四边形BEDF 是平行四边形.【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定与性质和平行四边形的判定.20.(1)21(4)312y x =--+;(2)铅球的落地点离运动员有10m 【分析】 (1)由图象可知:顶点坐标为(4,3),且图象过点(0,53), 设函数解析式为2(4)3y a x =-+,将点(0,53)代入,解得:a=112-,即可顶点函数解析式; (2)求当y=0即21(4)3012x --+=时的解即可顶点答案. 【详解】 (1)由图象可知:顶点坐标为(4,3),且图象过点(0,53), 设函数解析式为2(4)3y a x =-+,将点(0,53)代入,得16a+3=53, 解得:a=112-, ∴铅球所经过路线的函数表达式为21(4)312y x =--+; (2)当y=0时,即21(4)3012x --+=, 解得:x 1=10,x 2=-2(舍去),答:铅球的落地点离运动员有10m .【点睛】此题考查二次函数的实际应用,解一元二次方程,根据二次函数图象得到相关信息列出恰当的函数解析式解决问题是解题的关键.21.(1)见解析;(2)AE 的长为23【分析】(1)连接AD ,证OD //AC ,因为AB 是直径,所以AC BE ⊥,则OD BE ⊥得证; (2)若AGE DGF ≌,则AE=DF ,由OF 是ABE 的中位线,则1AE 2OF =,所以1OF=DF 2,最后证得2AE =DF=O 3D 问题得解. 【详解】(1)证明:连接AD , AB 是O 的直径,BE AC AD BC ∴⊥⊥, , AB=AC ,BD=CD ∴,又AO=BO ,OD//AC ∴,OD BE ∴⊥;(2) 解:由(1)知//OD AC ,OD BE ⊥,EF BF ∴=,AO BO =,1OF=AE 2∴, AGE DGF △≌△,DF=AE ∴,12OF DF ∴=, 12OF FD OD AB +== ,2AB =, 112FD FD ∴+= , 23FD ∴=, 23AE ∴=. 【点睛】本题考查了圆的综合题,圆的有性质,垂径定理,等腰三角形的性质,三角形中位线的判定和性质,全等三角形的性质等知识,运用等腰三角形“三线合一”的性质及垂径定理是解本题的关键.22.(1)72c b =-;(2)见解析;(3)丁结论错误,函数解析式为245y x x =-++.【分析】(1)将点(2,3)代入解析式得到2223b c -++=,整理即可;(2)将c=1-b 代入函数解析式,利用判别式判断即可;(3)将函数解析式化为顶点式222424b b c y x bx c x +⎛⎫=-++=--+ ⎪⎝⎭,根据已知分别得到每个人结论正确的等式,令其中两个成立,计算验证其他两个结论是否正确即可得到答案.【详解】(1)将点(2,3)代入解析式,得,2223b c -++=,∴72c b =-;(2)1c b =-,21y x bx b ∴=-+-+,则2224(1)44(2)0b b b b b =+-+=-+=-≥,∴不论b 为何值,该函数图象与x 轴一定有交点;(3)222424b b c y x bx c x +⎛⎫=-++=--+ ⎪⎝⎭. 若甲正确,则5c =; 若乙正确,则2494b c +=,即2436b c +=; 若丙正确,则22b =,即4b =; 若丁正确,则2440bc -++=,即164c b =-;假设甲和丙结论正确,则22444536b c +=+⨯=,即乙结论也正确;此时,164c b =-不成立,即丁结论错误;依题意,假设成立,245y x x ∴=-++,综上所述,丁结论错误,函数解析式为245y x x =-++.【点睛】此题考查二次函数的知识,将二次函数解析式化为顶点式,函数图象上点的坐标,二次函数图象的性质,二次函数与x 轴交点,熟练掌握二次函数的知识并综合运用解决问题是解题的关键.23.(1)2y (x 1)4=+-;(2)点B 与其对应点B '的距离为4个单位.【分析】(1)根据平移规律“左加右减,上加下减”解答;(2)把y=5代入抛物线C 2求得相应的x 的值,即可求得点A′的坐标,根据平移的性质,线段AA′的长度即为所求.【详解】解:(1)由抛物线1C :2(1)1y x =--知,将其向左平移2个单位,向下平移3个单位得到新抛物线2C 的表达式是:2(12)13y x =-+--,即2y (x 1)4=+-;(2)由平移的性质知,点A 与点A '的纵坐标相等,所以将5y =代入抛物线2C ,得2(1)45x +-=,则4x =-或2x =(舍去)所以4AA '=,由平移的性质:4BB AA ''==,即点B 与其对应点B '的距离为4个单位.【点睛】此题考查了二次函数图象与几何变换,二次函数图象上点的坐标特征以及待定系数法确定函数解析式,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.24.(1)CD =PC (2)ABCD S 四边形【分析】(1)过点O 作OH CD ⊥于点H ,连接OD ,OC ,求出OP 的长,根据直角三角形的性质求出OH ,再根据勾股定理求出CH ,从而可求出CD ,求出PH ,根据PC=PH-CH 可得解; (2)过B 作BG PD ⊥于G ,过D 作DK AP ⊥ 于K ,连接AD ,分别求出△PBC 和△PAD 的面积,两者相减即可得到结论.【详解】解:(1)过点O 作OH CD ⊥于点H ,连接OD ,OC ,∴1,902CH DH CD OHC ==∠=︒∵4,1AB BP == ∴122OA OB OC OD AB =====∴3OP OB BP =+=在Rt OHP ∆中,∠30P ︒= ∴1322OH OP ==,∴PH在Rt OHC ∆中,CH =∴2CD CH =∴PC PH CH =-(2)过B 作BG PD ⊥于G ,过D 作DK AP ⊥ 于K ,连接AD ,BC ,∴∠90,90PGB PKD ︒︒=∠=在Rt PGB ∆中,∠30P ︒= ∴1122BG BP == ∴12PBC S PC BG ∆=⋅1122=⨯⨯由(1)中PC CD =∴PD PC CD =+=在Rt PDK ∆中,∠30P ︒=∴12DK PD == ∵415AP AB BP =+=+= ∴12PAD S AP DK ∆=⋅152=⨯⨯=∴PAD PBC ABCD S S S ∆∆=-四边形. 【点睛】此题主要考查了利用垂径定理求解,含30度角的直角三角形的性质,勾股定理,解答此题的关键是求出OH 的长.25.(Ⅰ)y =﹣x 2﹣2x +8;(Ⅱ)存在,点Q 的坐标为(﹣1,6);(Ⅲ)存在,点P 的坐标为(﹣2,8),△PBC 面积的最大值8.【分析】(Ⅰ)直接利用待定系数求出二次函数解析式即可;(Ⅱ)首先求出直线BC 的解析式,再利用轴对称求最短路线的方法得出答案; (Ⅲ)根据S △BPC =S 四边形BPCO ﹣S △BOC =S 四边形BPCO ﹣16,得出函数最值,进而求出P 点坐标即可.【详解】解:(Ⅰ)将A (2,0),B (﹣4,0)代入得:4201640b c b c -++=⎧⎨--+=⎩,解得28bc=-⎧⎨=⎩,则该抛物线的解析式为:y=﹣x2﹣2x+8;(Ⅱ)存在,理由:如图1,点A关于抛物线对称轴的对称点为点B,设直线BC的解析式为:y=kx+d,将点B(﹣4,0)、C(0,8)代入得:840dk d=⎧⎨-+=⎩,解得28kd=⎧⎨=⎩,故直线BC解析式为:y=2x+8,直线BC与抛物线对称轴x=﹣1的交点为Q,此时△QAC的周长最小.解方程组281y xx=+⎧⎨=-⎩,解得16xy=-⎧⎨=⎩,故点Q的坐标为(﹣1,6);(Ⅲ)存在,理由:如图2,过点P作PE⊥x轴于点E,设P点的坐标为(x,﹣x2﹣2x+8)(﹣4<x<0),∵S△BPC=S四边形BPCO﹣S△BOC=S四边形BPCO﹣16,若S四边形BPCO有最大值,则S△BPC就最大,∴S四边形BPCO =S△BPE+S直角梯形PEOC=12BE•PE+12OE(PE+OC)=12(x+4)(﹣x2﹣2x+8)+12(﹣x)(﹣x2﹣2x+8+8)=﹣2(x+2)2+24,当x=﹣2时,S四边形BPCO最大值=24,∴S△BPC最大=24﹣16=8,当x=﹣2时,﹣x2﹣2x+8=8,∴点P的坐标为(﹣2,8).【点睛】本题主要考查了二次函数的综合应用,结合一次函数的图象性质求解是解题的关键.。
浙教版九年级(上)期末数学试卷(含答案)
浙教版九年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分1.(3分)抛物线y=4x2﹣3的顶点坐标是()A.(0,3)B.(0,﹣3)C.(﹣3,0)D.(4,﹣3)2.(3分)下列各组中得四条线段成比例的是()A.4cm、2cm、1cm、3cm B.1cm、2cm、3cm、5cmC.3cm、4cm、5cm、6cm D.1cm、2cm、2cm、4cm3.(3分)如图,⊙O的半径为5,弦心距OC=3,则弦AB的长是()A.4B.6C.8D.54.(3分)在△ABC中,∠C=Rt∠,AC=6,BC=8,则cos B的值是()A.B.C.D.5.(3分)如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=6.(3分)有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y=2x,y=x2﹣3(x>0),y=(x>0),y=﹣(x<0),将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是y随x的增大而增大的概率是()A.B.C.D.17.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2B.3C.D.8.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.29.(3分)已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是()①∠P AD=∠PDA=60°;②△P AO≌△ADE;③PO=r;④AO:OP:P A=1::.A.①④B.②③C.③④D.①③④10.(3分)如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)一个不透明的布袋里装有100个只有颜色不同的球,这100个球中有m个红球.通过大量重复试验后发现,从布袋中随机摸出一个球摸到红球的频率稳定在0.2左右,则m的值约为.12.(4分)抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是.13.(4分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为度.14.(4分)如图,在▱ABCD中,点E在DC边上,若,则的值为.15.(4分)如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.16.(4分)定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,则a的取值范围是.三、解答题(本题有8小题,共66分)17.(6分)计算:2cos30°+sin45°﹣tan260°.18.(6分)已知:如图,在△ABC中,AD是∠BAC的平分线,∠ADE=∠B.求证:(1)△ABD∽△ADE;(2)AD2=AE•AB.19.(6分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶,分别写着:有害垃圾、厨余垃圾、其他垃圾、可回收垃圾.其中小明投放了一袋垃圾,小丽投放了两袋垃圾.(1)直接写出小明投放的垃圾恰好是“厨余垃圾”的概率;(2)求小丽投放的两袋垃圾不同类的概率.20.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE=30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)21.(8分)如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C、D两点.连接BD、AD.(1)求m的值.(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.22.(10分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?23.(10分)如图1,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,=,BE分别交AD、AC于点F、G.(1)判断△F AG的形状,并说明理由;(2)如图2,若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,若BG=26,BD﹣DF=7,求AB的长.24.(12分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分1.【解答】解:∵抛物线y=4x2﹣3,∴该抛物线的顶点坐标为(0,﹣3),故选:B.2.【解答】解:A、从小到大排列,由于1×4≠2×3,所以不成比例,不符合题意;B、从小到大排列,由于1×5≠2×3,所以不成比例,不符合题意;C、从小到大排列,由于3×6≠4×5,所以不成比例,不符合题意;D、从小到大排列,由于1×4=2×2,所以成比例,符合题意.故选:D.3.【解答】解:连接OA,如图所示:∵OC⊥AB,OC=3,OA=5,∴AB=2AC,∵AC===4,∴AB=2AC=8.故选:C.4.【解答】解:如图,在Rt△ABC中,∵AC=6,BC=8,∴AB===10,∴cos B===,故选:C.5.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.6.【解答】解:函数y=2x,y=x2﹣3(x>0),y=(x>0),y=﹣(x<0)中,有y=2x,y=x2﹣3(x>0),y=﹣(x<0),是y随x的增大而增大,所以随意从中抽取一张,取出的卡片上的函数是y随x的增大而增大的概率是.故选:C.7.【解答】解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.8.【解答】解:因为对称轴x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax2+bx+c中,得a﹣b+c=0.故选:A.9.【解答】解:∵A、B、C、D、E、F是半径为r的⊙O的六等分点,∴,∴AE=DF<AD,根据题意得:AP=AE,DP=DF,∴AP=DP<AD,∴△P AD是等腰三角形,∠P AD=∠PDA≠60°,①错误;连接OP、AE、DE,如图所示,∵AD是⊙O的直径,∴AD>AE=AP,②△P AO≌△ADE错误,∠AED=90°,∠DAE=30°,∴DE=r,AE=DE=r,∴AP=AE=r,∵OA=OD,AP=DP,∴PO⊥AD,∴PO==r,③正确;∵AO:OP:P A=r:r:r=1::.∴④正确;说法正确的是③④,故选:C.10.【解答】解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,∴易证AE⊥BC,∵A、C关于BD对称,∴P A=PC,∴PC+PE=P A+PE,∴当A、P、E共线时,PE+PC的值最小,即AE的长.观察图象可知,当点P与B重合时,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=2,∴PC+PE的最小值为2,∴点H的纵坐标a=2,∵BC∥AD,∴=2,∵BD=4,∴PD==,∴点H的横坐标b=,∴a+b=2+=;故选:C.二、填空题(本题有6小题,每小题4分,共24分)11.【解答】解:根据题意,得:=0.2,解得:m=20,故答案为:20.12.【解答】解:根据“上加下减,左加右减”的法则可知,抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x﹣1)2﹣2.故答案为:y=3(x﹣1)2﹣2.13.【解答】解:∵扇形的半径是1,弧长是,∴l==,即=,解得:n=60,∴此扇形所对的圆心角为:60°.故答案为:60.14.【解答】解:∵=,∴=;∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD;∴△ABF∽△CEF;∴;∵==,∴=.15.【解答】解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=4,∴AD=4,∴MN=AD=2,故答案为:2.16.【解答】解:y=ax2﹣2ax+a+3=a(x﹣1)2+3,故抛物线的顶点为:(1,3);如图所示,a<0,图象实心点为8个“整点”,则符合条件的抛物线过点A、B之间(不含点B),当抛物线过点A(3,1)时,将点A的坐标代入抛物线表达式并解得:a=﹣;同理当抛物线过点B(4,1)时,a=﹣,故答案为:﹣<a<﹣.三、解答题(本题有8小题,共66分)17.【解答】解:2cos30°+sin45°﹣tan260°=2×+×﹣=+1﹣3=﹣218.【解答】证明:(1)∵AD是∠BAC的平分线,∴∠BAD=∠DAE,∵∠ADE=∠B.∴△ABD∽△ADE;(2)∵△ABD∽△ADE,∴∴AD2=AE•AB.19.【解答】解:(1)将有害垃圾、厨余垃圾、其他垃圾、可回收垃圾分别记为A,B,C,D,∵小明投放了一袋垃圾,∴小明投放的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状图如下:由树状图知,小丽投放的垃圾共有16种等可能结果,其中小丽投放的两袋垃圾不同类的有12种结果,所以小丽投放的两袋垃圾不同类的概率为=.20.【解答】解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9.4,∴OB=2x≈19.21.【解答】解:(1)∵抛物线y=﹣x2+mx+3过(3,0),∴0=﹣9+3m+3,∴m=2(2)由,得或,∴D(,﹣),∵S△ABP=4S△ABD,∴AB×|P y|=4×AB×,∴|P y||=9,P y=±9,当y=9时,﹣x2+2x+3=9,无实数解,当y=﹣9时,﹣x2+2x+3=﹣9,x1=1+,x2=1﹣,∴P(1+,﹣9)或P(1﹣,﹣9).22.【解答】解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣)2+,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.23.【解答】解:(1)等腰三角形;理由:如图1,∵BC为直径,AD⊥BC,∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,∵=,∴∠ABE=∠C,∴∠ABE=∠BAD,∴AF=BF,∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,∴∠DAC=∠AGB,∴F A=FG,∴△F AG是等腰三角形;(2)成立;∵BC为直径,AD⊥BC,∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,∵=,∴∠ABE=∠C,∴∠ABE=∠BAD,∴AF=BF,∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,∴∠DAC=∠AGB,∴F A=FG,∴△F AG是等腰三角形;(3)由(2)得:AF=BF=FG,∵BG=26,∴FB=13,∴解得:BD=12,DF=5,∴AD=AF﹣DF=13﹣5=8,∴AB==4.24.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=,∴M(,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(舍去)或m=0.5;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为0.5或﹣1或﹣.。
浙教版九年级上册数学期末考试试题及答案
浙教版九年级上册数学期末考试试题及答案一、选择题。
(每小题只有一个正确答案)1.抛物线23(1)5y x =-+的顶点坐标是( )A .(3,5)B .(1,5)C .(1,5)-D .(1,5)-2.已知:如图,OA ,OB 是⊙O 的两条半径,且OA⊙OB ,点C 在⊙O 上,则⊙ACB 的度数为( )A .45°B .35°C .25°D .20°3.在Rt⊙ABC 中,⊙C =90°,AB =4,AC =1,则cosB 的值为( )A B .14 C D 4.下列四个选项中的三角形,与图中的三角形相似的是( )A .B .C .D .5.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于 ( )A .8πB .9πC .10πD .11π6.一个不透明的袋中装有除颜色外均相同的9个红球、3个白球,若干个绿球,每次摇均匀后随机摸出一个球,记下颜色后再放回袋中,经大量实验,发现摸到绿球的概率稳定在0.2,则袋中的绿球数为( ) A .3个 B .4个 C .5个 D .6个7.如图,电线杆的高度为CD =m ,两根拉线AC 与BC 互相垂直(A ,D ,B 在同一条直线上),若⊙CBA =α,则拉线AC 的长度可以表示为( )A .sin m αB .cos m αC .m cosαD .tan m α8.下列关于位似图形的表述:⊙相似图形一定是位似图形,位似图形一定是相似图形;⊙位似图形一定有位似中心;⊙如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形; ⊙位似图形上任意两点到位似中心的距离之比等于相似比.其中正确的序号是( )A .⊙B .⊙⊙C .⊙⊙D .⊙⊙⊙9.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <110.如图,四边形ABCD 内接于⊙O ,延长DC 、AB 交于点E ,若点C 为DE 的中点,且AB =5,BE =3,则CE 的长为( )A .4B C .D 二、填空题11.若32a b =,则a b b +的值是__________. 12.抛物线223y x x =-+的图象与y 轴的交点坐标为__________.13.已知扇形的半径为6,圆心角为150°,则这个扇形的面积为__________.14.如图,BE 是ABC 的角平分线,作//CD AB 交 BE 的延长线于点D ,2AB =,1AE =.若ABE △与 CDE △的周长之比为2⊙3,则ABC 的周长为 __________ .15.小明用一把角尺和一块边长为3cm 的正方形小木块测量并计算圆的半径,如图,小木块(正方形ABCD )两边紧靠在角尺的两边,顶点C 紧靠O 上,角尺的较长边与O 相切于点E .量得8cm AE =,则O 的半径等于__________cm .16.如图,正六边形ABCDEF 的边长为2,点P 在对角线AC 上,75EDP ∠=︒,PQ EF ⊥于点Q ,则PQ 的长是__________;过点Q 作//QG ED 交DP 于点G ,则PQG 的面积为__________.三、解答题17.如图,已知正方形ABCD ,用直尺和圆规作它的外接圆.18.如图,在Rt ABC △中,90,2,3C AC AB ︒∠===.(1)求BC 的长;(2)求sin A 的值.19.一个圆形人工湖示意图如图所示,弦AB 是湖上的一座桥.已知AB 长为100m ,圆周角45C ︒∠=,求这个人工湖半径OA 的长.20.有A ,B ,C 三种款式的帽子,E ,F 二种款式的围巾,穿戴时小婷任意选一顶帽子和一条围巾.(1)用合适的方法表示搭配的所有可能性结果.(2)求小婷恰好选中她所喜欢的A 款帽子和E 款围巾的概率.21.如图,已知二次函数23y x bx =-++的图象经过点(2,3)-.(1)求二次函数的表达式;(2)给出一种平移方案,使该二次函数的图象平移后经过原点.22.如图,已知BD 是ABC 的角平分线,E 是BD 延长线上的一点,且AE AB =.(1)求证:ADE CDB ∽;(2)若6,4,5AB BD DE ===,求BC 的长.23.如图,已知二次函数图象与x 轴交于(,0),(,0)A a B b 两点,与y 轴交于点C ,对称轴为直线2x =.(1)若1a =时,求b 的值;(2)若函数图象经过点(,3)D a b +,且直线CD//x 轴,连接,,AC AD CD ,求ACD △的面积.24.如图,AB 是O 的直径,弦,CD AB E ⊥是CA 延长线上的一点,连结DE 交O 于点F ,连结,AF CF .(1)若BD 的度数是40°,求AFC ∠的度数;(2)求证:AF 平分CFE ∠;(3)若5,4,AB CD CF ==经过圆心,求CE 的长.参考答案1.B【分析】二次函数顶点式解析式2()(0)y a x h k a =-+≠的顶点坐标为(,)h k ,据此解题.【详解】解:抛物线23(1)5y x =-+中,3,1,5a h k ===∴顶点坐标为(1,5)故选:B .【点睛】本题考查二次函数的顶点坐标,是重要考点,难度较易,掌握相关知识是解题关键.2.A【分析】直接根据圆周角定理进行解答即可.【详解】⊙OA⊙OB ,⊙⊙AOB=90°, ⊙⊙ACB=12⊙AOB=45°. 故选:A .3.A【详解】⊙在Rt ⊙ABC 中,⊙C =90°,AB =4,AC =1,⊙BC ,则cos B =BC AB , 故选A4.B【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【详解】解:设小正方形的边长为1,那么已知三角形的三边长分别为,,所以三边之比为1:2A 、三角形的三边分别为2,三边之比为 3,故本选项错误;B 、三角形的三边分别为2,4,1:2C 、三角形的三边分别为2,32:3D 44,故本选项错误.故选:B .【点睛】此题主要考查了相似三角形的判定,属于基础题,掌握三边对应成比例的两个三角形相似是解答本题的关键,难度一般.5.A【详解】圆锥的底面圆周长为2π⨯2=4π, 圆锥的侧面积为12×4π×4=8π.故选:A .考点:圆锥的侧面积.6.A【分析】根据绿球个数÷总数=0.2,设绿色的球有x 个,根据题意,列分式方程,解分式方程,检验,即可解题.【详解】解:设绿色的球有x 个,根据题意得,0.293xx =++3x =经检验,3x =是原分式方程的解,即袋中有3个绿球,故选:A .【点睛】本题考查利用频率估计概率,涉及解分式方程等知识,是基础考点,难度较易,掌握相关知识是解题关键.7.B【分析】根据同角的余角相等得⊙ACD =⊙CBD ,由cos⊙ACD =CDAC ,即可求出AC 的长度.【详解】解:⊙⊙ACD +⊙BCD =90°,⊙CBD +⊙BCD =90°,⊙⊙ACD =⊙CBD ,在Rt⊙ACD 中,⊙cos⊙ACD =CDAC ,⊙AC =cos cos CDmACD α=∠.故选:B .【点睛】本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.8.A【详解】⊙相似图形不一定是位似图形,但位似图形一定是相似图形,故此项错误;⊙位似图形一定有位似中心,此项正确;⊙如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,但没有对应边平行(或在同一条直线上),那么这两个图形不一定位似图形,此项错误;⊙位似图形上任意两点与位似中心的距离之比等于位似比,此项错误.正确的为⊙.故选A.9.B【分析】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,由此可知方程x2+x+c=0有两个不相等的实数根,即⊙=1-4c>0,再由题意可得函数y= x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,由此可得关于c的不等式组,解不等式组即可求得答案.【详解】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,所以x1、x2是方程x2+2x+c=x的两个不相等的实数根,整理,得:x2+x+c=0,所以⊙=1-4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y= x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,综上则140 110cc-⎧⎨++⎩><,解得c<﹣2,故选B.【点睛】本题考查了二次函数与一元二次方程的关系,正确理解题中的定义,熟练掌握二次函数与一元二次方程的关系是解题的关键.10.C【分析】先由圆周角定理得⊙D+⊙ABC=180°,从而得⊙D=⊙CBE,即可证明出⊙EBC⊙⊙EDA.再由2CE=DE得2CE2=AE•BE,即可求出CE.【详解】解:⊙四边形ABCD内接于⊙O,⊙⊙D +⊙ABC =180°.⊙⊙CBE +⊙ABC =180°,⊙⊙D =⊙CBE .⊙⊙E =⊙E ,⊙⊙EBC ⊙⊙EDA . ⊙CEBEAE DE =,点C 为DE 的中点∴2CE =DE ,⊙2CE 2=AE •BE =(5+3)×3=24.⊙CE =故选:C .【点睛】本题考查了圆周角定理,三角形相似的性质与判定,证明⊙EBC ⊙⊙EDA 是解题的关键.11.52【分析】根据已知条件设a=3k ,b=2k (k≠0),再代入要求的式子进行计算即可得出答案.【详解】解:⊙32ab =,⊙设a=3k ,b=2k (k≠0), ⊙3k+2k5==2k 2+a bb 故答案为:52【点睛】此题考查了比例的性质,熟练掌握比例的性质是解题的关键.12.(0,3)【分析】根据y 轴上点的坐标特征,计算自变量为0时的函数值即可.【详解】解:当x=0时,223y x x =-+=3,所以抛物线223y x x =-+的图象与y 轴的交点坐标是(0,3).故答案为:(0,3).【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式,即已知横坐标可求对应的纵坐标.本题的关键是确定y 轴上点的坐标特征.13.15π【分析】 根据扇形的面积2360n R π=,进行计算. 【详解】解:根据扇形的面积公式,得2150615360S ππ⨯==. 故答案为:15π.【点睛】主要考查了扇形的面积公式,熟练运用扇形的面积公式进行计算.14.7.5.【分析】根据//CD AB ,易证ABE CDE ,利用ABE △与CDE △的周长之比为2⊙3,可得23AB AE CD CE ==,可求出3CD =,3 1.52CE ==,BE 是ABC 的角平分线,可得ABE CBE ∠=∠,则有3CB CD ==,据此可以求得ABC 的周长. 【详解】解:⊙//CD AB⊙ABE CDE ∠=∠,又⊙AEB CED ∠=∠⊙ABE CDE ,⊙ABE △与CDE △的周长之比为2⊙3, 即:23AB AE CD CE ==, 则有:223CD =,123CE =, 解之得:3CD =,31.52CE ==,又⊙BE 是ABC 的角平分线,⊙ABE CBE ∠=∠,⊙CBE CDE ∠=∠,⊙3CB CD ==⊙ABC 的周长321 1.57.5CB AB AC CB AB AE CE =++=+++=+++=,故答案是:7.5.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质和判定,平行线的性质,熟练掌握相关性质是解题的关键. 15.173【分析】设圆的半径为rcm ,连接OE ,OC ,过C 作CF OE ⊥于F ,利用勾股定理,在Rt⊙COF 中,得到r 2=(r -3)2+52,求出r 即可.【详解】解:连结OE ,OC ,过C 作CF OE ⊥于F ,AE 切⊙O 于E ,90OEB ∴∠=︒,又90CBE ∠=︒,90CFE ∠=︒,∴四边形BCFE 是矩形,5cm CF BE AE AB ∴==-=,3cm EF BC ==,设⊙O 的半径为r ,在Rt OCF 中,222(3)5r r -+=,173r ∴=. 故答案为:173. 【点睛】 本题考查的是切线的性质,勾股定理,解题的关键是掌握切线的性质,利用图形得到直角三角形,然后用勾股定理计算求出圆的半径.16.1134【分析】延长QP ,交BC 于H ,求得CD =CP=2,AC=QH=PH=12CP ,即可求得PQ 的长;过G 作GM PQ ⊥,求得GM 的长,即可求解.【详解】解:连接OA 、OC ,作OI⊙AC 于I ,⊙六边形ABCDEF 是正六边形,⊙⊙COI=60︒,⊙OCI=30︒,OC=2,⊙CI=cos30OC ⋅︒=AC=延长QP ,交BC 于H ,由题意知QH BC ⊥,⊙QH AC ==在四边形DEQP 中,90PQE ∠=︒,120E ∠=︒,75EDP ∠=︒,⊙1207545CDP ∠=︒-︒=︒,⊙1203090DCP ∠=︒-︒=︒,⊙45CPD CDP ∠∠==,⊙2CP CD ==, ⊙112PH PC ==,⊙1PQ QH PH =-=,⊙QPG=360︒-⊙PQE -⊙DEF -⊙EDP=75︒,⊙//QG ED ,⊙75QGP EDP QPG ∠=∠=︒=∠,⊙1QG PQ ==,且30PQG ∠=︒,过G 作GM PQ ⊥,则111)22GM QG ==.⊙11131)1)224PQG S =⋅==故答案为:1,134.【点睛】本题考查了正多边形和圆,特殊角的三角函数值,解题的关键是正确的识别图形、灵活运用所学知识解决问题. 17.见解析【分析】连接AC 、BD 交于点O ,以点O 为圆心,OA 的长为半径作⊙O ,⊙O 即为所求.【详解】解:连接AC 、BD 交于点O ,以点O 为圆心,OA 的长为半径作⊙O ,所作的O 就是正方形ABCD 的外接圆.【点睛】本题考查了作图,正方形的性质,正多边形和圆,解决本题的关键是掌握基本作图方法.18.(1(2【分析】(1)根据勾股定理求出BC ;(2)根据正弦的定义计算即可.【详解】解:(1)90,2,3C AC AB ︒∠===.BC ∴=(2)90,3C BC AB ︒∠===,sin BC A AB ∴==. 【点睛】本题考查了锐角三角函数的定义、勾股定理,掌握锐角A 的对边a 与斜边c 的比叫做⊙A 的正弦是解题的关键. 19.【分析】连接OB ,利用圆心角与圆周角的关系定理,得到直角三角形AOB ,利用等腰直角三角形的性质求解即可.【详解】解:连结OB .45,C ︒∠=290AOB C ︒∴∠=∠=.100,AB =AO ∴=.答:人工湖半径OA 的长为.【点睛】本题考查了圆心角与圆周角关系定理,等腰直角三角形的性质,熟练掌握关系定理,灵活运用性质是解题的关键.20.(1)有A. E ,A. F ,B. E ,B. F ,C. E ,C. F ,6种情况;(2)16. 【分析】(1)根据题意,使用列举法,可得小明任意选取一件衣服和一条裤子的情况数目,进而按概率的计算公式计算可得答案.(2)由(1)即可求出小婷恰好选中她所喜欢的A 款帽子和E 款围巾的概率.【详解】(1)根据题意,小婷任意选取一顶帽子和一条围巾,有A. E ,A. F ,B. E ,B. F ,C. E ,C. F ,6种情况.(2)小婷恰好选中她所喜欢的A 款帽子和E 款围巾的概率=1621.(1)223y x x =--+;(2)向下平移3个单位(答案不唯一)【分析】(1)把点的坐标代入解析式计算即可;(2)将解析式变形为配方式,根据平移规律,确定一种方案即可.【详解】解:(1)将点(2,3)-代入23y x bx =-++中,得2b =-.⊙二次函数的表达式为223y x x =--+.(2)答案不唯一⊙223y x x =--+=2(1)4x =-++,⊙向下平移3个单位;或向左平移1个单位;或向右平移3个单位;或先向右平移1个单位再向下平移4个单位等.【点睛】本题考查了二次函数解析式的确定,二次函数的配方,二次函数的平移,熟练掌握解析式确定的方法,灵活进行配方,准确进行平移是解题的关键.22.(1)见解析;(2)245【分析】(1)由角平分线的性质,等腰三角形的性质,可得DBC DEA ∠=∠,再根据ADE CDB ∠=∠即可证明结论 (2)直接利用相似三角形的性质求解即可.【详解】(1)证明:AE AB ∴= ABD E ∴∠=∠BD 平分ABC ∠ABD DBC ∴∠=∠E DBC ∴∠=∠又ADE CDB ∠=∠ADE CDB ∴∽(2)ADE CDB △∽△ BC BD AE DE∴= 又6,4,5AE AB BD DE ====. 465BC ∴= 245BC ∴=【点睛】本题考查了相似三角形的判定和性质,涉及角平分线的性质,等腰三角形的性质,解题关键熟练掌握相似三角形的判定和性质.23.(1)3;(2)6【分析】(1)根据二次函数的对称性,利用对称轴即可求解;(2)首先求出D 点坐标,然后利用CD//x 轴和二次函数的对称性,求出C 点坐标,得到CD 的长,最终即可求得三角形面积.【详解】(1)⊙对称轴为直线2x =,图象与x 轴交于(,0),(,0)A a B b .22a b +∴=,即4a b +=. 1,3a b =∴=.(2)⊙函数图像经过点(,3),4D a b a b ++=,⊙点D 的坐标为(4,3).又⊙对称轴为直线2x =,⊙点D 的对称点(0,3)C ,4CD ∴=.11S 43622ACD CD OC ∴=⨯⨯=⨯⨯=. 【点睛】本题考查了二次函数综合应用,关键是找到考查的核心知识点,二次函数对称性在本题的应用是重点内容.24.(1)70︒;(2)见解析;(3)【分析】(1)如图1中,连接OD,AD,设AB交CD于H.求出⊙ADC即可解决问题.(2)想办法证明⊙ACD=⊙ADC,⊙AFE=⊙ACD,⊙AFC=⊙ADC即可解决问题.(3)解直角三角形求出AC,再证明AC=AE,即可解决问题.【详解】解:(1)如图1中,连接OD,AD,设AB交CD于H.⊙BD的度数是40°,⊙⊙BOD=40°,⊙DOB=20°,⊙⊙DAB=12⊙AB⊙CD,⊙⊙AHD=90°,⊙⊙ADH=90°-⊙DAB=70°,⊙⊙AFC=⊙ADH=70°.(2)证明:⊙AB是直径,AB⊙CD,⊙AC AD=⊙⊙ACD=⊙ADC,⊙⊙ACD+⊙AFD=180°,⊙AFD+⊙AFE=180°,⊙⊙AFE=⊙ACD,⊙⊙AFC=⊙ADC=⊙ACD,⊙⊙AFC=⊙AFE,即AF平分⊙CFE.(3)如图2中,设AB交CD于H.⊙AB是直径,AB⊙CD,CD=4⊙CH=DH=2,⊙OC=1122CF AB==52,⊙OHC=90°,⊙32 OH==,⊙HA=OH+OA=4,⊙AC=⊙CF是直径,⊙⊙CDF=⊙AHC=90°,⊙AH⊙DE,⊙CH=HD,⊙AC=AE,⊙CE=2AC=【点睛】本题属于圆综合题,考查了垂径定理,圆周角定理,圆内接四边形的性质,平行线等分线段定理等知识,解题的关键是熟练应用垂径定理,圆周角定理解决问题,属于中考压轴题.。
浙教版九年级上册数学期末考试试卷附答案
浙教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.若32y x =,则x yx +的值为()A .32B .5C .52D .122.在一个不透明的盒子中有1个白球和3个红球,它们除颜色外其余都相同,从盒子里任意摸出1个球,摸到白球的概率是()A .12B .13C .14D .153.将抛物线2y x =-向左平移3个单位,再向上平移5个单位,则平移后的抛物线解析式为()A .2(3)5y x =-++B .2(3)5y x =-+-C .2(3)5y x =--+D .2(3)5y x =---4.如图,在△ABC 中,DE ∥BC ,AD=6,DB=3,AE=4,则EC 的长为()A .1B .2C .3D .45.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm ,则水面AB 的宽度为()A .12cmB .18cmC .20cmD .24cm6.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则tan ADC ∠的值为()A .21313B .31313C .23D .327.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A 、B 、C 、D 、E 、O 均是正六边形的顶点.则点O 是下列哪个三角形的外心()A .AEDB .ABD △C .BCD △D .ACD△8.如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为弧AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E .若图中阴影部分的面积为10π,则CDE ∠=()A .30°B .36︒C .54︒D .45︒9.如图,CD 是Rt ABC 斜边AB 上的高,8AC =,6BC =,点O 是CD 上的动点,以O 为圆心作半径为1的圆,若该圆与ABC 重叠部分的面积为π,则OC 的最小值为()A .54B .43C .75D .5310.已知ABC 为直角三角形,且30A ∠=︒,若ABC 的三个顶点均在双曲线(0)ky k x=>上,斜边AB 经过坐标原点,且B 点的纵坐标比横坐标少3个单位长度,C 点的纵坐标与B 点横坐标相等,则k =()A .4B .92C .32D .5二、填空题11.正五边形每个内角的度数是_______.12.在一个有10万人的小镇随机调查了1000人,其中有100人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是_______.13.如图,已知⊙O 上三点A ,B ,C ,切线PA 交OC 延长线于点P ,若2OP OC =,则ABC ∠=_______.14.如图所示,正方形的顶点A 在矩形DEFG 的边EF 上,矩形DEFG 的顶点G 在正方形的边BC 上.已知正方形的边长为4,DG 的长为6,则DE 的长为_______.15.如图,已知二次函数2(0)y ax bx c a =++<的图象与x 轴交于不同两点,与y 轴的交点在y 轴正半轴,它的对称轴为直线1x =.有以下结论:①0abc >,②0a c ->,③若点()11,y -和()22,y 在该图象上,则12y y <,④设1x ,2x 是方程20ax bx c ++=的两根,若2am bm c p ++=,则()()120p m x m x --≤.其中正确的结论是____________(填入正确结论的序号).16.如图,直角ABC 的直角边长4AB BC ==,D 是AB 中点,线段PQ 在边AC 上运动,322PQ =PDBQ 面积的最大值为_______,周长的最小值为_______.三、解答题17.(1)计算:022sin 30(2021)tan 60π︒+--︒.(2)已知线段4a =,9b =,求线段a ,b 的比例中项.18.在一个不透明的盒子中有3个颜色、大小、形状完全相同的小球,小球上分别标有1,2,3这3个号码.(1)搅匀后从中随机抽出1个小球,抽到1号球的概率是_______.(2)搅匀后先从中随机抽出1个小球(不放回),再从余下的2个球中随机抽出1个球,求抽到的2个小球的号码的和为奇数的概率.19.如图,某海防哨所(O )发现在它的北偏西30°,距离哨所500m 的A 处有一艘船,该船向正东方向航行,经过3分钟到达哨所东北方向的B 处,求该船的航速.(精确到1/km h )20.如图,在ABC 中,点D ,E ,F 分别在AB ,BC ,AC 边上,//DE AC ,//EF AB .(1)求证:BDE EFC :△△.(2)若35AF FC =,EFC 的面积是25,求ABC 的面积.21.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x (元/千克)55606570销售量y (千克)70605040(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?22.如图,在ABC 中,点O 是BC 中点,以O 为圆心,BC 为直径作圆刚好经过A 点,延长BC 于点D ,连接AD .已知CAD B ∠=∠.(1)求证:①AD 是⊙O 的切线;②ACD BAD :△△;(2)若8BD =,1tan 2B =,求⊙O 的半径.23.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,ABC 中,点D 是BC 边上一点,连接AD ,若2AD BD CD =⋅,则称点D 是ABC 中BC 边上的“好点”.(1)如图2,ABC 的顶点是43⨯网格图的格点,请仅用直尺画出(或在图中直接描出)AB 边上的“好点”;(2)ABC 中,14BC =,3tan 4B =,tan 1C =,点D 是BC 边上的“好点”,求线段BD 的长;(3)如图3,ABC 是⊙O 的内接三角形,点H 在AB 上,连结CH 并延长交⊙O 于点D .若点H 是BCD △中CD 边上的“好点”.①求证:OH AB ⊥;②若//OH BD ,⊙O 的半径为r ,且3r OH =,求CHDH的值.24.如图,在平面直角坐标系中,抛物线y =ax 2+bx +3(a ≠0)与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,且∠OBC =30°,OB =3OA .(1)求抛物线y =ax 2+bx +3的解析式;(2)点P 为直线BC 上方抛物线上的一动点,P 点横坐标为m ,过点P 作PF //y 轴交直线BC 于点F ,写出线段PF 的长度l 关于m 的函数关系式;(3)过点P 作PD ⊥BC 于点D ,当 PDF 的周长最大时,求出 PDF 周长的最大值及此时点P 的坐标.参考答案【分析】由32y x =,设()30,y k k =≠则2,x k =再代入求值即可得到答案.【详解】解:32y x =,∴设()30,y k k =≠则2,x k =∴2355.222x y k k k x k k ++===故选:.C 【点睛】本题考查的是比例的基本性质,掌握设参数的方法解决有关比例的问题是解题的关键.2.C 【分析】先求出总球的个数,再用白球的个数除以总球的个数即可得出答案.【详解】解: 不透明的口袋里装有1个白球、3个红球,共有4个球,∴现随机从袋里摸出1个球是白球的概率为14;故选:C .【点睛】本题考查了概率的计算,熟练掌握概率公式是解题的关键.3.A 【分析】根据图象向左平移加,向上平移加,可得答案.【详解】解:将抛物线y=-x 2向左平移3个单位,再向上平移5个单位,平移后抛物线的解析式是y=-(x+3)2+5,故选:A .【点睛】本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减,上加下减.【详解】试题分析:根据平行线分线段成比例可得AD AEDB EC =,代入计算可得:643EC=,即可解EC=2,故选B .考点:平行线分线段成比例5.D 【分析】连接OB ,过点O 作OC ⊥AB 于点D ,交圆O 于点C ,由题意可知CD 为8,然后根据勾股定理求出BD 的长,进而可得出AB 的长.【详解】如图,连接OB ,过点O 作OC ⊥AB 于点D ,交圆O 于点C ,则AB=2BD ,∵圆的直径为26cm ,∴圆的半径r=OB=13cm ,由题意可知,CD=8cm ,∴OD=13-8=5(cm ),∴()12BD cm ==,∴AB=24cm ,故选:D .【点睛】本题考查了垂径定理的应用,过圆心向弦作垂线构造垂径定理是解题的关键.6.C 【分析】根据圆周角定理可知,∠ABC=∠ADC.在Rt△ACB中,根据锐角三角函数的定义即可求出∠ABC的正切值,从而得出答案.【详解】连接BC、AC.∵∠ADC和∠ABC所对的弧都是 AC,∴根据圆周角定理知,∠ABC=∠ADC,∴在Rt△ACB中,2 tan3ACABCBC∠==,∴tan∠ADC=2 3,故选C.【点睛】本题主要考查锐角三角函数的定义和圆周角的知识点,解答本题的关键是利用圆周角定理把求∠ADC的正切值转化成求∠ABC的正切值.7.D【分析】根据三角形外心的性质,到三个顶点的距离相等,可以依次判断.【详解】答:因为三角形的外心到三角形的三个顶点的距离相等,所以由正六边形性质可知,点O 到A,B,C,D,E的距离中,只有OA=OC=OD.故选:D.【点睛】此题主要考查了三角形外心的性质,即到三角形三个顶点的距离相等.8.B【分析】连接OC ,易得四边形CDOE 是矩形,△DOE ≌△CEO ,根据扇形的面积公式得∠COE=36°,进而即可求解.【详解】解:连接OC ,∵∠AOB =90°,CD ⊥OA ,CE ⊥OB ,∴四边形CDOE 是矩形,∴CD ∥OE ,∴∠DEO =∠CDE ,由矩形CDOE 易得到△DOE ≌△CEO ,∴图中阴影部分的面积=扇形OBC 的面积,∵S 扇形OBC =210360n π⨯=10π,解得:n=36,∴CDE ∠=∠DEO=∠COE=36°.故选B .【点睛】本题考查了扇形面积的计算,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC 的面积等于阴影的面积是解题的关键.9.D【分析】根据勾股定理求出AB=10,由OC 取最小值时,O 与BC 相切,证明△OCP ∽△BCD ∽△BAC 得出::3:4:5OP PC CO =,从而求出OC 的最小值.【详解】解:2S r ππ==∵圆O 的半径为1,且圆与ABC 重叠部分的面积为π,∴此圆全部在△ABC 内,如图,在Rt ABC 中,8AC =,6BC =,∴10AB =若OC 取最小值时,O 与BC 相切,设切点为P ,连接OP ,则OP ⊥BC∵CD ⊥AB∴∠OPC=∠CDB∵∠OCP=∠BCD∴△OCP ∽△BCD同理可证△BAC ∽△BCD∴△OCP ∽△BCD ∽△BAC∵::6:8:103:4:5BC AC AB ==∴::3:4:5OP PC CO =又∵OP=1∴OC=15533⨯=故选:D .【点睛】此题主要考查了相似三角形的判定与性质,勾股定理以及直线与圆的位置关系,证明△OCP ∽△BCD ∽△BAC 是解答此题的关键.10.B【分析】设(,)(0)k B x k x>,再分别表示出B ,C ,由直角三角形的性质得出BC OB =,联立方程组求出k 的值即可.【详解】解:在k y x =中,设(,)(0)k B x k x >,则3k x x+=,(,)k C x x ∵AB 经过坐标原点,∴(,)k A x x--∵ABC 为直角三角形,且30A ∠=︒,∴∠60B =︒∴1,22BC AB AB BC ==又∵2AB OB=∴BC OB=∴3k x x ⎪+=⎪⎩解得,92=k 故选:B .【点睛】本题属于反比例函数综合题,考查了反比例函数的性质,待定系数法,中心对称的性质等知识,解题的关键是学会利用中心对称的性质解决问题.11.108︒【分析】先求出正n 边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:∵正多边形的内角和为2180()n -⨯︒,∴正五边形的内角和是5218540(0)-⨯︒=︒,则每个内角的度数是5405108︒÷=︒.故答案为:108︒【点睛】此题主要考查了多边形内角和,解题的关键是熟练掌握基本知识.12.10%【分析】由随机调查了1000人,其中100人看中央电视台的早间新闻,直接利用概率公式求解即可求得答案.【详解】解:∵随机调查了1000人,其中100人看中央电视台的早间新闻,∴在该镇随便问一个人,他看中央电视台早间新闻的概率大约是:10=10%100,故答案为:10%.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.30︒【分析】如图,连接,OA 先证明2,OP OA =再证明90,OAP ∠=︒利用三角函数求解60AOP ∠=︒,从而可得答案.【详解】解:如图,连接,OA ,2,OA OC OP OC == 2,OP OA ∴=PA 是O 的切线,90,OAP ∴∠=︒1cos ,2OA AOP OP ∴∠==60AOP ∴∠=︒,,AC AC= 11603022ABC AOC ∴∠=∠=⨯︒=︒,故答案为:30.︒【点睛】本题考查的是圆周角定理,圆的切线的性质,锐角三角函数的应用,掌握以上知识是解题的关键.14.83【分析】根据两角对应相等得出 AED CGD ,再根据相似三角形的性质得出=AD DE DG DC,从而得出DE 的长;【详解】解:∵四边形ABCD 是正方形,∴AD=DC=4,∠ADC=∠C=90°,∴∠GDC+∠ADG=90°,∵四边形DEFG 是矩形,∴∠EDG=∠E =90°,∴∠EDA+∠ADG=90°,∴∠GDC=∠EDA∴ AED CGD ,∴=AD DE DG DC ,∵DG=6∴4=64DE ∴83DE =【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的性质和判定是解题的关键15.③④【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】解:∵抛物线的开口向下,对称轴在原点的右边,与y 轴交于正半轴,∴a <0,b >0,c >0,∴abc <0,∴结论①错误;∵抛物线的对称轴为x=1,∴12ba -=,∴b=-2a ;∵c+a+b >0,∴c-a >0,∴a-c <0,∴结论②错误;∵抛物线的对称轴为直线x=1,抛物线的开口向下,∵点()11,y -和()22,y 在该图象上,∴()11,y -与x=1的距离比()22,y 与x=1的距离远;∴12y y <,∴结论③正确;∵2am bm c p ++=,1x ,2x 是方程20ax bx c ++=的两根,当0p a+b+c <≤时,12m ≤≤x x ;∴()()120<--p m x m x ;当p=0时,()()12=0--p m x m x 当p <0时,()()120<--p m x m x ∴()()120p m x m x --≤∴结论④正确;③④故答案为:【点睛】本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.16.11222+【分析】(1)连接DQ ,则可得四边形PDBQ DPQ BDQ S S S =+△△,根据已知条件分别表示出DPQ S 和BDQ S ,再根据AC 和PQ 的值求得四边形PDBQ 面积的最大值;(2)如图,作D 关于AC 的对称点1D ,连接1DD 交AC 于点G ,作1E//D AC ,1=D E AC ,设1BH D E ⊥于点H ,交AC 于点F ,据此可得,四边形1PD EQ 为平行四边形,因为四边形PDBQ的周长2BD PQ DP BQ EQ BQ =+++=++,周长最小,则EQ BQ +的值最小,即这三点共线时,EQ BQ +的值最小,此时EQ BQ BE +=,再根据勾股定理求得BE 的长即可.【详解】(1)如图,连接DQ ,∴四边形PDBQ DPQ BDQ S S S =+△△,∵直角ABC 的直角边长4AB BC ==,D 是AB 中点,∴ABC 为等腰直角三角形,122BD AD AB ===,∴AC =设AP x =,∴AQ AP PQ x =+=+,∴CQ AC AQ x x =-==,设DPQ V 底边PQ 上的高为1h ,∴2h ===∴113222DPQ S PQ h =⨯⨯=⨯△,设BDQ △底边PQ 上的高为2h ,∴22h AQ ==,∴2113222222BDQ S BD h x x =⨯⨯=⨯⨯=+△,∴四边形PDBQ 3332222S x x =++=+,∴当x 最大时,四边形PDBQ 的面积最大,∵x 的最大值AC PQ =-=∴四边形PDBQ 的面积最大值1132=;(2)如图,作D 关于AC 的对称点1D ,连接1DD 交AC 于点G ,作1E//D AC ,1=D E AC ,∴四边形1PD EQ 为平行四边形,1DG AG D G ==,∴1DP D P EQ ==,又∵四边形PDBQ 的周长2BD PQ DP BQ EQ BQ =+++=++,∴周长最小,则EQ BQ +的值最小,即这三点共线时,EQ BQ +的值最小,∴此时EQ BQ BE +=,设1BH D E ⊥于点H ,交AC 于点F ,∴BF AC ⊥,∴1DG AG D G FH ===∴BF AF ==∴BH BF FH =+==∴1FG D H AF AG ==-==∴112EH D E D H =-==,∴在Rt BEH 中,BE ==∴四边形PDBQ 的周长最小值2=.【点睛】本题考查了等腰直角三角形的性质、三角形的面积、四边形面积、四边形周长等知识,解答本题的关键是正确的作出辅助线.17.(1)1-;(2)6.【分析】(1)先计算特殊角的正弦与正切值、零指数幂,再计算实数的混合运算即可得;(2)根据比例中项的定义列出式子计算即可得.【详解】(1)原式21212⨯+-=113=+-1=-;(2)设线段a ,b 的比例中项为x ,则::a x x b =,4a = ,9b =,4::9x x ∴=,解得6x =或6x =-(不符题意,舍去),即线段a ,b 的比例中项为6.【点睛】本题考查了特殊角的正弦与正切值、零指数幂、比例中项,熟记各定义和运算法则是解题关键.18.(1)13;(2)23【分析】(1)用列举法列出所有可能出现的结果,其中“抽到1号”的有1种,即可求出概率;(2)用列表法表示所有可能出现的结果,找出“和为奇数”的情况,进而求出相应的概率.【详解】(1)共有3种可能出现的结果,其中“抽到1号球”的有1种,∴“抽到1号球”的概率为13;(2)用列表法表示出所有可能出现的结果情况如下:∴由表可知,共有6种等可能结果,其中其中“和为奇数”的有4种,∴4263P ==.【点睛】本题考查了列举法、列表法求随机事件发生的概率,列举出所有可能出现的结果是解答本题的关键.19.14/km h【分析】设AB 与正北方向线交于点C ,根据已知及三角函数求得AC 、OC 的长,再根据等腰直角三角形的性质求得BC 的长,利用AB=AC+BC 求出AB 的长,再除以该船航行的时间即可求解;【详解】如图所示:设AB 与正北方向线交于点C ,∵在Rt △AOC 中,∠AOC=30°,OA=500m ,∴sin 30250AC OA m =︒= ,cos30OC OA =︒= ,∵△OBC 是等腰直角三角形,∴BC OC ==,∴250AB AC BC =+=+,∴该船的航速为:2503=5100060+÷+【点睛】本题考查了解直角三角形的知识,解一般三角形的问题一般可以转化为解直角三角形的问题,解决方法为构造直角三角形,难度一般;20.(1)见解析;(2)64【分析】(1)由平行线的性质可得∠DEB=∠FCE ,∠DBE=∠FEC ,再根据相似三角形的判定可得结论;(2)先根据35AF FC =得出58CF AC =,再根据相似三角形的判定与性质即可得出答案.【详解】(1)∵DE ∥AC ,∴∠DEB=∠FCE ,∵EF ∥AB ,∴∠DBE=∠FEC ,∴△BDE ∽△EFC ;(2)∵35AF FC =,∴58CF AC =,∵//EF AB ,∴△BAC ∽△EFC ,∴22564⎛⎫== ⎪⎝⎭ EFC ABC CF AC S S ,∵25= EFC S ,∴64= ABC S ,即△ABC 的面积为64.【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的判定和性质是本题的关键.21.(1)2180y x =+﹣;(2)60元/千克或80元/千克;(3)70元/千克;800元【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】解:(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(55,70)、(60,60)代入得:55706060k b k b +=⎧⎨+=⎩,解得:2180k b =-⎧⎨=⎩,∴y 与x 之间的函数表达式为2180y x =-+;(2)由题意得:()()502180600x x --+=,整理得214048000x x -+=:,解得126080x x ==,,答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)设当天的销售利润为w 元,则:()()502180w x x =--+22(70)800x =-+﹣,∵﹣2<0,∴当70x =时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.22.(1)①见解析;②见解析;(2)3r =【分析】(1)①直接用直径所对圆周角是90°进行解题即可;②找到∠CAD=∠ABD 和∠ADC=∠BDA ,两个角相等即可证明两个三角形相似;(2)利用锐角三角函数和相似三角形的性质即可求出半径的长度;【详解】(1)①如图所示,连接AO ,由BC 是直径得90BAC ∠= ,∵OB=OA ,∴∠B=∠OAB ,∵∠CAD=∠B ,∴∠OAD=∠OAC+∠CAD=∠OAC+∠OAB=90°,∴AD 为圆的切线;②在△ACD 和△BAD 中,∠CAD=∠ABD ,∠ADC=∠BDA ,∴△ACD ∽△BAD(2)由(1)知△ACD ∽△BAD ∴DA DC AC DB DA AB==,∵1tan 2B =,∴1tan 2AC B AB ==,∴12DA DC DB DA ==,则2AD CD =,即182AD AD BD ==,得AD=4,∴122CD AD ==,∴BC=BD-CD=8-2=6,∴半径3r =;【点睛】本题考查了直径所对圆周角等于90°,相似三角形的判定以及锐角三角函数,正确掌握知识点是解题的关键;23.(1)见解析;(2)5或10;(3)①见解析;②23.【分析】(1)分两种情况讨论,如图①,取格点,,E F 且2,3,EF AC CE CB ====连接CF 交AB 于,D 如图②,取格点,N 且//,,CA BN BN CA =连接CN 交AB 于,D 则两种情况都满足2.CD AD BD = 从而可作出图形;(2)作BC 边上的高AH ,由3tan 4AH B BH ==tan 1,AH C CH ==可得:4,,3BH AH CH AH ==再列方程414,3AH AH +=求解6,8,6,AH BH CH ===设BD x =,则由222,AD AH DH =+2AD BD CD =⋅可得22(8)6(14)x x x -+=-,解方程可得答案;(3)①首先证得,AHC DHB ∽则该相似三角形的对应边成比例:,AH CH DH BH=即••AH BH CH DH =,由点H 是BCD △中CD 边上的“好点”,可得2•,BH CH DH =再证明,AH BH =再利用垂径定理的推论可得结论;②如图④,连接,AD 证明90,ABD ∠=︒可得AD 是直径,所以,,A O D 共线,设,OH x =则3,OA OD x ==2,BD x =再分别求解,,CH DH 从而可得答案.【详解】解:(1)如图①,取格点,,E F 且2,3,EF AC CE CB ====连接CF 交AB 于,D 如图②,取格点,N 且//,,CA BN BN CA =连接CN 交AB 于,D 则两种情况都满足2,CD AD BD = 即D 为ABC 中边AB 上的“好点”.理由如下:如图①,90ACB CEF ∠=∠=︒,2,4,EF AC CE CB ====(),CEF BCA SAS ∴ ≌,ECF CBA ∴∠=∠90,ECF BCD ∠+∠=︒ 90BCD CBA ∴∠+∠=︒,90CDB ∴∠=︒,∴90CDA CDB ∠=∠=︒,,ACD CBD ∴ ∽,CDADBD CD ∴=2,CD AD BD ∴= 如图②, 矩形,ANBC ,CD ND AD BD ∴===2.CD AD BD ∴= (2)如图③,作BC 边上的高AH ,3tan 4AHB BH ==tan 1,AHC CH ==4,,3BH AH CH AH ∴==14,BC BH CH =+= ∴414,3AH AH +=6,8,6,AH BH CH ∴===设BD x =,则8,14,DH x CD x =-=- 222,AD AH DH =+2AD BD CD =⋅,∴22(8)6(14)x x x -+=-,215500,x x ∴-+=()()5100,x x ∴--=∴5x =或10x =,经检验:5x =或10x =都符合题意,所以BD 的长为5或10.(3)①∵,,CHA BHD ACH DBH ∠=∠∠=∠∴,AHC DHB ∽∴,AH CH DH BH =即••AH BH CH DH =,∵点H 是BCD △中CD 边上的“好点”,2•,BH CH DH ∴=2•,BH AH BH ∴=,BH AH ∴=.OH AB ∴⊥②2.3CH DH =理由如下:如图④,连接,AD //,OH BD ,OH AB ⊥∴90,ABD ∠=︒∴AD 是直径,所以,,A O D 共线,3,r OH = ∴设,OH x =则3,OA OD x ==2,BD x ∴=22223642,AB AD BD x x x ∴=-=-=,OH AB ⊥ 22222,483,AH BH x HD BD HB x x x ∴===+=+=2•,BH CH DH =22,3BH CH x DH ∴==2.3x CH DH ∴=【点睛】本题考查的是直角三角形斜边上的中线等于斜边的一半,三角形的中位线的性质,勾股定理的应用,相似三角形的判定与性质,解直角三角形的应用,垂径定理,圆周角定理,掌握以上知识是解题的关键.24.(1)y =﹣13x 2+3;(2)l==213m -+;(3,P 15)4【分析】(1)由抛物线y =ax 2+bx +3的表达式知:C (0,3),根据∠OBC =30°,得B (0),而OB =3OA ,得A0),再用待定系数法即可得y =﹣13x 2+3;(2)延长PF 交x 轴于点E ,先由B (0),C (0,3)得直线BC 的表达式为y=3-x +3,设点P (m,21333m -++),则点F (m,3-m +3),故PF =l=213m -+;(3)先证明∠OBC =30°=∠P ,在Rt △PDF 中,PD =cos30°⋅PF,DF =sin30°⋅PF =12PF ,故△PDF 的周长=PD +PF +DF+1+12)PF,可知PF 最大时,△PDF 的周长最大,而当m=2时,l 最大=94,即PF 最大为94,即可得到答案.【详解】解:(1)由抛物线y =ax 2+bx +3的表达式知:C (0,3),∴OC =3,∵∠OBC =30°,∴OB=tan 30°OC∴B(0),又OB =3OA,即3OA ,∴OA∴A(0),将A(0),B(0)代入y =ax 2+bx +3,得:0330273a a ⎧=-+⎪⎨=++⎪⎩,解得:13a b ⎧=-⎪⎪⎨⎪=⎪⎩∴y =﹣13x 2+3;(2)延长PF 交x 轴于点E,如图:设直线BC 表达式为y =sx +t ,将B(0),C (0,3)代入得:3t t ⎧+⎪⎨=⎪⎩,解得3s t ⎧=⎪⎨⎪=⎩∴直线BC 的表达式为y=3-x +3,设点P (m,2133m -++),则点F (m,+3),∴PF =l=21(3)(3)3m -++--+=213m -;(3)∵∠OBC =30°,∴∠BFE =60°=∠PFD ,∵PD ⊥BC ,∴∠P =30°,在Rt △PDF 中,PD =cos 30°⋅PFPF ,DF =sin 30°⋅PF =12PF,∴△PDF 的周长=PD +PF +DF 12)PF PF ,∴PF 最大时,△PDF 的周长最大,而由(2)知:PF =l =213m -=219()324x --+,∴当m l 最大=94,即PF 最大为94,此时,△PDF∴点P 的坐标为15()24,△PDF 的周长最大值为278+.【点睛】本题考查二次函数综合应用,涉及待定系数法、二次函数图象上点坐标的特征、解直角三角形、三角形周长等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.。
浙教版九年级(上)期末数学试题(含答案)
浙教版九年级数学第一学期期末教学质量检测试题卷考生须知:1. 本试卷满分120分,考试时间为100分钟.2. 答题前,在答题纸上写姓名和准考证号.3. 必须在答题纸的对应答题位置上答题,写在其他地方无效,答题方式详见答题纸上的说明,考试结束后,上交答题纸.一、选择题(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1.已知反比例函数是xy 2=,则它的图象在( ▲ ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 2.已知31=-a b a ,则ab的值为( ▲ ) A .2 B .21 C .23D .323.在Rt △ABC 中,∠A =Rt ∠,AB =3,BC =4,则cosB =( ▲ ) A .43 B .47 C .53 D .544.如图,DE 是△ABC 的中位线,则△ADE 与四边形BCED 的面积的比是( ▲ ) A .1:5 B .1:4 C .1:3 D .1:2 5.若函数xm y 2+=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ )A .2-<mB .0<mC .2->mD .0>m6.如图,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是( ▲ )A .点PB .点QC .点RD .点M(第4题图) (第6题图) (第7题图) 7.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( ▲ )A .36°B .46°C .27°D .63°8.已知直线l 1∥l 2∥l 3∥l 4,相邻的两条平行直线间的距离均为h ,矩形ABCD 的四个顶点分别在这四条直线上,放置方式如图所示,AB =4,BC =6,则tanα的值等于( ) A .23 B .43 C .34D .32(第8题图) (第9题图)9.如图,一段抛物线:y =-x (x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;…如此进行下去,直至得C 13.若P (38,m )在第13段抛物线C 13上,则m 的值为( ▲ ) A .5B .4C .3D .210.若实数a ,b ,c ,满足a ≥b ≥c ,4a +2b +c =0且a ≠0,抛物线y =ax 2+bx +c 与x 轴交于A (x 1,0),B (x 2,0),则线段AB 的最大值是( ▲ ) A .2B .3C .4D .5二、填空题(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.已知:锐角α满足sinα=22,则α= ▲ 12.用一圆心角为120°,半径为6㎝的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是 ▲ ㎝13.如图,D 是△ABC 的边BC 上一点,已知AB =4,AD =2,∠DAC =∠B ,若△ABC 的面积为m ,则△ACD 的面积为 ▲14.对于抛物线y =-(x +1)2+3,下列结论:①抛物线开口向下;②对称轴为直线x =1;③顶点坐标为(-1,3);④x ≥1时,y 随x 的增大而减小,其中正确的结论是 ▲ .(第13题图) (第15题图) (第16题图)15.如图,AB 是⊙O 的直径,弦BC =4㎝,F 是弦BC 的中点,∠ABC =60°,若动点E 以1㎝/s 的速度从A 点出发在AB 上沿着A →B →A 运动,设运动时间为t (s )(0≤t <16),连接EF ,当△BEF 是直角三角形时,t (s )的值为 ▲16.如图,已知Rt △ABC ,AB ∥y 轴,BC ∥x 轴,且点B 的坐标为(-1,-3),∠A =30°,点A 、C 在反比例函数()0<=k xky 图象上,线段AC 过原点O ,若M (a ,b )是该反比例函数图象在第二象限上的点,且满足∠BMC >30°,则a 的取值范围是 ▲ . 三、解答题(本题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤。
浙教版九年级上册数学期末测试卷【及含答案】
浙教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,以点O为位似中心,把△ABC中放大到原来的2倍得到△A′B′C′.以下说法错误的是()A.△ ABC∽△ A′ B′ C′B.点C,O,C′三点在同一条直线上C. AB∥ A′ B′D. AO:AA′=1:22、设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+a上的三点,则y1, y2, y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y23、一元二次方程(m+1)x2-2x-1=0有两个相等的实数根,则m等于()A.-6B.-1C.-2D.14、如图,四边形ABCD为正方形,AB=1,把△ABC绕点A逆时针旋转60°得到△AEF,连接DF,则DF的长为()A. B. C. D.5、在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是()A. B. C. D.6、如图,是的直径,弦与交于点,,,则等于()A. B. C. D.7、如图,在平面直角坐标系中,等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限将△ABC绕点A逆时针旋转75°得到△ADE,点C的对应点E恰好落在y轴的正半轴上,若点A的坐标为(1,0),则边AB的长为()A. B. C.2 D.8、同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图所示看到的万花简的一个图案,如图中所有小三角形均是全等的等边三角形,其中的四边形AEFG可以看成是把四边形ABCD以A为旋转中心()A.顺时针旋转60°得到B.逆时针旋转60°得到C.顺时针旋转120°得到D.逆时针旋转120°得到9、△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2.则下列说法正确的是()A.A1的坐标为(3,1) B.S四边形ABB1A1=3 C.B2C=2D.∠AC2O=45°10、已知二次函数y=2(x-3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象顶点坐标为(3,-1);④当x<3时,y随x 的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个11、如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为( )A.1B.2C.3D.412、已知y=ax2+bx的图象如图所示,则y=ax-b的图象一定过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限13、如图,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它绕点C旋转一定角度,扶起平放在地面上(如图),则灰斗柄AB绕点C转动的角度为()A.75°B.25°C.115°D.105°14、如图,已知抛物线的图象与x轴交于两点,其对称轴与x轴交于点C其中两点的横坐标分别为-1和1下列说法错误的是()A. B. C. D.当时,y随x的增大而减小15、设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣x2﹣2x+2上的三点,则y1, y2, y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2二、填空题(共10题,共计30分)16、如图,在矩形中,是边的中点,连接交对角线于点,若,,则的长为________.17、把抛物线y=x2向右平移4个单位,所得抛物线的解析式为________.18、如图,AB是⊙O的直径,点C是半径OA的中点,过点C作DE⊥AB,交⊙O 于D,E两点,过点D作直径DF,连结AF,则∠DFA=________.19、如图,在Rt△ABC内画有边长为9,6,x的三个正方形,则x的值为________.20、已知:如同,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为________.21、平面直角坐标系中,以原点O为圆心,2为半径作⊙O,则点A(2,2)与⊙O的位置关系为________.22、如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC和∠BOC互补,则弦BC的长度为________.23、、是半径为的上的两条弦,且,,那么,的弦心距________,圆周角所对的弧等于________.24、如图,在3×3的方格中(共有9个小格),每个小方格都是边长为1的正方形,O、B、C是格点,则扇形OBC的面积等于________(结果保留π)25、已知y=(a+2)x2+x﹣3是关于x的二次函数,则常数a应满足的条件是________ .三、解答题(共5题,共计25分)26、如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求的值.27、有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,求小红第二次取出的数字能够整除第一次取出的数字的概率.28、如图,为的中点,求的周长.29、如图,分别是的边,上的点,,,,,求的长.30、在一个不透明的袋子中装有三个完全相同的小球,分别标有数字1,2,3,从袋子中随机取出一个小球,用小球上的数字作为十位数字,然后放回,再取出一个小球,用小球上的数字作为个位数字,这样组成一个两位数.(1)请用列表法或画树状图的方法求出能组成哪些两位数?(2)求组成的两位数能被2整除的概率.参考答案一、单选题(共15题,共计45分)1、D2、A3、C4、A5、C6、D7、A8、D9、D11、C12、C13、D14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
浙教版九年级上册数学期末考试试题及答案
浙教版九年级上册数学期末考试试题及答案一、选择题。
(每小题只有一个正确答案)1.若3a=2b,则ab的值为()A.53B.52C.23D.322.下列是有关防疫的图片,其中是中心对称图形的是()A.B.C.D.3.如图,B为A∠一边上的任意一点,BC AC⊥于点C,那么tan A=()A.ACBCB.ACABC.BCABD.BCAC4.九年级(1)班与九年级(2)班准备举行拔河比赛,根据双方的实力,小明预测:“九年级(1)班获胜的可能性是80%”下列四句话能正确反映其观点的是()A.九年级(2)班肯定会输掉这场比赛B.九年级(1)班肯定会赢得这场比赛C.若进行10场比赛,九年级(1)班定会赢得8次D.九年级(2)班也有可能会赢得这场比赛5.在Rt△ABC中,△C=90°,AB=10,BC=8,则tan B的值是( )A.34B.43C.45D.356.已知△ABC内接于△O,连接AO并延长交BC于点D,若△C=50°,则△BAD的度数是()A.40°B.45°C.50°D.55°7.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表所示,下列说法正确的是()A.a>0 B.x>1时y随x的增大而减小C .y 的最大值是3D .关于x 的方程ax 2+bx +c=3的解是x 1=1,x 2=2 8.如图,在▱ABCD 中,点O 是对角线BD 上的一点,且12OD OB =,连接CO 并延长交AD 于点E ,若△COD 的面积是2,则四边形ABOE 的面积是( )A .3B .4C .5D .69.如图,在Rt ABC 中,90C ∠︒=,BC =6,AC =8,△O 的半径为2,圆心在AB 边上运动,当△O 与Rt ABC 的边恰有4个交点时,OA 的取值范围是( )A .7.5<OA <8B .7.5<OA <8或2<OA <5C .103<OA <7.5 D .7.5<OA <8或2<OA <10310.如图,已知△O 的半径为3,弦CD =4,A 为△O 上一动点(点A 与点C 、D 不重合),连接AO 并延长交CD 于点E ,交△O 于点B ,P 为CD 上一点,当△APB =120°时,则AP •BP 的最大值为( )A .4B .6C .8D .12二、填空题11.tanA=1,则锐角△A=____________.12.某射手在同一条件下进行射击,结果如下表所示:由此表估计这个射手射击1次,击中靶心的概率是_______.(保留一位小数) 13.已知圆心角为60°的扇形的弧长为π,则扇形的半径为____________. 14.已知在ABC 中,△B=36°,AB=AC ,D 为BC 上一点,满足AD=CD ,则CDBD=____________.15.如图,在平面直角坐标系中,抛物线()2230y ax ax a =-+>与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于点M ,P 为抛物线的顶点,若直线OP 交直线AM 于点B ,且M 为线段AB 的中点,则a 的值为____________.16.如图,ABC 内接于O ,△BAC=70°,D 是BC 的中点,且△AOD=156°,AE ,CF 分别是BC ,AB 边上的高,则△BCF 的度数是____________.17.解方程: (1)x 2﹣4x ﹣1=0 (2)x (x ﹣2)=x ﹣218.某游泳池有1200立方米水,设放水的平均速度为v 立方米/小时,将池内的水放完需t 小时. (1)求v 关于t 的函数表达式,并写出自变量t 的取值范围;(2)若要求在3小时之内(包括3小时)把游泳池的水放完,求放水速度v 的范围.19.如图,在每个小正方形的边长都是1的正方形网格中,△ABC的三个顶点都在小正方形的格点上.(1)△ABC的面积为(面积单位)(2)将△ABC绕点C旋转180°得到△A1B1C(点A的对应点是A1),连接AB1,BA1.△请在网格中补全图形;△直接写出四边形AB1A1B是何种特殊的四边形.20.已知:如图,在ABC中,AB=AC,AD△BC,AN为ABC外角△CAM的平分线,CE△AN.(1)求证:四边形ADCE为矩形;(2)猜想当AD、BC满足怎样的数量关系时,四边形ADCE是正方形,并说明理由.21.有三张完全相同的不透明卡片,小明在其正面各写上一组线段的长度,并分别标注序号△,△,△,如图所示,然后将这三张卡片背面朝上洗匀.(1)若从中随机抽取一张,则抽到一张成比例线段卡片的概率是________;(2)若从中随机抽取一张,记下序号后放回,再随机抽取一张,请用列表或画树状图的方法,求恰好抽到两张成比例线段卡片的概率.22.如图,在Rt△ABC中,△ABC=90°,将Rt△ABC绕点A旋转得Rt△ADE,使点B的对应点D落在AC上,连接CE、BD,并延长BD交CE与点F.(1)若△BCA=40°,求△DEC;(2)若△BCA=α,求证:DF=FC;(3)若AB=3,BC=4,求BD的长.23.如图,在平面直角坐标系xOy中,正方形OABC的顶点A,C分别落在x轴,y轴上,点B的坐标为(8,8),点D在线段BC上(不与B,C重合),将△OCD沿OD翻折,使得点C落在同一平面内的点E处.(1)如图1,当OD=10时.△求点D的坐标.△延长DE交AB于点F,求点F的坐标.(2)连结BE并延长,交正方形OABC的边于点G,若BD=OG,求点D的坐标.24.如图1,锐角△ABC,AB=AC,△O是△ABC的外接圆,连接BO并延长交AC于点D,(1)若△BDC=30°,求△BAC的度数;(2)如图2,当0°<△BAC<60°时,作点C关于BD的对称点E,连接AE、DE,DE交AB于F.△点E在△O(选填“内”、“上”、“外”);△证明:△AEF=△EAB;△若△BDC为等腰三角形,AD=2,求AE的长.参考答案1.C【分析】直接利用比例的性质变形得出答案.【详解】解:△3a=2b,△23ab.故选:C.【点睛】本题主要考查了比例的性质,准确计算是解题的关键.2.A【分析】根据中心对称图形的概念进行判断,即可得出结论.【详解】解:A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的概念并能准确运用其识别图形是解题的关键.3.D【分析】根据垂直的定义可得ACB△为直角三角形,再利用直角三角形中,锐角的正切值等于对边比上邻边即可得到答案.【详解】BC AC⊥90ACB∴∠=︒∴在Rt ACB中,tanBC AAC =故选:D.4.D【分析】根据概率的意义分别判断后即可确定正确的选项.【详解】解:△小明预测:“九年级(1)班获胜的可能性是80%”只能说明九年级(1)班获胜的可能性很大,△九年级(2)班也有可能会赢得这场比赛,故,,A B C不符合题意,D符合题意,故选:D.【点睛】考查了概率的意义及可能性大小的知识,解题的关键是了解大概率发生的事件不一定一定发生,小概率发生的事件也有可能发生.5.A【详解】试题解析:△在Rt△ABC中,△C=90°,AB=10,BC=8,△AC=6,△63=84ACtanBBC==.故选A.6.A【分析】连接OB,根据圆周角定理和圆的半径相等即可解决问题.解:如图,连接OB,△△C=50°,△△AOB=2△C=100°,△OA=OB,△△OAB=△OBA=40°,则△BAD的度数是40°.故选:A.【点睛】本题主要考查了圆周角定理,准确计算是解题的关键.7.D【分析】利用表中函数值的变换情况可判断抛物线的开口方向,则可对A进行判断;利用x=0和x=3时函数值相等可得到抛物线的对称轴,则可对B、C进行判断;利用抛物线的对称性可得x=1和x=2的函数值相等,则可对D进行判断.【详解】解:△二次函数值先由小变大,再由大变小,△抛物线的开口向下,a<0,故A错误;△抛物线过点(0,1)和(3,1),△抛物线的对称轴为直线x=32,△x=32对应的y的值最大,故C错误;△抛物线开口向下,△x>32时y随x的增大而减小,故B错误;△抛物线的对称轴为直线x=32,且抛物线经过点(1,3),△点(1,3)关于对称轴的对称点为(2,3),△关于x的方程ax2+bx+c=3的解是x1=1,x2=2,故D正确;故选:D.本题考查了二次函数的性质,二次函数图象上点的坐标特征,二次函数的对称性.熟练掌握二次函数的性质和抛物线的对称性是解决此题的关键. 8.C 【分析】由题意可得△BOC 的面积为4,通过证明△DOE△△BOC ,可求S △DOE =1,即可求解. 【详解】 解:△12OD OB =,△COD 的面积是2, △△BOC 的面积为4,△四边形ABCD 是平行四边形, △AD△BC ,S △ABD =S △BCD =2+4=6, △△DOE△△BOC , △DOE BOCS S.(OD OB )2=14, △S △DOE =1,△四边形ABOE 的面积=6﹣1=5, 故选:C . 【点睛】本题主要考查了相似三角形的判定与性质,准确计算是解题的关键. 9.D 【分析】由勾股定理可求AB =10,找出出△O 与ABC 的边恰有3个交点时OA 的临界值,即可求解. 【详解】解:△9068C BC AC ∠︒=,=,=△AB10,如图1,当△O 过点A 时,此时△O 与ABC 的边恰有3个交点,此时OA =2,当O '过点B 时,此时O '与ABC 的边恰有3个交点,此时2O B '= ,则8O A '=;如图2,当△O 与AC 相切于点E 时,此时△O 与ABC 的边恰有3个交点, 连接OE , △OE AC ⊥,△90AEO ACB ∠∠︒==, 又△A A ∠∠=, △AEO ACB ∽, △EO AOBC AB=, △2610AO =, △AO =103, 当O '与BC 相切于点F 时,此时O '与ABC 的边恰有3个交点, 同理可求 2.5O B '=, △7.5O A '=,△当△O 与ABC 的边恰有4个交点时,OA 的取值范围为7.58OA <<或1023OA <<. 故选D . 【点睛】本题考查了勾股定理,相似三角形的判定和性质,圆的有关知识;关键在于能完整的找到临界位置来确定范围. 10.C 【分析】延长AP 交△O 于T ,连接BT .设PC =x .构建二次函数,利用二次函数的性质解决问题即可. 【详解】解:延长AP 交△O 于T ,连接BT ,连接CT 、AD .设PC =x .△△P AD=△C ,△PDA=△CTP ,△△APD△△CPT , △AP PD CP PT=, 即P A •PT =PC •PD ,△AB 是直径,△△ATB =90°,△△APB =120°,△△BPT =60°,△PT =PB •cos60°=12PB ,△P A •PB =2P A •PT =2PC •PD =2x •(4﹣x )=﹣2(x ﹣2)2+8,△﹣2<0,△x =2时,P A •PB 的最大值为8,故选:C .【点睛】本题考查圆周角定理,相似三角形的判定与性质,解直角三角形,二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.45°【分析】由tan 1,A = A ∠为锐角,而tan 45=1,︒ 从而可得答案.【详解】解:tan 1,A = A ∠为锐角,45.A ∴∠=︒故答案为:45.︒【点睛】本题考查的是锐角三角函数的应用,掌握由锐角三角函数值求解锐角的大小是解题的关键.12.0.9【分析】用频率估计概率即可.【详解】解:从表中可以发现,随着射击次数的增加,击中靶心的频率越来越稳定.当射击次数为500时,击中靶心的频率为0.905,于是可以估计这个射手射击1次,击中靶心的概率是0.9.故答案为:0.9.【点睛】本题考查了用频率估计概率,解题关键是明确大量反复试验下频率稳定值即概率.13.3【分析】根据弧长的计算公式求解即可;【详解】△扇形的圆心角是60°,弧长为π, △60180rππ⨯⨯=,△3r =;故答案是3.【点睛】本题主要考查了弧长的公式应用,准确计算是解题的关键.14【分析】根据等腰三角形的性质和三角形外角的性质证明BA BD =,设AD=CD=x ,BD=BA=y ,证明△ABC△△DAC ,得AB BCAD AC =,列方程求解即可得到结论.【详解】解:△△36,B AB AC =︒=△△36,1803636108C B BAC =∠=∠=︒-︒-︒=︒︒△AD CD =△△36DAC DCA =∠=︒△△72BAD BAC DAC =∠-∠=︒,△+72ADB DAC C =∠∠=︒△△BAD ADB =∠,△BA BD =设AD=CD=x ,BD=BA=y ,在△ABC 和△DAC 中△B=△DAC ,△C=△C△△ABC△△DAC △AB BC AD AC=,即y y x x y += △210x x y y⎛⎫+-= ⎪⎝⎭解得,x y =△CD BD =【点睛】本题主要考查等腰三角形的性质以及相似三角形的判定与性质,证明△ABC△△DAC 是解题的关键.15.94【分析】求出A 点坐标和对称轴,根据对称性求出M 点坐标,利用中点,求出B 点坐标,进而求出P 点坐标,代入求 a 即可.【详解】 解:由题意得:对称轴为直线212a x a-=-=,P 点横坐标为1, 当x=0时,y=3,△A 点坐标为:()0,3,根据对称性可知,M 点坐标为()2,3 ,△M 为AB 中点,△B 点坐标为:()4,3设OB 解析式为y=kx ,把B ()4,3代入得,3=4k解得,k=34,△直线OB 解析式为34y x =,把1x =代入34y x =得,34y =,△P 点坐标为31,4⎛⎫⎪⎝⎭, 代入抛物线得:3234a a -+=, 解得,94a =, 故答案为:94.【点睛】本题考查了一次函数和二次函数的综合,解题关键是根据二次函数的性质求出B 点坐标,求出一次函数解析式. 16.23°【分析】连接OB 、OC ,根据垂径定理求出BOD ∠,再根据角的性质计算出AOB ∠,根据OA OB =计算出ABO ∠,从而能够求出ABC ∠,最后根据CF △AB ,求出BCF ∠的大小.【详解】连接OB 、OC△OB OC =,D 是BC 的中点 △1702BOD BOC BAC ===︒∠∠∠1567086AOB AOD BOD =-=︒-︒=︒∠∠∠△OA OB = △18086472ABO ︒-︒==︒∠907020OBC =︒-︒=︒∠△472067ABC ABO OBC =+=︒+︒=︒∠∠∠△CF △AB△90906723BCF ABC =︒-=︒-︒=︒∠∠故答案为:23︒【点睛】本题考查圆的垂径定理,圆周角和圆心角关系,以及直角三角形的性质,属于基础题.17.(1)x =(2)x =1或x =2【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)△x 2﹣4x ﹣1=0,△x 2﹣4x+4=5,△(x ﹣2)2=5,△x =△1222x x ==(2)△x (x ﹣2)=x ﹣2,△x (x ﹣2)﹣(x ﹣2)=0,△(x ﹣1)(x ﹣2)=0,△121,2x x ==.【点睛】本题考查了用配方法和因式分解法解一元二次方程,能把一元二次方程转化成一元一次方程是解题的关键. 18.(1)v =1200t ,自变量的取值范围为t >0;(2)放水速度的范围为v ≥400立方米/小时.【分析】(1)由题意得vt =1200,即v =1200t ,自变量的取值范围为t >0,(2)把t =3代入求出相应的v 的值,即可求出放水速度的范围.【详解】解:(1)由题意得:vt =1200,即:v =1200t ,答:v 关于t 的函数表达式为v =1200t ,自变量的取值范围为t >0.(2)当t=3时,v=12003=400,所以放水速度的范围为v≥400立方米/小时.【点睛】本题考查了求反比例函数的关系式以及反比例函数图象上点的坐标特征.根据常用的数量关系得出函数关系式.19.(1)4;(2)△见解析;△矩形.【分析】(1)用一个正方形的面积分别减去3个三角形的面积可计算出△ABC的面积;(2)△延长AC到A1,使CA1=AC,延长BC到B1,使CB1=CB,从而得到△B1A1C;△利用对角线互相平分且相等的四边形为矩形进行判断.【详解】解:(1)△ABC的面积=3×3﹣12×3×1﹣12×2×2﹣12×3×1=4;故答案为4;(2)△如图,△A1B1C为所作;△四边形AB1A1B是矩形.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了矩形的判定.20.(1)见解析;(2)当AD=12BC时,四边形ADCE是一个正方形,见解析【分析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE△AN,AD△BC,所以求证△DAE=90°,可以证明四边形ADCE为矩形.(2)根据正方形的判定,我们可以假设当AD=12BC,由已知可得,DC=12BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.【详解】(1)证明:在△ABC中,AB=AC,AD△BC,△△BAD=△DAC,△AN是△ABC外角△CAM的平分线,△△MAE=△CAE,△△DAE=△DAC+△CAE=12×180°=90°,又△AD△BC,CE△AN,△△ADC=△CEA=90°,△四边形ADCE为矩形.(2)当AD=12BC时,四边形ADCE是一个正方形.理由:△AB=AC,AD△BC,△CD=12BC,△AD=12BC,△AD=CD,△矩形ADCE是正方形.【点睛】此题考查了正方形的判定,矩形的判定与性质、三线合一.此题难度适中,注意掌握数形结合思想的应用.21.(1)23;(2)树状图见解析,49【分析】(1)先根据成比例线段的定义判断△△卡片中的线段成比例,然后根据概率公式求解;(2)画树状图展示所有9种等可能的结果,找出恰好抽到两张成比例线段卡片的结果数,然后根据概率公式求解.【详解】解:(1)△2:2=3:3,1:2≠3:4,3:4=6:8,△成比例线段的卡片为△△,△抽到一张成比例线段卡片的概率是23;故答案为23;(2)树状图如图所示.有9种等可能的结果,其中有4种结果是符合题意的,△P(恰好抽到两张成比例线段卡片)49 .【点睛】本题考查了比例线段:对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a:b=c:d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.也考查了列表法与树状图法.22.(1)25°;(2)见解析;(3.【分析】(1)先求出△BAC,再用旋转得出AC=AE,△AED=40°,△CAE=50°,进而求出△AEC,即可得出结论;(2)先求出△BAC,再利用旋转的性质得出AC=AE,AD=AB,进而求出△CAE=45°+12α=△CDF,即可得出结论;(3)先求出AC,进而求出CD,再利用相似三角形的性质求出DH,CH,最后用勾股定理即可得出结论.【详解】解:(1)在Rt△ABC中,△BCA=40°,△△BAC=90°﹣△BCA=50°,由旋转知,△AED=△ACB=40°,△CAE=△BAC=50°,AC=AE,△△AEC=12(180°﹣△CAE)=65°,△△DEC=△AEC﹣△AED=65°﹣40°=25°;(2)在Rt△ABC中,△BCA=α,△△BAC=90°﹣△BCA=90°﹣α,由旋转知,AD=AB,△△ADB=12(180°﹣△BAC)=12[180°﹣(90°﹣α)]=45°+12α,△△CDF=△ADB=45°+12α,由旋转知,△CAE=△BAC=90°﹣α,AC=AE,△△ACE=12[180°﹣(90°﹣α)]=45°+12α,△△CDF=△ACE,△DF=CF;(3)如图,在Rt△ABC中,AB=3,BC=4,根据勾股定理得,AC=5,由旋转知,AD=AB=3,△CD =AC ﹣AD =2,过点D 作DH △BC 于H ,△△DHC =90°=△ABC ,△DH//AB ,△△DHC △△ABC , △DH CH CD AB BC AC==, 2345DH CH ∴==, △DH =65,CH =85, △BH =BC ﹣CH =4﹣85=125在Rt△BDH 中,根据勾股定理得,BD .【点睛】本题考查旋转、相似三角形的判定与性质、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.23.(1)△点D 的坐标为(6,8);△点F 的坐标为(8,87);(2)点D 的坐标为(16-8)或(4,8). 【分析】(1)△在Rt △OCD 中,利用勾股定理可求得CD 的长,即可求解;△利用(HL 证得Rt △OEF ≅Rt △OAF ,得到EF =AF ,在Rt △BDF 中,利用勾股定理列式求解即可;(2)分当BE 交正方形OABC 的边OA 于点G 和BE 交正方形OABC 的边OC 于点G 两种情况,分别求解即可.【详解】解:(1)连接OF ,根据折叠的性质,OC =OE =8,CD =DE ,△OCD =△OED =90°, △在Rt △OCD 中,由勾股定理得:222OC CD OD +=,△CD 6,△点D 的坐标为(6,8);△△△OED =90°,则△OEF =△OAF =90°,OE =OA =8,OF =OF , △Rt △OEF ≅Rt △OAF (HL ),△EF =AF ,设EF =AF =a ,则BF =8-a ,DF =6+a ,BD =2,在Rt △BDF 中,由勾股定理得:()()222286a a +-=+, 解得:87a =,△点F 的坐标为(8,87);(2)当BE 交正方形OABC 的边OA 于点G 时,如图:△BD =OG ,又BD △OG ,△四边形BDOG 是平行四边形,△BG △DO ,△△CDO =△DBE ,△ODE =△DEB ,△△CDO =△ODE ,CD = DE ,△△DBE=△DEB ,△CD = DE =DB =4,△点D 的坐标为(4,8);当BE 交正方形OABC 的边OC 于点G 时,如图:连接CE ,过点E 作EH △BC 于点H ,△BD =OG ,△CD =CG ,△Rt △BCG ≅Rt △OCD (SAS ),△△2=△3,△△OCD 与△OED 关于OD 对称,△OD 是线段CE 的垂直平分线,CD =DE ,△△1+△CDO =90°,△2+△CDO =90°,△△1=△2=△3,△CE =BE ,同理可证△ECG =△EGC ,△CE =BE =GE ,则EH =12GC ,CH =12BC =4,设CD =CG =2x ,则DE =CD =2x ,EH = x ,DH =4-2x ,在Rt △DEH 中,222DH HE DE +=,即()()222422x x x -+=,解得:8x =-8+(不合题意,舍去),△点D 的坐标为(16-8);△点D的坐标为(16-8);综上,点D的坐标为(16-8)或(4,8).【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,解一元二次方程等知识,解题的关键是灵活运用所学知识解决问题.24.(1)20°;(2)△上;△见解析;△AE=2或【分析】(1)延长BD交圆O于点G,连结CG,利用圆周角定理及其推论、三角形内角和与外角的性质得出角之间的关系,进而列出关于α的方程即可求解;(2)连结OC、OE,延长BD交圆O于点M,连结CM,由轴对称的性质以及点与圆的位置关系即可得出△;利用圆周角定理及其推论、三角形内角和与外角的性质,运用参数法即可证明△;运用分类讨论以及等腰三角形的性质即可得出△.【详解】(1)延长BD交圆O于点G,连结CG,如图:△BC BC=△△A=△G,△直径BG,△△BCG=90°,△AB=AC,△△BCA=△CBA,设△BCA=△CBA=α,则△A=△G=180°﹣2α,△DCG=90°﹣α,△△BDC=△G+△DCG=180°﹣2α+90°﹣α=30°,△α=80°,△△BAC=△G=180°﹣2×80°=20°;(2)连结OC、OE,延长BD交圆O于点M,连结CM,如图:△△C、E是关于BD的对称点,△OC=OE,△点E在△O上,故答案为:上;△证明:△C、E是关于BD的对称点,△BC BE,△2=△3,△△4=△5=△M,设△1=△ABC=x,则△4=△5=△M=180°﹣2x,△6=90°﹣x,△△2=△3=△M+△6=270°﹣3x,△△AEF=△EDC﹣△EAD=2△3﹣2△4=2(270°﹣3x)﹣2(180°﹣2x)=180°﹣2x,△△AEF=△5=180°﹣2x,即△AEF=△EAB;△△△1=△ABC>△DBC,△BD>DC,△△BDC为等腰三角形,△分两种情况讨论:(△)当BD=BC时,△1=△2,即x=270°﹣3x,解得:x=67.5°,△△4=45°<60°,满足题意,此时△AED为等腰直角三角形,AE=AD=2,△AE=2;(△)当DC=BC时,△2=△DBC,即270°﹣3x=90°﹣(180°﹣2x),解得:x=72°,△△4=36°,满足题意,此时△AED为等腰三角形,△EAD=△EDA=△AFD=72°;△AF=EF=AD=2,且△EAD△△AFD,△222AE AE=-,解得:AE=(负值已舍去);综上所述:AE=2或【点睛】本题主要考查了圆周角定理及其推论、等腰三角形的性质、三角形内角和、三角形外角的性质、相似三角形的判定与性质,涉及到分类讨论的数学思想、辅助线的作法.。
浙教版九年级(上)期末数学试卷及答案
浙江省九年级数学上册期末模拟试卷一、选择题(每小题3分,共30分)1.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有()A. 24B. 36C. 40D. 902.如图,在平面直角坐标系中,点A的坐标为(3,4),那么cosα的值是()A. 34 B. 43C. 45D. 353.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则OCCD的值为()A. 12 B. √22C. 13D. √334.已知△ABC∽△A´B´C´,且△ABC与△A´B´C´的周长比为1:2,则△ABC与△A´B´C´的面积比为()A. 1:2B. 2:1C. 1:4D. 4:15.已知,抛物线y=ax2+bx+c与x轴的公共点是(-6,0),(2,0),则这条抛物线的对称轴是直线()A. x=1B. x=−2C. x=−1D. x=26.如图,在平面直角坐标系中,已知点A(−2,4),B(−8,−2),以原点O为位似中心,相似比为12,把ΔA BB缩小,则点A的对应点A′的坐标()A. (−1,2)B. (−9,18)C. (−9,18)或(9,−18)D. (−1,2)或(1,−2)7.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosx.D. acosx+bsinx8.如图,扇形AOB的圆心角为90°,四边形OCDE是边长为1的正方形,点C、E、D分别在OA、OB、AB上,过A作AF⊥ED交ED的延长线于点F,那么图中阴影部分的面积为().B. √2-1C. 2- √2D. √2A. √229.如图,在正方形ABCD中,ΔBPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②ΔDFP∼ΔBPH;③ΔPFD∼ΔPDB;④DP2=PH⋅PC.其中正确的个数是()A. 1B. 2C. 3D. 410.二次函数y=ax2+bc(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①抛物线与x轴的另一个交点是(5,0);②4a-2b+c>0:③4a+b=0;④当x>-1时,y的值随κ值的增大而增大。
浙教版九年级上册数学期末测试卷及含答案
浙教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是()A. B. C. D.2、函数与的图象如图所示,则的大致图象为()A. B. C. D.3、如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB()A.是正方形B.是长方形C.是菱形D.以上答案都不对4、如图是从一幅扑g牌中取出的两组牌,分别是黑桃1,2,3,4红桃1,2,3,4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌面数字之和等于7的概率是()A. B. C. D.5、抛物线y=x2-mx-m2+1的图象过原点,则m的值为( )A.0B.1C.-1D.±16、下列命题正确的个数有()①两边成比例且有一角对应相等的两个三角形相似;②对角线相等的四边形是矩形;③任意四边形的中点四边形是平行四边形;④两个相似多边形的面积比为2:3,则周长比为4:9.A.1个B.2个C.3个D.4个7、如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,若∠B=60°,则∠1的度数是()A.15°B.25°C.10°D.20°8、周长是4m的矩形,它的面积S(m2)与一边长x(m)的函数图象大致是( )A. B. C. D.9、二次函数y=ax2+bx+c的图象如图所示,则下列关系式错误的是()A.a<0B.b>0C.b 2﹣4ac>0D.a+b+c<010、将函数y=2(x+1)2﹣3的图象向右平移2个单位,再向上平移5个单位,可得到抛物线的顶点为()A.(﹣3,2)B.(3,8)C.(1,﹣8)D.(1,2)11、如图,是半圆的直径,为弦,于,过点作交半圆于点,过点作于,若,则的长为()A. B. C. D.12、用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )A.2π cmB.1.5 cmC.π cmD.1 cm13、一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有71次摸到红球.请你估计这个口袋中白球的数量为( )个.A.29B.30C.3D.714、下列命题正确的是()A.若两个相似三角形的周长比为3:4,则这两个相似三角形的面积比也是3:4 B.如果两个多边形是相似多边形,那么它们一定是位似图形 C.顺次连接菱形的各边中心所得的四边形是正方形 D.各有一个内角是100°的两个等腰三角形相似15、在下列事件中,随机事件是()A.通常温度降到0℃以下,纯净的水会结冰B.随意翻到一本书的某页,这页的页码是奇数C.明天的太阳从东方升起D.在一个不透明的袋子里装有完全相同的6个红色小球,随机抽取一个白球二、填空题(共10题,共计30分)16、在△ABC中,AB=AC,点O是△ABC的外心,∠BOC=60°,BC=2,则S△ABC=________。
浙教版九年级上册数学期末考试试题及答案
浙教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.若32y x =,则x y x +的值为( ) A .32 B .5 C .52 D .122.在一个不透明的盒子中有1个白球和3个红球,它们除颜色外其余都相同,从盒子里任意摸出1个球,摸到白球的概率是( )A .12 B .13 C .14 D .153.将抛物线2y x =-向左平移3个单位,再向上平移5个单位,则平移后的抛物线解析式为( ) A .2(3)5y x =-++ B .2(3)5y x =-+- C .2(3)5y x =--+ D .2(3)5y x =---4.如图,在△ABC 中,DE△BC ,AD=6,DB=3,AE=4,则EC 的长为( )A .1B .2C .3D .45.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm ,则水面AB 的宽度为( )A .12cmB .18cmC .20cmD .24cm6.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则tan ADC ∠的值为( )A B C .23 D .327.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A 、B 、C 、D 、E 、O 均是正六边形的顶点.则点O 是下列哪个三角形的外心( )A .AEDB .ABD △C .BCD △ D .ACD △8.如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为弧AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E .若图中阴影部分的面积为10π,则CDE ∠=( )A .30B .36︒C .54︒D .45︒9.如图,CD 是Rt ABC 斜边AB 上的高,8AC =,6BC =,点O 是CD 上的动点,以O 为圆心作半径为1的圆,若该圆与ABC 重叠部分的面积为π,则OC 的最小值为( )A .54B .43C .75 D .5310.已知ABC 为直角三角形,且30A ∠=︒,若ABC 的三个顶点均在双曲线(0)k y k x=>上,斜边AB 经过坐标原点,且B 点的纵坐标比横坐标少3个单位长度,C 点的纵坐标与B 点横坐标相等,则k =( )A .4B .92C .D .5二、填空题11.已知二次函数2y ax bx c=++,观察下表:则当x=-2时,y=_________ .12.如图,在△ABC中,△ABC=90°,AB=6,BC=4,P是△ABC的重心,连结BP,CP,则△BPC的面积为_____.13.△ABC内接于△O,且满足AB>AC,连结AO,D,E分别是BC,AO的中点,且OD=OE,若△ODE等于10°,则△B等于________.14.如图,△DEF为等边三角形,点D、E、F分别为边AB、BC、AC上一点,且△C=60°,AD3BD5=,AE=7,则AC的长为_________.15.如图,EF分别为矩形ABCD的边AD,BC的中点,若矩形ABCD△矩形EABF,AB=1,则AD=_____.16.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:△4a +b =0;△9a +c >3b ;△,3a +c >0;△当x >﹣1时,y 的值随x 值的增大而增大.△242a b am bm +≥-(m 为任意实数)其中正确的结论有_____.(填序号)三、解答题17.如图,ABC 的三个顶点都在方格纸的格点上,请按要求在方格纸内作图.(1)在图中以O 为位似中心,作ABC 的位似图形,并把ABC 的边长缩小到原来的12.(2)在图中画平行四边形ABEF ,使得它与ABC 的面积相等,且E ,F 在格点上.18.小聪和小颖报名参加校“数学节”游园工作活动,他们被随机分配到A ,B ,C 三个项目中承担工作任务. (1)小聪被分配到项目A 工作的概率为______.(2)若小颖未分配...到项目C 工作,请用画树状图或列表的方法,求出小聪和小颖被分配到同一项目工作的概率.19.已知抛物线223y ax x =-+经过点()2,3A .(1)求a 的值和图象的顶点坐标.(2)若点(),B m n 在该抛物线上,且22m -≤≤,求n 的取值范围.20.如图,在ABC 中,AB AC =,以AB 为直径的半圆O 分别交BC ,AC 于点D ,E ,连结DE ,OD .(1)求证:BD ED.(2)当AE,BE的度数之比为4:5时,求四边形ABDE四个内角的度数.21.某批发商销售一款围巾,每条成本为50元,售价为60为元,日均销售180条.经调查,当售价在60元到80元之间(含60元,80元)浮动时,每条围巾每涨价1元,日均销售量减少6条.设每条围巾涨价x元,日均毛利润为y元.(1)求日均毛利润y与x之间的函数关系式,并求出每条围巾售价为多少元时,日均毛利润最大,最大是多少元?(2)若日均毛利润为2250元,则每条围巾的售价应定为多少元?22.如图,在四边形ABCD中,AB△DC,AB=AD,对角线AC,BD交于点O,AC平分△BAD,过点C作CE△AB 交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB BD=2,求OE的长.参考答案1.C【分析】 由32y x =,设()30,y k k =≠ 则2,x k =再代入求值即可得到答案. 【详解】 解: 32y x =, ∴ 设()30,y k k =≠ 则2,x k =∴ 2355.222x y k k k x k k ++=== 故选:.C【点睛】本题考查的是比例的基本性质,掌握设参数的方法解决有关比例的问题是解题的关键.2.C【分析】先求出总球的个数,再用白球的个数除以总球的个数即可得出答案.【详解】 解:不透明的口袋里装有1个白球、3个红球,共有4个球,∴现随机从袋里摸出1个球是白球的概率为14; 故选:C .【点睛】本题考查了概率的计算,熟练掌握概率公式是解题的关键.3.A【分析】根据图象向左平移加,向上平移加,可得答案.【详解】解:将抛物线y=-x 2向左平移3个单位,再向上平移5个单位,平移后抛物线的解析式是y=-(x+3)2+5, 故选:A .【点睛】本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减,上加下减.4.B【详解】试题分析:根据平行线分线段成比例可得AD AEDB EC=,代入计算可得:643EC=,即可解EC=2,故选B.考点:平行线分线段成比例5.D【分析】连接OB,过点O作OC△AB于点D,交圆O于点C,由题意可知CD为8,然后根据勾股定理求出BD的长,进而可得出AB的长.【详解】如图,连接OB,过点O作OC△AB于点D,交圆O于点C,则AB=2BD,△圆的直径为26cm,△圆的半径r=OB=13cm,由题意可知,CD=8cm,△OD=13-8=5(cm),△()12BD cm=,△AB=24cm,故选:D.【点睛】本题考查了垂径定理的应用,过圆心向弦作垂线构造垂径定理是解题的关键.6.C【分析】根据圆周角定理可知,△ABC=△ADC.在Rt△ACB中,根据锐角三角函数的定义即可求出△ABC的正切值,从而得出答案.【详解】连接BC、AC.△△ADC和△ABC所对的弧都是AC,△根据圆周角定理知,△ABC=△ADC,△在Rt△ACB中,2 tan3ACABCBC∠==,△tan△ADC=23,故选C.【点睛】本题主要考查锐角三角函数的定义和圆周角的知识点,解答本题的关键是利用圆周角定理把求△ADC的正切值转化成求△ABC的正切值.7.D【分析】根据三角形外心的性质,到三个顶点的距离相等,可以依次判断.【详解】答:因为三角形的外心到三角形的三个顶点的距离相等,所以由正六边形性质可知,点O到A,B,C,D,E的距离中,只有OA=OC=OD.故选:D.【点睛】此题主要考查了三角形外心的性质,即到三角形三个顶点的距离相等.8.B【分析】连接OC,易得四边形CDOE是矩形,△DOE△△CEO,根据扇形的面积公式得△COE=36°,进而即可求解.【详解】解:连接OC,△△AOB =90°,CD△OA ,CE△OB ,△四边形CDOE 是矩形,△CD△OE ,△△DEO =△CDE ,由矩形CDOE 易得到△DOE△△CEO ,△图中阴影部分的面积=扇形OBC 的面积,△S 扇形OBC =210360n π⨯=10π,解得:n=36, △CDE ∠=△DEO=△COE=36°.故选B .【点睛】本题考查了扇形面积的计算,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC 的面积等于阴影的面积是解题的关键.9.D【分析】根据勾股定理求出AB=10,由OC 取最小值时,O 与BC 相切,证明△OCP△△BCD△△BAC 得出::3:4:5OP PC CO =,从而求出OC 的最小值.【详解】解:2S r ππ==△圆O 的半径为1,且圆与ABC 重叠部分的面积为π,△此圆全部在△ABC 内,如图,在Rt ABC 中,8AC =,6BC =,△10AB若OC 取最小值时,O 与BC 相切,设切点为P ,连接OP ,则OP△BC△CD△AB△△OPC=△CDB△△OCP=△BCD△△OCP△△BCD同理可证△BAC△△BCD△△OCP△△BCD△△BAC△::6:8:103:4:5BC AC AB ==△::3:4:5OP PC CO =又△OP=1 △OC= 15533⨯= 故选:D .【点睛】此题主要考查了相似三角形的判定与性质,勾股定理以及直线与圆的位置关系,证明△OCP△△BCD△△BAC 是解答此题的关键.10.B【分析】 设(,)(0)k B x k x>,再分别表示出B ,C ,由直角三角形的性质得出BC OB =,联立方程组求出k 的值即可. 【详解】 解:在k y x =中,设(,)(0)k B x k x >, 则3k x x+=,(,)k C x x △AB 经过坐标原点, △(,)k A x x-- △ABC 为直角三角形,且30A ∠=︒,△△60B =︒ △1,22BC AB AB BC == 又△2AB OB =△BC OB =△3k x x =⎪+=⎪⎩解得,92=k 故选:B .【点睛】本题属于反比例函数综合题,考查了反比例函数的性质,待定系数法,中心对称的性质等知识,解题的关键是学会利用中心对称的性质解决问题.11.5【分析】根据表格可得函数的对称轴为x=2,根据对称性即可求解.【详解】由表格可知函数的对称轴为x=042=2, 又当x=6时,y=5当x=-2时,y=5故答案为:5.【点睛】此题主要考查二次函数的对称性,解题的关键是根据表格得到对称轴.12.4【分析】△ABC 的面积S =12AB×BC =1642⨯⨯=12,延长BP 交AC 于点E ,则E 是AC 的中点,且BP =23BE ,即可求解. 【详解】解:△ABC 的面积S =12AB×BC =1642⨯⨯=12, 延长BP 交AC 于点E ,则E 是AC 的中点,且BP =23BE ,(证明见备注)△BEC 的面积=12S =6,BP =23BE , 则△BPC 的面积=23△BEC 的面积=4,故答案为:4.备注:重心到顶点的距离与重心到对边中点的距离之比为2:1,例:已知:△ABC,E、F是AB,AC的中点.EC、FB交于G.CG 证明:过E作EH△BF交AC于H.求证:EG=12△AE=BE,EH△BF,△AH=HF=1AF,2又△AF=CF,△HF=1CF,2△HF:CF=1,2△EH△BF,△EG:CG=HF:CF=1,2△EG=1CG.2【点睛】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.13.50【分析】连接OB、OC,利用垂径定理和三角形内角和定理解题即可.【详解】连接OB、OC,D为BC的中点,OB=OCOD BC ∴⊥ E 为OA 的中点,1122OE OA OB ∴== OD OE =12OD OB ∴= 30OBD ∴∠=︒60BOD ∴∠=︒10ODE ∠=︒1801010160DOE ∴∠=︒-︒-︒=︒36036016060140AOB DOE BOD ∴∠=︒-∠-∠=︒-︒-︒=︒OA OB =1(180140)202OBA ∴∠=︒-︒=︒ 203050ABC OBA OBD ∴∠=∠+∠=︒+︒=︒故答案为:50︒.【点睛】本题考查垂径定理、三角形内角和定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.14.8【分析】以CE 为边作等边△CEH ,证明△CEF△△HED ,可得△DHE=60°,DH△BC ,则AH 3CH 5=,设AH=3x ,CH=5x ,过点E 作EM△AC 于点M ,在△AEM 中,222117(x)2=+,解得x=1,则答案得出. 【详解】解:以CE 为边作等边△CEH ,连接DH ,△CE=EH ,△EHC=60°,△△DEF 为等边三角形,△△DEF=60°,DE=EF ,△△DEH=△CEF ,在△CEF和△HED中△CE HECEF HED EF ED=⎧⎪∠=∠⎨⎪=⎩△△CEF△△HED(SAS),△△DHE=△FCE=60°,△△DHE=△HEC=60°,△DH//BC,△AD AH BD CH=,△AD3 BD5=,△AH3 CH5=,过点E作EM△AC于点M,设AH=3x,CH=5x,则EC=5x,1511,222xMC EC ME AM AC MC x =====-=,在△AEM中,222117(x)2=+,△x=1,△AC=8.故答案为:8.【点睛】本题主要考查全等三角形的判定和性质,等边三角形的性质,勾股定理,掌握全等三角形的判定方法能正确作出辅助线是解题的关键.15【分析】根据相似多边形的性质,对应边成比例,列出比例式求出AD.【详解】解:△E,F分别为矩形ABCD的边AD,BC的中点,△AE =12AD ,BF =12BC , △矩形ABCD△矩形EABF , △AE AB AB AD=, △AE•AD =AB 2=1,即12AD 2=1,解得,AD【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应边成比例、对应角相等是解题的关键.16.△△△【分析】由抛物线的对称轴方程得到b=-4a>0,则可对△进行判断;由于x=-3时,y<0,则可对△进行判断;利用抛物线与x 轴的一个交点为(-1,0)得a -b+c=0,把b=-4a 代入可得3a+c=-2a ,结合a <0,于是可对△进行判断;根据二次函数图象的对称轴与函数的性质可对△进行判断;通过2()(42)am bm a b --+≤0,可判断△.【详解】△抛物线的对称轴为直线x=2b a-=2, △b=−4a ,即4a+b=0,所以△正确;△x=−3时,y<0,△9a−3b+c<0,即9a+c<3b ,所以△错误;△抛物线与x 轴的一个交点为(−1,0),△x=−1时,a−b+c=0,△a+4a+c=0,△3a+c=-2a ,△a <0,△3a+c=-2a >0,所以△正确;△抛物线的对称轴为直线x=2,开口向下,△当-1<x<2时,函数值随x 增大而增大,所以△错误;△b=−4a ,△2()(42)am bm a b --+=22244()()0442am am a a m m a m +=++++=≤,△242a b am bm +≥-,△△正确.故答案为△△△.【点睛】本题主要考查二次函数的图象和性质,熟练掌握二次函数各项系数与函数图象的关系,是解题的关键.17.(1)见解析;(2)见解析【分析】(1)连接OA、OB、OC,分别取它们的中点即可;(2)取BC的中点E,把AB平移使B点落在E点,则A点的对应点为F点.【详解】解:(1)如图1,△A′B′C′为所作;(2)如图2,平行四边形ABEF为所作.【点睛】本题考查了作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了平行四边形的性质.18.(1)13;(2)13【分析】(1)根据概率公式求解即可;(2)根据题意,小聪有A,B,C三种可能,小颖有A,B两种可能,由此列出表格求解即可.【详解】解:(1)△他们被随机分配到A,B,C三个项目中,△P(小聪被分配到项目A工作)=13.(2)列表如下:由表格知,所有等可能的事件有6种,其中两人分到同一项目的有2种,△P (同一项目)2163==. 【点睛】本题考查利用概率公式以及列表法或树状图法求解概率,理解并熟练运用基本方法和公式是解题关键.19.(1)1a =,顶点坐标为()1,2;(2)211n ≤≤【分析】(1)把()2,3A 代入223y ax x =-+中,即可求解;(2)根据函数图象的增减性分别求出1m =和2m =-,即可求n 的范围.【详解】解:(1)△抛物线223y ax x =-+经过点()2,3A ,△222233a ⋅-⨯+=,△1a =,△()222312y x x x =-+=-+,△.抛物线的顶点坐标为()1,2.(2)△抛物线223y x x =-+的对称轴为直线1x =,且开口向上,△当1x ≤时,y 随着x 的增大而减小,当1≥x 时,y 随着x 的增大而增大,△22m -≤≤,△当1m =时,n 有最小值2,当2m =-时,n 有最大值11,△211n ≤≤.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键.20.(1)证明见解析;(2)50BAE ∠=︒,65B ∠=︒,130BDE ∠=︒,115AED ∠=︒.【分析】(1)连接AD 后,证明这两条弧所对的圆周角相等,即BAD CAD ∠=∠,该题得证;(2)由这两条弧度数之比为4:5,分别求出它们的度数,再根据 BD ED =,求出AD 和BE 的度数,即可求出 BAC ∠和B ∠,利用圆的内接四边形对角互补可以得到另外两个内角的度数.【详解】解:(1)如图,连结AD ,△AB 是直径,△90ADB ∠=︒,△AB AC =,△BAD CAD ∠=∠,△BD ED =.(2)△180AE BE +=︒,AE 与BE 的度数之比为4:5, △4180809AE =︒⨯=︒,51801009BE =⨯=︒︒,△BD ED =,△1502BD ED BE ===︒,△130AD AE ED =+=︒, △1502BAE BE ∠==︒,1652B AD ∠==︒, △180AED B ∠+∠=︒,180BDE A ∠+∠=︒,△115AED ∠=︒,130BDE ∠=︒,△50BAE ∠=︒,65B ∠=︒,130BDE ∠=︒,115AED ∠=︒.【点睛】本题考查了圆中的弧和圆周角之间的关系,学生应在理解圆周角定理以及其推论的同时,能熟练应用它们,解决本题的关键是通过连线,构造两弧所对的圆周角,通过角的关系来证明弧的关系,同时应明白圆周角等于其所对弧的度数的二分之一,能由弧度求出角度,只有牢牢记住它们的关系,才能灵活地在角与弧之间进行转化,求出答案.21.(1)()261201800020y x x x =-++≤≤,当每条围巾的售价定为70元时,日均毛利润最大,最大值为2400元;(2)每条围巾的售价应定为65元或75元【分析】(1)实际售价=原定售价+涨价,实际售量=原定售量-6x ,利用公式总利润=单件利润×售量表示即可;(2)把问题转化为已知函数值求对应的自变量值问题求解即可.【详解】解:(1)()()()26050180661201800020y x x x x x =-+-=-++≤≤.△60a =-<,△开口向下.△对称轴为直线()12010226b x a =-=-=⨯-,在020x ≤≤的范围内, △当10x =时,y 有最大值,2400y =最大值.△6070x +=.答:当每条围巾的售价定为70元时,日均毛利润最大,最大值为2400元.(2)由题意,得2612018002250x x -++=,解得,15=x ,215x =.△6065x +=或75.答:每条围巾的售价应定为65元或75元.【点睛】本题考查了二次函数的应用,利润=单件利润×售量列出函数关系式是解题的关键.22.(1)见解析;(2)2【分析】(1)先判断出△OAB =△DCA ,进而判断出△DAC =△DCA ,得出CD =AD =AB ,即可得出结论;(2)先判断出OE =OA =OC ,再求出OB =1,利用勾股定理求出OA ,即可得出结论.【详解】解:(1)△AB △CD ,△△OAB =△DCA ,△AC 为△DAB 的平分线,△△OAB =△DAC ,△△DCA =△DAC ,△CD =AD =AB ,△AB △CD ,△四边形ABCD 是平行四边形,△AD =AB ,△△ABCD 是菱形;(2)△四边形ABCD 是菱形,△OA =OC ,BD △AC ,△CE △AB ,△OE =OA =OC ,△BD =2,△OB =12BD =1,在Rt△AOB中,AB OB=1,△2OA=△OE=OA=2.【点睛】本题主要考查了平行线的性质,平行四边形的判定,角平分线的性质,等腰三角形的性质,菱形的性质与判定,勾股定理,解题的关键。
浙教版九年级上册数学期末考试试卷有答案
浙教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.若2x=5y,则xy的值是()A.25B.52C.45D.542.抛物线y=x2﹣2x﹣1的对称轴是()A.直线x=﹣2B.直线x=﹣1C.直线x=1D.直线x=2 3.如图,A、B是⊙O上的两点,∠AOB=120°,OA=3,则劣弧AB的长是()A.πB.2πC.3πD.4π4.从1~9这9个自然数中任选一个数,是3的倍数的概率是()A.12B.13C.14D.155.如图,AB是圆O的直径,C、D、E都是圆上的点,其中C、D在AB下方,E在AB上方,则∠C+∠D等于()A.60°B.75°C.80°D.90°6.已知点P(a,m),Q(b,n)都在反比例函数y=﹣1x的图象上,且a<0<b,则下列结论中,一定正确的是()A.m+n<0B.m+n>0C.m<n D.m>n7.已知△ABC的各边长分别为2、5、6,与其相似的另一个△A′B′C′的最大边为18,则△ABC与A B C '''∆的面积比等于()A .1:3B .1:6C .1:9D .4:98.已知二次函数y =ax 2+bx +c 的图象开口向上(如图),它与x 轴的两个交点分别为(﹣1,0)、(3,0).对于下列结论:①c <0;②b <0;③4a ﹣2b +c >0.其中正确的有()A .3个B .2个C .1个D .0个9.如图,在四边形ABCD 中,∠ACB =∠CAD =90°,AC =CB ,sin ∠ACD =35,则tan ∠BDC 的值是()A B .6C .1637D .162510.如图,在Rt △ABC 中,∠BAC =90°,以Rt △ABC 各边为斜边分别向外作等腰Rt △ADB 、等腰Rt △AFC 、等腰Rt △BEC ,然后将等腰Rt △ADB 和等腰Rt △AFC 按如图方式叠放到等腰Rt △BEC 中,其中BH =BA ,CI =CA ,已知,S 四边形GKJE =1,S 四边形KHCJ =8,则AC 的长为()A .2B .52C .4D .6二、填空题11.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为_______(结果保留π)12.如图,点A、B、C是半径为4的⊙O上的三个点,若∠BAC=45°,则弦BC的长等于_____.13.如图,点D在△ABC的BC边上,且CD=2BD,点E是AC边的中点,连接AD,DE,假设可以随意在图中取点,那么这个点取在阴影部分的概率是_____.14.将二次函数y=﹣(x﹣k)2+k+1的图象向右平移1个单位,再向上平移2个单位后,顶点恰好在直线y=2x+1上,则k的值为_____.15.如图,已知△ABC的顶点A、B在反比例函数y=x<0)的图象上,∠ABC=90°,x∠ACB=30°,AC⊥x轴,点B在点A右下方,若AC=4,则点B的坐标为_____.16.如图,等边三角形ACD的边长为8,点B在AC边延长线上,且AC)CB,连结BD,点E是线段BD上一点,连结AE交DC于点F,若∠AED=60°,则DE的长为_____.三、解答题17.计算:(1)2cos245°+tan60°﹣sin30°;(2)已知12ab=,求a ba b-+的值.18.“只要人人都献出一点爱,世界将变成美好的人间”.在新冠肺炎疫情期间,全国人民万众一心,众志成城,共克时艰.某社区有1名男管理员和3名女管理员,现要从中随机挑选2名管理员参与“社区防控”宣讲活动,请用列表法或树状图法求出恰好选到“1男1女”的概率.19.以下各图均是由边长为1的小正方形组成的网格,图中的点A、B、C、D均在格点上.(1)在图①中,PA:PD=;(填两数字之比)(2)利用网格和无刻度的直尺作图,保留痕迹,不写作法.①如图②,在线段AB上找一点P,使32 APBP=;②如图③,在线段BD上找一点P,使△APB∽△CPD.20.某数学小组开展了一次测量小山高度的活动,如图,该数学小组从地面A处出发,沿坡角为53°的山坡AB直线上行一段距离到达B处,再沿着坡角为22°的山坡BC直线上行600米到达C处,通过测量数据计算出小山高CD=612m,求该数学小组行进的水平距离AD(结果精确到1m).(参考数据:sin22°≈0.37,cos22°≈0.92,cos53°≈0.6,tan53°≈1.3)21.如图,直线y=﹣12x+7与反比例函数y=mx(m≠0)的图象交于A,B两点,与y轴交于点C,且点A的横坐标为2.(1)求反比例函数的表达式;(2)求出点B坐标,并结合图象直接写出不等式mx<﹣12x+7的解集;(3)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.22.网络销售已经成为一种热门的销售方式.某公司在某网络平台上进行直播销售防疫包,已知防疫包的成本价格为6元/个,每日销售量y(单位:个)与销售单价x(单位:元/个)满足一次函数关系,如表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元,设公司销售防疫包的日获利为w(元).(日获利=日销售额﹣成本)x(元/个)789y(个)430042004100(1)请求出日销售量y与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种防疫包的日获利w最大?最大利润为多少元?23.定义:如果一个四边形的对角线相等,那么这个四边形叫做平衡四边形.(1)如图1,在四边形ABCD中,∠DAB=90°,AD=3,AB=4,AC=5.①判断四边形ABCD是否是平衡四边形,请说明理由;②若△ACD是等腰三角形,求sin∠DAC的值;(2)如图2,在平衡四边形ABCD中,∠DAB=90°,AC⊥BD交于点O,AD=2,若S△CBO﹣S△ADO=12,求AB的长.24.如图1,CD是⊙O的直径,弦AB⊥CD,垂足为点E,连结CA.(1)若∠ACD=30°,求劣弧AB的度数;(2)如图2,连结BO并延长交⊙O于点G,BG交AC于点F,连结AG.①若tan∠CAE=2,AE=1,求AG的长;②设tan∠CAE=x,GFBF=y,求y关于x的函数关系式.参考答案1.B 【分析】利用内项之积等于外项之积进行判断.【详解】解:∵2x =5y ,∴52x y =.故选:B .【点睛】本题考查了比例的性质:熟练掌握比例的性质(内项之积等于外项之积,合比性质,分比性质,合分比性质,等比性质).2.C 【分析】先将抛物线化为顶点式,即可解决问题.【详解】解:因为抛物线y =x 2﹣2x ﹣1=x 2﹣2x +1﹣2=(x ﹣1)2﹣2,所以对称轴是直线x =1.故选:C .【点睛】本题考查了二次函数的性质,解题的关键是能将抛物线化为顶点式.3.B 【分析】直接利用弧长公式计算即可.【详解】解:由题意可得,劣弧AB 的长是:1203=2180ππ⨯.故选:B .【点睛】本题考查了弧长公式:180n Rl π=(弧长为l ,圆心角度数为n ,圆的半径为R ),在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.4.B【分析】先从1~9这九个自然数中找出是3的倍数的有3、6、9共3个,然后根据概率公式求解即可.【详解】解:1~9这九个自然数中,是3的倍数的数有:3、6、9,共3个,∴从1~9这九个自然数中任取一个,是3的倍数的概率是:3÷9=1 3.故选:B.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.5.D【分析】连接OE,根据圆周角定理即可求出答案.【详解】解:连接OE,根据圆周角定理可知:∠C=12∠AOE,∠D=12∠BOE,则∠C+∠D=12(∠AOE+∠BOE)=90°,故选:D.【点睛】本题考查了圆周角的性质,解题关键是连接半径,构造圆心角,依据圆周角与圆心角的关系进行计算.6.D 【分析】由点P (a ,m ),Q (b ,n )都在反比例函数1y x=-的图象上,且a <0<b ,可知点P 在第二象限,点Q 在第四象限,此时m >0>n 得出答案.【详解】解:∵点P (a ,m ),Q (b ,n )都在反比例函数1y x=-的图象上,且a <0<b ,∴点P 在第二象限,点Q 在第四象限,∴m >n .故选:D .【点睛】本题考查反比例函数,解题的关键是掌握反比例函数的图象和性质.7.C 【分析】根据两个三角形的最长边确定两个相似三角形的相似比,然后根据相似比确定面积的比即可.【详解】解:∵△ABC 的各边长分别为2、5、6,与其相似的另一个A B C '''∆的最大边为18,∴两三角形的相似比为6:18=1:3,∴△ABC 与A B C '''∆的面积比为(1:3)2=1:9,故选:C .【点睛】本题考查了相似三角形的性质,熟记相似三角形的性质是解题的关键.8.A 【分析】根据抛物线与y 轴的交点位置可对①进行判断;根据抛物线的对称性得到x =2ba-=1,则b =﹣2a <0,于是可对②进行判断;利用x =﹣2,y >0可对③进行判断.【详解】解:∵抛物线与y 轴的交点坐标在x 轴下方,∴c <0,所以①正确;∵抛物线开口向上,∴a >0,∵抛物线与x 轴的两个交点分别为(﹣1,0),(3,0),∴抛物线的对称轴为直线x =1,即2ba-=1,∴b =﹣2a <0,所以②正确;∵由图象可知,当x =﹣2时,y >0,∴4a ﹣2b +c >0,所以③正确.故选:A .【点睛】本题考查了二次函数图象与系数的关系,解题关键是树立数形结合思想,准确读取图象信息,认真推理判断.9.C 【分析】如图,过点D 作DE ⊥BC 交BC 的延长线于E ,过点C 作CH ⊥BD 于H .解直角三角形求出CH ,DH 即可解决问题,【详解】解:如图,过点D 作DE ⊥BC 交BC 的延长线于E ,过点C 作CH ⊥BD 于H .∵∠ACB =∠CAD =90°,DE ⊥EC ,∴∠ACE =∠E =90°,∴四边形ACED 是矩形,∴AD =CE ,AC =DE ,∵sin ∠ACD =35AD CD =,∴设AD =3k ,CD =5k ,则AC =BC =DE =4k ,∴BE =BC +CE =7k ,∴BD==,∵S △CBD =12•BC •DE =12•BD •CH ,∴CH =65k ,∴DH==,∴tan ∠BDC=163765CH DH ==.故选:C .【点睛】本题主要考查了解直角三角形的应用,准确分析计算是解题的关键.10.D【分析】设AD =DB =a ,AF =CF =b ,BE =CE =c ,由勾股定理可求a 2+b 2=c 2,由S 四边形GHCE =S 四边形GKJE +S四边形KHCJ =9,可求b =【详解】解:设AD =DB =a ,AF =CF =b ,BE =CE =c ,∴AB =,AC =,BC =,∵∠BAC =90°,∴AB 2+AC 2=BC 2,∴2a 2+2b 2=2c 2,∴a 2+b 2=c 2,∵将等腰Rt △ADB 和等腰Rt △AFC 按如图方式叠放到等腰Rt △BEC ,∴BG =GH =a ,∵S 四边形GHCE =S 四边形GKJE +S 四边形KHCJ =9,∴12(a +c )(c ﹣a )=9,∴c 2﹣a 2=18,∴b 2=18,∴b=∴AC==6,故选:D.【点睛】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键.11.3π【详解】试题分析:此题考查扇形面积的计算,熟记扇形面积公式2360n rSπ=,即可求解.根据扇形面积公式,计算这个扇形的面积为212033360Sππ==.考点:扇形面积的计算12.【分析】连接OB,OC.证明△OBC是等腰直角三角形,即可解决问题.【详解】解:连接OB,OC.∵∠BOC=2∠BAC,∠BAC=45°,∴∠BOC=90°,∵OB=OC=4,∴BC=故答案为:.【定睛】本题主要考查圆周角定理以及勾股定理,添加辅助线,构造等腰直角三角形,是解题的关键.13.1 3【分析】先设阴影部分的面积是x,得出整个图形的面积是3x,再根据几何概率的求法即可得出答案.【详解】解:设阴影部分的面积是x,∵点E是AC边的中点,∴S△ACD=2x,∵CD=2BD,∴S△ACB=3x,则这个点取在阴影部分的概率是1 33 xx .故答案为:1 3.【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.14.0【分析】先求出二次函数y=﹣(x﹣k)2+k+1的图象平移后的顶点坐标,再将它代入y=2x+1,即可求出k的值.【详解】解:∵二次函数y=﹣(x﹣k)2+k+1的顶点坐标为(k,k+1),∴将y=﹣(x﹣k)2+k+1的图象向右平移1个单位,向上平移2个单位后顶点坐标为(k+1,k+3).根据题意,得k+3=2(k+1)+1,解得k=0.故答案是:0.【点睛】本题考查了二次函数图象与几何变换,一次函数图象上点的坐标特征,难度适中.根据点的平移规律:右加左减,上加下减正确求出二次函数y=−(x−k)2+k+1的图象平移后的顶点坐标是解题的关键.15.2)【分析】过点B 作BD ⊥AC 于点D ,解直角三角形求出BC 、BD 、CD ,得出关于m 、n 的方程组,求出方程组的解即可.【详解】解:过点B 作BD ⊥AC 于点D,∵在Rt △ACB 中,BC =AC •cos ∠ACB =∴在Rt △BCD 中,CD =BC •cos ∠ACB =2=3,BD =12BC∴AD =AC ﹣CD =4﹣3=1,设A (m,m),B (n,n ),依题意知0>n >m ,故BD =n ﹣m ,AD=m﹣n ,∴1n m ⎧-=,解得:m n ⎧=-⎪⎨=⎪⎩∴点B2),故答案为:2).【点睛】本题主要考查反比例函数与平面几何的综合以及解直角三角形,熟练掌握反比例函数图像上的点的坐标特征,是解题的关键.16.3【分析】作DH ⊥AC 于点H ,根据等边三角形的性质和勾股定理可得BD 的长,利用△ADE ∽△BAD ,对应边成比例即可解决问题.【详解】解:如图,作DH ⊥AC 于点H ,∵△ADC 是等边三角形,∴AD =DC =AC =8,AH =CH =12AC =4,∴DH =∵AC )CB ,∴CB=41),∴BH =CB +CH =41)+4=∴BD 在△ADE 和△BAD 中,∠AED =∠BAD =60°,∠ADE =∠BDA ,∴△ADE ∽△BDA ,∴DEAD =ADBD ,∴DE =2ADBD 3.【点睛】本题考查了相似三角形的判定和性质,找到相似三角形是解题的关键.17.(1)12;(2)﹣13(1)先求特殊角的三角函数值,然后进行二次根式的混合运算;(2)利用比例的性质得到b =2a ,再把b =2a 代入a b a b-+中,然后化简即可.【详解】(1)原式=2×(2)212=12=12(2)∵12a b =,∴b =2a ,∴a b a b -+=22a a a a -+=﹣13.【点睛】本题主要特殊角三角函数以及分式的求值,熟练掌握特殊角的三角函数值以及二次根式的混合运算法则,是解题的关键.18.见解析,12【分析】根据题意,可以画出相应的树状图,从而可以求得恰好选到“1男1女”的概率.【详解】解:树状图如下图所示,由树状图知共有12种等可能结果,其中恰好选到“1男1女”的有6种结果,所以恰好选到“1男1女”的概率是61122=.【点睛】本题考查列表法与树状图法,解答本题的关键是明确题意,利用数形结合的思想解答.19.(1)3:1;(2)①见解析;②见解析(1)如图①中,利用平行线的性质求解即可.(2)①如图②中,取格点E,F,连接EF交AB于点P,点P即为所求作.②如图③中,取格点T,连接CT交BD于点P,连接PA,点P即为所求作.【详解】解:(1)如图①中,∵AB∥CD,∴PAPD=ABCD=31,故答案为:3:1.(2)①如图②中,点P即为所求作.②如图③中,点P即为所求作.【点睛】本题考查了作图-应用与设计,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20.852m【分析】过B作BE⊥CD于点E,过B作BH⊥AD于点H,通过证明四边形BEDH是矩形,得到DE=BH,BE=DH,再根据三角函数的性质,分别计算得BE、AH的长,即可完成求解.【详解】如图,过B作BE⊥CD于点E,过B作BH⊥AD于点H又∵CD AD⊥∴//BH ED ,//EB DH ,90EDH ∠=︒∴四边形BEDH 是矩形,∴DE =BH ,BE =DH ,在Rt △BCE 中,∵BC =600,∠CBE =22°∴CE =BC•sin22°=600×0.37=222m ,BE =BC•cos22°=600×0.92=552m∴DH =BE =552m∵CD =612m ,∴BH =DE =CD-CE =612-222=390m在Rt △ABH 中,∵∠BAH =53°∴tan53°=BH AH ∴AH 3901.3==300m ∴AD =AH+DH =300+552=852m∴该数学小组行进的水平距离AD 为852m .【点睛】本题考查了矩形、三角函数的知识;解题的关键是熟练掌握矩形、三角函数的性质,从而完成求解.21.(1)12y x =;(2)x <0或2<x <12;(3)E (0,6)或(0,8)【分析】(1)由直线y =﹣12x +7求得A 的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)解析式联立,解方程组即可求得B 的坐标,然后根据图象即可求得不等式m x <﹣12x +7的解集;(3)设E (0,n ),求得点C 的坐标,然后根据三角形面积公式得到S △AEB =S △BCE ﹣S △ACE =12|7﹣n |×(12﹣2)=5,解得即可.【详解】解:(1)把x =2代入y =﹣12x +7得,y =6,∴A (2,6),∵反比例函数y =m x(m ≠0)的图象经过A 点,∴m =2×6=12,∴反比例函数的表达式为12y x =;(2)由12172y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,得26x y =⎧⎨=⎩或121x y =⎧⎨=⎩,∴B (12,1),由图象可知,不等式m x <﹣12x +7的解集是:x <0或2<x <12;(3)设E (0,n ),∵直线y =﹣12x +7与y 轴交于点C ,∴C (0,7),∴CE =|7﹣n |,∴S △AEB =S △BCE ﹣S △ACE =12|7﹣n |×(12﹣2)=5,解得,n =6或n =8,∴E (0,6)或(0,8).【点睛】本题主要考查反比例函数与一次函数的综合,掌握反比例函数图像上的点的坐标特征以及待定系数法,是解题的关键.22.(1)y =﹣100x +5000(6≤x ≤30);(2)当销售单价定为28元时,销售这种防疫包的日获利w 最大,最大利润为48400元【分析】(1)观察可得该函数图象是一次函数,设出一次函数解析式为:()0y kx b k =+≠,把其中两点代入即可求得该函数解析式;(2)根据销售利润=每个商品的利润×销售量,把二次函数的关系式配方变为顶点式即可求得相应的最大利润.【详解】解:(1)设y 与x 的函数关系式为:()0y kx b k =+≠,把7x =,4300y =和8x =,4200y =代入得,7430084200k b k b +=⎧⎨+=⎩,解得,1005000k b =-⎧⎨=⎩,∴1005000y x =-+(6≤x ≤30);(2)()()61005000w x x =--+2100560030000x x =-+-()21002848400x =--+∵1000a =-<,对称轴为28x =,∴当28x =时,w 有最大值为48400元,∴当销售单价定为28时,销售这种板栗日获利最大,最大利润为48400元;【点睛】本题考查了二次函数的应用,二次函数的性质,利用函数思想解决问题是本题的关键.23.(1)①四边形ABCD 是平衡四边形,见解析;②sin ∠DAC 的值为6(2)AB =6【分析】(1)①由勾股定理可求BD 的长,由平衡四边形的定义可求解;②分两种情况讨论,由勾股定理和锐角三角函数可求解;(2)由相似三角形的性质可求DO,AO BO 的长,由三角形的面积关系可列方程,即可求解.【详解】解:(1)①四边形ABCD 是平衡四边形,理由如下:∵∠DAB =90°,AD =3,AB =4,∴BD =5,∵BD =AC ,∴四边形ABCD 是平衡四边形;②如图1﹣1,当CD =AC =5时,过点C 作CH ⊥AD 于H ,∵CD =AC ,CH ⊥AD ,∴AH =DH =32,∴CH 2,∴sin ∠DAC =CHAC =5=10,如图1﹣2,当AD =CD =3时,过点D 作DG ⊥AC 于G ,∵AD =CD =3,DG ⊥AC ,∴AG =CG =52,∴DG =2,∴sin ∠DAC =DGAD 6,综上所述:sin ∠DAC 的值为6或10;(2)∵四边形ABCD 是平衡四边形,∴AC =BD ,∵S △CBO ﹣S △ADO =12,∴S △ABC ﹣S △ADB =12,∴12×AC ×OB ﹣12×BD ×OA =12,设AB =x ,∴BD =AC ,∵AC ⊥BD ,∴∠AOD =∠AOB =∠DAB =90°,∴∠DAO +∠BAO =90°=∠DAO +∠ADO ,∴∠BAO =∠ADO ,∴△ADO ∽△BDA ,∴AD DO AO BD AD AB==,=2DO =AO x ,∴DOAO ∴BO =DB ﹣DO 2,∴122﹣12=12,∴()()460x x +-=,∴x 1=﹣4(舍去),x 2=6,∴AB =6.【点睛】本题是四边形综合题,考查了勾股定理,锐角三角函数,相似三角形的判定和性质等知识,理解新定义并运用是本题的关键.24.(1)劣弧AB 的度数是120°;(2)①AG =32;②21122y x=-【分析】(1)如图1,连接OA ,OB ,根据垂径定理和圆心角与圆周角的关系可得∠AOB =120°,由弧的度数等于对应圆心角的度数可得结论;(2)①先根据垂径定理得:AE =BE =1,∠AEC =90°,根据三角函数可得CE 的长,设OE =x ,则OC =2﹣x =OB ,利用勾股定理列方程可得OE 的长,最后根据三角形中位线定理可得AG 的长;②证明△GAF ∽△OCF ,则FG AG OF OC =,表示21FG y OF y =-,则2221AG OE OE y OC OC OA y ===-,根据已知的三角函数可得OA OE AE x+=,最后根据勾股定理列方程为OA 2=OE 2+AE 2,可得222111OE OE OA x OA ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,设OE a OA =,则原方程变形为:()22212110,a a a x +++-=解出可得11a =-(舍),22211x a x -=+,从而可得结论.【详解】解:(1)如图1,连接OA ,OB ,∵CD 是⊙O 的直径,弦AB ⊥CD ,∴ ,AD BD =∴∠AOD =∠BOD ,∵∠ACD =30°,∴∠AOD =60°,∴∠AOB =120°,∴劣弧AB 的度数是120°;(2)①∵CD ⊥AB ,∴AE =BE =1,∠AEC =90°,在Rt △AEC 中,tan ∠CAE =2CEAE =,∴CE =2,设OE =x ,则OC =2﹣x =OB ,在Rt △OEB 中,由勾股定理得:OB 2=OE 2+BE 2,即(2﹣x )2=x 2+1,解得:34x =,∴34OE =,∵OG =OB ,AE =BE ,∴OE 是△AGB 的中位线,∴AG =2OE =32;②∵BG 是⊙O 的直径,∴∠BAG =90°,∵∠BAG =∠BEO =90°,∴//OC AG ,∴∠C =∠GAC ,∵∠GFA =∠OFC ,∴△GAF ∽△OCF ,∴FGAGOF OC =,∵GFy BF =,且GF +BF =2OG ,∴OG =12y GF y + ,∵OF =OG ﹣GF ,∴OF =12yGF y - ,∴21FGyOF y =-,如图3,连接OA ,∵OA =OC ,AG =2OE ,∴2221AGOE OE yOC OC OA y ===-,∵tan ∠CAE =CEx AE =,∴CE =x •AE =OA +OE ,∴OA OEAE x +=,Rt △AOE 中,OA 2=OE 2+AE 2,∴222OA OE OA OE x +⎛⎫=+ ⎪⎝⎭,即()2222212OA OE OA OA OE OE x =+++ ,两边同时除以OA 2,得:222111OE OEOA x OA ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,设OEa OA =,则原方程变形为:()22212110,a a a x +++-=22221211+10,a a x x x ⎛⎫∴++-= ⎪⎝⎭()22111110,a a x x ⎡⎤⎛⎫⎛⎫∴+++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦10a ∴+=或2211110,a x x ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭2110,x +≠ ∴11a =-(舍),22211x a x -=+,∴2211OE x OA x -=+,∴()2221211x y x y-=+-,∴21122y x=-.【点睛】本题考查的是圆周角定理,圆心角与弧的关系,垂径定理的应用,锐角三角函数的应用,一元二次方程的解法,三角形的相似的判定与性质,掌握以上知识是解题的关键.。
浙教版九年级上册数学期末考试试题附答案
浙教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.已知O 的半径为5,点P 在O 内,则OP 的长可能是()A .7B .6C .5D .42.若32a b =,则a bb -的值是()A .2B .12C .32D .523.下列选项中的事件,属于必然事件的是()A .在一个只装有白球的袋中,摸出黄球B .a 是实数,0a >C .明年元旦那天温州的最高气温是10℃D .两个正数相加,和是正数4.将抛物线22y x =-向左平移1个单位,得到的抛物线表达式为()A .221y x =-+B .()221y x =-+C .221y x =--D .()221y x =--5.已知一个扇形的半径长为3,圆心角为60°,则这个扇形的面积为()A .12πB .πC .3π2D .3π6.如图,梯形ABCD 中,AD ∥BC ,∠B =∠ACD =90°,AB =2,DC =3,则△ABC 与△DCA 的面积比为()A .2∶3B .2∶5C .4∶9D7.如图,在O 中,点B 是 AC 上一点,若100AOC ∠=︒,则ABC ∠的度数是()A .80°B .100°C .120°D .130°8.将进货价为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨1元,其销售量就减少5个,设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是()A .()()352005y x x =--B .()()354005y x x =--C .()()402005y x x =--D .()()403755y x x =--9.已知二次函数221y ax ax =+-(其中x 是自变量),当1≥x 时,y 随x 的增大而减小,且32x -≤≤时,y 的最小值为9-,则a 的值为()A .1-B .43-C .83-D .103-10.如图,在ABC 中,90ACB ∠=︒,以ABC 的各边为边分别作正方形ACDE ,正方形BCFG 与正方形ABMN ,AN 与FG 相交于点H ,连结NF 并延长交AE 于点P ,且2NF FP =.记ABC 的面积为1S ,FNH △的面积为2S ,若1221S S -=,则BC 的长为()A .6B .C .8D .9二、填空题11.若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.12.若线段4a =,9b =,则线段a ,b 的比例中项为______.13.下表记录了一名篮球运动员在罚球线上投篮的结果:投篮次数n 4882124176230287328投中次数m 335983118159195223投中频率m n0.690.720.670.670.690.680.68根据表格,这名篮球运动员投篮一次,投中的概率约为______.(结果精确到0.01)14.如图,在ABC 中,30C ∠=︒,100ABC ∠=︒,将ABC 绕点A 顺时针旋转至ADE (点B 与点D 对应),连结BD ,若//BD AE ,则CAD ∠的度数为______度.15.如图,矩形ABCD 中,6AB =,以点D 为圆心,CD 长为半径的圆弧与以BC 为直径的半圆O 相交于点E ,若 BE的度数为60°,则直径BC 长为______.三、解答题16.如图1是某校园运动场主席台及遮阳棚,其侧面结构示意图如图2所示.主席台(矩形ABCD )高2AD =米,直杆5DE =米,斜拉杆EG ,EH 起稳固作用,点H 处装有一射灯.遮阳棚边缘曲线FHG 可近似看成抛物线的一部分,G 为抛物线的最高点且位于主席台边缘BC 的正上方,若点E ,H ,C 在同一直线上,且1DF =米,4EG =米,60AEG ∠=︒,则射灯H 离地面的高度为______米.17.(1)计算:()()0211432⎛⎫---- ⎪⎝⎭.(2)先化简,再求值:()()()422a a a a --+-,其中31a =.18.一个不透明的布袋里装有2个红球,1个白球,它们除颜色外其余都相同.(1)摸出1个球,记下颜色后不放回...,再摸出1个球,求两次摸出的球恰好颜色相同的概率(要求画树状图或列表).(2)现再将n 个白球放入布袋,搅匀后,使摸出1个球是白球的概率为57,求n 的值.19.如图,在ABC 中,CD 是角平分线,DE 平分CDB ∠交BC 于点E ,且//DE AC .(1)求证:2CD CA CE =⋅.(2)若22CE BE ==,求CD 的长.20.如图,在66⨯的正方形网格中,点A ,B ,C 均在格点上,请按要求完成下列作图:①仅用无刻度直尺;②保留作图痕迹.(1)在图1中画一个ADE ,使得ADE ∽ACB △,且相似比为1:2.(2)在图2中以AB 为直径的半圆上找一点P ,画出PBA ∠,使得22.5PBA ∠=︒.21.如图抛物线y =ax 2+bx +c 交x 轴于A (﹣1,0)、B (4,0)两点,交y 轴于点C (0,2),动点P 从点O 出发,以每秒1个单位长度的速度沿x 轴正方向运动,过点P 作x 轴的垂线,交抛物线于点E ,交直线BC 于点F ,点P 运动到B 点即停止运动,连接CE ,设点P 运动的时间为t 秒.(1)求抛物线y =ax 2+bx +c 的表达式;(2)当t =32时,求△CEF 的面积;(3)当△CEF 是等腰三角形时,求出此时t 的值.22.如图,AB 为O 的直径,C ,D 为O 上不同于A ,B 的两点,且OC 平分ACD ∠,延长AC 与DB 交于点E ,过点C 作CF OC ⊥交DE 于点F .(1)求证:A E ∠=∠.(2)若5BF =,34BD OB =,求O 的半径.23.如图所示的矩形ABCD 是一张平面设计图纸,它由甲、乙、丙三个部分构成,已知240AB BC ==cm ,点E ,F 在BC 和CD 上,BE CE ≥,且CE CF =.设CE x =(cm ).(1)当甲部分的面积是乙部分面积的4倍时,求丙部分的面积.(2)若甲、乙、丙三个部分分别用不同的材料打印,且每平方厘米的材料价格依次为3元、6元、2元,要使乙部分的面积不小于220cm ,且x 取整数,求打印该矩形图纸所需材料的最省费用.24.如图,AC 是四边形ABCD 外接圆O 的直径,AB =BC ,∠DAC =30°,延长AC 到E 使得CE =CD ,作射线ED 交BO 的延长线与F ,BF 交AD 与G .(1)求证:△ADE 是等腰三角形;(2)求证:EF 与⊙O 相切;(3)若AO=2,求△FGD的周长.参考答案1.D【分析】根据点在圆内,点到圆心的距离小于圆的半径进行判断.【详解】解:∵⊙O的半径为5,点P在⊙O内,∴5OP<,故选:D.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P 在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.2.B【分析】根据32ab=可设a=3k,b=2k,代入约去k即可得.【详解】解:∵32 ab=,∴可设a=3k,b=2k,∴a bb-=322k kk-=12,故选:B.【点睛】本题主要考查比例的性质,熟练掌握设k法求比例式的值是解题的关键.3.D【分析】必然事件是一定发生的,根据这个定义便可找到答案.【详解】解:A、在一个只装有白球的袋中,摸出黄球,是不可能事件,故A不符合题意.B、a是实数,0a>,当a=0时,不成立,故是可能事件,故B不符合题意.C、明年元旦那天温州的最高气温是10℃,是可能事件,故C不符合题意.D、两个正数相加,和一定是正数,故是必然事件.故本题选:D.【点睛】本题考查不可能事件、可能事件、必然事件的定义,属于基础题4.B【分析】根据“左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,把抛物线y=-2x2向左平移1个单位,则平移后的抛物线的表达式为y=-2(x+1)2,故选:B.【点睛】本题考查了二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.5.C【分析】根据计算公式直接套用求解即可.【详解】根据题意,得260333602S ππ⨯⨯==,故选C .【点睛】本题考查了扇形的面积计算问题,熟记扇形面积计算公式,准确判断计算条件是解题的关键.6.C 【详解】试题分析:∵AD ∥BC ∴∠ACB=∠DAC 又∵∠B=∠ACD=90°∴△ABC ∽△DCA∴S △ABC :S △DCA =AB 2:CD 2=22:32=4:9故选C考点:相似三角形的判定与性质7.D 【分析】在优弧AC 上取点D ,连接AD 、CD ,由∠AOC=100°求出∠ADC=12∠AOC ,根据四边形ABCD 是圆内接四边形,得到∠ADC+∠ABC=180°,即可求出∠ABC 的度数.【详解】在优弧AC 上取点D ,连接AD 、CD ,∵∠AOC=100°,∴∠ADC=12∠AOC=50°,∵四边形ABCD 是圆内接四边形,∴∠ADC+∠ABC=180°,∴∠ABC=180°-50°=130°,故选:D .【点睛】此题考查圆周角定理:同弧所对的圆周角等于圆心角的一半,圆内接四边形的性质:圆内接四边形的对角互补.8.B 【分析】根据售价减去进价表示出实际的利润.【详解】解:设这种商品的售价为x 元时,获得的利润为y 元,根据题意可得:[](35)2005(40)y x x =---即y=(x-35)(400-5x ),故选:B .【点睛】本题考查了二次函数的应用,解题的关键是理解“商品每上涨1元,其销售量就减少5个”.9.A 【分析】先根据解析式确定对称轴,再根据当1≥x 时,y 随x 的增大而减小,判断抛物线的开口方向,利用对称轴和二次函数的增减性确定最小值时的自变量,仔细求解即可.【详解】∵二次函数221y ax ax =+-,∴抛物线的对称轴为x=-1,∵当1≥x 时,y 随x 的增大而减小,∴抛物线开口向下即a <0,且x=2时的函数值小于x=1时的函数值,∵3112-+=-,∴(-3,m )和(1,m )是抛物线上的对称点,∴当32x -≤≤时,y 的最小值为x=2时的函数值,∵y 的最小值为9-,∴8a-1=-9,解得a=-1,故选A .【点睛】本题考查了二次函数的开口,对称性,增减性和最值,熟练掌握二次函数的性质灵活求解是解题的关键.10.D 【分析】过点N 作NQ ⊥EA ,交EA 的延长线于点Q ,设正方形ACDE 的边长为a ,正方形BCFG 的边长为b ,利用AAS 证出△NAQ ≌△BAC ,用a 和b 表示出各线段长,然后根据平行线分线段成比例定理求出a 和b 的关系,然后根据面积关系列出方程即可求出b 的值.【详解】解:过点N 作NQ ⊥EA ,交EA 的延长线于点Q ,设正方形ACDE 的边长为a ,正方形BCFG 的边长为b∴NQ ∥FA ,∠NAQ +∠ANQ=90°,AF=CF -AC=b -a ∴∠FAN=∠ANQ ,QR=AF=b -a ,FR=AQ ,112S ab =∵∠ACB=90°∴∠BAC +∠FAN=90°∴∠NAQ=∠BAC∵∠Q=∠ACB=90°,NA=BA ∴△NAQ ≌△BAC ∴AQ=AC=a ,NQ=BC=b∴FR=AQ=a ,NR=NQ -QR=b -(b -a )=a∴△NRF 为等腰直角三角形∴∠NFR=45°∵FR ∥PQ ∴2NR NF RQ FP ==,∠FPA=∠NFR=45°∴2a b a=-,△FAP 为等腰直角三角形∴23a b =,AP=AF=b -a=13b ∴PNA S =△12AP NQ ⋅=216b ,112S ab ==213b ∵FR ∥PQ ,2NF FP=∴△FNH ∽△PNA ,23NF NP =∴2249PNA S NF S NP ⎛⎫== ⎪⎝⎭△∴2242927PNA S S b ==△∵1221S S -=即221221327b b -=解得:b=9或-9(不符合实际,舍去)即BC=9故选D .【点睛】此题考查的是正方形的性质、全等三角形的判定及性质和相似三角形的判定及性质,掌握正方形的性质、全等三角形的判定及性质和相似三角形的判定及性质是解题关键.11.八【详解】360°÷(180°-135°)=812.6【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【详解】解:设线段a,b的比例中项为x,∵线段x是a,b的比例中项,∴x2=ab,即x2=36,∴x=6(负数舍去),故答案为:6.【点睛】本题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.13.0.68【分析】根据频率估计概率的方法结合表格数据可得答案.【详解】解:这名篮球运动员投篮一次,投中的概率约为0.68,故答案为:0.68.【点睛】本题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.14.30【分析】由旋转的性质可得:∠E=∠C,∠ADE=∠ABC,AD=AB,根据平行线的性质得出∠ADB=50°,再利用等腰三角形的性质得出结果.【详解】由旋转的性质可得:∠E=∠C,∠ADE=∠ABC,AD=AB,∵BD∥AE,∴∠BDE+∠E=180°,∵∠E=∠C=30°,∠ADE=∠ABC=100°,∴∠ADB=50°,∵AD=AB,∴∠ABD=∠ADB=50°,∴∠BAD=180°-∠ABD-∠ADB=80°,∵∠BAC=180°-∠C-∠ABC=50°,∴∠CAD=∠BAD-∠BAC=30°,故答案为:30.【点睛】本题考查了旋转的性质,平行线的性质及等腰三角形的性质,解题的关键是熟练掌握旋转的性质.15.【分析】连接BE 、OE 、CE ,由圆周角定理及其推论可得30BCE ∠=︒,利用矩形的性质及等边三角形的判定和性质得出6CE =,由特殊三角函数值即可求解.【详解】解:连接BE 、OE 、CE ,∵BC 是O 的直径,∴90BEC ∠=︒,∵ BE的度数是60°,∴60BOE ∠=︒∴1=302BCE BOE ∠=∠︒,∵四边形ABCD 是矩形,∴6AB CD ==,90DCB ∠=︒,∴903060DCE DCB BCE ∠=∠-∠=︒-︒=︒,∵6CD DE ==,∴CDE △是等边三角形,∴6CE =,在Rt BEC △中,∵6cos cos30CE BCE BC BC ∠=︒==,∴6cos30BC ==︒故答案为:【点睛】本题考查了圆周角定理及其推论,四边形的性质,等边三角形的判定和性质以及特殊三角函数值.16.4.5【分析】首先建立以AB 为x 轴,以AD 为y 轴的直角坐标系,过点G 作GQ ⊥AD 交AE 于Q ,再得出抛物线的解析式为y=-163及直线EC 解析式为y=-563,最后求出H 的纵坐标即可得解.【详解】解:如图所示,建立以AB 为x 轴,以AD 为y 轴的直角坐标系,过点G 作GQ ⊥AD 交AE 于Q ,∵AD=2,DE=5,DF=1,∴D(0,2),E(0,7),F(0,3),∵GQ ⊥AD,EG=4,∠AEG=60°,∴34232=∴2216122EG GQ -=-=,∴AQ=AE-EQ=7-2=5,∴5),0),2),∵5)为抛物线顶点,∴设抛物线的解析式为:,将点F(0,3)代入解析式得,即12a+5=3,解得a=-16,故抛物线解析式为:y=-16,设直线EC 解析式为:y=kx+b(k≠0),将E(0,7),,2)代入解析式联立,得:72b b =⎧⎪⎨=+⎪⎩,解得:7b k =⎧⎪⎨=⎪⎩直线解析式为:y=-56x+7,∴H 同时在抛物线与直线EC 上联立得(21567y x y ⎧=--+⎪⎪⎨⎪=+⎪⎩,解得:舍去)即Hy=7+,得H的纵坐标为:7=4.5,故射灯离地面高度4.5米.故答案为:4.5.【点睛】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形.17.(1)5;(2)44a -+,-【分析】(1)先算乘方,算术平方根以及零指数幂,再算加减法,即可求解;(2)通过整式的运算法则,先化简,再代入求值,即可.【详解】解:(1)原式1213=+-+5=;(2)()()()422a a a a --+-()2244a a a =---44a =-+,当1a =+时,原式)44414a =-+=-⨯+=-.【点睛】本题主要考查实数的运算以及整式的化简求值,熟练掌握实数运算法则和整式的运算法则,是解题的关键.18.(1)13;(2)4n =【分析】(1)依据题意,先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率;(2)根据概率公式列方程,解方程即可求得n 的值.【详解】(1)树状图如下:∴一共有6种等可能的结果,两次摸出的球恰好颜色不同的有2种,∴两次摸出的球恰好颜色不同的概率为:2163P ==.(2)由题意得:1537n P n +==+解得:n=4.经检验,n=4是所列方程的解,且符合题意,∴4n =.【点睛】本题主要考查列表法,树状图法和概率公式,解题的重点在于要分析出所有等可能出现的结果,而解题的关键在于要根据概率公式求解或列方程.19.(1)见解析;(2)CD =【分析】(1)根据角平分线定义及平行线性质可得A CDE ∠=∠,再利用相似三角形的判定可证明ACD △∽DCE ,最后根据相似三角形的性质即可得出结论.(2)由已知22CE BE ==,可求出2CE =,1BE =,利用角平分线定义及平行线性质可得BCD CDE ∠=∠,推出2DE CE ==,再根据平行线分线段成比例性质求出6CA =,结合212CD CA CE =⋅=即可求得结果.【详解】(1)证明:∵CD 是角平分线,∴ACD DCE ∠=∠.∵DE 平分CDB ∠,∴CDE EDB∠=∠又∵//DE AC ,∴A EDB∠=∠∴A CDE ∠=∠,∴ACD △∽DCE ,∴CA CD CD CE=,∴2CD CA CE=⋅(2)解:∵22CE BE ==,∴2CE =,1BE =,∵CD 平分CDB ∠,∴ACD BCD ∠=∠,又∵//DE AC ,∴ACD CDE ∠=∠,∴BCD CDE ∠=∠,∴2DE CE ==,∵//DE AC ,∴13DE BE CA BC ==,∴6CA =,∴212CD CA CE =⋅=,∴CD =.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质以及平行线分线段成比例性质的综合应用是解题的关键.20.(1)见解析;(2)见解析【分析】(1)由ADE ∽ACB △,且相似比为1:2可直接进行作图;(2)由题意及圆周角定理可直接进行作图.【详解】解:(1)由ADE ∽ACB △,且相似比为1:2,如图所示:(2)根据圆周角定理可确定点P 的位置,然后可作如图所示:【点睛】本题主要考查圆周角定理及相似三角形的性质,熟练掌握圆周角定理及相似三角形的性质是解题的关键.21.(1)213222y x x =-++;(2)4532;(3)2或32或45【分析】(1)利用待定系数法把三个坐标点代入即可求表达式;(2)结合题意利用一次函数求出点E ,F 的坐标即可求面积;(3)分别用含t 的表达式表示点E ,F 的坐标,当△CEF 为等腰三角形,分为①当CE =CF 时②当CE =EF 时③当CF =EF 时三种情况分别求解即可.【详解】解:(1)将A (﹣1,0)、B (4,0),C (0,2)代入抛物线y =ax 2+bx +c ,得016402a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得12322a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴213222y x x =-++;(2)由题意知:当t =32时,P (32,0),设直线BC 的解析式为y =kx +b ,则有402k b b +=⎧⎨=⎩,∴122k b ⎧=-⎪⎨⎪=⎩,∴122y x -+=,∵PF ⊥x 轴,∴点P ,E ,F 的横坐标均为32,∴分别代入一次函数和二次函数求出两点坐标:F 3524⎛⎫ ⎪⎝⎭,,E 32528⎛⎫ ⎪⎝⎭,,∴13125534522284232CEF S EF ⎛⎫=⨯⨯=⨯-⨯= ⎪⎝⎭ ;(3)P (t ,0),则)F (t ,-122t +),E (t ,213222t t -++),∵△CEF 为等腰三角形,①当CE =CF 时,此时EF 的中点的纵坐标为2,∴214222t t -++=,∴t =2或t =0(舍),∴t =2;②当CE =EF 时,222221313122222t t t t t t +-+=-++()()解得32t =;(0t =不合题意舍去)③当CF =EF 时,2222211312222t t t t +-=-++()()解得4t +=4t =综上所述:t 的值为2或32或4.【点睛】此题考查二次函数的综合应用,有一定难度,利用坐标点结合图像解题是关键.22.(1)见解析;(2)8【分析】(1)根据角平分线和半径相等证//OC DE ,再用平行线的性质证明即可;(2)设3BD x =,4OB x =,根据(1)中的等角,得到AB=BE ,CE=CD ,列方程即可.【详解】(1)证明:∵OC=OA,∴ACO A ∠=∠.∵∠A=∠D ,∴∠D=∠ACO∵OC 平分ACD ∠,∴ACO OCD ∠=∠,∴OCD D ∠=∠.∴//OC DE ,∴E ACO ∠=∠,∴E A ∠=∠.(2)解:∵34BD OB =,∴设3BD x =,4OB x =,由(1)得E D ∠=∠,∴CD=CE ,∵//OC DE .CF OC ⊥,∴CF DE ⊥,∴35EF DF x ==+.∴310BE x =+,∵E A ∠=∠,∴AB BE =,即3108x x +=,解得2x =∴半径48OB x ==.【点睛】本题考查了圆周角的性质、等腰三角形的性质、平行线的判定与性质,解题关键是准确把握已知,合理利用已知条件,设未知数列方程.23.(1)550;(2)所需材料的最省费用为1958元【分析】(1)根据题意分别用x 表示出甲、乙、丙三个部分的面积,利用4S S =甲乙,便可求出CE 的值,从而求出丙的面积.(2)根据题意表示出三者的费用总和,利用乙部分的面积不小于220cm ,且x 取整数,找到X 的取值范围,根据二次函数性质和特征便可求解.【详解】解(1)由题意得:()14020400202S x x =⨯-=-甲,212S x =乙,()22112040400202040022S x x x x =⨯---=-++丙,∵4S S =甲乙,∴214002042x x -=⨯,解得110x =,220x =-(舍去)∴21204005502S x x =-++=丙.(2)()222113204006220400220200022y x x x x x x ⎛⎫=-++⨯+-++=-+ ⎪⎝⎭费用对称轴为直线20522x -=-=⨯,∵21202S x =≥乙,∴x ≥BE CE ≥,∴20x x -≥,∴10x ≤,∴10x ≤且x 为整数,∴x 的最小整数为7∴当7x =时,22720720001958y =⨯-⨯+=最小答:所需材料的最省费用为1958元.【点睛】本题考查二次函数的应用问题,能够把具体的问题抽象为数学函数问题才是关键.24.(1)见解析;(2)见解析;(3)【分析】(1)由圆周角定理可得∠ADC =90°,由等腰三角形的性质和直角三角形的性质可求∠E =∠DAC =30°,可得AD =DE ,可得结论;(2)先证△OCD 是等边三角形,可得∠ODC =60°,可得∠ODE =90°,可得结论;(3)由等腰三角形的性质可得BO ⊥AC ,可证△FGD 是等边三角形,可得FD =DG =FG ,由直角三角形的性质可求DG 的长,即可求解.【详解】(1)∵AC 是直径,∴∠ADC =90°,∵∠DAC =30°,∴∠ACD =60°,∵CE=CD,∴∠E=∠CDE,∵∠CDE+∠E=∠ACD=60°,∴∠E=30°=∠CDE,∴∠E=∠DAC,∴AD=DE,∴△ADE是等腰三角形;(2)如图,连接OD,∵OC=OD,∠OCD=60°,∴△OCD是等边三角形,∴∠ODC=60°,∴∠ODE=∠ODC+∠CDE=90°,又∵OD是半径,∴EF是⊙O的切线;(3)∵AB=BC,AO=CO,∴BO⊥AC,∴∠AOG=∠EOF=90°,∵∠DAC=∠E=30°,∴∠AGO=∠F=60°,∴∠F=∠FGD=60°,∴△FGD是等边三角形,∴FD=DG=FG,∵AO=2,∠DAC=30°,∠ADC=∠AOG=90°,∴AC =4,DC =12AC =2,AD =AG =2OG ,AO ,∴OG AG∴DG∴△FGD 的周长=3×DG =【点睛】本题是圆的综合题,考查了圆周角定理,切线的判定,直角三角形的性质,等腰三角形的性质,灵活运用这些性质进行推理是本题的关键.。
浙教版九年级上册数学期末测试卷及含答案
浙教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、在同一平面直角坐标系内,一次函数y=ax+b与二次函数y=ax2+5x+b的图象可能是()A. B. C.D.2、如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是()A. B. C. D.3、在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对4、一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A. B. C. D.5、如图,⊙O的弦AB=8,OE⊥AB于点E,且OE=3,则⊙O的半径是( )A. B.2 C.10 D.56、一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……不断重复,上述过程小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( ).A.10个B.12个C.15个D.18个7、设想有一根铁丝套在地球的赤道上,刚好拉紧后,又放长了米,并使得铁丝均匀地离开地面.下面关于铁丝离开地面高度的说法中合理的是()(已知圆的周长公式,).A.这个高度只能塞过一张纸B.这个高度只能伸进你的拳头C.这个高度只能钻过一只羊D.这个高度能驶过一艘万吨巨轮8、O是△ABC的外心,且∠ABC+∠ACB=100°,则∠BOC=()A.100°B.120°C.130°D.160°9、如图,抛物线经过A(1,0),B(4,0),C(0,-4)三点,点D是直线BC上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()A.7B.7.5C.8D.910、如图,两个三角形纸板△ABC,△MNP能完全重合,∠A=∠M=50°,∠ABC=∠N=60°, BC=4,将△MNP 绕点C(P)从重合位置开始,按逆时针方向旋转,边MN,MP分别与BC,AB交于点H,Q(点Q 不与点A,B 重合),点O是△BCQ 的内心,若∠BOC=130°,点N 运动的路径为NB,则图中阴影部分的面积为()A. B. C. D.11、下列命题正确的是()。
浙教版九年级数学上学期期末试题(含答案)
1浙教版九年级上学期期末数学试题及答案一、单选题1.若,则的值是()A .2B .3C .D . 【答案】C【分析】比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项,根据两内项之积等于两外项之积可得答案.【详解】解:∵3x =2y ,∴x :y =2:3,故选:C .【点睛】此题主要考查了比例的性质,关键是掌握两内项之积等于两外项之积.2.“抛一枚均匀硬币,落地后正面朝上”这一事件是( )A .必然事件B .随机事件C .确定事件D .不可能事件【答案】B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.3.如图所示,A ,B ,C 是上的三点,若,则的度数为()A .23°B .26°C .29°D .32°【答案】C【分析】根据同弧所对的圆周角等于圆心角的一半,即可得到答案.【详解】解:∵∠AOB =58°,∴∠ACB =29°,故选C .【点睛】本题考查圆周角定理的运用,解题的关键是根据同弧所对的圆周角等于圆心角的一半解答.4.抛物线与y 轴交点的坐标是()A .(0,3)B .(3,0)C .(1,0)D .(0,1) 【答案】A【分析】将代入抛物线,求得即可.【详解】解:将代入抛物线得,,即与y 轴交点的坐标是,故选:A【点睛】此题考查了二次函数与坐标轴的交点,解题的关键掌握与与y 轴交点,横坐标为0.5.如图,在矩形中,,.若以点B 为圆心,以4cm 长为半径作OB ,则下列选项中的32x y =:x y 2332O 58O ∠=︒C∠243y x x =-+0x =y 0x =243y x x =-+3y =(0,3)ABCD 3cm AB =4cm AD =各点在外的是()A .点AB .点BC .点CD .点D【答案】D【分析】根据勾股定理求出BD 的长,进而得出点A ,C ,D 与⊙B 的位置关系.【详解】解:连接BD ,在矩形ABCD 中,AB =3,AD =4,∵∠B =90°,∴BD 5,∵AB =3<4,BD =5>4,BC =4,∴点D 在⊙B 外,点C 在⊙B 上,点A 在⊙B 内.故选:D .【点睛】此题主要考查了点与圆的位置关系,矩形的性质,勾股定理,解决本题的关键是掌握点与圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有:①如果点P 在圆外,那么d >r ;②如果点P 在圆上,那么d =r ;③如果点P 在圆内,那么d <r .反之也成立.6.二次函数的图象如图所示,则该函数在所给自变量的取值范围内,函数值y 的取值范围是()A .B .C .D .【答案】C【分析】先根据二次函数是顶点式,开口向上,可求出二次函数的最小值,然后结合函数图像求出最大值即可得到答案.【详解】解:∵二次函数的解析式为,1>0, ∴当时,二次函数有最小值, ∵由函数图像可知,二次函数的最大值为3,∴当时,, 故选C .【点睛】本题主要考查了二次函数图像的性质,解题的关键在于能够利用数形结合的思想进行求解.B ==23324y x ⎛⎫=-+ ⎪⎝⎭()13x ≤≤1y ≥13y ≤≤334y ≤≤03≤≤y 23324y x ⎛⎫=-+ ⎪⎝⎭()13x ≤≤32x =3413x ≤≤334y ≤≤37.从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是()A .B .C .D . 【答案】C【分析】用3的倍数的个数除以数的总数即为所求的概率.【详解】解:∵1到10的数字中是3的倍数的有3,6,9共3个,∴卡片上的数字是3的倍数的概率是. 故选:C .【点睛】本题考查概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.8.如图,D 是等边△ABC 外接圆上的点,且∠CAD =20°,则∠ACD 的度数为( )A .20°B .30°C .40°D .45°【答案】C【分析】根据圆内接四边形的性质得到∠D=180°-∠B=120°,根据三角形内角和定理计算即可.【详解】∴∠B =60°,∵四边形ABCD 是圆内接四边形,∴∠D =180°−∠B =120°,∴∠ACD =180°−∠DAC −∠D =40°,故选C.9.如图,抛物线y =﹣(x+m )2+5交x 轴于点A ,B ,将该抛物线向右平移3个单位后,与原抛物线交于点C ,则点C 的纵坐标为()A .B .C .3D . 【答案】B【分析】将抛物线y =﹣(x+m )2+5向右平移3个单位后得到y =﹣(x+m ﹣3)2+5,然后联立组成方程组求解即可.【详解】解:将抛物线y =﹣(x+m )2+5向右平移3个单位后得到y =﹣(x+m ﹣3)2+5,根据题意得:, 解得:, 71012310110310AC 5211413422()5{(3)5y x m y x m =-++=-+-+32{114x m y =-=∴交点C 的坐标为(,), 故选:B .【点睛】考查了抛物线与坐标轴的交点坐标等知识,解题的关键是了解抛物线平移规律,并利用平移规律确定平移后的函数的解析式.10.如图,在面积为144的正方形ABCD 中放两个正方形BMON 和正方形DEFG ,重合的小正方形OPFQ 的面积为4,若点A ,O ,G 在同一直线上,则阴影部分面积为()A .36B .40C .44D .48【答案】D【分析】先求出AB =12,OQ =2,设正方形BMON 的边长为x ,则AN =12-x ,NO =x ,QG =12-x ,然后证明△ANO ∽△OQG ,得到,即,求出x =8,由此即可求解. 【详解】解:∵正方形ABCD 的面积为144,正方形OPFQ 的面积为4,∴AB =12,OQ =2,设正方形BMON 的边长为x ,则AN =12-x ,NO =x ,QG =12-x ,∵四边形BMON 和四边形OPFQ 都是正方形,∴∠ANO =∠BNO =∠OQF =∠OQG =∠POQ =90°,∴AN ∥OQ ,∴∠NAO =∠QOG ,∴△ANO ∽△OQG ,∴,即, 解得:或(舍去),∴BN =8,∴EF =12-x +2=6,∴阴影部分面积=144-82-62+4=48,故选D .【点睛】本题主要考查了正方形的性质,相似三角形的性质与判定,平行线的性质与判定,解题的关键在于能够熟练掌握相似三角形的性质与判定条件.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题 a 、b 的比例中项,且a =4,b =9,则x =_____.32m -114=AN NO OQ QG12=212x x x--=AN NO OQ QG 12=212x x x--8x =18x =5【答案】6【分析】根据已知线段a =4,b =9,线段x 是a ,b 的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案.【详解】解:∵线段x 是线段a 、b 的比例中项,且a =4,b =9,∴=, ∴x 2=ab =4×9=36,∴x =±6(负值舍去).故答案为:6.【点睛】本题考查了成比例线段,理解比例的性质是解题的关键.12.若二次函数的图象经过点,则的值为______________.【答案】10【分析】直接把点代入到二次函数解析式中求解即可.【详解】解:∵二次函数的图象经过点,∴,故答案为:10.【点睛】本题考查了求二次函数的函数值,解题的关键在于能够熟练掌握二次函数的函数值的求解方法.13.已知圆中40°圆心角所对的弧长为3π,则这个圆的周长_____.【答案】27π.【分析】圆周角等于360°,先求得圆周角与40°的圆心角之间的倍数关系,再乘以40°的圆心角所对的弧长.【详解】解:×3π=27π, 故这个圆的周长是27π,故答案为:27π.【点睛】主要考查了圆的周长与弧长之间的关系.14.如图,在中,E 为CD 上一点,连结BE 并延长交AD 延长线于点F .如果,那么____________.【答案】4【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案.【详解】解:如图,∵四边形ABCD 是平行四边形,∴DC ∥AB ,CD =AB .∴△DFE ∽△AFB ,∴. ∵DE :EC =2:3,∴DE :DC =DE :AB =2:5,∴ a x x b23y x x =+()2,P a a ()2,P a 23y x x =+()2,P a 22324610a =+⨯=+=36040ABCD □:2:3DE EC =:DEF ABF S S =△△2()DEF ABF S DE S AB=:425DEF ABF S S =:△△故答案为:4:25或. 【点睛】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.15.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中剩余的编号为1~7的小正方形中任意一个涂黑,则所得图案是一个轴对称图形的概率是_________.【答案】. 【详解】试题分析:将图中剩余的编号为1-7的小正方形中任意一个涂黑共7种情况,其中涂黑3,4,7,1,6有5种情况可使所得图案是一个轴对称图形(如图),故其概率是.考点:1.轴对称图形;2.几何概率.16.如图,半圆的直径,将半圆绕点B 顺时针旋转45°得到半圆,与AB 交于点P ,那么AP 的长为_____________.【答案】【分析】连接,由题意可得,,为直径,可得,可得为等腰直角三角形,即可求解.【详解】解:连接,如下图:由题意可得,,∵为直径, 4255757O 10AB =O O '10-A P '45A BP '∠=︒A B '90A PB '∠=︒A BP 'A P '45A BP '∠=︒A B '7∴,∴为等腰直角三角形,,由勾股定理得,,解得故答案为:【点睛】此题考查了圆周角定理,等腰直角三角形的判定与性质,勾股定理以及旋转的性质,解题的关键是掌握并灵活运用相关性质进行求解.17.如图,一张扇形纸片OAB ,,,将这张扇形纸片折叠,使点A 与点O 重合,折痕为CD ,则图中未重叠部分(即阴影部分)的面积为__________.【答案】【分析】根据阴影部分的面积等于S 扇形OBD 面积减去S 弓形OD 面积计算即可.【详解】解:由折叠可知,S 弓形AD=S 弓形OD ,DA =DO ,∵OA=OD ,∴AD =OD =OA ,∴△AOD 为等边三角形,∴∠AOD =60°,∠DOB =60°,∵AD =OD =OA =6,∴CD=,∴S 弓形AD =S 扇形ADO ﹣S △ADO 6π﹣, ∴S 弓形OD =6π﹣,阴影部分的面积=S 扇形BDO ﹣S 弓形OD (6π﹣ 故答案为:【点睛】本题考查了扇形面积与等边三角形的性质,熟练运用扇形公式是解题的关键.18.如图,AB 是半圆O 的直径,D 是半圆O 上一点,C 是的中点,连结AC 交BD 于点E ,连结AD ,若BE =4DE ,CE =6,则AB 的长为_____.【答案】【分析】90A PB '∠=︒A BP 'A P PB '=222A P A B ''=BP A P '==AP AB BP =-=10-120AOB ∠=︒6OA =260613602π⋅=-⨯2606360π⋅=-BD如图,连接OC 交BD 于K .设DE =k .BE =4k ,则DK =BK =2.5k ,EK =1.5k ,由AD ∥CK ,推出AE :EC =DE :EK ,可得AE =4,由△ECK ∽△EBC ,推出EC 2=EK•EB ,求出k 即可解决问题.【详解】解:如图,连接OC 交BD 于K .∵,∴OC ⊥BD ,∵BE =4DE ,∴可以假设DE =k .BE =4k ,则DK =BK =2.5k ,EK =1.5k ,∵AB 是直径,∴∠ADK =∠DKC =∠ACB =90°,∴AD ∥CK ,∴AE :EC =DE :EK ,∴AE :6=k :1.5k ,∴AE =4,∵△ECK ∽△EBC ,∴EC 2=EK•EB ,∴36=1.5k×4k ,∵k >0,∴k,∴BC=,∴AB=故答案为:.【点睛】本题考查相似三角形的判定和性质,垂径定理,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题1、1、2,乙同学口袋中也有三张卡片,分别写着数字 1、2、2,两人各自从自己的口袋中随机摸出一张卡片,若两人摸出的卡片上的数字之和为偶数,则甲胜;否则乙胜.求甲胜的概率.【答案】. 【分析】先列出表格,从而可得两人摸出的卡片上的数字之和的所有可能结果,再找出两人摸出的卡片上的数字之和为偶数的结果,然后利用概率公式进行计算即可得.【详解】解:由题意,所有可能的结果列表如下:CD BC =36499由表可知,一共有9种等可能结果,其中,两人摸出的卡片上的数字之和为偶数的结果有4种,则甲胜的概率为, 答:甲胜的概率是. 【点睛】本题考查了利用列举法求概率,正确利用表格列出所有可能的结果是解题关键.20.如图,在的正方形网格中,网线的交点称为格点,点,,都是格点.已知每个小正方形的边长为1.(1)画出的外接圆,并直接写出的半径是多少.(2)连结,在网络中画出一个格点,使得是直角三角形,且点在上.【答案】(1;(2)作图见解析【分析】(1)作AB 和BC 的垂直平分线,交点即为点O 的位置,在网格中应用勾股定理即可求得半径;(2)只能是或,直接利用网格作图即可.【详解】解:(1)作AB 和BC 的垂直平分线,交点即为点O ,如图:,;(2)当是直角三角形时,且点在上,只能是或,利用网格作图如下:49P =4966⨯A B C ABC O O AC P PAC △P O 90PAC ∠=︒90PCA ∠=︒=PAC △P O 90PAC ∠=︒90PCA ∠=︒.【点睛】本题考查尺规作图、确定圆的条件,掌握三角形外接圆圆心是三边线段垂直平分线的交点是解题的关键. 21.如图,在矩形ABCD 中,点E 、F 分别在边AD 、DC 上,△ABE ∽△DEF ,AB=6,AE=9,DE=2,求EF 的长.【分析】利用相似三角形的对应边成比例,求出DF 的长度,在直角三角形DEF 中,利用勾股定理求出斜边EF 长【详解】解:∵△ABE ∽△DEF ,∴ , ∴DF=3在矩形ABCD 中,∠D=90°. ∴在Rt △DEF 中,22.如图,AB 是的直径,弦于点M ,连结CO ,CB .(1)若,,求CD 的长度;(2)若平分,求证:.【答案】(1)8;(2)证明见详解【分析】(1)根据垂径定理得出CM =DM ,再由已知条件得出圆的半径为5,在Rt △OCM 中,由勾股定理得出CM 即可,从而得出CD ;(2)过点O 作ON ⊥BC ,垂足为N ,由角平分线的性质得出OM =ON ,从而得出CB =CD .【详解】解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CM =DM ,∵AM =2,BM =8,∴AB =10,∴OA =OC =5,在Rt △OCM 中,OM 2+CM 2=OC 2, AB AE DE DF692AB AE DE ===,,69=2DF∴EF DE =O CD AB ⊥2AM =8BM =CO DCB ∠CD CB =11∴CM 4,∴CD =8;(2)过点O 作ON ⊥BC ,垂足为N ,∵CO 平分∠DCB ,∴OM =ON ,∵CO =CO∴Rt △COM ≌Rt △CON∴CM =CN∴CB =CD .【点睛】本题考查了垂径定理,圆周角定理以及勾股定理,掌握定理的内容并熟练地运用是解题的关键.23.我市绿色和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外贸商李经理按市场价格10元/千克在我市收购了2000千克香菇存放入冷库中.请根据李经理提供的预测信息(如下图)帮李经理解决以下问题:(1)若存放天后,将这批香菇一次性出售,设这批香菇的销售总金额.....为元,试写出与之间的函数表达式;(销售总金额=销售单价×销售量)(2)将这批香菇仔放多少天后出售可获得最大利润..?最大利润是多少?【答案】(1)(1≤x ≤110,且x 为整数);(2)这批香菇存放100天后出售可获得最大利润,最大利润是30000元.【分析】(1)根据等量关系“销售总金额=(市场价格+0.5×存放天数)×(原购入量6×存放天数)”列出函数关系式; (2)根据等量关系“利润=销售总金额收购成本各种费用”列出函数关系式并求最大值.【详解】解:(1)由题意y 与x 之间的函数关系式为:y =(10+0.5x )(2000-6x )=3x 2+940x +20000(1≤x ≤110,且x 为整数);(2)设利润为w ,由题意得w =3x 2+940x +2000010×2000340x=3(x 100)2+30000∵a =3<0,∴抛物线开口方向向下,∴x =100时,w 最大=30000,∴李经理将这批香菇存放100天后出售可获得最大利润,最大利润是30000元.【点睛】此题主要考查了二次函数的应用以及二次函数的最值求法,根据函数关系式求出以及最值公式求出是解题关键. 24.如图直角坐标系中,O 为坐标原点,抛物线y=﹣x 2+6x+3交y 轴于点A ,过A 作AB ∥x 轴,交抛物线于点B ,连结OB .点P 为抛物线上AB 上方的一个点,连结PA ,作PQ ⊥AB 垂足为H ,交OB 于点Q .(1)求AB 的长;(2)当∠APQ=∠B 时,求点P 的坐标;(3)当△APH 面积是四边形AOQH 面积的2倍时,求点P 的坐标.=x y yx 2394020000y x x =-++----------【答案】(1)AB=6;(2)P (4,11);(3)P (4,11)或P (3,12).【分析】(1)先求得点A (0,3),令,解得x=0或6,故点B (6,3),即可求解;(2)证明△ABO ~△HPA ,则,即可求解; (3)当△APH 的面积是四边形AOQH 的面积的2倍时,则2(AO+HQ )=PH ,即可求解.【详解】解:(1)对于,令x=0,则y=3,故点A (0,3),令,解得x=0或6,故点B (6,3),故AB=6;(2)设P (,),∵∠APQ=∠B ,∠AHP=∠OAB=90°,∴△ABO ~△HPA ,故, ∴, 解得m=4.∴P (4,11);(3)当△APH 的面积是四边形AOQH 的面积的2倍时,则2(AO+HQ )=PH ,∵HQ ∥OA ,∴,即, ∴HQ=, ∴, 解得:m 1=4,m 2=3,∴P (4,11)或P (3,12).【点睛】本题考查了二次函数的性质,相似三角形的判定和性质,平行线分线段成比例定理,图形的面积计算等,解题的关键是灵活运用所学知识解决问题.2633y x x =-++=HP AH AB AO=263y x x =-++2633y x x =-++=m 263m m -++HP AH AB AO =2663m m m -+=HQ BH AO AB =636HQ m -=62m -262362m m m -⎛⎫+=-+ ⎪⎝⎭。
浙教版初三上册期末数学试卷及答案
九年级(上)期末数学试卷一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是符合题目要求的1.(3分)已知a2=b3(a ≠0,b ≠0),下列变形正确的是( )A .b a=23B .2a=3bC .a 3=b2D .a 3=2b2.(3分)在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,则( ) A .sinA =abB .cosA =acC .sinB =bcD .tanB =ab3.(3分)下列事件中,属于不可能事件的是( ) A .掷一枚骰子,朝上一面的点数为5 B .任意画一个三角形,它的内角和是178°C .任意写一个数,这个数大于﹣1D .在纸上画两条直线,这两条直线互相平行4.(3分)如图,点A 、B 、C 在⊙O 上,∠ACB =40°,则( )A .∠AOB =80°,AB̂的度数为80° B .∠AOB =80°,AB̂的度数为40° C .∠AOB =40°,AB̂的度数为80° D .∠AOB =40°,AB̂的度数为40° 5.(3分)关于二次函数y =3x 2﹣6,下列叙述正确的是( ) A .当x =3时,y 有最大值﹣6 B .当x =3时,y 有最小值﹣6C .当x =0时,y 有最大值﹣6D .当x =0时,y 有最小值﹣66.(3分)如图,直线l 1∥l 2∥l 3,直线AC 交l 1、l 2、l 3于点A 、B 、C ,直线DF 交l 1、l 2、l 3于点D 、E 、F ,已知BC AC=37,若DE =3,则DF 的长是( )A .94B .4C .214D .77.(3分)已知圆心角为120°的扇形的弧长为6π,该扇形的面积为( ) A .18πB .27πC .36πD .54π8.(3分)如图,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,DE ∥BC ,DF ∥AC ,若△ADE 与四边形DBCE 的面积相等,则△DBF 与△ADE 的面积之比为( )A .12B .14C .√2−1D .3−2√29.(3分)在平面直角坐标系中有两点A (﹣2,4)、B (2,4),若二次函数y =ax 2﹣2ax ﹣3a (a ≠0)的图象与线段AB 只有一个交点,则( )A .a 的值可以是−43B .a 的值可以是35C .a 的值不可能是﹣1.2D .a 的值不可能是110.(3分)如图,AB 是⊙O 的直径,点C 是圆上任意一点,点D 是AC 中点,OD 交AC 于点E ,BD 交AC 于点F ,若BF =1.25DF ,则tan ∠ABD 的值为( )A .23B .√33C .35D .√54二、填空题:本題有6个小题,每小题4分,共24分.11.(4分)任意抛掷一枚质地均匀的骰子,朝上面的点数能被3整除的概率是 . 12.(4分)计算:cos 245°﹣tan30°sin60°= .13.(4分)铁路道口的栏杆如图所示,AO =16.5米,CO =1.25米,当栏杆C 端下降的垂直距离(CD)为0.5米时,栏杆A端上升的垂直距离(AB)为米.14.(4分)函数y=ax2+bx+c(a≠0)的部分图象如图所示:①当y<0时,x的取值范围是;②方程ax2+bx+c=3的解是.15.(4分)如图是一个圆拱形隧道的截面,若该隧道截面所在圆的半径为3.5米,路面宽AB为4.2米,则该隧道最高点距离地面米.16.(4分)如图在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点E、F分别在边AB、AC上,将△AEF沿直线EF折叠,使点A的对应点D恰好落在边BC上.若△BDE是直角三角形,则CF的长为.三、解答题本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤17.(6分)已知二次函数y=2x2+bx+1的图象过点(2,3).(1)求该二次函数的表达式;(2)若点P(m,m2+1)也在该二次函数的图象上,求点P的坐标.18.(8分)如图,某轮船在海上向正东方向航行,上午8:00在点A处测得小岛O在北偏东60°方向的16√3km处;上午8:30轮船到达B处,测得小岛O在北偏东30°方向.(1)求轮船从A处到B处的航速;(2)如果轮船按原速继续向东航行,还需经过多少时间轮船才恰好位于小岛的东南方向?19.(8分)把9个只有颜色不同的小球分别装入甲乙丙三个布袋里其中甲布袋里有3个红球,1个白球;乙布袋里有1个红球,2个白球;丙布袋里有1个红球,1个白球.(1)从甲布袋中随机摸出1个小球,摸出的小球是红球的概率是多少?(2)用列表法或画树状图,解决下列问题:①从甲、乙两个布袋中随机各摸出1个小球,求摸出的两个小球都是红球的概率;②从甲、乙、丙三个布袋中随机各摸出1个小球,求摸出的三个小球是一红二白的概率.20.(10分)如图,在△ABC中,AB=8,AC=6.点D在边AB上,AD=4.5.△ABC的角平分线AE交CD于点F.(1)求证:△ACD∽△ABC;(2)求AFAE的值.21.(10分)如图,四边形ABCD内接于⊙O,BC=CD,∠C=2∠BAD.(1)求∠BOD的度数;(2)求证:四边形OBCD是菱形;(3)若⊙O的半径为r,∠ODA=45°,求△ABD的面积(用含r的代数式表示).22.(12分)某植物园有一块足够大的空地,其中有一堵长为a 米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案: 方案甲中AD 的长不超过墙长;方案乙中AD 的长大于墙长. (1)若a =6.①按图甲的方案,要围成面积为25平方米的花圃,则AD 的长是多少米? ②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a <6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.23.(12分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交BC ,AC 于点D ,E ,连结EB ,交OD 于点F . (1)求证:OD ⊥BE .(2)若DE =√6,AB =6,求AE 的长.(3)若△CDE 的面积是△OBF 面积的23,求线段BC 与AC 长度之间的等量关系,并说明理由.参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是符合题目要求的1.(3分)已知a2=b3(a ≠0,b ≠0),下列变形正确的是( )A .b a=23B .2a=3bC .a 3=b2D .a 3=2b【分析】根据两内项之积等于两外项之积解答即可. 【解答】解:A 、由ba=23得:2a =3b ,故选项A 不正确;B 、由b a=32得:3a =2b ,故选项B 正确;C 、由a 3=b2得:2a =3b ,故选项C 不正确;D 、由a 3=2b得:ab =6,故选项D 不正确;故选:B .【点评】本题主要考查比例的性质,可根据比例的基本性质直接求解.2.(3分)在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,则( ) A .sinA =abB .cosA =a cC .sinB =b cD .tanB =a b【分析】根据三角函数的定义解答即可得出结论.【解答】解:∵∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边, ∴sin A =a c,cos A =b c,sin B =b c,tan B =b a, 故选:C .【点评】本题主要考查了正切函数的定义,锐角A 的对边a 与斜边c 的比叫做∠A 的正弦,记作sin A .锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦,记作cos A .锐角A 的对边a 与邻边b 的比叫做∠A 的正切,记作tan A . 3.(3分)下列事件中,属于不可能事件的是( ) A .掷一枚骰子,朝上一面的点数为5B.任意画一个三角形,它的内角和是178°C.任意写一个数,这个数大于﹣1D.在纸上画两条直线,这两条直线互相平行【分析】不可能事件是在一定条件下一定不会发生的事件,依据定义即可求解.【解答】解:A.掷一枚骰子,朝上一面的点数为5是随机事件;B.任意画一个三角形,它的内角和是178°是不可能事件;C.任意写一个数,这个数大于﹣1是随机事件;D.在纸上画两条直线,这两条直线互相平行是随机事件;故选:B.【点评】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件,理解定义是关键.4.(3分)如图,点A、B、C在⊙O上,∠ACB=40°,则()̂的度数为80°A.∠AOB=80°,AB̂的度数为40°B.∠AOB=80°,AB̂的度数为80°C.∠AOB=40°,AB̂的度数为40°D.∠AOB=40°,AB【分析】利用圆周角定理即可解决问题.【解答】解:∵∠AOB=2∠ACB,∠ACB=40°,∴∠AOB=80°,̂的度数为80°,∴AB故选:A.【点评】本题考查圆周角定理,弧的度数等知识,解题的关键是熟练掌握基本知识,属于中考掌考题型.5.(3分)关于二次函数y=3x2﹣6,下列叙述正确的是()A.当x=3时,y有最大值﹣6B.当x=3时,y有最小值﹣6C.当x=0时,y有最大值﹣6D.当x=0时,y有最小值﹣6【分析】由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案. 【解答】解:∵y =3x 2﹣6,∴抛物线开口向上,对称轴为x =0,顶点坐标为(0,﹣6), ∴当x =0时,y 有最小值﹣6; ∴D 正确, 故选:D .【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x ﹣h )2+k 中,对称轴为x =h ,顶点坐标为(h ,k ).6.(3分)如图,直线l 1∥l 2∥l 3,直线AC 交l 1、l 2、l 3于点A 、B 、C ,直线DF 交l 1、l 2、l 3于点D 、E 、F ,已知BC AC=37,若DE =3,则DF 的长是( )A .94B .4C .214D .7【分析】由直线l 1∥l 2∥l 3可得出BC AB=EF DE,结合BC AC=37,AC =AB +BC 可得出BC AB的值,进而可得出EF =34DE =94,再将其代入DF =DE +EF 中即可求出结论. 【解答】解:∵直线l 1∥l 2∥l 3, ∴BC AB =EF DE .∵BC AC =37,AC =AB +BC , ∴BC AB=37−3=34,∴EF =34DE =94, ∴DF =DE +EF =214. 故选:C .【点评】本题考查了平行线分线段成比例,牢记“三条平行线截两条直线,所得的对应线段成比例”是解题的关键.7.(3分)已知圆心角为120°的扇形的弧长为6π,该扇形的面积为( )A .18πB .27πC .36πD .54π【分析】设扇形的半径为r .利用弧长公式构建方程求出r ,再利用扇形的面积公式计算即可.【解答】解:设扇形的半径为r . 由题意:120⋅π⋅r 180=6π,∴r =9,∴S 扇形=120⋅π⋅92360=27π,故选:B .【点评】本题考查扇形的弧长公式,面积公式等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.8.(3分)如图,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,DE ∥BC ,DF ∥AC ,若△ADE 与四边形DBCE 的面积相等,则△DBF 与△ADE 的面积之比为( )A .12B .14C .√2−1D .3−2√2【分析】根据矩形的性质得到DE =CF ,根据相似三角形的性质得到S △ADE S △ABC=(DE BC)2=12,求得DEBC =√22,设DE =√2k ,BC =2k ,得到BF =2k −√2k ,根据相似三角形的性质即可得到结论.【解答】解:∵DE ∥BC ,DF ∥AC , ∴四边形DFCE 是平行四边形, ∴DE =CF ,∵△ADE 与四边形DBCE 的面积相等, ∴S △ADE S △ABC=12,∵DE ∥BC , ∴△ADE ∽△ABC , ∴S △ADE S △ABC=(DE BC)2=12,∴DE BC=√22, 设DE =√2k ,BC =2k , ∴BF =2k −√2k , ∵DF ∥AC , ∴△BDF ∽△BAC , ∴△DBF ∽△ADE , ∴S △BDF S △ADE=(BFDE)2=(√2k √2k)2=3﹣2√2, 故选:D .【点评】本题考查了相似三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.9.(3分)在平面直角坐标系中有两点A (﹣2,4)、B (2,4),若二次函数y =ax 2﹣2ax ﹣3a (a ≠0)的图象与线段AB 只有一个交点,则( ) A .a 的值可以是−43 B .a 的值可以是35C .a 的值不可能是﹣1.2D .a 的值不可能是1【分析】先把B (2,4)代入y =ax 2﹣2ax ﹣3a 得a =−43,此时抛物线与线段AB 有两个公共点,所以当抛物线与线段AB 只有一个交点时,a <−43;把A (﹣2,4)代入y =ax 2﹣2ax ﹣3a 得a =45,则当抛物线与线段AB 只有一个交点时,a ≥45,然后利用a 的范围对各选项解析式判断.【解答】解:把B (2,4)代入y =ax 2﹣2ax ﹣3a 得4a ﹣4a ﹣3a =4,解得a =−43,则当抛物线与线段AB 只有一个交点时,a <−43;把A (﹣2,4)代入y =ax 2﹣2ax ﹣3a 得4a +4a ﹣3a =4,解得a =45,则当抛物线与线段AB 只有一个交点时,a ≥45. 故选:C .【点评】本题考查了二次函数图象与系数的关系.二次函数y =ax 2+bx +c (a ≠0)系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定. 10.(3分)如图,AB 是⊙O 的直径,点C 是圆上任意一点,点D 是AC 中点,OD 交AC于点E ,BD 交AC 于点F ,若BF =1.25DF ,则tan ∠ABD 的值为( )A .23B .√33C .35D .√54【分析】由△ADF ∽△BDA ,推出AD 2=DF •DB ,由BF =1.25DF ,可以假设DF =4m ,则BF =5m ,BD =9m ,可得AD =6m ,根据tan ∠ABD =ADBD计算即可解决问题. 【解答】解:∵AD ̂=DC ̂, ∴∠DAF =∠DBA , ∵∠ADF =∠ADB , ∴△ADF ∽△BDA , ∴AD BD=DF AD,∴AD 2=DF •DB , ∵BF =1.25DF ,∴可以假设DF =4m ,则BF =5m ,BD =9m , ∴AD 2=36m 2, ∵AD >0, ∴AD =6m , ∵AB 是直径, ∴∠ADB =90°, ∴tan ∠ABD =AD BD =6m 9m =23, 故选:A .【点评】本题考查圆周角定理,相似三角形的判定和性质,锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型. 二、填空题:本題有6个小题,每小题4分,共24分.11.(4分)任意抛掷一枚质地均匀的骰子,朝上面的点数能被3整除的概率是 13.【分析】根据概率公式可得.【解答】解:抛掷一枚骰子有1、2、3、4、5、6种可能, 其中所得的点数能被3整除的有3、6这两种, ∴所得的点数能被3整除的概率为26=13,故答案为:13.【点评】此题主要考查了概率公式,要熟练掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.12.(4分)计算:cos 245°﹣tan30°sin60°= 0 . 【分析】原式利用特殊角的三角函数值计算即可得到结果. 【解答】解:cos 245°﹣tan30°sin60°=12−√33×√32=12−12=0, 故答案为:0.【点评】此题考查了特殊角的三角函数值,实数的运算,熟练掌握运算法则是解本题的关键.13.(4分)铁路道口的栏杆如图所示,AO =16.5米,CO =1.25米,当栏杆C 端下降的垂直距离(CD )为0.5米时,栏杆A 端上升的垂直距离(AB )为 6.6 米.【分析】由∠ABO =∠CDO =90°、∠AOB =∠COD 知△ABO ∽△CDO ,利用相似三角形的性质解答即可.【解答】解:∵AB ⊥BD ,CD ⊥BD , ∴∠ABO =∠CDO =90°, 又∵∠AOB =∠COD , ∴△ABO ∽△CDO ,则AO CO=AB CD, 即16.51.25=AB0.5,解得:AB =6.6米, 故答案为:6.6【点评】本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定与性质.14.(4分)函数y =ax 2+bx +c (a ≠0)的部分图象如图所示: ①当y <0时,x 的取值范围是 x <﹣5或x >1 ; ②方程ax 2+bx +c =3的解是 x 1=﹣4,x 2=0 .【分析】①利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(﹣5,0),然后写出抛物线在x 轴下方所对应的自变量的范围即可;②抛物线与y 轴的交点为(0,3),利用抛物线对称性得到抛物线过点(﹣4,0),从而得到方程ax 2+bx +c =3的解.【解答】解:①∵抛物线与x 轴的一个交点坐标为(1,0), 而抛物线的对称轴为直线x =﹣2,∴抛物线与x 轴的另一个交点坐标为(﹣5,0), ∴当y <0时,x 的取值范围是x <﹣5或x >1; ②方程ax 2+bx +c =3的解为x 1=﹣4,x 2=0. 故答案为x <﹣5或x >1;x 1=﹣4,x 2=0.【点评】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.15.(4分)如图是一个圆拱形隧道的截面,若该隧道截面所在圆的半径为3.5米,路面宽AB 为4.2米,则该隧道最高点距离地面 6.3 米.【分析】连接OA .由垂径定理可知AD =DB =2.1,利用勾股定理求出OD 即可解决问题. 【解答】解:连接OA .∵OD ⊥AB , ∴AD =DB =2.1米,在Rt △AOD 中,OD =√OA 2−AD 2=√3.52−2.12=2.8(米), ∴CD =OC +OD =6.3(米) 故答案为6.3.【点评】解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r ,弦长为a ,这条弦的弦心距为d ,则有等式r 2=d 2+(a2)2成立,知道这三个量中的任意两个,就可以求出另外一个.16.(4分)如图在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,点E 、F 分别在边AB 、AC 上,将△AEF 沿直线EF 折叠,使点A 的对应点D 恰好落在边BC 上.若△BDE 是直角三角形,则CF 的长为7249或98.【分析】分两种情况:①∠BED =90°,过点F 作FM ⊥AE ,根据折叠性质可知∠AEF =∠DEF =45°,设FC =a ,则AF =3﹣a ,在Rt △AMF 中用a 表示出AE ,从而得到BE =5﹣AE ,在Rt △BED 中,根据三角函数用a 表示BE ,则构造出关于a 的方程;②∠BDE =90°,证明∠A =∠DFC ,根据三角函数找到FC 和DF 关系即可. 【解答】解:①当∠BED =90°时,过点F 作FM ⊥AE , 根据折叠性质可知∠AEF =∠DEF =45°, 设FC =a ,则AF =3﹣a ,在Rt △AMF 中, sin A =MF AF =45,∴MF =45(3−a)=ME . cos A =AMAF =35,∴AM =35(3−a). ∴AE =AM +MF =75(3−a)=DE . 则BE =AB ﹣AE =5−75(3−a).在Rt △BED 中,tan B =DEBE =34,∴BE =2815(3−a). ∴5−75(3−a)=2815(3−a),解得a =7249; ②当∠EDB =90°时,根据折叠性质可知AF =FD ,∠A =∠EDF , ∵ED ∥AC ,∴∠EDF =∠DFC . ∴∠A =∠DFC .∴cos A =cos ∠DFC =35,设FC =x ,则AF =3﹣x =DF , ∴x 3−x=35,解得x =98.综上所述CF 长为7249或98.【点评】本题主要考查折叠的性质、勾股定理、解直角三角形,同时还考查了分类讨论的数学思想.三、解答题本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤 17.(6分)已知二次函数y =2x 2+bx +1的图象过点(2,3).(1)求该二次函数的表达式;(2)若点P(m,m2+1)也在该二次函数的图象上,求点P的坐标.【分析】(1)把点(2,3)代入二次函数的解析式,解方程即可得到结论;(2)把点P(m,m2+1)代入函数解析式,解方程即可得到结论.【解答】解:(1)∵二次函数y=2x2+bx+1的图象过点(2,3),∴3=8+2b+1,∴b=﹣3,∴该二次函数的表达式为y=2x2﹣3x+1;(2)∵点P(m,m2+1)也在该二次函数的图象上,∴m2+1═2m2﹣3m+1,解得:m1=0,m2=3,∴点P的坐标为(0,1)或(3,10).【点评】本题考查了求二次函数的表达式,二次函数图象上点的坐标特征,正确的求得解析式是解题的关键.18.(8分)如图,某轮船在海上向正东方向航行,上午8:00在点A处测得小岛O在北偏东60°方向的16√3km处;上午8:30轮船到达B处,测得小岛O在北偏东30°方向.(1)求轮船从A处到B处的航速;(2)如果轮船按原速继续向东航行,还需经过多少时间轮船才恰好位于小岛的东南方向?【分析】(1)过点O作OD⊥AB,垂足为D,构造直角三角形利用特殊角的三角函数值先求出AB,再利用路程、速度和时间间关系求出轮船的航速;(2)过点O作∠DOE=45°交AD的延长线与点E.求出BE的长,再求轮船航行的时间.【解答】解:(1)如图,过点O作OD⊥AB,垂足为D.有题意知:∠OAD=30°,∠OBD=60°.在Rt△OAD中,∵OA=16√3,∠OAD=30°,∴OD =8√3,AD =24.在Rt △OBD 中,∵OD =8√3,∠OBD =60°. ∴BD =ODtan60°=√33=8, ∴AB =AD ﹣BD =24﹣8=16(km ), ∴v =160.5=32(km /h )答:轮船从A 处到B 处的航速为32km /h .(2)过点O 作∠DOE =45°交AD 的延长线与点E . ∵∠DOE =45°,∠ODE =90°, ∴DE =OD =8√3km , BE =BD +DE =8+8√3(km ), ∵8+8√332=1+√34(h ), 答:轮船按原速继续向东航行,还需要航行1+√34小时才恰好位于小岛的东南方向.【点评】本题考查的是解直角三角形的应用﹣方向角问题,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数求解是解答此题的关键.19.(8分)把9个只有颜色不同的小球分别装入甲乙丙三个布袋里其中甲布袋里有3个红球,1个白球;乙布袋里有1个红球,2个白球;丙布袋里有1个红球,1个白球. (1)从甲布袋中随机摸出1个小球,摸出的小球是红球的概率是多少? (2)用列表法或画树状图,解决下列问题:①从甲、乙两个布袋中随机各摸出1个小球,求摸出的两个小球都是红球的概率; ②从甲、乙、丙三个布袋中随机各摸出1个小球,求摸出的三个小球是一红二白的概率. 【分析】(1)根据概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)从甲布袋中随机摸出1个小球,摸出的小球是红球的概率是3 4;(2)①画树状图如下:由树状图知,共有12种等可能结果,其中摸出的两个小球都是红球的有3种结果,∴摸出的两个小球都是红球的概率为312=1 4;②画树状图如下:由树状图知,共有24种等可能结果,其中摸出的三个小球是一红二白的有9种结果,∴摸出的三个小球是一红二白的概率为924=38.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(10分)如图,在△ABC中,AB=8,AC=6.点D在边AB上,AD=4.5.△ABC的角平分线AE交CD于点F.(1)求证:△ACD∽△ABC;(2)求AFAE的值.【分析】(1)由AB ,AC ,AD 的长可得出AC AB=AD AC,结合∠CAD =∠BAC 即可证出△ACD∽△ABC ;(2)利用相似三角形的性质可得出∠ACD =∠B ,由AE 平分∠BAC 可得出∠CAF =∠BAE ,进而可得出△ACF ∽△BAE ,再利用相似三角形的性质即可求出AF AE的值.【解答】(1)证明:∵AB =8,AC =6,AD =4.5, ∴AC AB=AD AC=34.又∵∠CAD =∠BAC , ∴△ACD ∽△ABC ;(2)解:∵△ACD ∽△ABC , ∴∠ACD =∠B . ∵AE 平分∠BAC , ∴∠CAF =∠BAE , ∴△ACF ∽△BAE , ∴AF AE=AC AB=34.【点评】本题考查了相似三角形的判定与性质以及角平分线的定义,解题的关键是:(1)利用“两边对应成比例且夹角相等,两个三角形相似”找出△ACD ∽△ABC ;(2)利用“两角对应相等,两个三角形相似”找出△ACF ∽△BAE .21.(10分)如图,四边形ABCD 内接于⊙O ,BC =CD ,∠C =2∠BAD . (1)求∠BOD 的度数;(2)求证:四边形OBCD 是菱形;(3)若⊙O 的半径为r ,∠ODA =45°,求△ABD 的面积(用含r 的代数式表示).【分析】(1)结合圆的内接四边形对角互补,运用方程思想,再运用圆周角定理求解即可;(2)连接OC,证明△BOC和△DOC都是等边三角形,进而即可证明结论;(3)分别计算△BOD,△AOD和△AOB的面积,再求和即可.【解答】解:(1)∵四边形ABCD内接于⊙O,∴∠C+∠BAD=180°,∵∠C=2∠BAD,∴∠C=120°,∠BAD=60°,∴∠BOD=2∠BAD=120°;(2)如图1连接OC,∵BC=CD,∴∠BOC=∠DOC=60°,∵OB=OC=OD,∴△BOC和△DOC都是等边三角形,∴OB=OC=OD=BC=DC,∴四边形OBCD是菱形,(3)如图2,连接OA,过点A作BO的垂线交BO的延长线于点N,∵∠BOD =120°,OB =OD , ∴∠ODM =30°, ∵∠BOM =∠DOM , ∴OM ⊥BD , ∴OM =12r ,DM =√32r ,∴BD =2DM =√3, ∴S △BOD =√34r 2,∵∠ODA =45°,OA =OD , ∴∠OAD =∠ODA =45°, ∴∠AOD =90°, ∴S △AOD =12r 2,∵∠BOD =120°,∠AOD =90°, ∴∠AOB =150°, ∴∠AON =30°, ∴AN =12OA =12r , ∴S △AOB =14r 2,∴△ABD 的面积为√34r 2+12r 2+14r 2=(34+√34)r 2.【点评】此题主要考查圆的综合问题,会运用圆的相关性质进行推理,会进行菱形的判定,会计算三角形的面积是解题的关键.22.(12分)某植物园有一块足够大的空地,其中有一堵长为a 米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案: 方案甲中AD 的长不超过墙长;方案乙中AD 的长大于墙长.(1)若a =6.①按图甲的方案,要围成面积为25平方米的花圃,则AD 的长是多少米? ②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a <6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.【分析】(1)①设AB 的长是x 米,根据矩形的面积公式列出方程; ②列出面积关于x 的函数关系式,再根据函数的性质解答;(2)设AB =x ,能围成的矩形花圃的面积为S ,根据题意列出S 关于x 的函数关系,再通过求最值方法解答.【解答】解:(1)①设AB 的长是x 米,则AD =20﹣3x , 根据题意得,x (20﹣3x )=25, 解得:x 1=5,x 2=53, 当x =53时,AD =15>6, ∴x =5, ∴AD =5,答:AD 的长是5米;②设BC 的长是x 米,矩形花圃的最大面积是y 平方米,则AB =13[20﹣x ﹣(x ﹣6)]=263−23x , 根据题意得,y =x (263−23x )=−23x 2+263x =−23(x −132)2+1696(x >6), ∴当x =132时,y 有最大值为1696. 答:按图乙的方案,能围成的矩形花圃的最大面积是1696平方米;(2)设BC =x ,能围成的矩形花圃的面积为S ,按图甲的方案,S =x ×20−x 3=−13x 2+203x =−13(x −10)2+1003, ∴在x =a <10时,S 的值随x 的增大而增大,∴当x =a 的最大值n 时,S 的值最大,为S −13(n −10)2+1003; 按图乙方案,S =13[20﹣x ﹣(x ﹣a )]x =−23(x −a+204)2+(a+20)224,∴当x =a+204时,S 的值最大为S =(a+20)224,此时a 取最大值n 时,S 的值最大为S =(n+20)224; ∵(n+20)224−[−13(n ﹣10)2+1003]=9n 2−120n+40024>0, ∴(n+20)224>−13(n −10)2+1003,故第二种方案能围成面积最大的矩形花圃.【点评】本题主要考查了一元二次方程的应用,二次函数的应用,关键是正确列出一元二次方程和函数解析式,运用函数的性质解答.23.(12分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交BC ,AC 于点D ,E ,连结EB ,交OD 于点F . (1)求证:OD ⊥BE .(2)若DE =√6,AB =6,求AE 的长.(3)若△CDE 的面积是△OBF 面积的23,求线段BC 与AC 长度之间的等量关系,并说明理由.【分析】(1)连接AD .根据直径所对的圆周角是直角、等腰三角形的性质以及圆的有关性质即可证明;(2)先证△CDE ∽△CAB 得CE CB=DE AB,据此求得CE 的长,依据AE =AC ﹣CE =AB ﹣CE 可得答案;(3)由BD =CD 知S △CDE =S △BDE ,证△OBF ∽△ABE 得S △OBF S △ABE=(OB AB)2=14,据此知S △ABE =4S △OBF ,结合S △CDE S △OBF=23知S △ABE =6S △CDE ,S △CAB =8S △CDE ,由△CDE ∽△CAB知S △CDE S △CAB=(CD CA)2=18,据此得出CD CA=2√2BD =CD ,AB =AC 知BCAB=√2,从而得出答案.【解答】解:(1)连接AD ,∵AB 是直径,∴∠AEB =∠ADB =90°, ∵AB =AC ,∴∠CAD =∠BAD ,BD =CD , ∴BD ̂=ED ̂, ∴OD ⊥BE ;(2)∵∠AEB =90°, ∴∠BEC =90°, ∵BD =CD , ∴BC =2DE =2√6, ∵四边形ABDE 内接于⊙O , ∴∠BAC +∠BDE =180°, ∵∠CDE +∠BDE =180°, ∴∠CDE =∠BAC , ∵∠C =∠C , ∴△CDE ∽△CAB , ∴CE CB=DE AB,即2√6=√66, ∴CE =2,∴AE =AC ﹣CE =AB ﹣CE =4;(3)∵BD =CD , ∴S △CDE =S △BDE , ∵BD =CD ,AO =BO , ∴OD ∥AC , ∵△OBF ∽△ABE , ∴S △OBF S △ABE=(OB AB)2=14,∴S △ABE =4S △OBF , ∵S △CDE S △OBF=23,∴S △ABE =4S △OBF =6S △CDE ,∴S △CAB =S △CDE +S △BDE +S △ABE =8S △CDE , ∵△CDE ∽△CAB , ∴S △CDE S △CAB =(CD CA)2=18,∴CD CA=2√2,∵BD =CD ,AB =AC , ∴BC AB=√2,即AC =√2BC .【点评】本题是圆的综合问题,解题的关键是掌握圆周角定理、圆内接四边形的性质、相似三角形的判定与性质及等底共高三角形的面积关系的问题.1、三人行,必有我师。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册数学期末试卷及答案浙教版一、选择题(共8 小题,每小题4分,满分32分)1 .方程x2 - 3x- 5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C. 没有实数根D . 无法确定是否有实数根2. 在Rt△ ABC中,/ C=90 , BC=3 AB=5 则sinA 的值为()A. B. C. D.3. 若如图是某个几何体的三视图,则这个几何体是()A. 长方体B. 正方体C. 圆柱D. 圆锥4. 小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1 号、4 号、6 号、3 号、5 号和2 号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是()A. B. C. D.5. 如图,△ABC ffiA A1B1C1是以点0为位似中心的位似三角形,若C1为OC的中点,AB=4则A1B1的长为()A. 1 B . 2 C . 4 D. 86. 已知点A (x1,yl),B (x2,y2)是反比例函数y=-的图象上的两点,若x1 v O v x2,则下列结论正确的是()A . yl v O v y2B . y2 v O v yl C. yl v y2v 0 D. y2 v yl v 07 .如图,AB是半圆O的直径,AC为弦,ODL AC于D,过点O作OE// AC交半圆O于点E,过点E作EF L AB于F.若AC=2则OF的长为()A. B. C. 1 D. 2 8.如图,在矩形ABCD中, AB< BC,AC, BD交于点O•点E为线段AC上的一个动点,连接DE BE过E作EF L BD于F,设AE=x图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A. 线段EFB. 线段DEC. 线段CED. 线段BE 二、填空题(共4 小题,每小题4分,满分16分)9•如图,已知扇形的半径为3cm圆心角为120°,则扇形的面积为cm2 (结果保留n)10•在某一时刻,测得一根高为2m的竹竿的影长为1m同时测得一栋建筑物的影长为12m那么这栋建筑物的高度为m11. 如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A (- 2, 4), B (1, 1),则关于x的方程ax2 - bx - c=0的解为12. 对于正整数n,定义F (n)=,其中f (n)表示n的首位数字、末位数字的平方和.例如:F(6) =62=36,F(123) =f(123) =12+32=10.规定F1(n) =F (n), Fk+1 (n) =F (Fk (n)).例如:F1 (123) =F (123) =10,F2 (123) =F(F1(123)) =F(10) =1.(1)求:F2(4) = ,F2015(4) = ;(2)若F3m(4) =89,则正整数m的最小值是三、解答题(共13小题,满分72分)13. 计算:(-1) 2015+sin30 ° -(n- 3.14) 0+ ( )- 1.14. 如图,△ ABC中, AB=AC D 是BC 中点,BEL AC于E,求证:△ AC SA BCE.15 .已知m是一元二次方程x2 - 3x- 2=0的实数根,求代数式的值.16.抛物线y=2x2 平移后经过点A(0,3),B(2,3),求平移后的抛物线的表达式.17 .如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y=的图象交于A, B两点,A点的横坐标为2, AC L x轴于点C,连接BC.( 1 )求反比例函数的解析式;(2)若点P是反比例函数y=图象上的一点,且满足厶OPC WA ABC勺面积相等,请直接写出点P 的坐标.18. 如图,△ ABC中, Z ACB=90 , sinA= , BC=8 D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos / ABE的值.19. 已知关于x的一元二次方程mx2-( m+2 ^+2=有两个不相等的实数根x1, x2.(1)求m的取值范围;(2)若x2 V0,且>-1,求整数m的值.20. 某工厂生产的某种产品按质量分为10个档次,据调查显示,每个档次的日产量及相应的单件利润如表所示(其中x为正整数,且Kx< 10);质量档次1 2 ...x (10)日产量(件)95 90 ...100 - 5x (50)单件利润(万元) 6 8 ... 2x+4 (24)为了便于调控,此工厂每天只生产一个档次的产品,当生产质量档次为x的产品时,当天的利润为y 万元.( 1)求y 关于x 的函数关系式; (2)工厂为获得利润,应选择生产哪个档次的产品?并求出当天利润的值.21. 如图,四边形ABCD是平行四边形,点A, B, C在。
0上,AD与相切, 射线A0交BC于点E,交。
0于点F.点P在射线A0上,且/ PCB=N BAF(1)求证:直线PC是。
0的切线;(2)若AB= , AD=2求线段PC的长.22. 阅读下面材料:小明观察一个由1X1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1,他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值.请回答:(1)如图1, A, B, C是点阵中的三个点,请在点阵中找到点D,作出线段CD 使得CDLAB;(2)如图2,线段AB与CD交于点0.为了求出/ AOD勺正切值,小明在点阵中找到了点E,连接AE恰好满足AE±CD于点F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明计算:0C= ; tan / A0D= ;解决问题:如图3,计算:tan / AOD= .23. 在平面直角坐标系xOy中,反比例函数y=的图象经过点A (1, 4)、B( m, n).(1)求代数式mn的值;(2)若二次函数y= (x - 1) 2的图象经过点B,求代数式m3n- 2m2n+3m-4n的值;(3)若反比例函数y=的图象与二次函数y=a (x - 1) 2的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围.24. 如图1,在厶ABC中,BC=4以线段AB为边作△ ABD使得AD=BD连接DC,再以DC为边作△ CDE 使得DC=DE / CDE M ADB a.(1)如图2,当/ABC=45且a =90°时,用等式表示线段AD, DE之间的数量关系;(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF, AF.①若a =90°,依题意补全图3,求线段AF的长;②请直接写出线段AF的长(用含a的式子表示).25. 在平面直角坐标系xOy中,设点P (x1, y1), Q(x2, y2)是图形W上的任意两点.定义图形W的测度面积:若1x1 - x2|的值为m |y1 - y2|的值为n,则S=mn为图形W的测度面积.例如,若图形W是半径为1的O O,当P, Q分别是O0与x轴的交点时,如图1, |x1 - x2|取得值,且值m=2当P, Q分别是O O与y轴的交点时,如图2, |y1 - y2|取得值,且值n=2.贝昭形W的测度面积S=mn=4(1)若图形W是等腰直角三角形ABO OA=OB=1①如图3,当点A, B在坐标轴上时,它的测度面积S= ;②如图4,当AB丄x轴时,它的测度面积S= ;(2)若图形W是一个边长1的正方形ABCD则此图形的测度面积S的值为;(3)若图形W是一个边长分别为3和4的矩形ABCD求它的测度面积S的取值范围.一、选择题(共8小题,每小题4分,满分32分)1. 方程x2- 3x- 5=0 的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定是否有实数根考点:根的判别式.分析:求出b2- 4ac 的值,再进行判断即可.解答:解:x2- 3x- 5=0,△=b2- 4ac= (- 3) 2 -4X 1X( - 5) =29>0,所以方程有两个不相等的实数根,故选A.点评:本题考查了一元二次方程的根的判别式的应用,注意:一元二次方程ax2+bx+c=0 (a、b、c为常数,a^0)①当b2 - 4ac>0时,一元二次方程有两个不相等的实数根,②当b2- 4ac=0时,一元二次方程有两个相等的实数根,③当b2 - 4ac v0时,一元二次方程没有实数根.2. 在Rt△ ABC中,/ C=90 , BC=3 AB=5 则sinA 的值为( )A. B. C. D.锐角三角函数的定义.直接根据三角函数的定义求解即可.解:••• Rt △ ABC 中,/ C=90 , BC=3 AB=5si nA==故选 A .点评: 此题考查的是锐角三角函数的定义,比较简单,用到的知识点:正弦函数的定义:我们把锐角 A 的对边a 与斜边c 的比叫做/ A 的正弦,记作 sinA .即sinA= / A 的对边:斜边=a : c .3.若如图是某个几何体的三视图,则这个几何体是( )A . 长方体B . 正方体C . 圆柱D . 圆锥 考点: 由三视图判断几何体.分析: 由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形 状. 解答: 解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图 为圆,可得此几何体为圆锥.故选: D .点评: 本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定 是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.4. 小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为 1 号、 4 号、 6 号、 3 号、 5 号和 2 号.若小丁从中随机抽取一个,则抽到的座 位号是偶数的概率是( )A .B .C .D .考点: 概率公式.分析: 由六个空座位供他选择,座位号分别为 1号、4号、 6号、3号、 5号和 2 号,直接利用概率公式求解即可求得答案.解答:解:•六个空座位供他选择,座位号分别为 1号、4号、6号、3号、5 号和 2 号,•抽到的座位号是偶数的概率是: = .故选 C .点评: 此题考查了概率公式的应用.用到的知识点为:概率 =所求情况数与总 情况数之比.5. 如图,△ ABC ffiA A1B1C1是以点0为位似中心的位似三角形,若 C1为0C 的 中点,AB=4则A1B1的长为()A . 1B . 2C . 4D . 8考点: 位似变换. 专题: 计算题.分析:根据位似变换的性质得到=,B1C1// BC ,再利用平行线分线段成比例 定理得到=,所以=,然后把0C1= OC AB=4代入计算即可.解答:解::C1为0C 的中点, 考点 分析 解答•••oc仁0C•••△ABC ffiA A1B1C1是以点0为位似中心的位似三角形,•= ,B1C1// BC~~ ?~~ ?即=•A1B1=2.故选B.点评:本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心•注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.6. 已知点A (x1,yl),B (x2,y2)是反比例函数y=-的图象上的两点,若x1 v O v x2,则下列结论正确的是()A . yl v O v y2B . y2 v O v yl C. yl v y2v 0 D. y2 v yl v 0考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征得到y1=- ,y2=- ,然后利用x1v0v x2 即可得到y1 与y2 的大小.解答:解:T A (x1,yl ),B (x2,y2)是反比例函数y=-的图象上的两点,•y1=- ,y2=- ,•/ x1 v O v x2,•y2v 0v y1 .故选B.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y= (k 为常数,k 工0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.7 .如图,AB是半圆O的直径,AC为弦,ODL AC于D,过点0作OE// AC交半圆0于点E,过点E作EF丄AB于F.若AC=2则OF的长为()A. B. C. 1 D . 2考点:垂径定理;全等三角形的判定与性质.分析:根据垂径定理求出AD证厶ADd A OFE推出OF=AD即可求出答案.解答:解::ODL AC, AC=2•AD=CD=1••• OD L AC, EF L AB•/ ADO N OFE=90,••• OE/ AC,•N DOE=N ADO=9°0 ,•••/ DAO# DOA=90,/ DOA£ EF=90 ,:丄 DAO# EOF在厶ADOF3 OFE中,•••△ ADO^ OFE(AAS ,OF=AD=,故选C.点评:本题考查了全等三角形的性质和判定,垂径定理的应用,解此题的关键是求出△ ADO^^OFE和求出AD的长,注意:垂直于弦的直径平分这条弦.8•如图,在矩形ABCD中, AB< BC, AC, BD交于点O•点E为线段AC上的一个动点,连接DE BE,过E作EF丄BD于F,设AE=x图1中某条线段的长为y, 若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A. 线段EFB. 线段DEC. 线段CED. 线段BE考点:动点问题的函数图象.分析:作BNL AC,垂足为N, FM L AC,垂足为M DGL AC,垂足为G,分别找出线段EF、CE BE最小值出现的时刻即可得出结论.解答:解:作BN1 AC,垂足为N, FM L AC,垂足为M, DGLAC,垂足为G.由垂线段最短可知:当点E与点M重合时,即AE<时,FE有最小值,与函数图象不符故 A 错误;由垂线段最短可知:当点E与点G重合时,即AE4 时,DE有最小值,故B正确;•••CE=A G AE, CE随着AE的增大而减小,故C错误;由垂线段最短可知:当点E与点N重合时,即AE<时,BE有最小值,与函数图象不符故 D 错误;故选:B.点评:本题主要考查的是动点问题的函数图象根据垂线段最短确定出函数最小值出现的时刻是解题的关键.二、填空题(共4小题每小题4分满分16分)9. 如图,已知扇形的半径为3cm圆心角为120°,则扇形的面积为3n cm2 (结果保留n)考点:扇形面积的计算.专题:压轴题.分析:知道扇形半径圆心角运用扇形面积公式就能求出.解答:解:由S= 知S= X nX 32=3 n cm2点评:本题主要考查扇形面积的计算知道扇形面积计算公式S= .10. 在某一时刻,测得一根高为2m的竹竿的影长为1m同时测得一栋建筑物的影长为12m那么这栋建筑物的高度为24 m考点:相似三角形的应用.分析:根据同时同地的物高与影长成正比列式计算即可得解.解答:解:设这栋建筑物的高度为xm,由题意得,= ,解得x=24,即这栋建筑物的高度为24m.故答案为:24.点评:本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.11. 如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为 A (- 2, 4), B (1, 1),则关于x的方程ax2 - bx - c=0的解为x仁-2, x2=1 .考点:二次函数的性质.专题:数形结合.分析:根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2 - bx - c=0的解.解答:解:•••抛物线y=ax2与直线y=bx+c的两个交点坐标分别为 A (- 2, 4), B(1, 1),•••方程组的解为,,即关于x的方程ax2 - bx - c=0的解为x仁-2, x2=1.故答案为x1=- 2, x2=1 .点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c (a^0)的顶点坐标是(- , ),对称轴直线x=- .也考查了二次函数图象与一次函数图象的交点问题.12. 对于正整数n,定义F (n)=,其中f (n)表示n的首位数字、末位数字的平方和.例如:F(6) =62=36, F(123) =f(123) =12+32=10.规定F1(n) =F (n), Fk+1 (n) =F (Fk (n)).例如:F1 (123) =F (123) =10, F2 (123) =F(F1(123)) =F(10) =1.(1)求:F2(4) = 37 , F2015(4) = 26 ;(2)若F3m(4) =89,则正整数m的最小值是 6 .考点:规律型:数字的变化类.专题:新定义.分析:通过观察前8 个数据,可以得出规律,这些数字7 个一个循环,根据这些规律计算即可.解答:解:( 1) F2(4) =F(F1(4)) =F(16) =12+62=37;F1(4) =F(4) =16, F2(4) =37, F3(4) =58,F4(4) =89, F5(4) =145, F6(4) =26, F7(4) =40, F8(4) =16, 通过观察发现,这些数字7 个一个循环, 2015是7的287倍余6,因此F2015( 4) =26;(2)由(1)知,这些数字7个一个循环,F4 (4) =89=F18( 4),因此3m=18 所以m=6故答案为:(1)37,26;(2)6.点评:本题属于数字变化类的规律探究题,通过观察前几个数据可以得出规律,熟练找出变化规律是解题的关键.三、解答题(共13小题,满分72 分)13. 计算:(—1)2015+s in30。