高考数学二轮复习中档题专练二

合集下载

2020届高考数学(理)二轮专题复习: 专题二 函数、不等式、导数 1-2-2 Word版含答案.doc

2020届高考数学(理)二轮专题复习: 专题二 函数、不等式、导数 1-2-2 Word版含答案.doc

限时规范训练五 不等式及线性规划限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3B.1a <1bC .a b >1D .lg(b -a )<a解析:选D.∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 2.已知a ,b 是正数,且a +b =1,则1a +4b( )A .有最小值8B .有最小值9C .有最大值8D .有最大值9解析:选B.因为1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=5+b a +4ab≥5+2b a ·4a b =9,当且仅当b a =4a b且a +b =1,即a =13,b =23时取“=”,所以1a +4b的最小值为9,故选B.3.对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ; ④若a >b ,则1a >1b.其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B.①ac 2>bc 2,则c ≠0,则a >b ,①正确; ②由不等式的同向可加性可知②正确; ③需满足a 、b 、c 、d 均为正数才成立;④错误,如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B. 4.已知不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是( )A .{x |2<x <3}B .{x |x ≤2或x ≥3}C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >12解析:选B.∵不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13, ∴ax 2-bx -1=0的解是x 1=-12和x 2=-13,且a <0.∴⎩⎪⎨⎪⎧-12-13=ba ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.则不等式x 2-bx -a ≥0即为x 2-5x +6≥0,解得x ≤2或x ≥3. 5.若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎢⎡⎦⎥⎤-12,2C .[-1,2]D.⎣⎢⎡⎦⎥⎤-12,1 解析:选B.作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.6.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92 B.72 C .22+12D .22-12解析:选A.∵a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.∴S n +8a n 的最小值是92,故选A.7.一条长为2的线段,它的三个视图分别是长为3,a ,b 的三条线段,则ab 的最大值为( ) A. 5 B. 6 C.52D .3解析:选C.如图,构造一个长方体,体对角线长为2,由题意知a 2+x 2=4,b 2+y 2=4,x2+y 2=3,则a 2+b 2=x 2+y 2+2=3+2=5,又5=a 2+b 2≥2ab ,所以ab ≤52,当且仅当a =b 时取等号,所以选C.8.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( ) A .[1,5] B .[2,6] C .[3,11]D .[3,10]解析:选C.画出约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12的可行域如图阴影部分所示,则x +2y +3x +1=x +1+2y +2x +1=1+2×y +1x +1,y +1x +1的几何意义为过点(x ,y )和(-1,-1)的直线的斜率.由可行域知y +1x +1的取值范围为k MA ≤y +1x +1≤k MB ,即y +1x +1∈[1,5],所以x +2y +3x +1的取值范围是[3,11].9.设x ,y 满足不等式⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,若M =3x +y ,N =⎝ ⎛⎭⎪⎫12x-72,则M -N 的最小值为( )A.12 B .-12C .1D .-1解析:选A.作出不等式组所表示的平面区域,如图中阴影部分所示,易求得A (-1,2),B (3,2),当直线3x +y -M =0经过点A (-1,2)时,目标函数M =3x +y 取得最小值-1.又由平面区域知-1≤x ≤3,所以函数N =⎝ ⎛⎭⎪⎫12x-72在x =-1处取得最大值-32,由此可得M -N 的最小值为-1-⎝ ⎛⎭⎪⎫-32=12.10.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43解析:选D.作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.其中直线x -y =0与直线2x +y =2的交点是⎝ ⎛⎭⎪⎫23,23,而直线x +y =a 与x 轴的交点是(a,0).由图知,要使原不等式组表示的平面区域的形状为三角形,只需a ≥23+23或0<a ≤1,所以选D.11.已知不等式组⎩⎪⎨⎪⎧3x +4y -10≥0,x ≤4,y ≤3表示区域D ,过区域D 中任意一点P 作圆x 2+y 2=1的两条切线,切点分别为A 、B ,当∠APB 最大时,cos∠APB =( )A.32 B.12 C .-32D .-12解析:选B.画出不等式组表示的可行域如图中阴影部分所示,易知当点P 到点O 距离最小时,∠APB 最大,此时|OP |=|3×0+4×0-10|32+42=2,又OA =1,故∠OPA =π6, ∴∠APB =π3,∴cos∠APB =12.12.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C.由0<f (-1)=f (-2)=f (-3)≤3,得0<-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ≤3,由-1+a -b +c =-8+4a -2b +c ,得3a -b -7=0,① 由-1+a -b +c =-27+9a -3b +c ,得 4a -b -13=0,②由①②,解得a =6,b =11,∴0<c -6≤3, 即6<c ≤9,故选C.二、填空题(本题共4小题,每小题5分,共20分)13.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2.而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以nm >0,m n>0. 由均值不等式,可得n m +m n ≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n 的最小值为2.答案:214.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 215.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.解析:作出不等式组表示的可行域如图阴影部分所示.w =4x ·2y =22x +y,要求其最大值,只需求出2x +y =t 的最大值即可,由平移可知t =2x +y 在A (3,3)处取得最大值t =2×3+3=9,故w =4x·2y的最大值为29=512.答案:51216.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)。

高考数学二轮复习 圆锥曲线专题训练(二)

高考数学二轮复习 圆锥曲线专题训练(二)

2009届高考数学二轮复习 圆锥曲线专题训练(二)1.已知椭圆1C 的方程为2214x y +=,双曲线2C 的左、右焦点分别是1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(1)求双曲线2C 的方程;(2)若直线:l y kx =C2恒有两个不同的交点A 和B ,且2O A O B ⋅>(其中O为原点),求k 的范围.2如图,过抛物线24x y =的对称轴上任一点(0,)(0)P m m >作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点. ⑴.设点P 满足AP PB λ=(λ为实数), 证明:()QP QA QB λ⊥-;⑵.设直线AB 的方程是2120x y -+=,过A 、B 两点 的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.3.一束光线从点)0,1(1-F 出发,经直线032:=+-y x l 上一点P 反射后,恰好穿过点)0,1(2F .(Ⅰ)求点1F 关于直线l 的对称点1F '的坐标; (Ⅱ)求以1F 、2F 为焦点且过点P 的椭圆C 的方程;(Ⅲ)设直线l 与椭圆C 的两条准线分别交于A 、B 两点,点Q 为线段AB 上的动点,求点Q 到2F 的距离与到椭圆C 右准线的距离之比的最小值,并求取得最小值时点Q 的坐标.4.已知平面上一定点(1,0)C -和一定直线: 4.l x =-P为该平面上一动点,作,PQ l ⊥垂足 为Q ,0)2()2(=-⋅+→→→→PC PQ PC PQ . (1) 问点P在什么曲线上?并求出该曲线方程;点O是坐标原点,A B 、两点在点P的轨迹上,若1OA OB OC λλ+=+(),求λ的取值范围.5.如图,已知E 、F 为平面上的两个定点6||=EF ,10||=FG ,且EG EH =2,HP ·0=GE ,(G 为动点,P 是HP 和GF 的交点)(1)建立适当的平面直角坐标系求出点P 的轨迹方程;(2)若点P 的轨迹上存在两个不同的点A 、B ,且线段AB 的中垂线与EFGFPHE(或EF 的延长线)相交于一点C ,则||OC <59(O 为EF 的中点).6.已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=?若存在,求出直线l 的方程;若不存在,说明理由.7.已知)0,1(),0,4(N M 若动点P 满足||6= (1)求动点P 的轨迹方C 的方程;(2)设Q 是曲线C 上任意一点,求Q 到直线0122:=-+y x l 的距离的最小值.8已知抛物线x 2=2py(p>0),过动点M(0,a),且斜率为1的直线L 与该抛物线交于不同两点A 、B ,|AB|≤2p,(1)求a 的取值范围;(2)若p=2,a=3,求直线L 与抛物线所围成的区域的面积;9.如图,直角梯形ABCD 中,∠︒=90DAB ,AD ∥BC ,AB=2,AD=23,BC=21椭圆F 以A 、B 为焦点且过点D ,(Ⅰ)建立适当的直角坐标系,求椭圆的方程; (Ⅱ)若点E 满足21=,是否存在斜率与的直线l k 0≠M 、F 交于椭圆N 两点,且||||NE ME =,若存在,求K 的取值范围;若不存在,说明理由. 10.已知()00,P x y 是函数()ln f x x =图象上一点,过点P 的切线与x 轴交于B ,过点P 作x轴的垂线,垂足为A . (1)求点B 坐标; (2)若()00, 1x ∈,求PAB ∆的面积S 的最大值,并求此时0x 的值.C BD参考答案1.解:(1)设双曲线2C 的方程为22221,x y a b -= (1分)则2413a=-=,再由222a b c +=得21b =, (3分)故2C 的方程为2213x y -= (4分) (2)将y kx =+2213x y -=得22(13)90k x ---= (5分) 由直线l 与双曲线C2交于不同的两点得:2222130)36(13)36(1)0k k k ∆⎧-≠⎪⎨=+-=->⎪⎩ (7分)213k ∴≠且21k <① (8分)设1122(,),(,)A x y B x y,则1212229,1313x x x x k k -+==--12121212(x x y y x x kx kx ∴+=+221212237(1)()231k k x x x x k +=++++=- (10分)又2OA OB ⋅>,得12122x x y y +>2237231k k +∴>-即2239031k k -+>-,解得:213,3k <<② (12分)由①、②得:2113k <<,故k的取值范围为3(1,(,1)33--. (14分) 2.解⑴.依题意,可设直线AB 的方程为m kx y +=,代入抛物线方程y x 42=,得:2440x k x m --= ① …………………………………………………………… 2分设A 、B 两点的坐标分别是11(,)x y 、22(,)x y ,则12,x x 是方程①的两根,所以,124x x m =-. ……………………………………………………………………… 3分由点P 满足AP PB λ=(λ为实数,1λ≠-),得0121=++λλx x , 即12x x λ=-.又点Q 是点P 关于原点的以称点,故点Q 的坐标是(0,)m -,从而(0,2QP =1122(,)(,)QA QB x y m x y m λλ-⋅=+-+1212(,(1)).x x y y m λλλ=--+- 12()2[(1)]QP QA QB m y y m λλλ⋅-=-+- =])1(44[221222121m x x x x x x m ++⋅+ =2212144)(2x mx x x x m +⋅+=221444)(2x m m x x m +-⋅+ =0 ………………………… 6分所以,()QP QA QB λ⊥-. ………………………………………………………………… 7分⑵.由221204x y x y⎧-+=⎨=⎩得点A 、B 的坐标分别是(6,9)、(4,4)-.由y x 42=得241x y =,1,2y x '=所以,抛物线y x 42=在点A 处切线的斜率为63x y ='=. ……………… 9分设圆C 的方程是222)()(r b y a x =-+-,则22229163(6)(9)(4)(4)b a a b a b -⎧=-⎪-⎨⎪-+-=++-⎩ ……………………… 11分解得:222323125,,(4)(4)222a b r a b =-==++-=.…………………………… 13分 所以,圆C 的方程是2125)223()23(22=-++y x . ………………………… 14分 3.解:(Ⅰ)设1F '的坐标为),(n m ,则211-=+m n 且032212=+--⋅nm .……2分解得52,59=-=n m , 因此,点 1F '的坐标为)52,59(-. …………………4分(Ⅱ)11PF F P =' ,根据椭圆定义,得||||||22121F F PF F P a '=+'=22)052()159(22=-+--=,……………5分2=∴a ,112=-=b .∴所求椭圆方程为1222=+y x . ………………………………7分(Ⅲ)22=c a ,∴椭圆的准线方程为2±=x . …………………………8分设点Q 的坐标为)32,(+t t )22(<<-t ,1d 表示点Q 到2F 的距离,2d 表示点Q 到椭圆的右准线的距离.则10105)32()1(2221++=++-=t t t t d ,22-=t d .22221)2(225210105-++⋅=-++=t t t t t t d d , ……………………………10分令22)2(22)(-++=t t t t f )22(<<-t ,则3422)2()86()2()2(2)22()2()22()(-+-=--⋅++--⋅+='t t t t t t t t t f ,当)(,342<'-<<-t f t ,0)(,234>'<<-t f t ,34-=t ,0)(='t f .∴ )(t f 在34-=t 时取得最小值. ………………………………13分因此,21d d 最小值=22)34(5=-⋅f ,此时点Q 的坐标为)31,34(-.…………14分 注:)(t f 的最小值还可以用判别式法、换元法等其它方法求得.说明:求得的点Q )31,34(-即为切点P ,21d d 的最小值即为椭圆的离心率. 4.解:(1)由(2)(2)0PQ PC PQ PC +∙-=,得: 2240PQ PC -=,………(2分)设(,)P x y ,则222(4)4(1)0x x y ⎡⎤+-++=⎣⎦,化简得: 22143x y +=,………(4分)点P 在椭圆上,其方程为22143x y +=.………(6分)(2)设11(,)A x y 、22(,)B x y ,由(1)OA OB OC λλ+=+得:0CA CB λ+=,所以,A 、B 、C 三点共线.且0λ>,得:1122(1,)(1,)0x y x y λ+++=,即: 12121x x y y λλλ=---⎧⎨=-⎩…(8分)因为2211143x y +=,所以222(1)()143x y λλλ----+= ①………(9分) 又因为2222143x y +=,所以22222()()43x y λλλ+= ②………(10分)由①-②得: 2222(1)(1)14x λλλλ+++=- ,化简得:2352x λλ-=,………(12分) 因为222x -≤≤,所以35222λλ--≤≤.解得: 133λ≤≤所以λ的取值范围为1,33⎡⎤⎢⎥⎣⎦. ………(14分)5.解:(1)如图1,以EF 所在的直线为x 轴,EF 的中垂线为y 轴,建立平面直角坐标系.----------------------------------------1分 由题设EG EH =2,0=∙EG HP∴||||PE PG =,而a PG PE PF 2||||||==+-------------3分 ∴点P 是以E 、F 为焦点、长轴长为10的椭圆,故点P 的轨迹方程是:1162522=+y x -----------------4分(2)如图2 ,设),(11y x A ,),(22y x B ,)0,(0x C ,∴21x x ≠,且||||CB CA =,--------------------------------6分即=+-21201)(y x x 22202)(y x x +- 又A 、B 在轨迹上,∴116252121=+y x ,116252222=+yx即2121251616x y -=,2222251616x y -=---------------8分 代入整理得:)(259)(22122012x x x x x -=⋅-∵21x x ≠,∴50)(9210x x x +=.---------------------10分∵551≤≤-x ,552≤≤-x ,∴101021≤+≤-x x . ∵21x x ≠,∴101021<+<-x x∴59590<<-x ,即||OC <59.---------------14分 6.(1)如图,设M 为动圆圆心, F()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN=, ………………………………………………2分即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42= ………………………5分(2)由题可设直线l 的方程为(1)(0)x k y k =-≠,x =由2(1)4x k y y x =-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或 …………………………………7分设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =…………9分由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=,……11分即()()21212110k y y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=,解得4k =-或0k =(舍去),…………………13分又41k =-<-, ∴ 直线l 存在,其方程为440x y +-= …………………………14分 17.解:(1)设动点P (x ,y ),则),1(),0,3(),,4(y x y x --=-=-由已知得1243,)()1(6)4(32222=+-+-=--y x y x x 化简得,13422=+y x 即∴点P 的轨迹方程是椭圆C :13422=+y x(2)解一:由几何性质意义知,椭圆C 与平行的切线其中一条l ‘和l 的距离等于Q 与l 的距离的最小值.设02:'=++D y x l ,入椭圆方程消去x 化简得:0)4(3121622=-++D Dy y 5585|412|40)4(192144'22距离的最小值为与距离的最小值为与l Q l l D D D ∴±±=⇒=--=∆∴解二:由集合意义知,椭圆C 与平行的切线其中一条l ‘和l 的距离等于Q 与l 的距离的最小值.设切点为134,134:),,(202000'00=+=+y x y y x x l y x R 且则,214300-=-=y x k ,解得⎪⎩⎪⎨⎧-=-=⎪⎩⎪⎨⎧==2312310000y x y x 或 042'=±+∴y x l 为,5585|412|'距离的最小值为与距离的最小值为与l Q l l ∴±解三:由椭圆参数方程设θθsin 3,cos 2(Q )则Q 与l 距离5)30sin(4125|12sin 32cos 2|︒+-=-+=θθθd55854121)30sin(min =-==︒+∴d 时θ解四:设134),,(202000=+y x y x Q ,且Q 与l 距离5|122|00-+=y x d由柯西不等式2002002020)2()32322()124)(34(16y x yx y x +=⋅+⋅≥++=4|2|00≤+∴y x ,5585412min =-=∴d18.解:(1)设直线L 方程为:y=x+a 与抛物线联立方程组得⎩⎨⎧=+=py x a x y 22⇒x 2-2px-2ap=0∴∆=4p 2+8ap>0 a>-2px 1+x 2=2p x 1⨯x 2=-2apAB=21k + 21x x -=2212214)(x x x x -+=2ap p 842+p2≤解得a ≤-4p , ∴ -2p <a ≤-4p(2)若p=2,a=3,则直线L 方程为:y=x+3 抛物线方程为x 2=4y⎩⎨⎧=+=y x x y 432⇒x 2-4x-12=0 ∴方程两根为-2和6 ∴ 直线与抛物线所围成区域的面积为: S=⎰--+6224)3(x x =21x 2+3x-123x 26-=368 19.(Ⅰ)以AB 中点为原点O ,AB 所在直线为x 轴,建立直角坐标系,如图则A (-1,0) B(1,0) D(-1,23) (1分) 设椭圆F 的方程为)0(12222>>=+b a b y a x (2分)得⎪⎪⎩⎪⎪⎨⎧+==⎪⎭⎫ ⎝⎛+-1123)1(222222b a b a(4分)得3410417422224==∴>=+-b a a a a所求椭圆F 方程 13422=+y x (6分)(Ⅱ)由)21,0(21E 得=,显然)0(≠+=⊥k m kx y l AB l 方程设时不合条件代入1248)43(13422222=-+++=+m kmx x k y x 得 (7分)l 与椭圆F 有两不同公共点的充要条件是0)124)(43(4)8(222>-+-=∆m k km (8分)即03422>+-m k设、y x M ),(11),(),(0022y x P ,MN y x N 中点,MN PE NE ME ⊥=等价于||||2022104344382k kmx k km x x x +-=∴+-=+= (9分)200436k mm kx y +=+= (10分)kx y MN PE 12100-=-⊥得(11分)得 k k km k m 14342143622-=+--+ 得 2432k m +-= (12分)代入 0234340222>⎪⎪⎭⎫ ⎝⎛+-+>∆k k 得41434022<<+<k k 得 (13分)又)21,0()0,21(0⋃-∈≠k k k 取值范围为故 (14分)解法2, 设),(),(2211y x 、N y x M ,得⎪⎪⎩⎪⎪⎨⎧=+=+13413422222121y x y x① ②①—② 得0)(31)(4122212221=-+-y y x x 212121212143y y x x x x y y x x ++⨯-=--≠得设0043),(y xk y x P MN ⨯-=得中点 得043x ky -= ③ (9分) MN PE NE ME ⊥=即||||得 k x y 12100-=-得200kx ky +-= ④ (11分)由③、④得23,200-==y k x 且P (x0,y0)在椭圆F 内部得4113494422<<+k k得 (13分)又)21,0()0,21(0⋃-∈∴≠k k k 取值范围为 (14分)20.解: (1)∵'1()f x x =,2分∴ 过点P 的切线方成为()0001ln y x x x x -=-4分令0y =,得000ln x x x x =-,即点B 的坐标为()000ln ,0x x x -6分(2)000000ln ln AB x x x x x x =--=-,00()ln PA f x x ==-∴ ()20011ln 22S AB PA x x =⋅=⋅9分()'20000001111ln 2ln ln 2222S x x x x x x =+⋅⋅=+11分由'0S <得,211x e <<,∴210,x e ⎛⎫∈ ⎪⎝⎭时,S 单调递增;21,1x e ⎛⎫∈ ⎪⎝⎭时S 单调递减;13分∴2max 22221112ln 2S S e e e e ⎛⎫=== ⎪⎝⎭.∴ 当021x e =,面积S 的最大值为22e .14分。

高考数学(理科)二轮复习【专题2】导数及其应用(含答案)

高考数学(理科)二轮复习【专题2】导数及其应用(含答案)

第3讲导数及其应用考情解读(1)导数的意义和运算是导数应用的基础,是高考的一个热点.(2)利用函数的单调性和最值确定函数的解析式或参数的值,突出考查导数的工具性作用.1.导数的几何意义函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,其切线方程是y-f(x0)=f′(x0)(x-x0).2.导数与函数单调性的关系(1)f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.(2)f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)为常函数,函数不具有单调性.3.函数的极值与最值(1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题.(2)函数在其定义区间的最大值、最小值最多有一个,而函数的极值可能不止一个,也可能没有.(3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的最值.热点一导数的运算和几何意义例1(1)(2014·广东)曲线y=e-5x+2在点(0,3)处的切线方程为________.(2)在平面直角坐标系xOy中,设A是曲线C1:y=ax3+1(a>0)与曲线C2:x2+y2=52的一个公共点,若C1在A处的切线与C2在A处的切线互相垂直,则实数a的值是________.思维启迪(1)先根据导数的几何意义求出切线的斜率,写出点斜式方程,再化为一般式方程.(2)A点坐标是解题的关键点,列方程求出.答案(1)5x+y-3=0(2)4解析(1)因为y′=e-5x(-5x)′=-5e-5x,所以y ′|x =0=-5,故切线方程为y -3=-5(x -0), 即5x +y -3=0.(2)设A (x 0,y 0),则C 1在A 处的切线的斜率为f ′(x 0)=3ax 20,C 2在A 处的切线的斜率为-1k OA =-x 0y 0,又C 1在A 处的切线与C 2在A 处的切线互相垂直, 所以(-x 0y 0)·3ax 20=-1,即y 0=3ax 30,又ax 30=y 0-1,所以y 0=32,代入C 2:x 2+y 2=52,得x 0=±12,将x 0=±12,y 0=32代入y =ax 3+1(a >0),得a =4.思维升华 (1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.(1)已知函数y =f (x )的导函数为f ′(x )且f (x )=x 2f ′(π3)+sin x ,则f ′(π3)=________.(2)若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.答案 (1)36-4π(2)2 解析 (1)因为f (x )=x 2f ′(π3)+sin x ,所以f ′(x )=2xf ′(π3)+cos x .所以f ′(π3)=2×π3f ′(π3)+cos π3.所以f ′(π3)=36-4π. (2)f ′(x )=sin x +x cos x ,f ′(π2)=1,即函数f (x )=x sin x +1在点x =π2处的切线的斜率是1,直线ax +2y +1=0的斜率是-a2,所以(-a2)×1=-1,解得a =2.热点二 利用导数研究函数的性质例2 已知函数f (x )=(x +a )e x ,其中e 是自然对数的底数,a ∈R . (1)求函数f (x )的单调区间;(2)当x ∈[0,4]时,求函数f (x )的最小值.思维启迪 (1)直接求f ′(x ),利用f ′(x )的符号确定单调区间;(2)讨论区间[0,4]和所得单调区间的关系,一般情况下,f (x )的最值可能在极值点或给定区间的端点处取到. 解 (1)因为f (x )=(x +a )e x ,x ∈R , 所以f ′(x )=(x +a +1)e x . 令f ′(x )=0,得x =-a -1.当x 变化时,f (x )和f ′(x )的变化情况如下:故f (x )单调增区间为(-a -1,+∞).(2)由(1)得,f (x )的单调减区间为(-∞,-a -1); 单调增区间为(-a -1,+∞).所以当-a -1≤0,即a ≥-1时,f (x )在[0,4]上单调递增,故f (x )在[0,4]上的最小值为 f (x )min =f (0)=a ;当0<-a -1<4,即-5<a <-1时, f (x )在(0,-a -1)上单调递减, f (x )在(-a -1,4)上单调递增,故f (x )在[0,4]上的最小值为f (x )min =f (-a -1) =-e-a -1;当-a -1≥4,即a ≤-5时,f (x )在[0,4]上单调递减, 故f (x )在[0,4]上的最小值为f (x )min =f (4) =(a +4)e 4.所以函数f (x )在[0,4]上的最小值为f (x )min =⎩⎪⎨⎪⎧a , a ≥-1,-e-a -1, -5<a <-1,(a +4)e 4, a ≤-5.思维升华 利用导数研究函数性质的一般步骤: (1)确定函数的定义域;(2)求导函数f ′(x );(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0.②若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.(4)①若求极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号. ②若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解. (5)求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.已知函数f (x )=ln x +2ax,a ∈R .(1)若函数f (x )在[2,+∞)上是增函数,求实数a 的取值范围; (2)若函数f (x )在[1,e]上的最小值为3,求实数a 的值. 解 (1)∵f (x )=ln x +2a x ,∴f ′(x )=1x -2ax 2.∵f (x )在[2,+∞)上是增函数,∴f ′(x )=1x -2ax 2≥0在[2,+∞)上恒成立,即a ≤x2在[2,+∞)上恒成立.令g (x )=x2,则a ≤g (x )min ,x ∈[2,+∞),∵g (x )=x2在[2,+∞)上是增函数,∴g (x )min =g (2)=1.∴a ≤1,即实数a 的取值范围为(-∞,1]. (2)由(1)得f ′(x )=x -2ax2,x ∈[1,e].①若2a <1,则x -2a >0,即f ′(x )>0在[1,e]上恒成立, 此时f (x )在[1,e]上是增函数.所以f (x )min =f (1)=2a =3,解得a =32(舍去).②若1≤2a ≤e ,令f ′(x )=0,得x =2a . 当1<x <2a 时,f ′(x )<0,所以f (x )在(1,2a )上是减函数,当2a <x <e 时,f ′(x )>0,所以f (x )在(2a ,e)上是增函数. 所以f (x )min =f (2a )=ln(2a )+1=3, 解得a =e 22(舍去).③若2a >e ,则x -2a <0,即f ′(x )<0在[1,e]上恒成立,此时f (x )在[1,e]上是减函数. 所以f (x )min =f (e)=1+2ae=3,得a =e ,适合题意. 综上a =e.热点三 导数与方程、不等式例3 已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ).(1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图象上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值;(3)是否存在实数m ,使得函数y =g (2ax 2+1)+m -1的图象与函数y =f (1+x 2)的图象恰有四个不同交点?若存在,求出实数m 的取值范围;若不存在,说明理由.思维启迪 (1)利用F ′(x )确定单调区间;(2)k =F ′(x 0),F ′(x 0)≤12分离a ,利用函数思想求a的最小值;(3)利用数形结合思想将函数图象的交点个数和方程根的个数相互转化. 解 (1)F (x )=f (x )+g (x )=ln x +ax (x >0),F ′(x )=1x -a x 2=x -ax2.∵a >0,由F ′(x )>0⇒x ∈(a ,+∞), ∴F (x )在(a ,+∞)上是增函数.由F ′(x )<0⇒x ∈(0,a ),∴F (x )在(0,a )上是减函数. ∴F (x )的单调递减区间为(0,a ), 单调递增区间为(a ,+∞). (2)由F ′(x )=x -ax2(0<x ≤3)得k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立⇔a ≥-12x 20+x 0恒成立.∵当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,即a 的最小值为12.(3)若y =g (2a x 2+1)+m -1=12x 2+m -12的图象与y =f (1+x 2)=ln(x 2+1)的图象恰有四个不同交点,即12x 2+m -12=ln(x 2+1)有四个不同的根,亦即m =ln(x 2+1)-12x 2+12有四个不同的根.令G (x )=ln(x 2+1)-12x 2+12.则G ′(x )=2xx 2+1-x =2x -x 3-x x 2+1=-x (x +1)(x -1)x 2+1当x 变化时,G ′(x )和G (x )的变化情况如下表:由表知G (x )极小值=G (0)=12,G (x )极大值=G (-1)=G (1)=ln 2.又由G (2)=G (-2)=ln 5-2+12<12可知,当m ∈(12,ln 2)时,y =G (x )与y =m 恰有四个不同交点.故存在m ∈(12,ln 2),使函数y =g (2ax 2+1)+m -1的图象与y =f (1+x 2)的图象恰有四个不同交点.思维升华 研究方程及不等式问题,都要运用函数性质,而导数是研究函数性质的一种重要工具.基本思路是构造函数,通过导数的方法研究这个函数的单调性、极值和特殊点的函数值,根据函数的性质推断不等式成立的情况以及方程实根的个数,必要时画出函数的草图辅助思考.已知函数f (x )=a (x 2+1)+ln x .(1)讨论函数f (x )的单调性;(2)若对任意a ∈(-4,-2)及x ∈[1,3],恒有ma -f (x )>a 2成立,求实数m 的取值范围.解 (1)由已知,得f ′(x )=2ax +1x =2ax 2+1x(x >0).①当a ≥0时,恒有f ′(x )>0,则f (x )在(0,+∞)上是增函数. ②当a <0时,若0<x < -12a , 则f ′(x )>0,故f (x )在(0, -12a]上是增函数; 若x >-12a,则f ′(x )<0, 故f (x )在[-12a,+∞)上是减函数. 综上,当a ≥0时,f (x )在(0,+∞)上是增函数; 当a <0时,f (x )在(0,-12a]上是增函数,在[ -12a,+∞)上是减函数. (2)由题意,知对任意a ∈(-4,-2)及x ∈[1,3],恒有ma-f(x)>a2成立,等价于ma-a2>f(x)max.因为a∈(-4,-2),所以24< -12a<12<1.由(1),知当a∈(-4,-2)时,f(x)在[1,3]上是减函数,所以f(x)max=f(1)=2a,所以ma-a2>2a,即m<a+2.因为a∈(-4,-2),所以-2<a+2<0.所以实数m的取值范围为m≤-2.1.函数单调性的应用(1)若可导函数f(x)在(a,b)上单调递增,则f′(x)≥0在区间(a,b)上恒成立;(2)若可导函数f(x)在(a,b)上单调递减,则f′(x)≤0在区间(a,b)上恒成立;(3)可导函数f(x)在区间(a,b)上为增函数是f′(x)>0的必要不充分条件.2.可导函数极值的理解(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值;(2)对于可导函数f(x),“f(x)在x=x0处的导数f′(x)=0”是“f(x)在x=x0处取得极值”的必要不充分条件;(3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点.3.利用导数解决优化问题的步骤(1)审题设未知数;(2)结合题意列出函数关系式;(3)确定函数的定义域;(4)在定义域内求极值、最值;(5)下结论.真题感悟1.(2014·江西)若曲线y=e-x上点P处的切线平行于直线2x+y+1=0,则点P的坐标是________.答案(-ln 2,2)解析设P(x0,y0),∵y=e-x=1e x,∴y′=-e-x,∴点P处的切线斜率为k=-e-x0=-2,∴-x0=ln 2,∴x0=-ln 2,∴y0=e ln 2=2,∴点P的坐标为(-ln 2,2).2.(2014·浙江)已知函数f (x )=x 3+3|x -a |(a >0),若f (x )在[-1,1]上的最小值记为g (a ). (1)求g (a );(2)证明:当x ∈[-1,1]时,恒有f (x )≤g (a )+4. (1)解 因为a >0,-1≤x ≤1,所以 ①当0<a <1时,若x ∈[-1,a ],则f (x )=x 3-3x +3a , f ′(x )=3x 2-3<0,故f (x )在(-1,a )上是减函数; 若x ∈[a,1],则f (x )=x 3+3x -3a , f ′(x )=3x 2+3>0, 故f (x )在(a,1)上是增函数. 所以g (a )=f (a )=a 3.②当a ≥1时,有x ≤a ,则f (x )=x 3-3x +3a , f ′(x )=3x 2-3<0,故f (x )在(-1,1)上是减函数, 所以g (a )=f (1)=-2+3a .综上,g (a )=⎩⎪⎨⎪⎧a 3,0<a <1,-2+3a ,a ≥1.(2)证明 令h (x )=f (x )-g (a ). ①当0<a <1时,g (a )=a 3.若x ∈[a,1],则h (x )=x 3+3x -3a -a 3, h ′(x )=3x 2+3,所以h (x )在(a,1)上是增函数,所以,h (x )在[a,1]上的最大值是h (1)=4-3a -a 3, 且0<a <1,所以h (1)≤4.故f (x )≤g (a )+4. 若x ∈[-1,a ],则h (x )=x 3-3x +3a -a 3, h ′(x )=3x 2-3,所以h (x )在(-1,a )上是减函数,所以,h (x )在[-1,a ]上的最大值是h (-1)=2+3a -a 3. 令t (a )=2+3a -a 3,则t ′(a )=3-3a 2>0, 知t (a )在(0,1)上是增函数. 所以,t (a )<t (1)=4,即h (-1)<4. 故f (x )≤g (a )+4.②当a ≥1时,g (a )=-2+3a ,故h (x )=x 3-3x +2,h ′(x )=3x 2-3, 此时h (x )在(-1,1)上是减函数,因此h (x )在[-1,1]上的最大值是h (-1)=4. 故f (x )≤g (a )+4.综上,当x ∈[-1,1]时,恒有f (x )≤g (a )+4. 押题精练1.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________. 答案 ⎣⎡⎭⎫94,+∞ 解析 由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1, 即x 2-2ax +5≤0,即a ≥x 2+52x 能成立,令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min , 又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.2.已知函数f (x )=x 28-ln x ,x ∈[1,3].(1)求f (x )的最大值与最小值;(2)若f (x )<4-at 对任意的x ∈[1,3],t ∈[0,2]恒成立,求实数a 的取值范围. 解 (1)∵函数f (x )=x 28-ln x ,∴f ′(x )=x 4-1x ,令f ′(x )=0得x =±2,∵x ∈[1,3],当1<x <2时,f ′(x )<0;当2<x <3时,f ′(x )>0; ∴f (x )在(1,2)上是单调减函数,在(2,3)上是单调增函数, ∴f (x )在x =2处取得极小值f (2)=12-ln 2;又f (1)=18,f (3)=98-ln 3,∵ln 3>1,∴18-(98-ln 3)=ln 3-1>0,∴f (1)>f (3),∴x =1时函数f (x )取得最大值为18,x =2时函数f (x )取得最小值为12-ln 2.(2)由(1)知当x ∈[1,3]时,12-ln 2≤f (x )≤18,故对任意x ∈[1,3],f (x )<4-at 恒成立,只要4-at >18对任意t ∈[0,2]恒成立,即at <318恒成立,记g (t )=at ,t ∈[0,2].∴⎩⎨⎧g (0)<318g (2)<318,解得a <3116,∴实数a 的取值范围是(-∞,3116).(推荐时间:60分钟)一、填空题1.曲线y =x 3-2x 在(1,-1)处的切线方程为________. 答案 x -y -2=0解析 由已知,得点(1,-1)在曲线y =x 3-2x 上,所以切线的斜率为y ′|x =1=(3x 2-2)|x =1=1,由直线方程的点斜式得x -y -2=0.2.(2014·课标全国Ⅱ改编)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =________. 答案 3解析 令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,所以a =3.3.(2014·陕西改编)如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为________.答案 y =1125x 3-35x解析 设所求解析式为y =ax 3+bx 2+cx +d , ∵函数图象过(0,0)点,∴d =0.又图象过(-5,2),(5,-2),∴函数为奇函数 ∴b =0,代入可得-125a -5c =2①又y ′=3ax 2+c ,当x =-5时y ′=75a +c =0②由①②得a =1125,c =35∴函数解析式为y =1125x 3-35x . 4.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为________________________________________________________________________. 答案 {x |x >0}解析 构造函数g (x )=e x ·f (x )-e x ,因为g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )]-e x >e x -e x =0,所以g (x )=e x ·f (x )-e x 为R 上的增函数.又因为g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0.5.若函数f (x )=log a (x 3-ax )(a >0,a ≠1)在区间(-12,0)内单调递增,则a 的取值范围是________. 答案 [34,1) 解析 由x 3-ax >0得x (x 2-a )>0.则有⎩⎪⎨⎪⎧ x >0,x 2-a >0或⎩⎪⎨⎪⎧x <0,x 2-a <0, 所以x >a 或-a <x <0,即函数f (x )的定义域为(a ,+∞)∪(-a ,0).令g (x )=x 3-ax ,则g ′(x )=3x 2-a .由g ′(x )<0得-3a 3<x <0. 从而g (x )在x ∈(-3a 3,0)上是减函数,又函数f (x )在x ∈(-12,0)内单调递增,则有⎩⎨⎧ 0<a <1,-a ≤-12,-3a 3≤-12,所以34≤a <1. 6.设f (x ),g (x )在[a ,b ]上可导,且f ′(x )>g ′(x ),则当a <x <b 时,下列结论正确的是________. ①f (x )>g (x );②f (x )<g (x );③f (x )+g (a )>g (x )+f (a );④f (x )+g (b )>g (x )+f (b ).答案 ③解析 ∵f ′(x )-g ′(x )>0,∴(f (x )-g (x ))′>0,∴f (x )-g (x )在[a ,b ]上是增函数,∴当a <x <b 时f (x )-g (x )>f (a )-g (a ),∴f (x )+g (a )>g (x )+f (a ).7.若函数f (x )=ax +1x +2在x ∈(2,+∞)上单调递减,则实数a 的取值范围是________. 答案 (-∞,12) 解析 f ′(x )=(ax +1)′(x +2)-(x +2)′(ax +1)(x +2)2=a (x +2)-(ax +1)(x +2)2=2a -1(x +2)2,令f ′(x )<0,即2a -1<0,解得a <12. 8.已知函数f (x )=mx 3+nx 2的图象在点(-1,2)处的切线恰好与直线3x +y =0平行,若f (x )在区间[t ,t +1]上单调递减,则实数t 的取值范围是__________.答案 [-2,-1]解析 由题意知,点(-1,2)在函数f (x )的图象上,故-m +n =2.①又f ′(x )=3mx 2+2nx ,则f ′(-1)=-3,故3m -2n =-3.②联立①②解得:m =1,n =3,即f (x )=x 3+3x 2,令f ′(x )=3x 2+6x ≤0,解得-2≤x ≤0,则[t ,t +1]⊆[-2,0],故t ≥-2且t +1≤0,所以t ∈[-2,-1].9.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是____________. 答案 0<t <1或2<t <3解析 f ′(x )=-x +4-3x =-x 2+4x -3x=-(x -1)(x -3)x,由f ′(x )=0得函数的两个极值点1,3,则只要这两个极值点在区间(t ,t +1)内,函数在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,解得0<t <1或2<t <3.10.已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是________.答案 (0,12) 解析 f ′(x )=(ln x -ax )+x (1x-a ) =ln x +1-2ax (x >0),令f ′(x )=0得2a =ln x +1x,设φ(x )=ln x +1x, 则φ′(x )=-ln x x 2. 易知φ(x )在(0,1)上递增,在(1,+∞)上递减,大致图象如图.若f (x )有两个极值点,则y =2a 和y =φ(x )图象有两个交点,∴0<2a <1,∴0<a <12. 二、解答题11.(2014·重庆)已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x . (1)求a 的值;(2)求函数f (x )的单调区间与极值.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x, 由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知,f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32, 则f ′(x )=x 2-4x -54x 2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln 5.12.已知f (x )=x 2+3x +1,g (x )=a -1x -1+x . (1)a =2时,求y =f (x )和y =g (x )图象的公共点个数;(2)a 为何值时,y =f (x )和y =g (x )的公共点个数恰为两个.解 (1)当a =2时,联立⎩⎪⎨⎪⎧y =f (x ),y =g (x ), 得x 2+3x +1=1x -1+x , 整理得x 3+x 2-x -2=0(x ≠1),即联立⎩⎪⎨⎪⎧y =0,y =x 3+x 2-x -2(x ≠1), 求导得y ′=3x 2+2x -1=0得x 1=-1,x 2=13, 得到极值点分别在-1和13处, 且极大值、极小值都是负值,图象如图,故交点只有一个.(2)联立⎩⎪⎨⎪⎧y =f (x ),y =g (x ),得x 2+3x +1=a -1x -1+x , 整理得a =x 3+x 2-x (x ≠1),即联立⎩⎪⎨⎪⎧y =a ,y =h (x )=x 3+x 2-x (x ≠1),对h (x )求导可以得到极值点分别在-1和13处,画出草图如图.h (-1)=1,h (13)=-527, 当a =h (-1)=1时,y =a 与y =h (x )仅有一个公共点(因为(1,1)点不在y =h (x )曲线上),故a =-527时恰有两个公共点. 13.设函数f (x )=a e x (x +1)(其中,e =2.718 28…),g (x )=x 2+bx +2,已知它们在x =0处有相同的切线.(1)求函数f (x ),g (x )的解析式;(2)求函数f (x )在[t ,t +1](t >-3)上的最小值;(3)若对∀x ≥-2,kf (x )≥g (x )恒成立,求实数k 的取值范围.解 (1)f ′(x )=a e x (x +2),g ′(x )=2x +b .由题意,得两函数在x =0处有相同的切线.∴f ′(0)=2a ,g ′(0)=b ,∴2a =b ,f (0)=a ,g (0)=2,∴a =2,b =4,∴f (x )=2e x (x +1),g (x )=x 2+4x +2.(2)f ′(x )=2e x (x +2),由f ′(x )>0得x >-2,由f ′(x )<0得x <-2,∴f (x )在(-2,+∞)单调递增,在(-∞,-2)单调递减.∵t >-3,∴t +1>-2.①当-3<t <-2时,f (x )在[t ,-2]上单调递减,在[-2,t +1]上单调递增,∴f (x )min =f (-2)=-2e -2. ②当t ≥-2时,f (x )在[t ,t +1]上单调递增,∴f (x )min =f (t )=2e t (t +1);∴f (x )=⎩⎪⎨⎪⎧-2e -2(-3<t <-2),2e t (t +1)(t ≥-2). (3)令F (x )=kf (x )-g (x )=2k e x (x +1)-x 2-4x -2,由题意当x ≥-2时,F (x )min ≥0.∵∀x ≥-2,kf (x )≥g (x )恒成立,∴F (0)=2k -2≥0,∴k ≥1.F ′(x )=2k e x (x +1)+2k e x -2x -4=2(x +2)(k e x -1),∵x ≥-2,由F ′(x )>0得e x >1k ,∴x >ln 1k; 由F ′(x )<0得x <ln 1k ,∴F (x )在(-∞,ln 1k )内单调递减,在[ln 1k,+∞)内单调递增. ①当ln 1k<-2,即k >e 2时,F (x )在[-2,+∞)单调递增, F (x )min =F (-2)=-2k e -2+2=2e 2(e 2-k )<0, 不满足F (x )min ≥0.当ln 1k =-2,即k =e 2时,由①知,F (x )min =F (-2)=2e 2(e 2-k )=0,满足F (x )min ≥0. ③当ln 1k >-2,即1≤k <e 2时,F (x )在[-2,ln 1k )内单调递减,在[ln 1k,+∞)内单调递增.F(x)min=F(ln 1k)=ln k(2-ln k)>0,满足F(x)min≥0.综上所述,满足题意的k的取值范围为[1,e2].。

2023年高考数学二轮复习讲练测 (新高考) 专题02 正余弦定理在解三角形

2023年高考数学二轮复习讲练测 (新高考) 专题02 正余弦定理在解三角形

专题02 正余弦定理在解三角形中的高级应用与最值问题【命题规律】解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.【核心考点目录】核心考点一:倍长定比分线模型 核心考点二:倍角定理 核心考点三:角平分线模型 核心考点四:隐圆问题核心考点五:正切比值与和差问题 核心考点六:四边形定值和最值 核心考点七:边角特殊,构建坐标系核心考点八:利用正、余弦定理求解与三角形的周长、面积有关的问题 核心考点九:利用正、余弦定理求解三角形中的最值或范围【真题回归】1.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________.2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==. (1)求ABC 的面积;(2)若sin sin A C =b .3.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+4.(2022·全国·高考真题)记ABC的内角A,B,C的对边分别为a,b,c,已知cos sin21sin1cos2A BA B=++.(1)若23Cπ=,求B;(2)求222a bc+的最小值.【方法技巧与总结】1、正弦定理和余弦定理的主要作用,是将三角形中已知条件的边、角关系转化为角的关系或边的关系,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.2、与三角形面积或周长有关的问题,一般要用到正弦定理或余弦定理,进行边和角的转化.要适当选用公式,对于面积公式111sin sin sin222S ab C ac B bc A===,一般是已知哪一个角就使用哪个公式.3、对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.4、利用正、余弦定理解三角形,要注意灵活运用面积公式,三角形内角和、基本不等式、二次函数等知识.5、正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.6、三角形中的一些最值问题,可以通过构建目标函数,将问题转化为求函数的最值,再利用单调性求解.7、“坐标法”是求解与解三角形相关最值问题的一条重要途径.充分利用题设条件中所提供的特殊边角关系,建立恰当的直角坐标系,选取合理的参数,正确求出关键点的坐标,准确表示出所求的目标,再结合三角形、不等式、函数等知识求其最值.【核心考点】核心考点一:倍长定比分线模型【规律方法】如图,若P 在边BC 上,且满足PC BP λ=,AP m =,则延长AP 至D ,使PD AP λ=,连接CD ,易知AB ∥DC ,且DC c λ=,(1)AD AP λ=+.180BAC ACD ∠+∠=︒.【典型例题】例1.(2022·福建·厦门双十中学高三期中)如图,在ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+,若2AC =,3AB =,则||AP 的值为( )A B C D例2.(2021·全国·高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.例3.(2022·湖南·宁乡一中高三期中)设a ,b ,c 分别为ABC 的内角A ,B ,C 的对边,AD 为BC 边上的中线,c =1,23BAC π∠=,12sin cos sin sin sin 2c A B a A b B b C =-+.(1)求AD 的长度;(2)若E 为AB 上靠近B 的四等分点,G 为ABC 的重心,连接EG 并延长与AC 交于点F ,求AF 的长度.例4.(2022·广西柳州·高三阶段练习(文))已知2()sin cos f x x x x =,将()f x 的图象向右平移π0<<2ϕϕ⎛⎫ ⎪⎝⎭单位后,得到()g x 的图象,且()g x 的图象关于,06π⎛⎫⎪⎝⎭对称.(1)求ϕ;(2)若ABC 的角,,A B C 所对的边依次为,,a b c ,且182A g ⎛⎫=- ⎪⎝⎭,=1,=2b c ,若点D 为BC 边靠近C 的三等分点,试求AD 的长度.例5.(2022·全国·高三专题练习)在ABC 中,D 为BC 上靠近点C 的三等分点,且1AD CD ==.记ABC 的面积为S .(1)若sin 2sin C B =,求S ; (2)求S 的取值范围.例6.(2022·全国·高三专题练习)已知a ,b ,c 分别是ABC 内角A ,B ,C 所对的边,且满足1cos 2c A b a =-,若P 为边AB 上靠近A 的三等分点,1CP =,求:(1)求C 的值; (2)求2+a b 的最大值.例7.(2022·全国·高三专题练习)在①ANBN=AMN S =△AC AM =这三个条件中任选一个,补充在下面问题中,并进行求解.问题:在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,3B π=,c =8,点M ,N 是BC 边上的两个三等分点,3BC BM =,___________,求AM 的长和ABC 外接圆半径.例8.(2022·湖北·高三期中)ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知()sin sin()a c A a B C -=-,b =(1)求角B ;(2)若AC 边上的点D 满足2CD DA =,BD =ABC 的面积.核心考点二:倍角定理 【规律方法】例9.(2022·广西·灵山县新洲中学高三阶段练习(文))在锐角ABC 中,角A B C ,,所对的边为a b c ,,,且()cos 1cos a B b A ⋅=+.(1)证明:2A B =(2)若2b =,求a 的取值范围.例10.(2022·黑龙江·哈师大附中高三阶段练习)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,S 是ABC 的面积,()222sin SB C a c +=-.(1)证明:A =2C ;(2)若a =2,且ABC 为锐角三角形,求b +2c 的取值范围.例11.(2022·福建龙岩·高三期中)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知22sin sin sin sin B C A C -=.(1)证明:2B C =;(2)若A 是钝角,2a =,求ABC 面积的取值范围.例12.(2022·江苏·宝应中学高三阶段练习)在ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c ,且满足()2a b b c +=.(1)求证:2C B =; (2)求4cos a bb B+的最小值.例13.(2022·江苏连云港·高三期中)在ABC 中,AB =4,AC =3. (1)若1cos 4C =-,求ABC 的面积;(2)若A =2B ,求BC 的长.例14.(2022·浙江·绍兴鲁迅中学高三阶段练习)在锐角ABC 中,内角,,A B C 的对边分别为,,a b c ,且满足()22sin sin sin sin A B B A B -=+.(1)证明:2A B =. (2)求bc 的取值范围.核心考点三:角平分线模型 【规律方法】斯库顿定理:如图,AD 是ABC △的角平分线,则2·AD AB AC BD DC =⋅-,可记忆:中方=上积一下积.【典型例题】例15.(2022·湖北·武汉市武钢三中高三阶段练习)ABC 中,2AB =,1AC =,BD BC λ=,()0,1λ∈. (1)若120BAC ∠=︒,12λ=,求AD 的长度; (2)若AD 为角平分线,且1AD =,求ABC 的面积.例16.(2022·黑龙江齐齐哈尔·高三期中)在锐角ABC 中,内角A B C ,,的对边分别为a b c ,,,且满足cos cos cos c a bC A B+=+ (1)求角C 的大小;(2)若c =A 与角B 的内角平分线相交于点D ,求ABD △面积的取值范围.例17.(2022·江苏泰州·高三期中)在①sin (cos cos )sin sin sin C a B b A a B a A b B +-=+;②22sin sin cos cos B A B B A A -=两个条件中任选一个,补充在下面的问题中,并解决该问题.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a b , .(1)求角C 的大小;(2)若∠ACB 的角平分线CD 交线段AB 于点D ,且4,4CD BD AD ==,求△ABC 的面积.例18.(2022·辽宁·东北育才学校高三阶段练习)已知向量()3sin ,cos a x x =,()cos ,cos b x x =-,函数()32f x a b =⋅+. (1)求函数()y f x =的最小正周期;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠ACB 的角平分线交AB 于点D ,若()f C 恰好为函数()f x 的最大值,且此时()CD f C =,求3a +4b 的最小值.例19.(2022·河北·高三阶段练习)已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中=4a ,=3b . (1)若点D 为AB 的中点且=2CD ,求ACB ∠的余弦值;(2)若ACB ∠的角平分线与AB 相交于点E ,当c CE ⨯取得最大值时,求CE 的长.例20.(2022·全国·高三专题练习)在ABC 中,内角,,A B C 的对边分别为,,a b c ,且______.在①cos cos2b C B π⎛⎫-= ⎪⎝⎭;②2ABC S BC =⋅△;③tan tan tan A C A C +=这三个条件中任选一个,补充在上面的问题中,并进行解答. (1)求角B 的大小;(2)若角B 的内角平分线交AC 于D ,且1BD =,求4a c +的最小值.例21.(2022·贵州贵阳·高三开学考试(理))已知ABC 的内角,,A B C 对应的边分别是,,a b c , 内角A 的角平分线交边BC 于D 点, 且 4=AD .若(2)cos cos 0b c A a C ++=, 则ABC 面积的最小值是( )A .16B .C .64D .核心考点四:隐圆问题 【规律方法】若三角形中出现(1)b a λλ=>,且c 为定值,则点C 位于阿波罗尼斯圆上.【典型例题】例22.(2022·全国·高三专题练习(文))阿波罗尼奥斯是与阿基米德、欧几里得齐名的古希腊数学家,以他姓名命名的阿氏圆是指平面内到两定点的距离的比值为常数()0,1λλλ>≠的动点的轨迹.已知在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且sin 2sin A B =,cos cos 3a B b A +=,则ABC 面积的最大值为( )A .3B .C .6D .例23.(2022·全国·高三专题练习)阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山人时期的“数学三巨匠”,以他名字命名的阿波罗尼斯圆是指平面内到两定点距离比值为定值(0,1)λλλ>≠的动点的轨迹.已知在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin 2sin A B =,cos cos 2a B b A +=,则ABC ∆面积的最大值为( )AB C .43D .53例24.(2022·全国·高三专题练习)阿波罗尼斯(古希腊数学家,约公元前262—190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿氏圆,现有ABC ,6AC =,sin 2sin C A =,则当ABC 的面积最大时,BC 的长为______.例25.(2022·全国·高三专题练习)阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山大时期的“数学三巨匠”,以他名字命名的阿波罗尼斯圆是指平面内到两定点距离之比为定值λ(0,1λλ>≠)的动点的轨迹.已知在ABC 中,角,,A B C 的对边分别为,,a b c ,sin 2sin ,A B =cos cos 2,a B b A +=则ABC 面积的最大值为__________.例26.(2022·全国·高三专题练习)波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有ABC ∆,4,sin 2sin AC C A ==,则当ABC ∆的面积最大时,AC 边上的高为_______________.核心考点五:正切比值与和差问题 【规律方法】例27.(2022·江苏南通·高三期中)在ABC 中,点D 在边BC 上,且AD BD =,记BDCDλ=. (1)当13λ=,π3ADB ∠=,求ABAC ;(2)若tan 2tan BAC B ∠=,求λ的值.例28.(2022·河南焦作·高三期中(文))在锐角ABC 中,,,a b c 分别为角,,A B C 所对的边,2b =,且ABC 的面积2S =.(1)若4sin 5A =,求a ; (2)求tan B 的最大值.例29.(2022·江西·芦溪中学高三阶段练习(理))已知在ABC 中,角A ,B ,C ,的对边分别为a ,b ,c ,且222b a c ac =+-,1b =(1)若)tan tan 1tan tan A C A C -=+,求边c 的值; (2)若2a c =,求ABC 的面积.例30.(2022·江西赣州·高三期中(理))在ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,且满足(2)a c BA BC cCB CA -⋅=⋅.(1)求角B 的大小; (2)若tan tan 4tan tan B B A C+=,求sin sin AC 的值.例31.(2022·湖南·高三阶段练习)在ABC 中,内角A ,B ,C 满足22222a b c +=且90B ≠︒. (1)求证:tan 3tan C A =; (2)求111tan tan tan A B C++的最小值.例32.(2022·全国·高三专题练习)已知三角形ABC 中,角,,A B C 所对的边分别为,,a b c ,且222tan tan tan a b c A B Cλλ+=>(1). (1)当,14A a π==,2λ=时,求c 的值;(2)判断ABC 的形状.例33.(2022·湖北·高三开学考试)在ABC 中,内角,,A B C 满足2222sin sin 2sin A B C +=. (1)求证:tan 3tan C A =; (2)求123tan tan tan A B C++最小值.例34.(2022·江苏南京·高三开学考试)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知222222a b a b c c ab -+-=. (1)若4C π=,求A ,B ;(2)若△ABC 为锐角三角形,求2cos ab B的取值范围.例35.(2022·全国·高三专题练习)已知锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若向量(,sin )m a b C =-,(3,sin sin )n c b A B =-+,(0)m n λλ=≠,则1tan 24b Cc +的最小值为( )A B .C D例36.(2022·山西吕梁·高三阶段练习)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且22222a c b +=,则tan tan BC=______.例37.(2022·河南安阳·高三阶段练习(文))在ABC 中,角,,A B C 所对的边分别为,,a b c ,若113tan tan sin B C bc A+=⋅,且()1sin sin 2C B A -=,则22c b -=__________.核心考点六:四边形定值和最值 【规律方法】正常的四边形我们不去解释,只需多一次余弦定理即可,我们需要注意一些圆内接的四边形,尤其是拥有对角互补的四边形,尤其一些四边形还需要引入托勒密定理.勒密定理:在四边形ABCD 中,有AB CD AD BC AC BD ⋅+⋅≥⋅,当且仅当四边形ABCD 四点共圆时,等号成立.【典型例题】例38.(2022·甘肃·兰州西北中学高三期中(理))在四边形ABCD 中,2,3AB BC CD AD ====,则四边形ABCD 面积的最大值为______.例39.(2022·江苏无锡·高三期中)如图,在平面四边形ABCD 中,cos AB BD ABD =∠.(1)判断ABD △的形状并证明;(2)若AB =,BC =,12BC =,求四边形ABCD 的对角线AC 的最大值.例40.(2022·山西忻州·高三阶段练习)在平面四边形ABCD 中,20AB AD ==,π3BAD ∠=,2π3BCD ∠=.(1)若5π12ABC ∠=,求BC 的长; (2)求四边形ABCD 周长的最大值.例41.(2022·黑龙江·齐齐哈尔市实验中学高三阶段练习)已知函数()((1sin cos 1sin cos f x x x x x ⎡⎤⎡⎤=-⋅-⎣⎦⎣⎦.(1)求()f x 的最小正周期T 和单调递减区间;(2)四边形ABCD 内接于⊙O ,BD =2,锐角A 满足314A f ⎛⎫=- ⎪⎝⎭,求四边形ABCD 面积S 的取值范围.例42.(2022·辽宁·朝阳市第一高级中学高三阶段练习)如图,在平面凹四边形ABCD 中,=2AB ,=3BC ,60B ∠=︒.(1)若sin sin AD A CD C =且=1AD ,求凹四边形ABCD 的面积; (2)若120ADC ∠=︒,求凹四边形ABCD 的面积的最小值.例43.(2022·全国·高三阶段练习(理))如图,在平面四边形ABCD 中,AD CD ⊥,()090BAD BCD θθ∠=∠=<<,6AB BC +=.(1)若=2BC AB ,75θ=,求对角线AC 的长;(2)当AD CD =,=3BC 时,求平面四边形ABCD 的面积的最大值及此时θ的值.例44.(2022·上海·华师大二附中高三开学考试)设()()cos sin f x x x ϕ=--,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,已知03f π⎛⎫= ⎪⎝⎭. (1)求()f x 的最小值;(2)已知凸四边形ABCD 中,()114,7AB AC AD f A ====,求ABCD 面积的最大值.核心考点七:边角特殊,构建坐标系 【规律方法】利用坐标法求出轨迹方程 【典型例题】例45.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c .若2a +2228b c +=,则ABC △的面积的最大值为______.【解析】:方法1:如图,在ABC ∆中,以线段AB 所在的直线为x 轴,AB 的中垂线为y 轴,建立平面直角坐标系,则,02c A ⎛⎫- ⎪⎝⎭,,02c B ⎛⎫ ⎪⎝⎭,设(,)C x y ,得222c x y ⎡⎤⎛⎫-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦222822c x y c ⎡⎤⎛⎫++=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,整理得222544x y c +=-,当ABC ∆面积最大时0x =,故12ABC S c ∆=⨯=285c =时,ABC ∆.方法2:如图,设AD x =,BD y =,CD h =,由22228a b c ++=,得()()22222(h y h x x +++++2)8y =,即222222()8h x y x y ++++=,又2222x yx y ++222()(2x y x y ++当且仅当x y =时取等号),所以2252()82h x y ++,又1()2ABC S x y h x∆=+=+22y =⨯1)2x y⎤+=⎥⎦15)25x y⎤+⨯⨯⎥⎦2252()25225h x y++(当且仅当)x y+=时,等号成立,即h,将h=与x y=代人222222()8h x y x y++++=中,得x y==⎭.所以ABC∆.方法3:由三角形面积公式,得1sin2ABCS ab C∆=,即()222222211sin1cos44ABCS a b C a b C∆==-,由22228a b c++=,得22282a b c+=-,由余弦定理,得283cos2cCab-=,所以()222222211sin1cos44ABCS a b C a b C∆==-=()22222222831831142416cca b a bab⎡⎤-⎛⎫-⎢⎥⋅-=-⎪⎢⎥⎝⎭⎣⎦()()2222242835161616a b c cc+--=-+(当且仅当a b=时取等号),当285c=时,42516cc-+,取得最大值45,即245ABCS∆,所以ABC∆面积的最大值为(也可以用基本不等式求2ABCS∆的最大值,即42516ABCcS∆=-+()2225165145165c cc-=⋅,所以ABC∆).方法4:在ABC∆中,由余弦定理,得2222cosc a b ab C=+-,由22228a b c++=,得()222222cos8a b a b ab C+++-=,即()22384cosa b ab C+=+,又222a b ab+,所以84cos6ab C ab+,即(32cos)4ab C-,故432cosabC-,又1sin2ABCS ab C∆=,所以2sin32cosABCCSC∆-,令2sin()32cosxf xx=-,(0,)xπ∈,得26cos4()(32cos)xf xx-'=-,令6cos40x-=,得2cos3x=,即当2cos3x=时,sin x=ABC∆.例46.在ABC△中,角A,B,C所对的边分别为a,b,c.若a b==ABC△所在的平面内存在点M ,使得2223MA MB MC +==3,则ABC △的面积的最大值为______.【解析】:以AB 所在直线为x 轴,AB 边的垂直平分线为y 轴,建立如图所示的平面直角坐标系,设(,0)A m -,(,0)B m ,(0,)C n ,(,)M x y ,0m >,0n >.由223MA MB +=,得2222()()3x m y x m y +++-+=,即22232x y m +=-①,又21MC =,故22()1x y n +-=②,其中①式可以看作以(0,0)的圆的轨迹方程,②式可以看作以(0,)n 为圆心,半径为1的圆的轨迹方程,由题意知两圆有公共点,即点M ,则2311(3)2n m -③,又a b =得223m n +=④,由③,④得223016m <,因为ABC S mn ∆=,所以()22223ABCSm n m∆==-,2223924m m ⎛⎫=--+⎪⎝⎭,当22316m =时,2ABC S ∆取得最大值575256,故BC S ∆的最大值核心考点八:利用正、余弦定理求解与三角形的周长、面积有关的问题 【规律方法】与三角形面积或周长有关的问题,一般要用到正弦定理或余弦定理,进行边和角的转化.要适当选用公式,对于面积公式111sin sin sin 222S ab C ac B bc A ===,一般是已知哪一个角就使用哪个公式.【典型例题】例47.(2022·重庆一中高三期中)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,且满足()22sin cos cos B A C B =-+.(1)证明:a ,b ,c 成等比数列;(2)若a c >且22252a cb +=,ABC ABC 的周长.例48.(2022·山东聊城·高三期中)已知ABC 中,A 、B 、C 所对边分别为a 、b 、c ,且2b a =,3c =. (1)若2π3C =,求ABC 的面积; (2)若2sin sin 1B A -=,求ABC 的周长.例49.(2022·山西·高三阶段练习)在①cos sin c A C =;②()(sin sin )()sin a b A B c C -+=-;③3cos cos b A a B c +=+这三个条件中任选一个,补充在下面的问题中,并解决该问题.问题:在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足___________. (1)求角A 的大小;(2)若D 为线段CB 延长线上的一点,且2,CB BD AD AC ===,求ABC 的面积.例50.(2022·云南云南·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(cos sin )b c A A =-.(1)求角C ;(2)若c =,D 为边BC 的中点,ADC △的面积1S =且B A >,求AD 的长度.例51.(2022·全国·武功县普集高级中学模拟预测(理))如图,△ABC 中,点D 为边BC 上一点,且满足AD CDAB BC=.(1)证明:πBAC DAC ∠+∠=;(2)若AB =2,AC =1,BC =ABD 的面积.核心考点九:利用正,余弦定理求解三角形中的最值或范围 【规律方法】对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.【典型例题】例52.(2022·黑龙江·大庆实验中学高三开学考试)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()()2sin 2sin 2sin a c A c a C b B -+-=.(1)求B ;(2)若ABC 为锐角三角形,且2b =,求ABC 周长的取值范围.例53.(2022·宁夏六盘山高级中学高三期中(理))已知向量()cos ,sin a x x =,()3sin ,sin =b x x ,函数()12=⋅-f x a b .将函数()f x 的图像向左平移π4个单位长度后得到函数()g x 的图像.(1)求函数()g x 的零点;(2)若锐角ABC 的三个内角,,A B C 的对边分别是a ,b ,c ,且()1f A =,求b ca+的取值范围.例54.(2022·山东菏泽·高三期中)已知函数()()πsin cos sin π2f x x x x x m ⎛⎫=--+ ⎪⎝⎭.(1)在下列三个条件中选择一个作为已知,使得实数m 的值唯一确定,并求出使函数()f x 在区间[]0,a 上最小值为12-时,a 的取值范围;条件①:()f x 的最大值为1;条件②:()f x 的一个对称中心为7π,012⎛⎫⎪⎝⎭;条件③:()f x 的一条对称轴为π3x =.(2)若12m =-,在锐角ABC 中,若()1f A =,且能盖住ABC 的最小圆的面积为π,求+AB AC 的取值范围.例55.(2022·河南·汝阳县一高高三阶段练习(理))已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,cos sin sin cos a A A B b B =+,且ab .(1)求角C 的大小;(2)若△ABC 为锐角三角形,且2c =,求△ABC 面积的取值范围.例56.(2022·湖南·安仁县第一中学模拟预测)在,ABC 中内角A ,B ,C 所对应的边分别为,,.a b c 已知22cos 2sin sin 12A B A B -⎛⎫-= ⎪⎝⎭ (1)求角C 的大小. (2)若1c =,求ABCS 的最大值.例57.(2022·山东·日照市教育科学研究中心高三期中)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点D 满足3BD BC =,且0AD AC ⋅=. (1)若b =c ,求A 的值; (2)求B 的最大值.例58.(2022·河南·驻马店市第二高级中学高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知()()22232cos b c b c a abc C -+-=.(1)求tan A ;(2)若b c +=ABC 面积的最大值.例59.(2022·湖北黄冈·高三阶段练习)在①πsin sin 3a B b A ⎛⎫=+ ⎪⎝⎭;②S BA CA =⋅;③tan (2)tan c A b c C =-.三个条件中选一个,补充在下面的横线处,并解答问题.在ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,ABC 的面积为S ,且满足___________ (1)求A 的大小;(2)设ABC 的面积为D 在边BC 上,且2BD DC =,求AD 的最小值.【新题速递】一、单选题1.(2022·河南驻马店·高三期中(文))在ABC 中,已知30B =︒,1b =,则AB AC ⋅的最小值为( ) A .-1B .14-C .13-D .12-2.(2022·黑龙江·大庆实验中学高三开学考试)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知()()()sin sin sin sin a b A B c C B +-=+,若角A 的内角平分线AD 的长为3,则4b c +的最小值为( )A .21B .24C .27D .363.(2022·山西·高三阶段练习)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .点D 为BC 的中点,π1,3AD B ==,且ABC c =( )A .1B .2C .3D .44.(2022·山东菏泽·高三期中)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos sin 0a C C b c --=,则ABC 外接圆面积与ABC 面积之比的最小值为( ).A B C D5.(2022·湖北·高三期中)在ABC 中,内角,,A B C 所对的边分别为,,a b c tan tan A B =+,下列结论正确的是( ) A .6A π=B .当2a =,4c =时,ABC 的面积为C .若AD 是BAC ∠的角平分线,且AD =112b c+=D .当b c -=ABC 为直角三角形6.(2022·贵州·模拟预测(理))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,D 是边AB 上一点,CD 平分ACB ∠,且CD =cos cos 2cos a B b A c C +=,则2a b +的最小值是( )A .4+B .6C .3+D .47.(2022·宁夏·银川一中高三阶段练习(理))已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 是锐角三角形,且满足()()0b a a b ac -+-=,若△ABC 的面积2S =,则()()c a b c b a +-+-的取值范围是( )A .()88, B .()0,8C .⎝D .8)8.(2022·重庆·西南大学附中高三阶段练习)已知O 是三角形ABC 的外心,若()2AC ABAB AO AC AO m AO AB AC⋅+⋅=,且sin sin B C +=m 的最大值为( ) A .6 B .65C .145D .3二、多选题9.(2022·江苏南通·高三期中)在圆O 的内接四边形ABCD 中,2AB =,6BC =,4CD DA ==,则( )A .27BD =B .四边形ABCD 的面积为C .12AO BD ⋅=D .16AC BD ⋅=10.(2022·江苏淮安·高三期中)在ABC 中,角A,B,C 所对的边分别为,,a b c ,若2228a b c ++=,则下列四个选项中哪些值可以作为三角形的面积( )AB C D 11.(2022·湖北·高三阶段练习)已知ABC 外接圆的面积为π,内角A ,B ,C 的对边分别为a ,b ,c ,且sin A ,sin B ,sin C 成等比数列,设ABC 的周长和面积分别为P ,S ,则( )A .π03B <≤B .0b <≤C .0P <≤D .0S <≤12.(2022·山西太原·高三期中)已知,,a b c 分别是ABC 内角,,A B C 的对边,cos 0C <,且tan bB c=,则下列结论正确的是( ) A .06B π<<B .sin cos 0BC +=C .5cos cos cos (1,]4A B C ++∈D .5cos cos cos (1,]4A B C ++∈-三、填空题13.(2022·四川成都·高三阶段练习(文))在ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若2sin 3tan ,2c B a A a ==;则当角A 最大时,ABC 的面积为______.14.(2022·四川南充·高三期中(文))已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若()sin sin2B Ca A Cb ++=,且ABC 内切圆面积为4π,则ABC 周长的最小值是______. 15.(2022·安徽·砀山中学高三阶段练习)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,5sin()cos 06a B b A ππ⎛⎫++-= ⎪⎝⎭,10a =,若点M 满足25BM BC =,且MAB MBA ∠=∠,则AMC 的面积为_________________.16.(2022·全国·高三专题练习)已知A 、B 、C 、D 四点共圆,且AB =1,CD =2,AD =4,BC =5,则P A 的长度为______.四、解答题17.(2022·黑龙江·哈师大附中高三阶段练习)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,S 是ABC 的面积,()222sin SB C a c +=-.(1)证明:A =2C ;(2)若a =2,且ABC 为锐角三角形,求b +2c 的取值范围.18.(2022·河北·模拟预测)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足)cos cos 2sin a C c A b B +=,且c b >.(1)求角B ;(2)若b =ABC 周长的取值范围.19.(2022·湖北·高三期中)如图,在平面凹四边形ABCD 中,2AB =,3BC =,120ADC ∠=,角B 满足:(1sin cos )(cossin )cos 222B B BB B ++-=.(1)求角B 的大小;(2)求凹四边形ABCD 面积的最小值.20.(2022·湖北襄阳·高三期中)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知sin()cos .B C a B c ++=(1)求角A 的大小;(2)若ABC 为锐角三角形,且6b =,求ABC 面积的取值范围.21.(2022·湖北·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且()2c a a b =+.(1)求证:2C A =;(2)若ABC 为锐角三角形,求sin 3sin B A +的取值范围.22.(2022·安徽·砀山中学高三阶段练习)在ABC 中,sin sin sin sin sin sin sin C B A BA B C-+=+,(1)求角C 的大小;(2)求sin 22πsin 4B B +⎛⎫+ ⎪⎝⎭的取值范围.。

高考数学二轮复习专练二中档小题(三)

高考数学二轮复习专练二中档小题(三)

中档小题(三)1.(2013·江西省高三上学期七校联考)若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆(P ∩Q )成立的所有实数a 的取值范围为( )A .(1,9)B .[1,9]C .[6,9)D .(6,9] 2.(2013·荆州市质量检测)设a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导数是f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-2xB .y =3xC .y =-3xD .y =4x3.(2013·南昌市第一次模拟测试)双曲线x 2b 2-y 2a 2=-1(a >0,b >0)与抛物线y =18x 2有一个公共焦点F ,双曲线上过点F 且垂直实轴的弦长为233,则双曲线的离心率等于( )A .2 B.233C.322D. 3 4.(2013·长春市第一次调研测试)若x ∈(1,4),设a =x 12,b =x 23,c =ln x ,则a 、b 、c 的大小关系为( )A .c >a >bB .b >a >cC .a >b >cD .b >c >a 5.(2013·郑州市第二次质量检测)已知A (1,2),B (3,4),C (-2,2),D (-3,5),则向量AB →在向量CD →上的投影为( )A.105B.2105C.3105D.41056.(2013·安徽省“江南十校”联考)已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 013=( )A. 2 012-1B. 2 013-1C. 2 014-1D. 2 014+17.(2013·广州市调研测试)在区间[1,5]和[2,4] 上分别取一个数,记为a ,b ,则方程x 2a2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆的概率为( ) A.12 B.1532 C.1732 D.3132 8.(2013·郑州市第一次质量检测)把70个面包分五份给5个人,使每人所得成等差数列,且使较大的三份之和的16是较小的两份之和,则最小的一份为( )A .2B .8C .14D .209.(2013·高考北京卷)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0,表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( )A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)10.(2013·东北三校第一次联合模拟考试)已知函数y =A sin(ωx +φ)+k (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( )A .y =4sin(4x +π6)B .y =2sin(2x +π3)+2C .y =2sin(4x +π3)+2D .y =2sin(4x +π6)+211.(2013·安徽省“江南十校”联考)从某校高中男生中随机抽取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图).若要从身高在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,则这2人的身高不在同一组内的概率为________.12.(2013·武汉市武昌区联合考试)已知某几何体的三视图的正视图和侧视图是全等的等腰梯形,俯视图是两个同心圆,如图所示,则该几何体的全面积为________.13.(2013·高考课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.14.(2013·武汉市高中毕业生调研测试)从圆C :x 2+y 2-6x -8y +24=0外一点P 向该圆引切线PT ,T 为切点,且|PT |=|PO |(O 为坐标原点),则(1)|PT |的最小值为________;(2)|PT |取得最小值时点P 的坐标为________. 备选题 1.(2013·洛阳市统一考试)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =23,AB =1,AC =2,∠BAC =60°,则球O 的表面积为( )A .4πB .12πC .16πD .64π2.(2013·海淀区第二学期期中练习)抛物线y 2=4x 的焦点为F ,点P (x ,y )为该抛物线上的动点,又点A (-1,0),则|PF ||P A |的最小值是( )A.12B.22C.32D.232 3.(2013·高考安徽卷)已知直线y =a 交抛物线y =x 2于A ,B 两点,若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.4.(2013·湖南省五市十校联合检测)设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ⊗b =(a 1b 1,a 2b 2),已知向量m =(2,12),n =(π3,0),点P (x ,y )在y =sin x 的图象上运动.Q是函数y =f (x )图象上的点,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则函数y =f (x )的值域是________.答案:1.【解析】选D.依题意, P ∩Q =Q ,Q ⊆P ,于是⎩⎪⎨⎪⎧2a +1<3a -52a +1>33a -5≤22,解得6<a ≤9,即实数a 的取值范围是(6,9].2.【解析】选A.由已知得f ′(x )=3x 2+2ax +a -2为偶函数,∴a =0,∴f (x )=x 3-2x ,f ′(x )=3x 2-2.又f ′(0)=-2,f (0)=0,∴y =f (x )在原点处的切线方程为y =-2x .3.【解析】选B.双曲线与抛物线x 2=8y 的公共焦点F 的坐标为(0,2),由题意知点(33,2)在双曲线上,∴⎩⎪⎨⎪⎧a 2+b 2=413b 2-4a 2=-1,得a 2=3,故e =c a =233. 4.【解析】选B.由于x >1,所以x 23>x 12>1,即b >a >1.又1<x <4,所以1<x <2,0<ln x <1,所以b >a >c .5.【解析】选B.依题意得AB →=(2,2),CD →=(-1,3),|CD →|=10,AB →·CD →=-2+6=4,向量AB →在向量CD →上的投影等于410=2105.6.【解析】选C.由f (4)=2可得4a=2,解得a =12,则f (x )=x 12.∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 013=a 1+a 2+a 3+…+a 2 013=(2-1)+(3-2)+(4-3)+…+( 2 014-2 013)= 2 014-1.7.【解析】选 B.方程x 2a 2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆,故⎩⎪⎨⎪⎧a 2>b2e =c a =a 2-b 2a <32, 即⎩⎨⎧a 2>b 2a 2<4b 2,化简得⎩⎨⎧a >ba <2b,又a ∈[1,5],b ∈[2,4],画出满足不等式组的平面区域,如图阴影部分所示,求得阴影部分的面积为154,故所求的概率P =S 阴影2×4=1532.8.【解析】选A.由题意知,中间一份为14,设该等差数列的公差为d (d >0),则这五份分别是14-2d ,14-d ,14,14+d ,14+2d .又16(14+14+d +14+2d )=14-2d +14-d ,解得d =6.故14-2d =2.9.【解析】选C.当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此,m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23.10.【解析】选D.由函数y =A sin(ωx +φ)+k 的最大值为4,最小值为0,可知k =2,A=2,由函数的最小正周期为π2,可知2πω=π2,可得ω=4,由直线x =π3是其图象的一条对称轴,可知4×π3+φ=k π+π2,k ∈Z ,从而φ=k π-5π6,k ∈Z ,故满足题意的是y =2sin(4x +π6)+2.11.【解析】身高在[60,70)的男生人数为0.030×10×100=30,同理[70,80)的人数为20,[80,90]的人数为10,所以按分层抽样选取6人,各小组依次选3人,2人,1人,分别记为a ,b ,c ;A ,B ,M ;从这6人中选取2人共有15种结果,其中身高不在同一组内的结果有11种.故概率P =1115.【答案】111512.【解析】由三视图知该几何体为上底直径为2,下底直径为6,高为23的圆台,则几何体的全面积S =π×1+π×9+π×(4+12)=26π.【答案】26π13.【解析】当n =1时,S 1=23a 1+13,∴a 1=1.当n ≥2时,a n =S n -S n -1=23a n +13-(23a n -1+13)=23(a n -a n -1), ∴a n =-2a n -1,即a na n -1=-2,∴{a n }是以1为首项的等比数列,其公比为-2,∴a n =1×(-2)n -1,即a n =(-2)n -1.【答案】(-2)n -1 14.【解析】圆C 的标准方程为:(x -3)2+(y -4)2=1,设P (x ,y ),由|PT |=|PO |得(x -3)2+(y -4)2-1=x 2+y 2,得3x +4y -12=0,P 的轨迹为直线:3x +4y -12=0,当圆心C到直线的距离最小时,切线PT 取最小值,|PT |min =125,此时P 点坐标为(3625,4825).【答案】(1)125 (2)(3625,4825)备选题 1.【解析】选C.取SC 的中点E ,连接AE 、BE ,依题意,BC 2=AB 2+AC 2-2AB ·AC cos 60°=3,∴AC 2=AB 2+BC 2,即AB ⊥BC .又SA ⊥平面ABC ,∴SA ⊥BC ,又SA ∩AB =A ,∴BC ⊥平面SAB ,BC ⊥SB ,AE =12SC =BE ,∴点E 是三棱锥S -ABC 的外接球的球心,即点E 与点O 重合,OA =12SC =12SA 2+AC 2=2,球O 的表面积为4π×OA 2=16π.2.【解析】选B.依题意知x ≥0,则焦点F (1,0),|PF |=x +1,|P A |=(x +1)2+y 2=(x +1)2+4x ,当x =0时,|P A ||PF |=1;当x >0时,1<|P A ||PF |=1+4x(x +1)2≤1+4x (2x )2=2(当且仅当x =1时取等号).因此当x ≥0时,1≤|P A ||PF |≤2,22≤|PF ||P A |≤1,|PF ||P A |的最小值是22.3.【解析】设C (x ,x 2),由题意可取A (-a ,a ),B (a ,a ), 则CA →=(-a -x ,a -x 2),CB →=(a -x ,a -x 2),由于∠ACB =π2,所以CA →·CB →=(-a -x )(a -x )+(a -x 2)2=0,整理得x 4+(1-2a )x 2+a 2-a =0, 即y 2+(1-2a )y +a 2-a =0,所以⎩⎪⎨⎪⎧-(1-2a )≥0,a 2-a ≥0,(1-2a )2-4(a 2-a )>0,解得a ≥1.【答案】[1,+∞) 4.【解析】令Q (c ,d ),由新的运算可得OQ →=m ⊗OP →+n =(2x ,12sin x )+(π3,0)=(2x +π3,12sin x ),⎩⎨⎧c =2x +π3d =12sin x,消去x 得d =12sin(12c -π6),所以y =f (x )=12sin(12x -π6),易知y =f (x )的值域是[-12,12].【答案】[-12,12]。

2022版高考数学二轮复习综合练习题2

2022版高考数学二轮复习综合练习题2

综合练习题(二)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出四个选项中,只有一项符合题目要求的.1.已知全集U ={x ∈N |0≤x ≤5},∁U A ={1,2,5},则集合A 等于( D ) A .{0,1,2} B .{2,3,4} C .{3,4}D .{0,3,4}【解析】 因为全集U ={x ∈N |0≤x ≤5}, ∁U A ={1,2,5},由补集的定义可知集合A ={0,3,4}.故选D.2.已知复数z 满足(2+i)z =|4-3i|(i 为虚数单位),则z =( B ) A .2+i B .2-i C .1+2iD .1-2i【解析】 由(2+i)z =|4-3i|=42+(-3)2=5, 得z =52+i =5(2-i )(2+i )(2-i )=5(2-i )22+12=2-i ,故选B. 3.已知等差数列{a n }的前n 项和为S n ,则“S n 的最大值是S 8”是“⎩⎪⎨⎪⎧a 7+a 8+a 9>0a 7+a 10<0”的( C )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 等差数列{a n }的前n 项和为S n , 则“S n 的最大值是S 8”⇔a 8>0,a 9<0.则“⎩⎪⎨⎪⎧a 7+a 8+a 9>0a 7+a 10<0”⇔⎩⎪⎨⎪⎧a 8>0a 8+a 9<0.∴“S n 的最大值是S 8”是“⎩⎪⎨⎪⎧a 7+a 8+a 9>0a 7+a 10<0”的充要条件.故选C.4.候鸟每年都要随季节的变化进行大规模的迁徙.研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v =a +log 2Q10(其中a 是实数).据统计,该种鸟类在静止的时候其耗氧量为20个单位,若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,其耗氧量至少需要( )个单位.( C )A .70B .60C .80D .75【解析】 由题意可得0=a +log 22010,解得a =-1,∴v =-1+log 2Q10,∴-1+log 2Q10≥2,解得Q ≥80,故选C.5.已知数列{a n }是首项为a 1,公差为d 的等差数列,前n 项和为S n ,满足2a 4=a 3+5,则S 9=( C )A .35B .40C .45D .50【解析】 ∵2a 4=a 3+5,∴2(a 5-d )=a 5-2d +5, ∴a 5=5,∴S 9=9(a 1+a 9)2=9a 5=5×9=45,故选C.6.某四棱锥的三视图如图所示,其侧视图是边长为2的正方形,正视图和俯视图都是等腰直角三角形,则该四棱锥的体积为( A )A .83B .8C .43D .4【解析】 由三视图还原原几何体如图,该几何体是四棱锥P -ABCD , 底面ABCD 为正方形,边长为2, 侧棱PA ⊥底面ABCD ,PA =2, 则该四棱锥的体积V =13×2×2×2=83.故选A .7.已知在边长为3的等边△ABC 中,AP →=12AC →+13AB →,则CP →在CB →上的投影为( C )A .154B .-54C .54D .152【解析】 CP →=AP →-AC →=12AC →+13AB →-AC →=13AB →-12AC →,∴CP →·CB →=⎝ ⎛⎭⎪⎫13AB →-12AC →·(AB →-AC →)=13AB →2-56AB →·AC →+12AC →2 =13×9-56×3×3×12+12×9=154, ∴CP →在CB →上的投影为CP →·CB →|CB →|=1543=54.故选C.8.已知椭圆y 2a 2+x 2b 2=1(a >b >0)与直线y a -xb=1交于A ,B 两点,焦点F (0,-c ),其中c为半焦距,若△ABF 是直角三角形,则该椭圆的离心率为( A )A .5-12B .3-12 C.3+14D .5+14【解析】 椭圆y 2a 2+x 2b 2=1(a >b >0)与直线y a -xb =1交于A ,B 两点,焦点F (0,-c ),其中c 为半焦距,若△ABF 是直角三角形,不妨设A (0,a ),B (-b ,0),则BA →·BF →=0,解得b 2=ac ,即a 2-c 2=ac ,即e 2+e -1=0,e ∈(0,1),故e =5-12.故选A . 9.下列只有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ≠0)的导函数的图象,则f (-1)=( A )A .-13B .13C .73D .-13或73【解析】 因为f (x )=13x 3+ax 2+(a 2-1)x +1(a ≠0),所以f ′(x )=x 2+2ax +(a 2-1),Δ=4a 2-4(a 2-1)=4>0,开口向上,故导函数图象开口向上,与x 轴有2个交点, 对称轴是x =-a ,结合选项(3)符合, 由f ′(0)=a 2-1=0且-a >0得a =-1, 故f (-1)=-13-1+1=-13.故选A .10.关于函数f (x )=sin|x |+|sin x |有下述四个结论: ①f (x )是偶函数②f (x )在区间⎝ ⎛⎭⎪⎫π2,π单调递增 ③f (x )在[-π,π]有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是( C ) A .①②④ B .②④ C .①④D .①③【解析】 f (-x )=sin|-x |+|sin(-x )|=sin|x |+|sin x |=f (x )则函数f (x )是偶函数,故①正确,当x ∈⎝⎛⎭⎪⎫π2,π时,sin|x |=sin x ,|sin x |=sin x , 则f (x )=sin x +sin x =2sin x 为减函数,故②错误,当0≤x ≤π时,f (x )=sin|x |+|sin x |=sin x +sin x =2sin x ,由f (x )=0得2sin x =0得x =0或x =π,由f (x )是偶函数,得在[-π,0)上还有一个零点x =-π,即函数f (x )在[-π,π]有3个零点,故③错误,当sin|x |=1,|sin x |=1时,f (x )取得最大值2, 故④正确,故正确是①④,故选C. 11.设a =3π,b =π3,c =33,则( C ) A .b >a >c B .c >a >b C .a >b >cD .b >c >a【解析】 考查幂函数y =x 3在(0,+∞)是单调增函数, 且π>3,∴π3>33,∴b >c ; 由y =3x 在R 上递增,可得3π>33, 由a =3π,b =π3,可得ln a =πln 3,ln b =3ln π, 考虑f (x )=ln x x 的导数f ′(x )=1-ln xx2, 由x >e 可得f ′(x )<0,即f (x )递减, 可得f (3)>f (π),即有ln 33>ln ππ,即为πln 3>3ln π,即有3π>π3,则a >b >c ,故选C.12.已知F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点和右焦点,过F 2的直线l 与双曲线的右支交于A ,B 两点,△AF 1F 2的内切圆半径为r 1,△BF 1F 2的内切圆半径为r 2,若r 1=2r 2,则直线l 的斜率为( D )A .1B . 2C .2D .2 2【解析】 记△AF 1F 2的内切圆圆心为C , 边AF 1、AF 2、F 1F 2上的切点分别为M 、N 、E , 易见C 、E 横坐标相等,则|AM |=|AN |,|F 1M |=|F 1E |,|F 2N |=|F 2E |, 由|AF 1|-|AF 2|=2a ,即|AM |+|MF 1|-(|AN |+|NF 2|)=2a , 得|MF 1|-|NF 2|=2a ,即|F 1E |-|F 2E |=2a , 记C 的横坐标为x 0,则E (x 0,0), 于是x 0+c -(c -x 0)=2a ,得x 0=a ,同样内心D 的横坐标也为a ,则有CD ⊥x 轴, 设直线的倾斜角为θ,则∠OF 2D =θ2,∠CF 2O =90°-θ2,在△CEF 2中,tan ∠CF 2O =tan ⎝ ⎛⎭⎪⎫90°-θ2=r 1|EF 2|,在△DEF 2中,tan ∠DF 2O =tan θ2=r 2|EF 2|, 由r 1=2r 2,可得2tan θ2=tan ⎝⎛⎭⎪⎫90°-θ2=1tanθ2,解得tan θ2=22,则直线的斜率为tan θ=2tanθ21-tan 2θ2=21-12=22,故选D.二、填空题:本大题共4个小题,每小题5分,共20分,把答案填在答题卡相应位置上.13.若x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y ≤3x -y ≤0x +2≥0,则z =x -2y 的最大值为__2__.【解析】 由z =x -2y 得y =12x -12z ,作出x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y ≤3x -y ≤0x +2≥0对应的平面区域如图(阴影部分):平移直线y =12x -12z ,由图形可知当直线经过点B 时, 直线y =12x -12z 的截距最小,此时z 最大,由⎩⎪⎨⎪⎧x =-2x -y =0,得B (-2,-2).代入目标函数z =x -2y ,得z =-2-2×(-2)=2, 故答案为2.14.已知f (x )是定义域为R 的奇函数,满足f (1+x )=f (1-x ),若f (1)=2,则f (1)+f (2)+f (3)+…+f (2 018)=__2__.【解析】 根据题意,f (x )是定义域为R 的奇函数, 则f (-x )=-f (x ),又由f (x )满足f (1+x )=f (1-x ),则f (-x )=f (2+x ),则有f (x +2)=-f (x ), 变形可得:f (x +4)=f (x ), 即函数f (x )为周期为4的周期函数;又由f (x )是定义域为R 的奇函数,则f (0)=0,则f (2)=-f (0)=0,f (3)=-f (1)=-2,f (4)=f (0)=0, 则f (1)+f (2)+f (3)+f (4)=2+0+(-2)+0=0,则有f (1)+f (2)+f (3)+…+f (2 018)=[f (1)+f (2)+f (3)+f (4)]×504+f (2 017)+f (2 018)=f (1)+f (2)=2;故答案为2.15.已知sin α=3sin ⎝ ⎛⎭⎪⎫α+π3,则tan ⎝ ⎛⎭⎪⎫α+π6=__-3【解析】 已知sin α=3sin ⎝ ⎛⎭⎪⎫α+π3,则sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π3-π3=3sin ⎝ ⎛⎭⎪⎫α+π3,整理得:12sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=3sin ⎝ ⎛⎭⎪⎫α+π3,故:32cos ⎝⎛⎭⎪⎫α+π3=-52sin ⎝ ⎛⎭⎪⎫α+π3, 解得:tan ⎝ ⎛⎭⎪⎫α+π3=-35, 则:tan ⎝ ⎛⎭⎪⎫α+π6=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π3-π6 =tan ⎝⎛⎭⎪⎫α+π3-tan π61+tan ⎝ ⎛⎭⎪⎫α+π3tan π6=-233,故答案为-233. 16.设直三棱柱ABC -A 1B 1C 1的所有顶点都在一个球面上,且球的体积是4010π3,AB =AC =AA 1,∠BAC =120°,则此直三棱柱的高是__22__.【解析】 设AB =AC =AA 1=2m . ∵∠BAC =120°,∴∠ACB =30°,于是2msin 30°=2r (r 是△ABC 外接圆的半径),r =2m .又球心到平面ABC 的距离等于侧棱长AA 1的一半, ∴球的半径为(2m )2+m 2=5m . ∴球的体积为43π×(5m )3=4010π3,解得m = 2.于是直三棱柱的高是AA 1=2m =2 2. 故答案为2 2.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤. (一)必考题:共60分17.(本小题满分12分)设a ,b ,c 分别为△ABC 内角A ,B ,C 的对边.已知a cos B =b cos A +c ,(1)证明:△ABC 是直角三角形;(2)若D 是AC 边上一点,且CD =3,BD =5,BC =6,求△ABD 的面积. 【解析】 (1)由正弦定理a cos B =b cos A +c 化为:sin A cos B =sin B cos A +sin C , ∴sin A cos B -sin B cos A =sin C , ∴sin(A -B )=sin C ,∵A -B ∈(-π,π),C ∈(0,π), ∴A -B =C 或A -B =π-C (舍) ∴A =B +C ,∴A =π2.即△ABC 是直角三角形.(2)在△BCD 中,CD =3,BD =5,BC =6,由余弦定理得cos C =CD 2+BC 2-BD 22CD ×BC =59.∴sin C =2149.∴AC =BC ×cos C =103,∴AD =AC -CD =13,又AB =BC ×sin C =4143.∴S △ABD =12AB ×AD =2149.18.(本小题满分12分)(理)某工厂A ,B 两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,A ,B 生产线生产的产品为合格品的概率分别为p 和2p -1(0.5≤p ≤1).(1)从A ,B 生产线上各抽检一件产品,若使得至少有一件合格的概率不低于99.5%,求p 的最小值p 0;(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的p 0作为p 的值. 已知A ,B 生产线的不合格品返工后每件产品可分别挽回损失5元和3元,若从两条生产线上各随机抽检1 000件产品,以挽回损失的平均数为判断依据,估计哪条生产线的挽回损失较多?(文)(2021·金安区模拟)某5G 手机配件生产厂为了了解该厂生产同一型号配件的甲、乙两车间的生产质量,质检部门随机从甲、乙两车间各抽检了100件配件,其检测结果:(1)分别估计甲、乙车间生产出配件的正品的概率.(2)该厂规定一等品每件的出厂价是二等品的出厂价的2倍,已知每件配件的生产成本为5元,根据环保要求需要处理费用为3元,厂家要求生产的每件配件的平均利润不低于21.7元,求二等品每件的出厂的最低价.【解析】 (理)(1)P =1-(1-p )(1-(2p -1))=1-2(1-p )2. 令1-2(1-p )2≥0.995,解得p ≥0.95. 故p 的最小值p 0=0.95.(2)由(1)可知A ,B 生产线上的产品合格率分别为0.95,0.9. 即A ,B 生产线的不合格产品率分别为0.05和0.1.故从A 生产线抽检的1 000件产品中不合格产品大约为1 000×0.05=50件, 故挽回损失50×5=250元,从B 生产线上抽检1 000件产品,不合格产品大约为1 000×0.1=100, 可挽回损失100×3=300元, ∴从B 生产线挽回的损失较多.(文)(1)由数表知,甲车间生产出配件的正品的频率是55+33100=0.88. 所以甲车间生产配件的正品的概率估计值为0.88. 乙车间生产出的配件的正品的频率是65+27100=0.92.所以,乙车间生产的配件的正品的概率估计为0.92.(2)设二等品每件的出厂价为a 元,则一等品每件的出厂价为2a 元. 由题意知:1200[120(2a -5)+60(a -5)-20×8]≥21.7,整理得32a -5.3≥21.7,所以a ≥18,所以二等品每件的出厂的最低价为18元.19.(本小题满分12分)如图所示,△ABC 是等边三角形,DE ∥AC ,DF ∥BC ,面ACDE ⊥面ABC ,AC =CD =AD =DE =2DF =2.(1)求证:EF ⊥BC ; (2)求四面体FABC 的体积.【解析】 (1)证明:∵DE ∥AC ,DF ∥BC , 又△ABC 是等边三角形, ∴∠EDF =∠ACB =60°, 又AC =DE =BC =2DF =2, 在△EDF 中,由余弦定理可得,EF =22+12-2×1×2×cos 60°=3,∴EF 2+DF 2=DE 2,故EF ⊥DF , 又DF ∥BC ,∴EF ⊥BC . (2)取AC 的中点O ,连接DO ,由AD =DC ,得DO ⊥AC ,又平面ACDE ⊥平面ABC ,且平面ACDE ∩平面ABC =AC ,∴DO ⊥平面ABC ,且求得DO =22-12= 3.由DE ∥AC ,DF ∥BC ,且DE ∩DF =D ,可得平面DEF ∥平面ABC ,则F 与D 到底面ABC 的距离相等,则四面体FABC 的体积V =13×12×2×2×32×3=1. 20.(本小题满分12分)已知抛物线C :y 2=2px (p >0),过C 的焦点F 的直线l 1与抛物线交于A 、B 两点,当l 1⊥x 轴时,|AB |=4.(1)求抛物线C 的方程;(2)如图,过点F 的另一条直线l 与C 交于M 、N 两点,设l 1,l 2的斜率分别为k 1,k 2,若k 1+k 2=0(k 1>0),且3S △AMF =S △BMN ,求直线l 1的方程.【解析】 (1)根据题意可得F ⎝ ⎛⎭⎪⎫p 2,0, 当l 1⊥x 轴时,直线l 1的方程为x =p2, 联立⎩⎪⎨⎪⎧x =p 2y 2=2px,解得y =±p ,所以A ⎝ ⎛⎭⎪⎫p 2,p ,B ⎝ ⎛⎭⎪⎫p 2,-p , 所以|AB |=2p =4,解得p =2,进而可得抛物线的方程为y 2=4x .(2)由(1)可知F (1,0),设直线l 1的方程为y =k 1(x -1),联立⎩⎪⎨⎪⎧y =k 1(x -1)y 2=4x, 得k 21x 2-(2k 21+4)x +k 21=0,所以Δ=(2k 21+4)2-4k 41=16k 21+16>0,设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=2k 21+4k 21,x 1x 2=1,① 因为k 1+k 2=0,所以k 1=-k 2,因为直线l 2与抛物线交于点M ,N ,所以A 与N 关于x 轴对称,M 与B 关于x 轴对称, 因为3S △AMF =S △BMN ,S △AMF =S △BNF ,所以3S △AMF =S △AMF +S △BFM ,所以2S △AMF =S △BFM ,所以2|AF |=|BF |,由抛物线定义可得|AF |=x 1+1,|BF |=x 2+1,所以2x 1+2=x 2+1,即x 2=2x 1+1,代入①得(2x 1+1)x 1=1,解得x 1=12或-1(舍去), 所以x 2=2x 1+1=2×12+1=2, 所以x 1+x 2=2k 21+4k 21=2+12=52, 解得k 21=8,即k 1=22,所以直线l 1的方程为y =22(x -1).21.(本小题满分12分)已知函数f (x )=a ln x +x (a ∈R ).(1)若a =-1,求函数f (x )的单调区间;(2)若函数g (x )=f (x )+1e x -x a ,且g (x )≥0在x ∈(1,+∞)时恒成立,求实数a 的最小值.【解析】 (1)a =-1时,f (x )=-ln x +x ,函数f (x )的定义域是(0,+∞),则f ′(x )=-1x +1=x -1x, 令f ′(x )>0,解得:x >1,令f ′(x )<0,解得:0<x <1,故f (x )的单调减区间为(0,1),f (x )的单调增区间为(1,+∞).(2)由g (x )≥0,可得e -x -(-x )≥x a -a ln x ,即e -x -(-x )≥eln xa -a ln x ①,令h (t )=e t -t ,由h ′(t )=e t -1得,当t <0时,h (t )递减,当t >0时,h (t )递增,所以①即为h (-x )≥h (a ln x ),由于求实数a 的最小值,考虑化为a <0,所以-x ≤a ln x ,即a ≥-xln x ,令l (x )=-xln x ,则l ′(x )=-ln x -1(ln x )2, 令l ′(x )>0,解得:0<x <e ,令l ′(x )<0,解得:x >e ,故l (x )在(0,e)递增,在(e ,+∞)递减,故可得l (x )的最大值为-e ,所以a 的最小值为-e.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,按所做的第一题计分22.(本小题满分10分)[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 的方程为x +y -4=0,曲线C 的参数方程为⎩⎨⎧x =cos t y =2sin t(t 为参数).以O 点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程;(2)设射线θ=α(ρ≥0,0≤α<2π)与直线l 和曲线C 分别交于点M ,N ,求4|OM |2+1|ON |2的最小值.【解析】 (1)由x =ρcos θ,y =ρsin θ,x 2+y 2=ρ2,可得直线l 的极坐标方程为ρcos θ+ρsin θ-4=0,即有ρ=4cos θ+sin θ; 曲线C 的参数方程为⎩⎨⎧x =cos t y =2sin t(t 为参数), 可得sin 2t +cos 2t =y 22+x 2=1, 则ρ2cos 2θ+12ρ2sin 2θ=1, 即为ρ2=22cos 2θ+sin 2θ=21+cos 2θ. (2)设M (ρ1,α),N (ρ2,α),其中0≤α<3π4或7π4<α<2π, 则4|OM |2+1|ON |2=(cos α+sin α)24+1+cos 2α2 =1+2sin αcos α4+3+cos 2α4 =1+sin 2α+cos 2α4=1+24sin ⎝⎛⎭⎪⎫2α+π4,由sin ⎝ ⎛⎭⎪⎫2α+π4=-1即α=5π8时,4|OM |2+1|ON |2取得最小值1-24.23.(本小题满分10分)[选修4-5:不等式选讲]已知函数f (x )=|x |.(1)求不等式3f (x -1)-f (x +1)>2的解集;(2)若不等式f (x -a )+f (x +2)≤f (x +3)的解集包含[-2,-1],求a 的取值范围.【解析】 (1)∵f (x )=|x |,∴3f (x -1)-f (x +1)>2,即3|x -1|-|x +1|>2,所以⎩⎪⎨⎪⎧x ≤-1,-3(x -1)+x +1>2①,或⎩⎪⎨⎪⎧-1<x <1,-3(x -1)-x -1>2②,或⎩⎪⎨⎪⎧x ≥1,3(x -1)-x -1>2③. 解①得x ≤-1,解②得-1<x <0,解③得x >3,综合可得x <0或x >3,所以原不等式的解集为(-∞,0)∪(3,+∞).(2)f (x -a )+f (x +2)≤f (x +3),即|x -a |+|x +2|≤|x +3|.因为不等式f (x -a )+f (x +2)≤f (x +3)的解集包含[-2,-1],所以,|x -a |+|x +2|≤|x +3|对于x ∈[-2,-1]恒成立.因为x ∈[-2,-1],所以,x +2≥0,x +3≥0,所以|x -a |+|x +2|≤|x +3|等价于|x -a |+x +2≤x +3,即|x -a |≤1恒成立,所以a -1≤x ≤a +1在[-2,-1]上恒成立,所以⎩⎪⎨⎪⎧a -1≤-2-1≤a +1,解得-2≤a ≤-1, 即实数a 的取值范围为[-2,-1].。

2021高考数学二轮复习专题练二基础小题练透热点专练2不等式含解析

2021高考数学二轮复习专题练二基础小题练透热点专练2不等式含解析

高考数学二轮复习专题练:热点专练2 不等式一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A.ac 2<bc 2 B.1a <1b C.b a >a bD.a 2>ab >b 2解析 c =0时,A 不成立; 1a -1b =b -a ab>0,B 错; b a -a b =b 2-a 2ab =(b +a )(b -a )ab<0,C 错; 由a <b <0,∴a 2>ab >b 2,D 正确. 答案 D2.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( ) A.2B.-2C.-12D.12解析 依题意,-1与-12是(ax -1)(x +1)=0的两根,且a <0,∴-1×⎝⎛⎭⎫-12= (-1)×1a ,则a =-2.答案 B3.若a >0,b >0且2a +b =4,则1ab 的最小值为( )A.2B.12C.4D.14解析 因为a >0,b >0,故2a +b ≥22ab (当且仅当2a =b ,即a =1,b =2时取等号). 又因为2a +b =4, ∴22ab ≤4⇒0<ab ≤2,∴1ab ≥12,故1ab 的最小值为12(当且仅当a =1,b =2时等号成立). 答案 B4.(2020·日照检测)若实数x ,y 满足2x +2y =1,则x +y 的最大值是( ) A.-4B.-2C.2D.4解析 由题意得2x +2y ≥22x ·2y =22x +y (当且仅当x =y =-1时取等号),∴1≥22x +y ,∴14≥2x +y ,∴2-2≥2x +y ,∴x +y ≤-2.∴x +y 的最大值为-2. 答案 B5.(2020·菏泽模拟)若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( ) A.43B.53C.2D.54解析 由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,当且仅当x =3,y =233时取等号,∴xy 的最大值为2.答案 C6.(2020·滨州模拟)设x >0,y >0,x +2y =5,则(x +1)(2y +1)xy 的最小值为( )A.2 2B.2 3C.4 2D.4 3解析 ∵x >0,y >0,∴xy >0.∵x +2y =5,∴(x +1)(2y +1)xy =2xy +x +2y +1xy=2xy +6xy =2xy +6xy≥212=43, 当且仅当2xy =6xy, 即x =3,y =1或x =2,y =32时取等号.∴(x +1)(2y +1)xy的最小值为4 3.答案 D7.设a >0,若关于x 的不等式x +ax -1≥5在(1,+∞)上恒成立,则a 的最小值为( ) A.16B.9C.4D.2解析 在(1,+∞)上,x +a x -1=(x -1)+ax -1+1≥2(x -1)×a(x -1)+1=2a +1(当且仅当x =1+a 时取等号).由题意知2a +1≥5.所以a ≥4. 答案 C8.(2020·宜昌模拟)若对任意的x ∈[1,5],存在实数a ,使2x ≤x 2+ax +b ≤6x (a ∈R ,b >0)恒成立,则实数b 的最大值为( ) A.9B.10C.11D.12解析 已知当x ∈[1,5]时,存在实数a ,使2x ≤x 2+ax +b ≤6x 恒成立,则-x 2+2x ≤ax +b ≤-x 2+6x ,令f (x )=-x 2+2x (1≤x ≤5),g (x )=-x 2+6x (1≤x ≤5),作出函数f (x ),g (x )的图象如图所示,要使b 最大,且满足-x 2+2x ≤ax +b ≤-x 2+6x (1≤x ≤5),则直线y =ax +b 必过(1,5),且与函数y =f (x )的图象相切于点B .易得此时b =5-a ,此时的直线方程为y =ax +5-a .由⎩⎪⎨⎪⎧y =ax +5-a ,y =-x 2+2x ,得x 2+(a -2)x +5-a =0.∴Δ=(a -2)2-4(5-a )=0,解得a =-4或a =4(舍去),∴b max =5-(-4)=9.故选A. 答案 A二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分. 9.(2020·德州模拟)对于实数a ,b ,c ,下列命题中正确的是( ) A.若a >b ,则ac <bc B.若a <b <0,则a 2>ab >b 2 C.若c >a >b >0,则a c -a >bc -bD.若a >b ,1a >1b,则a >0,b <0解析 若c >0,则由a >b 得ac >bc ,A 错;若a <b <0,则a 2>ab ,ab >b 2,a 2>ab >b 2,B 正确;若c >a >b >0,则c -b >c -a >0,∴1c -a >1c -b >0,∴a c -a >bc -b ,C 正确;若a >b ,且a ,b 同号,则有1a <1b ,因此由a >b ,1a >1b 得a >0,b <0,D 正确.故选BCD.答案 BCD10.(2020·石家庄一模)若a ,b ,c ∈R ,且ab +bc +ca =1,则下列不等式成立的是( ) A.a +b +c ≤ 3 B.(a +b +c 2)≥3 C.1a +1b +1c≥2 3D.a 2+b 2+c 2≥1解析 由基本不等式可得a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca )=2,∴a 2+b 2+c 2≥1,当且仅当a =b =c =±33时,等号成立.∴(a +b +c )2=a 2+b 2+c 2+2(ab +bc+ca )≥3,∴a +b +c ≤-3或a +b +c ≥ 3.若a =b =c =-33,则1a +1b +1c=-33<2 3.因此,A ,C 错误,B ,D 正确.故选BD. 答案 BD11.(2020·济南一中期中)设正实数a ,b 满足a +b =1,则( ) A.1a +1b有最小值4 B.ab 有最小值12C.a +b 有最大值 2D.a 2+b 2有最小值12解析 对于A ,因为a ,b 是正实数,且a +b =1,所以有1a +1b =a +b a +a +b b =2+b a +ab ≥2+2b a ·ab=4(当且仅当a =b 时取等号),故A 正确;对于B ,因为a ,b 是正实数,所以有1=a +b ≥2ab ,即ab ≤12(当且仅当a =b 时取等号),故B 不正确;对于C ,因为a ,b 是正实数,所以有a +b2≤(a )2+(b )22=12,即a +b ≤2(当且仅当a =b 时取等号),故C 正确;对于D ,因为a ,b 是正实数,所以有a +b2≤a 2+b 22,即a 2+b 2≥12(当且仅当a =b 时取等号),故D 正确.故选ACD. 答案 ACD12.(2020·烟台模拟)下列说法正确的是( ) A.若x ,y >0,x +y =2,则2x +2y 的最大值为4 B.若x <12,则函数y =2x +12x -1的最大值为-1C.若x ,y >0,x +y +xy =3,则xy 的最小值为1D.函数y =1sin 2x +4cos 2x的最小值为9解析 对于A ,取x =32,y =12,可得2x +2y =32>4,A 错误;对于B ,y =2x +12x -1=-⎝ ⎛⎭⎪⎫1-2x +11-2x +1≤-2+1=-1,当且仅当x =0时等号成立,B 正确;对于C ,易知x =2,y =13满足等式x +y +xy =3,此时xy =23<1,C 错误;对于D ,y =1sin 2x +4cos 2x =⎝⎛⎭⎫1sin 2x +4cos 2x (sin 2x+cos 2x )=cos 2x sin 2x +4sin 2x cos 2x +5≥24+5=9.当且仅当cos2x =23,sin 2x =13时等号成立,D 正确.故选BD. 答案 BD三、填空题:本题共4小题,每小题5分,共20分.13.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.解析 由题设知a -3b =-6,又2a >0,8b >0,所以2a +18b ≥22a ·18b =2·2a -3b 2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a +18b 的最小值为14.答案 1414.(2020·深圳统测)已知x >0,y >0,且x +2y =xy ,若x +2y >m 2+2m 恒成立,则xy 的最小值为________,实数m 的取值范围为________.(本小题第一空2分,第二空3分)解析 ∵x >0,y >0,x +2y =xy ,∴2x +1y =1,∴1=2x +1y ≥22x ·1y,∴xy ≥8,当且仅当x =4,y =2时取等号,∴x +2y =xy ≥8,∴m 2+2m <8,解得-4<m <2. 答案 8 (-4,2)15.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为__________.解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b≥2a +b 2·8a +b=4,当且仅当a +b 2=8a +b ,即a +b =4时,等号成立.故12a +12b +8a +b 的最小值为4.答案 416.(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 解析 法一 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝⎛⎭⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.法二 设x 2+y 2=t >0,则x 2=t -y 2. 因为5x 2y 2+y 4=1,所以5(t -y 2)y 2+y 4=1, 所以4y 4-5ty 2+1=0.由Δ=25t 2-16≥0,解得t ≥45⎝⎛⎭⎫t ≤-45舍去. 故x 2+y 2的最小值为45.答案 45。

高考数学二轮复习专练二中档小题(五)

高考数学二轮复习专练二中档小题(五)

中档小题(五)1.(2013·洛阳市统一考试)在△ABC 中,D 为边BC 上任意一点,AD →=λAB →+μAC →,则λμ的最大值为( )A .1 B.12C.13D.14 2.以S n 表示等差数列{a n }的前n 项和,若S 5>S 6,则下列不等关系不一定成立的是( ) A .2a 3>3a 4 B .5a 5>a 1+6a 6 C .a 5+a 4-a 3<0 D .a 3+a 6+a 12<2a 73.(2013·洛阳市统一考试)若函数f (x )=2x -k ·2-x2x +k ·2-x(k 为常数)在定义域内为奇函数,则k的值为( )A .1B .-1C .±1D .0 4.(2013·高考辽宁卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C+c sin B cos A =12b ,且a >b ,则∠B =( )A.π6B.π3C.2π3D.5π6 5.(2013·高考大纲全国卷)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=1 6.(2013·陕西省质量检测试题)如果执行如图所示的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和 B.12(A +B )为a 1,a 2,…,a N 的算术平均数 C .A 和B 分别是a 1,a 2,…,a N 中的最小数和最大数 D .A 和B 分别是a 1,a 2,…,a N 中的最大数和最小数7.(2013·石家庄市教学质量检测)在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长的概率为( )A.14B.13C.12D.32 8.(2013·江西省七校联考)定义在R 上的偶函数f (x ),当x ≥0时,f (x )=2x ,则满足f (1-2x )<f (3)的x 的取值范围是( )A .(-1,2)B .(-2,1)C .[-1,2]D .(-2,1] 9.(2013·高考山东卷)函数y =x cos x +sin x 的图象大致为( )10.(2013·浙江省名校第一次联考)已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM→|=1,且OM →²PM →=0,则当|PM →|取得最小值时的点P 到双曲线C 的渐近线的距离为( )A.95B.125 C .4 D .5 11.(2013·武汉市武昌区高三年级联合考试)已知|a |=1,|b |=2,a 与b 的夹角为60°,则a +b 在a 方向上的投影为________.12.已知由样本数据点集合{(x i ,y i )|i =1,2,…,n }求得的回归直线方程为y ^=1.5x +0.5,且x =3.现发现两个数据点(2.2,2.9)和(3.8,7.1)误差较大,去除后重新求得的回归直线l 的斜率为1.2,那么,当x =4时,y 的估计值为________.13.(2013·江西省七校联考)已知实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≥0x +2y -8≤0x ≤3,若(3,52)是使ax -y 取得最小值的唯一的可行解,则实数a 的取值范围为________.14.(2013·高考课标全国卷Ⅱ)设θ为第二象限角,若tan(θ+π4)=12,则sin θ+cos θ=________.备选题 1.(2013·石家庄市教学质量检测)如图是两个全等的正三角形,给定下列三个命题:①存在四棱锥,其正视图、侧视图如图;②存在三棱锥,其正视图、侧视图如图;③存在圆锥,其正视图、侧视图如图.其中真命题的个数是( )A .3B .2C .1D .0 2.(2013·浙江省名校第一次联考)设f (x )在(0,+∞)上是单调递增函数,当n ∈N *时,f (n )∈N *,且f [f (n )]=2n +1,则( )A .f (1)=3,f (2)=4B .f (1)=2,f (2)=3C .f (2)=4,f (4)=5D .f (2)=3,f (3)=43.若不等式|2a -1|≤|x +1x|对一切非零实数x 恒成立,则实数a 的取值范围为________.4.(2013·济南市高考模拟考试)下列命题正确的序号为________. ①函数y =ln(3-x )的定义域为(-∞,3];②定义在[a ,b ]上的偶函数f (x )=x 2+(a +5)x +b 的最小值为5;③若命题p :对∀x ∈R ,都有x 2-x +2≥0,则命题綈p :∃x ∈R ,有x 2-x +2<0;④若a >0,b >0,a +b =4,则1a +1b的最小值为1.答案:1.【解析】选D.依题意得,λ+μ=1,λμ=λ(1-λ)≤(λ+1-λ2)2=14,当且仅当λ=1-λ,即λ=12时取等号,因此λμ的最大值是14.2.【解析】选D.由S 5>S 6,得a 6<0,即a 1+5d <0,选项A ,B ,C 都能化成a 1+5d <0,所以D 错.3.【解析】选C.依题意,f (-x )=2-x -k ·2x 2-x +k ·2x =-2x -k ·2-x 2x+k ·2-x ,即(2-x -k ·2x )(2x +k ·2-x )=(2-x +k ·2x )(-2x +k ·2-x ),∴k 2=1,k =±1.4.【解析】选A.由正弦定理可得sin A sin B cos C +sin C ²sin B cos A =12sin B ,又因为sinB ≠0,所以sin A cosC +sin C cos A =12,所以sin(A +C )=sin B =12.因为a >b ,所以∠B =π6.5.【解析】选C.由题意知椭圆焦点在x 轴上,且c =1,可设C 的方程为x 2a 2+y2a 2-1=1(a >1),由过F 2且垂直于x 轴的直线被C 截得的弦长|AB |=3,知点(1,32)必在椭圆上,代入椭圆方程化简得4a 4-17a 2+4=0,所以a 2=4或a 2=14(舍去).故椭圆C 的方程为x 24+y 23=1.6.【解析】选D.由图易知,该程序框图的功能是选择A 的最大数,选择B 的最小数.7.【解析】选C.如图,设圆的半径为r ,圆心为O ,AB 为圆的一条直径,CD 为垂直AB 的一条弦,垂足为M ,若CD 为圆内接正三角形的一条边,则O 到CD 的距离为r2,设EF 为与CD 平行且到圆心O 距离为r2的弦,交直径AB 于点N ,所以当过AB 上的点且垂直AB 的弦的长度超过CD 时,该点在线段MN 上变化,所以所求概率P =r 2r =12.8.【解析】选A.依题意得,函数f (x )在[0,+∞)上是增函数,且f (x )=f (|x |),不等式f (1-2x )<f (3)⇔f (|1-2x |)<f (3)⇔|1-2x |<3⇔-3<1-2x <3⇔-1<x <2.9.【解析】选D.当x =π2时,y =1>0,排除C.当x =-π2时,y =-1,排除B ;或利用y =x cos x +sin x 为奇函数,图象关于原点对称,排除B.当x =π时,y =-π<0,排除A.10.【解析】选B.由OM →²PM →=0,得OM ⊥PM ,根据勾股定理,求|MP |的最小值可以转化为求|OP |的最小值,当|OP |取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125.11.【解析】由题意知a +b 在a 方向上的投影为(a +b )·a |a |=a 2+|a |·|b |cos 60°|a |=2.【答案】212.【解析】回归直线方程为y ^=1.5x +0.5,x =3,故样本点的中心为(3,5),又由于除去(2.2,2.9)和(3.8,7.1)这两个数据点后,x ,y 的值没有改变,所以样本点的中心也没有改变,设新的回归直线l 方程为y ^=1.2x +b ,将样本点的中心(3,5)代入解得b =1.4,当x =4时,y 的估计值为6.2.【答案】6.213.【解析】记z =ax -y ,注意到当x =0时,y =-z ,即直线z =ax -y 在y 轴上的截距是-z .在坐标平面内画出题中的不等式组表示的平面区域,结合图形可知,满足题意的实数a 的取值范围为a <-12.【答案】(-∞,-12)14.【解析】∵tan(θ+π4)=12,∴1+tan θ1-tan θ=12,解得tan θ=-13.∴(sin θ+cos θ)2=sin 2θ+cos 2θ+2sin θ²cos θsin 2θ+cos 2θ=tan 2θ+2tan θ+1tan 2θ+1=19-23+119+1=25. ∵θ为第二象限角,tan θ=-13,∴2k π+3π4<θ<2k π+π,∴sin θ+cos θ<0,∴sin θ+cos θ=-105.【答案】-105备选题 1.【解析】选 A.对于①,存在斜高与底边长相等的正四棱锥,其正视图与侧视图是全等的正三角形.对于②,存在如图所示的三棱锥S -ABC ,底面为等腰三角形,其底边AB 的中点为D ,BC 的中点为E ,侧面SAB 上的斜高为SD ,且CB =AB =SD =SE ,顶点S 在底面上的射影为AC 的中点,则此三棱锥的正视图与侧视图是全等的正三角形.对于③,存在底面直径与母线长相等的圆锥,其正视图与侧视图是全等的正三角形.所以选A.2.【解析】选B.由f [f (n )]=2n +1,得f [f (1)]=3,f [f (2)]=5,∵当n ∈N *时,f (n )∈N *,若f (1)=3,则由f [f (1)]=3得,f (3)=3,与f (x ) 在(0,+∞)上单调递增矛盾,故选项A 错;若f (2)=4,则f (4)=5,4<f (3)<5,与f (3)∈N *矛盾,故选项C 错;若f (2)=3,则由f [f (2)]=5得f (3)=5,故选项D 错,故选项B 正确.3.【解析】|x +1x |=|x |+|1x |≥2,当且仅当|x |=1时,|x +1x|min =2.要使不等式恒成立,只要|2a -1|≤2即可,-2≤2a -1≤2,得-12≤a ≤32.【答案】[-12,32]4.【解析】命题①中,函数的定义域是(-∞,3),故命题①不正确;命题②中,若已知函数是偶函数,则必有a =-5,b =5,即函数f (x )=x 2+5,x ∈[-5,5],其最小值为5,命题②正确;全称命题的否定是特称命题,命题③正确;命题④中,1a +1b =14(a +b )(1a +1b)=14(2+b a +a b )≥14(2+2b a ²a b )=1(当且仅当a =b =2时,等号成立),命题④正确. 【答案】②③④。

2015届高考数学(文科,通用)二轮复习突破练 高考中档大题规范练(二) Word版含答案

2015届高考数学(文科,通用)二轮复习突破练 高考中档大题规范练(二) Word版含答案

高考中档大题规范练(二)——数 列(推荐时间:60分钟)1.已知{a n }为等差数列,且a 2=-1,a 5=8. (1)求数列{|a n |}的前n 项和; (2)求数列{2n ·a n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,因为a 2=-1,a 5=8,所以⎩⎪⎨⎪⎧a 1+d =-1,a 1+4d =8,解得a 1=-4,d =3,所以a n =-4+3(n -1)=3n -7,因此|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3记数列{|a n |}的前n 项和为S n , 当n =1时,S 1=|a 1|=4, 当n =2时,S 2=|a 1|+|a 2|=5,当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7) =5+(n -2)[2+3n -7]2=32n 2-112n +10.又当n =2时满足此式,综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n ≥2.(2)记数列{2n ·a n }的前n 项和为T n , 则T n =2a 1+22a 2+23a 3+…+2n a n , 2T n =22a 1+23a 2+24a 3+…+2n a n -1+2n +1a n ,所以-T n =2a 1+d (22+23+…+2n )-2n +1a n .由(1)知,a 1=-4,d =3,a n =3n -7, 所以-T n =-8+3×4(1-2n -1)1-2-(3n -7)×2n +1=-20-(3n -10)×2n +1,故T n =20+(3n -10)×2n +1.2.已知函数f (x )=14x +2(x ∈R ).(1)证明:f (x )+f (1-x )=12;(2)若数列{a n }的通项公式为a n =f (nm )(m ∈N *,n =1,2,…,m ),求数列{a n }的前m 项和S m ;(3)设数列{b n }满足b 1=13,b n +1=b 2n +b n ,T n =1b 1+1+1b 2+1+…+1b n +1,若(2)中的S m 满足对不小于2的任意正整数m ,S m <T n 恒成立,试求m 的最大值. (1)证明 因为f (x )=14x +2,所以f (1-x )=141-x +2=4x 4+2·4x =4x2(4x +2).所以f (x )+f (1-x )=14x +2+4x2(4x +2)=2+4x 2(4x +2)=12. (2)解 由(1),知f (x )+f (1-x )=12,所以f (k m )+f (1-k m )=12(1≤k ≤m -1)(k ∈N *),即f (k m )+f (m -k m )=12.由题设知,a n =f (n m ),所以a k +a m -k =12,a m =f (m m )=f (1)=16.又S m =a 1+a 2+…+a m -1+a m ,① S m =a m -1+a m -2+…+a 1+a m ,②由①+②,得2S m =(m -1)×12+2a m =m 2-16,即S m =m 4-112(m ∈N *).(3)解 由b 1=13,b n +1=b 2n +b n =b n (b n +1), 显然对任意n ∈N *,b n >0, 则1b n +1=1b n (b n +1)=1b n -1b n +1, 即1b n +1=1b n -1b n +1, 所以T n =(1b 1-1b 2)+(1b 2-1b 3)+…+(1b n -1b n +1)=1b 1-1b n +1=3-1b n +1. 因为b n +1-b n =b 2n >0,所以b n +1>b n ,即数列{b n }是单调递增数列. 所以T n 关于n 递增,所以当n ∈N *时,T n ≥T 1.因为b 1=13,b 2=(13)2+13=49,所以T n ≥T 1=3-1b 2=34.由题意,知S m <34,即m 4-112<34,解得m <103,所以m 的最大值为3.3.设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1=1,设数列{b n }满足b n =a n +2n .(1)求证数列{b n }为等比数列,并求出数列{a n }的通项公式; (2)若数列c n =6n -3b n,T n 是数列{c n }的前n 项和,证明T n <3.(1)解 当n ≥2时,由⎩⎪⎨⎪⎧2S n =a n +1-2n +1+12S n -1=a n -2n+1⇒2a n =a n +1-a n -2n ,所以a n +1=3a n +2n , 从而b n +1=a n +1+2n +1=3(a n +2n )=3b n ,故{b n }是以3为首项,3为公比的等比数列, b n =a n +2n =3×3n -1=3n ,a n =3n -2n (n ≥2),因为a 1=1也满足,于是a n =3n -2n . (2)证明 c n =6n -3b n =2n -13n -1,则T n =130+331+532+…+2n -33n -2+2n -13n -1,①13T n =131+332+533+…+2n -33n -1+2n -13n ,② ①-②得,23T n =130+231+232+…+23n -1-2n -13n =1+23·1-13n -11-13-2n -13n =2-13n -1-2n -13n =2-2(n +1)3n, 故T n =3-n +13n -1<3.4.已知单调递增数列{a n }的前n 项和为S n ,满足S n =12(a 2n +n ).(1)求数列{a n }的通项公式;(2)设c n =⎩⎪⎨⎪⎧1a 2n +1-1,n 为奇数,3×2a n -1+1,n 为偶数,求数列{c n }的前n 项和T n .解 (1)n =1时,a 1=12(a 21+1),得a 1=1,当n ≥2时,S n -1=12(a 2n -1+n -1),得a n =S n -S n -1=12(a 2n -a 2n -1+1), 化简得(a n -1)2-a 2n -1=0,a n -a n -1=1或a n +a n -1=1(n ≥2), 又{a n }是单调递增数列,故a n -a n -1=1,所以{a n }是首项为1,公差为1的等差数列,故a n =n . (2)c n =⎩⎪⎨⎪⎧1a 2n +1-1,n 为奇数,3×21n a -+1,n 为偶数,当n 为偶数时,T n =(c 1+c 3+…+c n -1)+(c 2+c 4+…+c n ) =(122-1+142-1+…+1n 2-1)+3×(21+23+…+2n -1)+n 2=11×3+13×5+…+1(n -1)×(n +1)+3×2(1-42n)1-4+n 2=12×(11-13+13-15+…+1n -1-1n +1)+2×(42n-1)+n 2=2n +1+n 2-2n -42(n +1). 当n 为奇数时,T n =(c 1+c 3+…+c n )+(c 2+c 4+…+c n -1) =[122-1+142-1+…+1(n +1)2-1]+3×(21+23+…+2n -2)+n -12 =12×(11-13+13-15+…+1n -1n +2)+2×(412n --1)+n -12=2n +n 2-2n -92(n +2).所以T n=⎩⎪⎨⎪⎧2n+n 2-2n -92(n +2),n 为奇数,2n +1+n 2-2n -42(n +1),n 为偶数.5.已知函数f (x )=2x +33x ,数列{a n }满足a 1=1,a n +1=f (1a n ),n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =1a n -1a n (n ≥2),b 1=3,S n =b 1+b 2+…+b n ,若S n <m -2 0142对一切n ∈N *成立,求最小正整数m .解 (1)∵a n +1=f (1a n )=2a n +33a n =2+3a n 3=a n +23,∴{a n }是以1为首项,23为公差的等差数列.∴a n =1+(n -1)×23=23n +13.(2)当n ≥2时,b n =1a n -1a n =1(23n -13)(23n +13) =1(2n -1)(2n +1)9=92(12n -1-12n +1),又b 1=3=92(1-13),∴S n =b 1+b 2+…+b n =92(1-13+13-15+…+12n -1-12n +1)=92(1-12n +1)=9n2n +1,∵S n <m -2 0142对一切n ∈N *成立,即9n 2n +1<m -2 0142对一切n ∈N *成立,又9n 2n +1<92,∴m -2 0142≥92,即m ≥2 023.∴最小正整数m 为2 023.6.某工厂为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的维护费用会逐年增加,第一年的维护费用是4万元,从第二年到第七年,每年的维护费用均比上年增加2万元,从第八年开始,每年的维护费用比上年增加25%. (1)设第n 年该生产线的维护费用为a n ,求a n 的表达式;(2)若该生产线前n 年每年的平均维护费用大于12万元时,需要更新生产线.求该生产线前n 年每年的平均维护费用,并判断第几年年初需要更新该生产线?解 (1)由题意知,当n ≤7时,数列{a n }是首项为4,公差为2的等差数列, ∴a n =4+(n -1)×2=2n +2.当n ≥8时, 数列{a n }从a 7开始构成首项为a 7=2×7+2=16, 公比为1+25%=54的等比数列,则此时a n =16×⎝⎛⎭⎫54n -7,∴a n =⎩⎪⎨⎪⎧2n +2,n ≤7,16×⎝⎛⎭⎫54n -7,n ≥8.(2)设S n 为数列{a n }的前n 项和,当1≤n ≤7时,S n =4n +n (n -1)2×2=n 2+3n ,当n ≥8时,由S 7=70,则S n =70+16×54×1-⎝⎛⎭⎫54n -71-54=80×⎝⎛⎭⎫54n -7-10, ∴该生产线前n 年每年的平均维护费用为 S nn =⎩⎨⎧n +3,1≤n ≤7,80×⎝⎛⎭⎫54n -7-10n,n ≥8.当1≤n ≤7时,⎩⎨⎧⎭⎬⎫S n n 为递增数列,当n ≥8时,∵S n +1n +1-S nn =80×⎝⎛⎭⎫54n -6-10n +1-80×⎝⎛⎭⎫54n -7-10n=80×⎝⎛⎭⎫54n -7·⎝⎛⎭⎫n 4-1+10n (n +1)>0,∴S n +1n +1>S n n.∴⎩⎨⎧⎭⎬⎫S n n 也为递增数列. 又∵S 77=10<12,S 88=80×54-108=11.25<12,S 99=80×⎝⎛⎭⎫542-109≈12.78>12, ∴第9年年初需要更新生产线.。

新高考数学二轮专题复习高频考点强化训练2(附解析)

新高考数学二轮专题复习高频考点强化训练2(附解析)

强化训练2 复数、平面向量一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·北京卷]若复数z 满足i·z =3-4i ,则|z |=( )A .1B .5C .7D .252.[2022·山东潍坊三模]已知复数z 满足(i -1)z =1+i ,其中i 是虚数单位,则z 的虚部为( )A.-1 B .1 C .0 D .23.[2022·山东淄博一模]若复数z =2+i a +i的实部与虚部相等,则实数a 的值为( ) A .-3 B .-1 C .1 D .34.[2022·河北保定二模]已知向量AB → =(2,-1),BC → =(1,-3),则|AC → |=( )A .3B .4C .5D .65.[2022·山东临沂三模]向量a =(1,1),b =(-1,0),则a 与b 的夹角为( ) A .π6 B .π4C .3π4D .2π36.[2022·福建福州三模]已知向量a ,b 为单位向量,且a ⊥b ,则b ·(4a -3b )=( )A .-3B .3C .-5D .57.如图,在▱ABCD 中,M 为BC 的中点,AC → =mAM → +nBD → ,则m +n =( )A .1B .43C .53D .2 8.[2022·湖南师大附中一模]在△ABC 中,已知∠A =90°,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则PB → ·PC → 的最大值为( )A .165B .365C .465D .565二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.[2022·山东日照二模]已知向量m =(2,0),n =(1,1),则( )A .m ∥nB .(m -n )⊥nC .m ⊥nD .|m |=2 |n |10.[2022·广东广州三模]若z +|z |=8-4i ,其中i 为虚数单位,则下列关于复数z 的说法正确的是( )A .|z |=5B .z 的虚部为-4iC .z̅=-3+4iD .z 在复平面内对应的点位于第四象限11.[2022·山东淄博三模]已知复数z 1,z 2,满足|z 1|·|z 2|≠0,下列说法正确的是( )A .若|z 1|=|z 2|,则z 21 =z 22B .|z 1+z 2|≤|z 1|+|z 2|C .若z 1z 2∈R ,则z 1z 2∈R D .|z 1z 2|=|z 1||z 2|12.[2022·山东聊城三模]在平面四边形ABCD 中,|AB → |=|BC → |=|CD → |=DA → ·DC → =1,BA → ·BC → =12,则( ) A.|AC → |=1B .|CA → +CD → |=|CA → -CD → |C .AD → =2BC →D .BD → ·CD → =2+32三、填空题(本题共4小题,每小题5分,共20分)13.[2022·辽宁鞍山二模]已知i 为虚数单位,则3+i 1-i=________(写成最简形式). 14.[2022·河北张家口一模]已知向量a =(-1,-2),b =(-x ,3),若a ∥b ,则x =________.15.[2022·广东茂名二模]已知向量a =(t ,2t ),b =(-t ,1),若(a -b )⊥(a +b ),则t =________.16.[2022·山东师范大学附中模拟]边长为1的正方形内有一内切圆,MN 是内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM → ·PN→ 的取值范围是________.强化训练2 复数、平面向量1.解析:方法一 由i·z =3-4i ,得z =3-4i i =(3-4i )·(-i )i·(-i )=-3i +4i2-i2=-4-3i ,所以|z|=(-4)2+(-3)2 =5.故选B. 方法二 由i·z =3-4i ,得z =3-4i i ,所以|z|=|3-4i i |=|3-4i||i| =32+(-4)202+12=5.故选B. 答案:B2.解析:∵(i -1)z =1+i , ∴z =1+i -1+i =(1+i )(-1-i )(-1+i )(-1-i )=-2i 2 =-i , ∴z =i ,即z 的虚部为1.答案:B 3.解析:z =2+i a +i =(2+i )(a -i )(a +i )(a -i ) =2a +1+(a -2)i a2+1, 因为复数z =2+i a +i的实部与虚部相等, 所以2a +1=a -2,解得a =-3,故实数a 的值为-3.答案:A4.解析:由题意可得AC→ =AB → +BC → =(3,-4),所以|AC → |=32+(-4)2 =5.答案:C5.解析:由题意得:cos 〈a ,b 〉=a·b |a||b| =-12=-22 ,则a 与b 的夹角为3π4 . 答案:C6.解析:由题意可得,|a|=1,|b|=1,a·b =0,则b·(4a -3b )=4a·b -3b2=-3b2=-3.答案:A7.解析:AM → =AB → +12 BC → =AB → +12AD → ,而BD → =AD → -AB → , 故AC → =m (AB → +12 AD → )+n (AD → -AB → )=(m -n )AB → +(m 2+n )AD → ,而AC → =AB → +AD → 且AB → ,AD → 不共线,故⎩⎪⎨⎪⎧m -n =1m 2+n =1 ⇒⎩⎪⎨⎪⎧m =43n =13⇒m +n =53 . 答案:C8.解析:设AD 为斜边BC 上的高,则圆A 的半径r =AP =2×44+16=455 , 设E 为斜边BC 的中点,〈PA → ,AE → 〉=θ,因为|PA → |=455,|AE → |= 5 , 则PB → ·PC → =(PA → +AB → )·(PA→ +AC → ) =PA → 2+PA → ·(AB→ +AC → ) =165 +PA → ·2AE →=165 +2×455 ×5 cos θ=165 +8cos θ,所以PB → ·PC → 的最大值为165 +8=565 .答案:D9.解析:由m =(2,0),n =(1,1),m -n =(1,-1),对于A ,若m ∥n ,由2×1≠0×1,故A 错误;对于B ,若(m -n )⊥n ,则1×1+(-1)×1=0,符合题意,故B 正确; 对于C ,若m ⊥n ,由m·n =2×1+0×1=2≠0,故C 错误;对于D ,|m|=2,|n|=12+12 = 2 ,故D 正确.答案:BD10.解析:设z =a +bi ,则|z|=a2+b2 ,z +|z|=a +bi +a2+b2 =8-4i ,则⎩⎨⎧a +a2+b2=8b =-4,即得⎩⎨⎧a =3b =-4 ,即z =3-4i , |z|=9+16 =5,A 正确;z 的虚部为-4,B 错误;z ̅=3+4i ,C 错误;z 在复平面内对应的点为(3,-4),位于第四象限,D 正确.答案:AD11.解析:对选项A ,设z1=1+i ,z2= 2 i ,则|z1|=|z2|= 2 ,z 21 =(1+i )2=2i ,z 2 =( 2 i )2=-2,不满足z 21 =z 2 ,故A 错误. 对选项B ,设z1,z2在复平面内表示的向量分别为z1,z2,且z1,z2≠0, 当z1,z2方向相同时,|z1+z2|=|z1|+|z2|,当z1,z2方向不相同时,|z1+z2|<|z1|+|z2|,综上|z1+z2|≤|z1|+|z2|,故B 正确.对选项C ,设z1=1+i ,z2=1-i ,z1z2=(1+i )(1-i )=2∈R ,z1z2 =1+i 1-i =(1+i )2(1-i )(1+i ) =i ∉R ,故C 错误.对选项D ,设z1=a +bi ,z2=c +di ,a ,b ,c ,d≠0,z1z2=(a +bi )(c +di )=(ac -bd )+(ad +bc )i ,则|z1z2|=(ac -bd )2+(ad +bc )2 =(ac )2+(bd )2+(ad )2+(bc )2 ,|z1||z2|=a2+b2 ·c2+d2 =(ac )2+(bd )2+(ad )2+(bc )2 =|z1z2|,故D 正确.答案:BD12.解析:因为|AB → |=|BC → |=|CD → |=1,BA → ·BC → =|BA → ||BC → |cos B =12,可得B =π3 ,所以△ABC 为等边三角形,则|AC→ |=1 ,故A 正确; 因为|CD → |=1,所以CD → 2=1,又DA → ·DC → =1,所以CD → 2=DA → ·DC→ , 得DC → 2-DA → ·DC → =DC → ·(DC → -DA → )=DC → ·AC→ =0, 所以AC ⊥CD ,则|CA→ +CD → |=|CA → -CD → |,故B 正确; 根据以上分析作图如下:由于BC 与AD 不平行,故C 错误;建立如上图所示的平面直角坐标系,则B (-12 ,0),C (12 ,0),D (1+32 ,12 ),BD → =(2+32 ,12 ),CD → =(32 ,12), 所以BD → ·CD → =2+32,故D 正确. 答案:ABD13.解析:3+i 1-i =(3+i )(1+i )(1-i )(1+i )=3+3i +i +i22 =1+2i. 答案:1+2i14.解析:因为a ∥b ,所以2x =-3,解得x =-32. 答案:-3215.解析:因为(a -b )⊥(a +b ),所以(a -b )·(a +b )=0,所以a2-b2=0,则|a|=|b|,所以t2+4t2=t2+1,所以t =±12 .答案:±1216.解析:如图所示:设正方形ABCD 的内切圆为圆O ,当弦MN 的长度最大时,MN 为圆O 的一条直径,PM → ·PN → =(PO → +OM → )·(PO → -OM → )=|PO → |2-|OM → |2=|PO → |2-14, 当P 为正方形ABCD 的某边的中点时,|OP → |min =12 ,当P 与正方形ABCD 的顶点重合时,|OP → |max =22, 即12 ≤|OP → |≤22 ,因此,PM → ·PN → =|PO → |2-14 ∈⎣⎢⎡⎦⎥⎤0,14 . 答案:⎣⎢⎡⎦⎥⎤0,14。

高考数学二轮复习专题补偿练2基本初等函数、函数与方程理

高考数学二轮复习专题补偿练2基本初等函数、函数与方程理

补偿练二 基本初等函数、函数与方程(建议用时:40分钟)一、选择题 1.函数f (x )=3x21-x+lg(3x +1)的定义域是( ).A.⎝ ⎛⎭⎪⎫-13,+∞B.⎝ ⎛⎭⎪⎫-13,1C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,-13 解析 由题意知⎩⎪⎨⎪⎧1-x >0,3x +1>0,解得-13<x <1.答案 B2.若奇函数f (x )在(0,+∞)上的解析式是f (x )=x (1-x ),则在(-∞,0)上,f (x )的解析式是( ).A .f (x )=-x (1-x )B .f (x )=x (1+x )C .f (x )=-x (1+x )D .f (x )=x (1-x )解析 当x ∈(-∞,0)时,-x ∈(0,+∞), ∴f (-x )=-x (1+x ), 又f (-x )=-f (x ), ∴f (x )=x (1+x ). 答案 B3.设函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2+x -2,x >1,则f ⎝⎛⎭⎪⎫1f的值为 ( ).A.1516 B .-2716 C.89 D .18 解析 f (2)=4,1f=14, ∴f ⎝⎛⎭⎪⎫1f =f ⎝ ⎛⎭⎪⎫14=1-⎝ ⎛⎭⎪⎫142=1516. 答案 A4.已知a =log 23.6,b =log 43.2,c =log 43.6,则( ).A .a >b >cB .a >c >bC .b >a >cD .c >a >b解析 a =log 23.6=log 43.62=log 412.96,又∵y =log 4x 在(0,+∞)是增函数,而3.2<3.6<12.96∴a >c >b . 答案 B5.已知幂函数y =f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,则log 2f (2)的值为( ).A.12 B .-12C .2D .-2解析 设幂函数f (x )=x α, 则f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12α=22,解得α=12,所以f (x )=x .∴log 2f (2)=log 22=12.答案 A 6.函数f (x )=e1-x2的部分图象大致是( ).解析 因函数f (x )为偶函数,所以图象关于y 轴对称,排除A ,B ,又因为e 1-x2>0,所以排除D. 答案 C7.函数f (x )=lg x -1x的零点所在的区间是( ).A .(3,4)B .(2,3)C .(1,2)D .(0,1)解析 因为f (2)=lg 2-12<0,f (3)=lg 3-13>0,且f (x )在(0,+∞)上单调递增,所以函数的零点在区间(2,3)上.答案 B8.已知函数f (x )=x -ln |x |x2,则函数y =f (x )的大致图象为 ( ).解析 因为函数f (x )为非奇非偶函数, 所以排除B 、C.又f (-1)=-1<0,排除D. 答案 A 二、填空题9.若函数f (x )为奇函数,当x ≥0时,f (x )=x 2+x ,则f (-2)的值______.解析 由题意知f (-2)=-f (2)=-(22+2)=-6. 答案 -610.定义a *b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c =______(用a ,b ,c 作答).解析 log 30.3<0<0.33<1=30<30.3, 即有c <b <a依题意得:(a *b )*c =b *c =c . 答案 c11.某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *).则当每台机器运转______年时,年平均利润最大,最大值是______万元.解析 由题意知每台机器运转x 年的年平均利润为y x=18-(x +25x),而x >0,故yx≤18-225=8,当且仅当x =5时,年平均利润最大,最大值为8万元. 答案 5 812.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≤0,x 2-x ,x >0,若函数g (x )=f (x )-m 有三个不同的零点,则实数m的取值范围是________.解析 由g (x )=f (x )-m =0得f (x )=m ,作出函数y =f (x )的图象, 当x >0时,f (x )=x 2-x =⎝ ⎛⎭⎪⎫x -122-14≥-14,所以要使函数g (x )=f (x )-m 有三个不同的零点, 则-14<m <0,即m ∈⎝ ⎛⎭⎪⎫-14,0.答案 ⎝⎛⎭⎪⎫-14,013.已知函数f (x )在实数集R 上具有下列性质:①直线x =1是函数f (x )的一条对称轴;②f (x +2)=-f (x );③当1≤x 1<x 2≤3时,(f (x 2)-f (x 1))·(x 2-x 1)<0,则f (2 011),f (2 012),f (2 013)从大到小的顺序为____________. 解析 由f (x +2)=-f (x )得f (x +4)=f (x ),所以周期是4.所以f (2 011)=f (3),f (2 012)=f (0),f (2 013)=f (1),又直线x =1是函数f (x )的一条对称轴. 所以f (2 012)=f (0)=f (2).由(f (x 2)-f (x 1))·(x 2-x 1)<0可知当1≤x 1<x 2≤3时,函数单调递减;所以f (1)>f (2)>f (3),故f (2 013)>f (2 012)>f (2 011).答案 f (2 013)>f (2 012)>f (2 011)14.已知定义在R 上的函数f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0成中心对称,对任意实数x 都有f (x )=-1f ⎝ ⎛⎭⎪⎫x +32,且f (-1)=1,f (0)=-2,则f (0)+f (1)+…+f (2016)=________.解析 由函数关于点⎝ ⎛⎭⎪⎫-34,0对称可知,f (x )+f ⎝ ⎛⎭⎪⎫-32-x =0,所以f (1)+f ⎝ ⎛⎭⎪⎫-52=0,又f (x )=-1f ⎝ ⎛⎭⎪⎫x +32,所以f ⎝ ⎛⎭⎪⎫-52=-1f -=-1,所以f (1)=1,因为f (x )=-1f ⎝ ⎛⎭⎪⎫x +32,所以f (x )=-1f ⎝ ⎛⎭⎪⎫x +32=-1-1f x +=f (x +3),即f (x )是以3为周期的函数,故f(3)=f(0)=-2,f(2)=f(-1)=1,所以f(0)+f(1)+f(2)+…+(2 016)=f(0)+[f(1)+f(2)+f(3)]×672=f(0)=-2.答案-215.设函数y=f(x)是定义在R上的奇函数,且满足f(x-2)=-f(x),对一切x∈R都成立,又当x∈[-1,1]时,f(x)=x3,则下列四个命题:①函数y=f(x)是以4为周期的周期函数;②当x∈[1,3],f(x)=(2-x)3;③函数y=f(x)的图象关于x=1对称;④函数y =f(x)的图象关于(2,0)对称,其中正确命题的序号是________.解析∵y=f(x)是定义在R上的奇函数,∴f(-x)=-f(x),∵f(x-2)=-f(x)对一切x∈R都成立,∴f(x-4)=f(x),∴函数y=f(x)是以4为周期的周期函数,故①正确;当x∈[1,3],x-2∈[-1,1],f(x-2)=(x-2)3=-f(x),∴f(x)=(2-x)3,故②正确;∵f(x-2)=-f(x),∴f(1+x)=f(1-x),∴函数y=f(x)的图象关于x=1对称,故③正确;∵当x∈[1,3]时,f(x)=(2-x)3,∴f(2)=0,∵f(x-2)=-f(x),∴f(-x-2)=-f(-x)=f(x)=-f(x-2),∴f(x+2)=-f(x-2),∴函数y=f(x)的图象关于(2,0)对称,故④正确.答案①②③④。

高考数学二轮复习专练二中档小题(四)

高考数学二轮复习专练二中档小题(四)

中档小题(四)1.双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平分圆C :(x -1)2+(y -2)2=1的周长,此双曲线的离心率等于( )A.5 B .2 C. 3 D. 2 2.(2013·郑州市第二次质量检测)在数列{a n }中,a n +1=ca n (c 为非零常数),前n 项和为S n =3n +k ,则实数k 为( )A .-1B .0C .1D .2 3.(2013·湖南省五市十校第一次联合检测)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为( )A.π4B.π3C.π2D.3π4 4.(2013·高考湖南卷)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )A.32 B .1 C.2+12D. 25.(2013·温州市第一次适应性测试)在△ABC 中,若∠A =120°,AB →·AC →=-1,则|BC →|的最小值是( )A. 2 B .2 C. 6 D .6 6.(2013·福建省质量检测)已知点A (1,2),B (3,2),以线段AB 为直径作圆C ,则直线l :x +y -3=0与圆C 的位置关系是( )A .相交且过圆心B .相交但不过圆心C .相切D .相离 7.(2013·高考江西卷)阅读如下程序框图,如果输出i =5,那么在空白矩形框中应填入的语句为( )A .S =2*i -2B .S =2*i -1C .S =2*iD .S =2*i +4 8.(2013·山西省上学期诊断考试)已知函数f (x )=M cos(ωx +φ)(M >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,AC =BC =22,∠C =90°,则f (12)的值为( )A .-12B.12 C .-22D.229.(2013·南昌市第一次模拟测试)下列说法中,不正确的是( )A .点(π8,0)为函数f (x )=tan(2x +π4)的一个对称中心B .设回归直线方程为y ^=2-2.5x ,当变量x 增加一个单位时,y 大约减少2.5个单位 C .命题“在△ABC 中,若sin A =sin B ,则△ABC 为等腰三角形”的逆否命题为真命题D .对于命题p :“x x -1≥0”,则¬p :“xx -1<0”10.(2013·辽宁省五校第一联合体考试)函数f (x )=x 3-bx 2+1有且仅有两个不同零点,则b 的值为( )A.342 B.322C.3232 D .不确定 11.(2013·北京市东城区统一检测)某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p %,第二次提价q %;方案乙:每次都提价p +q2%,若p >q >0,则提价多的方案是________.12.(2013·洛阳市统一考试)将一颗骰子先后投掷两次分别得到点数a 、b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为________.13.(2013·安徽省“江南十校”联考)设动点P (x ,y )在区域 Ω:⎩⎪⎨⎪⎧x ≥0y ≥x x +y ≤4上(含边界),过点P 任意作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为________.14.(2013·高考重庆卷)设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为 ________.备选题 1.(2013·高考重庆卷)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))=( )A .-5B .-1C .3D .42.(2013·高考课标全国卷Ⅰ)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 3.(2013·大连市双基测试)已知点A (-2,0),点B (2,0),且动点P 满足|P A |-|PB |=2,则动点P 的轨迹与直线y =k (x -2)有两个交点的充要条件为k ∈________.4.(2013·合肥市教学质量检测)下列命题中真命题的编号是________.(填上所有正确的编号)①向量a 与向量b 共线,则存在实数λ使a =λb (λ∈R );②a ,b 为单位向量,其夹角为θ,若|a -b |>1,则π3<0≤π;③A 、B 、C 、D 是空间不共面的四点,若AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 一定是锐角三角形;④向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC →|,则AC →与BC →同向; ⑤若向量a ∥b ,b ∥c ,则a ∥c .答案:1.【解析】选A.因为双曲线的渐近线平分圆的周长,所以该渐近线过圆心,即y =bax过(1,2),即b a =2,因为e =ca =a 2+b 2a,所以e = 5.2.【解析】选A.依题意得,数列{a n }是等比数列,a 1=3+k ,a 2=S 2-S 1=6,a 3=S 3-S 2=18,则62=18(3+k ),由此解得k =-1.3.【解析】选A.由题意知,sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2·cos B ·cos C =sin B ·cos C +cos B ·sin C 两边除以cos B ·cos C 得tan B+tan C =-2,tan (B +C )=tan B +tan C 1-tan B tan C =-1=-tan A ,所以角A =π4.4.【解析】选D.由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为2的矩形,因此该几何体的正视图是一个长为2,宽为1的矩形,其面积为 2.5.【解析】选C.∵AB →·AC →=-1,∴|AB →|·|AC →|cos 120°=-1,即|AB →|·|AC →|=2,∴|BC →|2=|AC →-AB →|2=AC →2-2AB →·AC →+AB →2≥2|AB →|·|AC →|-2AB →·AC →=6,∴|BC →|min = 6.6.【解析】选B.以线段AB 为直径作圆C ,则圆C 的圆心坐标C (2,2),半径r =12|AB |=12×(3-1)=1,点C 到直线l :x +y -3=0的距离为|2+2-3|2=22<1,所以直线与圆相交,并且点C 不在直线l :x +y -3=0上.7.【解析】选C.当i =2时,S =2×2+1=5<10;当i =3时,仍然循环,排除D ;当i =4时,S =2×4+1=9<10;当i =5时,不满足S <10,即此时S ≥10,输出i .此时A 项求得S =2×5-2=8,B 项求得S =2×5-1=9,C 项求得S =2×5=10,故只有C 项满足条件.8.【解析】选A.依题意,△ABC 是直角边长为22的等腰直角三角形,因此其边AB 上的高是12,函数f (x )的最小正周期是2,故M =12,2πω=2,ω=π,f (x )=12cos(πx +φ).又函数f (x )是奇函数,于是有φ=k π+π2,其中k ∈Z .由0<φ<π得φ=π2,故f (x )=-12sin πx ,f (12)=-12sin π2=-12. 9.【解析】选D.由y =tan x 的对称中心为(k π2,0)(k ∈Z ),知A 正确.由回归直线方程知B 正确.在△ABC 中,若sin A =sin B ,则A =B ,C 正确.10.【解析】选C.f ′(x )=3x 2-2bx =x (3x -2b ),令f ′(x )=0,则x =0,x =2b3.当曲线f (x )与x 轴相切时,f (x )有且只有两个不同零点,因为f (0)=1≠0,所以f (2b 3)=0,解得b =3232.11.【解析】设原价为a ,则方案甲提价后为a (1+p %)(1+q %),方案乙提价后为a (1+p +q 2%)2.由于(1+p %)(1+q %)<⎣⎡⎦⎤(1+p %)+(1+q %)22=(1+p +q 2%)2,故提价多的是方案乙.【答案】乙 12.【解析】依题意, 将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有(1,1),(1,2),(1,3),…,(6,6),共36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即2aa 2+b 2≤2,a ≤b 的数组(a ,b )有(1,1),(1,2),(1,3),(1,4),…,(6,6),共1+2+3+4+5+6=21种,因此所求的概率等于2136=712.【答案】71213.【解析】如图,区域Ω为△MON 及其内部,A 、B 在区域Ω中,则|AB |的最大值为|OM |=4.所以以AB 为直径的圆的面积的最大值为π·(42)2=4π.【答案】4π 14.【解析】由题意,要使8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,需Δ=64sin 2α-32cos 2α≤0,化简得cos 2α≥12.又0≤α≤π,∴0≤2α≤π3或5π3≤2α≤2π,解得0≤α≤π6或5π6≤α≤π.【答案】⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π备选题 1.【解析】选C.因为log 210与lg 2(即log 102)互为倒数,所以lg(log 210)与lg(lg 2)互为相反数.不妨令lg(log 210)=x ,则lg(lg 2)=-x ,而f (x )+f (-x )=(ax 3+b sin x +4)+[a (-x )3+b sin(-x )+4]=8,故f (-x )=8-f (x )=8-5=3,故选C.2.【解析】选D.设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b 2=1, ①x 22a 2+y 22b 2=1. ②①-②得(x 1+x 2)(x 1-x 2)a 2=-(y 1-y 2)(y 1+y 2)b 2,∴y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2). ∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a2.而k AB =0-(-1)3-1=12, ∴b 2a 2=12,∴a 2=2b 2, ∴c 2=a 2-b 2=b 2=9, ∴b =c =3,a =32,∴E 的方程为x 218+y 29=1.3.【解析】由已知得动点P 的轨迹为一双曲线的右支且2a =2,c =2,则b =c 2-a 2=1,∴P 点的轨迹方程为x 2-y 2=1(x >0),其一条渐近线方程为y =x .若P 点的轨迹与直线y =k (x -2)有两个交点,则需k ∈(-∞,-1)∪(1,+∞).【答案】(-∞,-1)∪(1,+∞) 4.【解析】①不是真命题,当b =0时,命题不成立;对于②,|a -b |=a 2-2a ·b +b 2=1-2cos θ+1>1,解得cos θ<12,因为向量夹角范围是[0,π],所以θ∈(π3,π];对于③,易知,BD >AB ,CD >AC ,所以BD 2+CD 2>AB 2+AC 2=BC 2,所以∠BDC 是锐角,同理可证其余两边所对的角都是锐角,所以△BCD 一定是锐角三角形;④不对,当C 点位于线段AB 上时,满足题设条件,但是两向量是反向的;⑤不对,当b =0时,命题就不成立.【答案】②③。

高考数学二轮复习题型专项训练—客观题12+4标准练(2)

高考数学二轮复习题型专项训练—客观题12+4标准练(2)

高考数学二轮复习题型专项训练—客观题12+4标准练(2)一、单项选择题1.设集合M={x||x|≤2},N={x|x2-2x-3<0},则集合M∩N=()A.{x|-1≤x<2}B.{x|-1<x≤2}C.{x|-2<x≤3}D.{x|-2≤x<3},则z的共轭复数在复平面内对应的点位于()2.已知i为虚数单位,复数z=2−i1+iA.第一象限B.第二象限C.第三象限D.第四象限3.已知y=f(x)是定义在R上的周期为4的奇函数.若当x∈[0,1]时,f(x)=log2(x+a),则f(2 021)=()A.-1B.0C.1D.24.某工厂生产一批医疗器械的零件,每个零件生产成型后,得到合格零件的概率为0.7,得到的不合格零件可以进行一次技术精加工,技术精加工后得到合格零件的概率是0.3,而此时得到的不合格零件将不能再加工,只能成为废品,则生产时得到合格零件的概率是() A.0.49 B.0.73 C.0.79 D.0.915.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:C=W log2(1+SN).它表示:在受噪音干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数里面的1可以忽略不计.按照香农公式,若带宽W增大到原来的1.1倍,信噪比SN从1 000提升到16 000,则C大约增加了(附:lg 2≈0.3)()A.21%B.32%C.43%D.54%6.意大利数学家斐波那契的《算经》中记载了一个有趣的问题:已知一对兔子每个月可以生一对小兔子(一雄一雌),而每一对小兔子在它们出生后的第3个月里,又能生一对小兔子.假如没有发生死亡现象,那么从第1个月开始,每月末的兔子总对数依次为:1,1,2,3,5,8,13,21,34,55,89,144,…,如果用a n表示第n个月的兔子的总对数,那么a n=a n-1+a n-2(n∈N*,且n≥3),这就是著名的斐波那契数列,其中,a1=1,a2=1.若从该数列的前120项中随机地抽取一个数,则这个数是偶数的概率为()A.13B.23C.12D.347.《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系.例如,堑堵指底面为直角三角形且侧棱垂直于底面的三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵ABC-A1B1C1中,AC⊥BC,若AA1=√2,AB=2,当阳马B-A1ACC1的体积最大时,堑堵ABC-A1B1C1中异面直线A1C与AB所成角的大小是()A.π6B.π4C.π3D.π28.已知拋物线y2=2px(p>0)上有两点A,B,O为坐标原点,以OA,OB为邻边的四边形为矩形,且点O到直线AB距离的最大值为4,则p=()A.1B.2C.3D.4二、多项选择题9.某教练组为了比较甲、乙两名篮球运动员的竞技状态,选取了他们最近10场常规赛得分如下,则从最近10场比赛的得分看()甲:8,12,15,21,23,25,26,28,30,34乙:7,13,15,18,22,24,29,30,36,38A.甲的中位数大于乙的中位数B.甲的平均数大于乙的平均数C.甲的竞技状态比乙的更稳定D.乙的竞技状态比甲的更稳定10.已知函数f (x )=sin ωx+√3cos ωx (ω>0)的零点构成一个公差为π2的等差数列,把函数f (x )的图象沿x 轴向右平移π6个单位长度,得到函数g (x )的图象,关于函数g (x ),下列说法正确的是( )A.在区间[π4,π2]上单调递减B.其图象关于直线x=π2对称 C.函数g (x )是偶函数D.当x ∈[π6,2π3]时,g (x )∈[-√3,2]11.如图,在直角三角形ABC 中,A=90°,|AB|=√5,|AC|=2√5,点P 在以A 为圆心且与边BC 相切的圆上,则( )A.点P 所在圆的半径为2B.点P 所在圆的面积为4πC.PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ 的最大值为14D.PB ⃗⃗⃗⃗⃗ ·PC⃗⃗⃗⃗⃗ 的最大值为16 12.已知a>0,b>0,且a+2b=2,则下列说法正确的是 ( )A.5a +25b ≥15B.4a +12b 2≥6 C.b+√a 2+b 2≥85D.b ln a2+a ln(2b)≤0三、填空题13.已知双曲线x2-y 2m=1的一个焦点与抛物线8x+y2=0的焦点重合,则m的值为.14.有5名医生被安排到两个接种点进行新冠疫苗的接种工作,若每个接种点至少安排两名医生,且其中一名负责接种信息录入工作,则不同的安排方法有种(数字作答).15.在△ABC中,AB=AC,BC=4,D为BC边的中点,沿中线AD折起,使∠BDC=60°,连接BC,所得四面体ABCD的体积为√3,则此四面体内切球的表面积为.16.在一个三角形中,到三个顶点距离之和最小的点叫做这个三角形的费马点.如图,在△ABC中,P为△ABC的费马点,经证明它也满足∠APB=∠BPC=∠CPA=120°,因此费马点也称为三角形的等角中心.在△ABC外作等边△ACD,再作△ACD的外接圆,则外接圆与线段BD的交点P即为费马点.若AB=1,BC=2,∠CAB=90°,则PA+PB+PC=.答案及解析1.B 解析 M={x||x|≤2}={x|-2≤x ≤2},N={x|x 2-2x-3<0}={x|-1<x<3},则M ∩N={x|-1<x ≤2}.2.A 解析 ∵z=2−i1+i =(2-i)(1-i)(1+i)(1-i)=2−1−3i 2=12−32i,∴z =12+32i,故z 的共轭复数在复平面内对应的点位于第一象限.3.C 解析 因为y=f (x )是定义在R 上的奇函数,x ∈[0,1]时,f (x )=log 2(x+a ),所以f (0)=log 2(0+a )=0,所以a=1.又因为y=f (x )的周期为4, 所以f (2 021)=f (4×505+1)=f (1)=1.4.C 解析 设事件A :“第一次就得到合格零件”,事件B : “第一次得到不合格零件,进行一次技术精加工后得到合格零件”,所以P (A )=0.7, P (B )=(1-0.7)×0.3=0.09,所以生产时得到合格零件的概率是P (A )+P (B )=0.7+0.09=0.79.5.D 解析 由题意1.1Wlog 216 000Wlog 21 000-1=1.1×lg16 000lg1 000-1=1.1×3+4lg23-1≈0.54,所以C 大约增加了54%.6.A 解析 因为奇数加奇数结果是偶数,奇数加偶数结果是奇数,偶数加奇数结果是奇数,所以数列中任意相邻的三项,其中一项为偶数,两项为奇数,所以前120项中偶数有40项,所以这个数是偶数的概率为40120=13.7.C 解析 在堑堵ABC-A 1B 1C 1中, AA 1⊥平面ABC ,BC ⊂平面ABC ,所以AA 1⊥BC.又AC ⊥BC ,且AA 1∩AC=A ,所以BC ⊥平面ACC 1A 1 ,所以阳马B-A 1ACC 1的体积V=13S 矩形ACC 1A 1·BC=13·AC·AA 1·BC=√23AC·BC ,在直角三角形ABC 中,4=AB 2=AC 2+BC 2≥2AC·BC , 即AC·BC ≤2,当且仅当AC=BC=√2时取得等号. 所以当AC=BC=√2时,阳马B-A 1ACC 1的体积取得最大值2√23. 又A 1B 1∥AB ,所以∠CA 1B 1(或其补角)为异面直线A 1C 与AB 所成的角,连接B 1C (图略),则B 1C=√BC 2+BB 12=√2+2=2,A 1C=√AC 2+AA 12=√2+2=2,即A 1B 1=B 1C=A 1C=2,所以∠CA 1B 1=π3,即异面直线A 1C 与AB 所成角为π3.8.B 解析 由题意,设直线AB 的方程为x=my+b (b ≠0),与抛物线方程联立,消去x 可得y 2-2pmy-2pb=0.设点A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=-2pb.由OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=(my 1+b )(my 2+b )+y 1y 2=(m 2+1)y 1y 2+mb (y 1+y 2)+b 2=(m 2+1)(-2pb )+2pm 2b+b 2=b 2-2pb=0,解得b=2p 或b=0(舍去),即直线AB 的方程为x=my+2p ,则原点O 到直线AB 的距离d=√1+m 2,当m=0时,d 取最大值,且d 最大值=2p=4.所以p=2. 9.AC 解析 由题意可得,甲、乙中位数分别为23+252=24,22+242=23,即甲的中位数大于乙的中位数,A 正确;甲的平均数8+12+15+21+23+25+26+28+30+3410=22.2,乙的平均数7+13+15+18+22+24+29+30+36+3810=23.2,甲的平均数小于乙的平均数,B 错误;甲的方差s12=110×[(8-22.2)2+(12-22.2)2+…+(34-22.2)2]=61.56,乙的方差s22=110×[(7-23.2)2+(13-23.2)2+…+(38-23.2)2]=92.56,即s12<s22,甲的竞技状态比乙的更稳定,C正确,D错误.10.AD解析因为f(x)=sin ωx+√3cos ωx=2sin(ωx+π3),由于函数f(x)的零点构成一个公差为π2的等差数列,则该函数的最小正周期为π.因为ω>0,所以ω=2ππ=2,所以f(x)=2sin(2x+π3).将函数f(x)的图象沿x轴向右平移π6个单位长度,得到函数g(x)=2sin[2(x-π6)+π3]=2sin 2x的图象.对于A选项,当x∈[π4,π2]时,π2≤2x≤π,则函数g(x)在区间[π4,π2]上单调递减,A选项正确;对于B选项,g(π2)=2sin π=0≠±2,所以函数g(x)的图象不关于直线x=π2对称,B选项错误;对于C选项,函数g(x)的定义域为R,g(-x)=2sin(-2x)=-2sin 2x=-g(x),函数g(x)为奇函数,C选项错误;对于D选项,当π6≤x≤2π3时,π3≤2x≤4π3,则-√32≤sin 2x≤1,所以-√3≤g(x)≤2.所以当x∈[π6,2π3]时,g(x)∈[-√3,2],D选项正确.11.ABC解析如图,设BC的中点为M,过A作AH⊥BC于点H,连接PM,PA,AM.因为A=90°,|AB|=√5,|AC|=2√5,所以|BC|=5,|AM|=52,所以由12|AB||AC|=12|BC||AH|,得|AH|=|AB||AC||BC|=2,所以圆的半径为2,即点P 所在圆的半径为2,所以点P 所在圆的面积为4π,所以选项A 正确,B 正确;因为PB⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ,PC ⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0, 所以PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ =(PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )·(PA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=PA ⃗⃗⃗⃗⃗ 2+PA ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ·PA ⃗⃗⃗⃗⃗ =|PA ⃗⃗⃗⃗⃗ |2+PA ⃗⃗⃗⃗⃗ ·(AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=4+PA ⃗⃗⃗⃗⃗ ·2AM ⃗⃗⃗⃗⃗⃗ ,所以当P ,M ,A 三点共线,且P ,M 在点A 的两侧时,PA ⃗⃗⃗⃗⃗ ·2AM ⃗⃗⃗⃗⃗⃗ 取最大值,且(PA ⃗⃗⃗⃗⃗ ·2AM ⃗⃗⃗⃗⃗⃗ )max =2|PA ⃗⃗⃗⃗⃗ |·|AM ⃗⃗⃗⃗⃗⃗ |=2×2×52=10,所以PB ⃗⃗⃗⃗⃗ ·PC⃗⃗⃗⃗⃗ 的最大值为4+10=14,所以选项C 正确,D 错误.12.BCD 解析 因为a>0,b>0,且a+2b=2,对于A,5a +25b =5a +52b ≥2√5a ·52b =2√5a+2b =10,当且仅当5a =52b ,即a=1,b=12时取等号,故A 错误;对于B,因为a+2b=2,所以a=2-2b (0<b<1), 所以4a +12b 2=42−2b +12b 2=21−b +12b 2, 令f (b )=21−b +12b 2, 则f'(b )=2(1-b)2−1b 3=2b 3-(1-b)2b 3(1-b)2,因为0<b<1,所以b 3(1-b )2>0,令g (b )=2b 3-(1-b )2,0<b<1,则g'(b )=6b 2-2b+2>0,所以g (b )在区间(0,1)上单调递增,又g (12)=0,所以当b ∈(0,12)时,g (b )<0,即f'(b )<0,f (b )在区间(0,12)上单调递减,当b ∈(12,1)时,g (b )>0,即f'(b )>0,f (b )在区间(12,1)上单调递增,所以f (b )min =f (12)=6,故4a +12b 2≥6,即B 正确;对于C,b+√a 2+b 2=b+√(2-2b)2+b 2=b+√5b 2-8b +4, 令h (b )=b+√5b 2-8b +4,则h'(b )=1+√5b 2-8b+4=1+√5(b-45)√(b-45)2+425,当b>45时,h'(b )>0,所以h (b )在区间(45,+∞)上单调递增;当0<b<45时,h'(b )=1-√5√1+425·1(b-45)2,所以h'(b )在区间(0,45)上单调递增,又h'(35)=0,所以在区间(0,35)上,h'(b )<0,在区间(35,45)上,h'(b )>0,即在区间(0,35)上,h (b )单调递减,在区间(35,45)上,h (b )单调递增,所以b=35时h (b )取得最小值,且最小值为h (35)=85,所以b+√a 2+b 2≥85,故C 正确;对于D,b ln a 2+a ln(2b )=2b ln a+a ln(2b )=(2-a )ln a+a ln(2-a ), 令p (x )=(2-x )ln x+x ln(2-x ),0<x<2,则p (1)=0, p'(x )=-ln x+2x -1+ln(2-x )-x2−x =ln(2-x )-ln x+2−x x −x2−x ,当1<x<2时,ln(2-x )<0,-ln x<0,0<2−x x<1,x2−x >1,所以p'(x )<0,所以p (x )在区间(1,2)上单调递减,当0<x<1时,ln(2-x )>0,-ln x>0,2−x x>1,0<x2−x <1,所以p'(x )>0,所以p (x )在区间(0,1)上单调递增,所以x=1时p (x )有最大值,且p (x )max =p (1)=0,所以p (x )≤0在区间(0,2)上恒成立,所以p (a )≤0,故D 正确.13.3解析设抛物线的焦点为F,由8x+y2=0得y2=-8x,所以F(-2,0).由题意得m>0,所以1+m=22,得m=3.14.120解析根据题意,分两步进行安排:第一步,将5名医生分为两组,一组3人,另一组2人,每一组选出1人,负责接种信息录入工作,有C52·C21·C33·C31=60种分组方法;第二步,将分好的2组,安排到两个接种点,有2种情况,则共有60×2=120种安排方法.15.(84-48√3)π解析如图,由题意得BD=CD=2,AD⊥平面BCD,四面体A-BCD的体积V A-BCD=13×(12×2×2sin60°)·AD=√3,得AD=3,所以AB=√AD2+BD2=√32+22=√13,设BC的中点为E,连接AE,DE.因为BD=DC=2,∠BDC=60°,所以DE⊥BC,BC=BD=DC=2,DE=√3,所以AE⊥BC.所以AE=√AB2-BE2=√13−1=2√3.所以四面体A-BCD的表面积S=(12×2×3)×2+12×2×√3+12×2×2√3=6+3√3.设内切球的半径为R,由V A-BCD=13×S·R=(2+√3)R=√3,得R=√32+√3=2√3-3,所以内切球的表面积为4πR2=12(7-4√3)π=(84-48√3)π.16.√7 解析 根据题意有,∠APB=∠BPC=∠CPA=120°,则∠PAB+∠PBA=60°.因为AB=1,BC=2,∠CAB=90°,所以∠ABC=60°,即∠PBC+∠PBA=60°,所以∠PAB=∠PBC ,从而有△PAB ∽△PBC ,则PA PB =PB PC =AB BC =12,则PC=2PB=4PA ,在△PAB 中,由余弦定理,可得PA 2+PB 2-12=2PA·PB cos 120°,解得PB=2√77,PA=√77,则PC=4√77,故PA+PB+PC=√7.。

高考数学二轮复习之专练二中档小题(八)

高考数学二轮复习之专练二中档小题(八)

中档小题(八)1.(2013·江西省高三上学期七校联考)已知条件p :x ≤1,条件q :1x<1,则綈p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件2.如图,一个简单几何体的正视图和侧视图相同,是由一个正方形与一个正三角形构成,俯视图中圆的半径为 3.则该几何体的表面积为( )A .15πB .18πC .21πD .24π3.(2013·湖北省八校高三第二次联考)两个正数a ,b 的等差中项是92,一个等比中项是25,且a >b ,则抛物线y 2=-b ax 的焦点坐标为( ) A .(-516,0) B .(-15,0) C .(15,0) D .(-25,0) 4.(2013·高考安徽卷)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A.23 B.25C.35D.9105.(2013·高考陕西卷)已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定6.2013年,各大品牌汽车继续在中国的汽车市场上相互博弈,汽车的配置与销售价格以及维修费用等成为人们购买汽车时需要考虑的因素,某汽车制造商为了进一步拓宽市场,统计了某种品牌的汽车的使用年限x 和所支出的维修费用y (万元),得到的统计资料如表所示:若由资料,可知15年,若该品牌汽车在使用10年时报废,则这10年的维修总费用约为( )A .11.28万元B .11.38万元C .12.28万元D .12.38万元 7.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≥0x -2y +k ≥0x -1≤0,如果目标函数z =3x -2y 的取值范围为[-4,3],则k 的值为( )A .5B .4C .3D .28.若不等式|a -2x |≤x +3对任意x ∈[0,2]恒成立,则实数a 的取值范围是( )A .(-1,3)B .[-1,3]C .(1,3)D .[1,3]9.(2013·郑州市高中毕业年级第一次质量预测))设函数f (x )=sin x +cos x ,把f (x )的图象按向量a =(m ,0)(m >0)平移后的图象恰好是函数y =-f ′(x )的图象,则m 的最小值为( ) A.π4 B.π3C.π2D.2π310.执行如图所示的程序框图,则输出的S 的值为( )A .25B .9C .17D .20 11.(2013·广东省惠州市高三第三次调研考试)sin(α+π4)=24,则sin 2α=________. 12.(2013·安徽省“江南十校”高三联考)若不等式组⎩⎪⎨⎪⎧x -y +2≥0ax +y -2≤0y ≥0表示的平面区域的面积为3,则实数a 的值是________.13.(2013·海淀区高三年级第二学期期中练习)某几何体的三视图如图所示,则它的体积为________.14.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A 且k +1∉A ,那么称k 是集合A 的一个“好元素”.给定集合S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“好元素”的集合共有________个.备选题1.(2013·高考课标全国卷Ⅰ)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .52.函数f (x )=log a |x |+1(0<a <1)的图象大致为( )3.已知函数f (x )=2x -12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________. 4.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a ,b ,c 成递减的等差数列.若A =2C ,则a c的值为________.答案:1.【解析】选A.由x >1得1x <1;反过来,由1x<1不能得知x >1,即綈p 是q 的充分不必要条件.2.【解析】选C.由三视图可知,该几何体是圆锥与等底面的圆柱组合而成的几何体,所以该几何体的表面积是圆锥的侧面积、圆柱的侧面积和底面圆的面积的和,所以该几何体的表面积S =12×2π×3×23+2π×3×23+π×(3)2=21π.3.【解析】选B.由两个正数a ,b 的等差中项是92得a +b =9;a ,b 的一个等比中项是25得ab =20,且a >b ,故a =5,b =4,又由b a =45=2p 得p 2=15,故抛物线y 2=-b ax 的焦点坐标为(-15,0). 4.【解析】选D.由题意,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙、丁、戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P =910. 5.【解析】选B.由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b2<1,故直线与圆相交. 6.【解析】选D.x =15(2+3+4+5+6)=4,y =15(2.2+3.8+5.5+6.5+7.0)=5,b = 错误!=1.23,a =5-1.23×4=0.08.所以回归直线方程为错误!=0.08+1.23x ,当x =10时,y ^=0.08+1.23×10=12.38(万元).7.【解析】选B.作出不等式组对应的可行域,如图中阴影部分所示,由z =3x -2y 得y=32x -z 2,由图象可知当直线y =32x -z 2经过点C (4-k 5,2+2k 5)时,直线y =32x -z 2的截距最大,而此时z =3x -2y 取得最小值-4,所以12-3k 5-4+4k 5=-4,解得k =4. 8.【解析】选B.不等式|a -2x |≤x +3等价于-x -3≤a -2x ≤x +3,即x -3≤a ≤3x +3对任意x ∈[0,2]恒成立.所以当x ∈[0,2]时,(x -3)max ≤a ≤(3x +3)min ,即-1≤a ≤3.9.【解析】选C.f (x )=sin x +cos x =2sin(x +π4),y =-f ′(x )=-(cos x -sin x )=2sin(x -π4),∵将f (x )的图象按向量a =(m ,0)(m >0)平移后得到y =2sin(x -π4)的图象,∴2sin(x +π4-m )=2sin(x -π4).故m =π2+2k π,k ∈N ,故m 的最小值为π2. 10.【解析】选C.由题知,第一次运行:S =1,T =0,不满足T >S ,则S =1+8=9,n =0+2=2,T =0+22=4;第二次运行:S =9,T =4,不满足T >S ,则S =9+8=17,n =2+2=4,T =4+24=20,此时20>17满足T >S ,故输出的S 的值为17.11.【解析】sin(α+π4)=22sin α+22cos α=24,∴sin α+cos α=12,(sin α+cos α)2=sin 2α+cos 2α+2sin αcos α=1+sin 2α=14,故sin 2α=-34. 【答案】-3412.【解析】作出可行域,如图中阴影部分所示,区域面积S =12(2a+2)×2=3,解得a =2.【答案】213.【解析】依题意得,该几何体是一个四棱锥,其中底面是一个直角梯形(上底长是2、下底长是4、高是4),一个侧面垂直于底面,因此该几何体的体积等于13×12×(2+4)×4×4=16.【答案】1614.【解析】依题意可知,若由S 的3个元素构成的集合不含“好元素”,则这3个元素一定是紧邻的3个数,故这样的集合共有6个.【答案】6备选题1.【解析】选D.由23cos 2A +cos 2A =0,得23cos 2A +2cos 2A -1=0,解得cos A =±15. ∵A 是锐角,∴cos A =15. 又a 2=b 2+c 2-2bc cos A ,∴49=b 2+36-2×b ×6×15, ∴b =5或b =-135. 又∵b >0,∴b =5.2.【解析】选A.由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称,设g (x )=log a |x |,先画出x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位即得f (x )的图象,结合图象知选A.3.【解析】当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0. 【答案】04.【解析】依题意知b =a +c 2,a c =sin A sin C =sin2C sin C =2cos C =2×a 2+b 2-c 22ab ,即a c =a 2+b 2-c 2ab=(a +c )(a -c )+b 2ab =2b (a -c )+b 2ab =2(a -c )+b a ,所以a 2=c [2(a -c )+a +c 2],即(2a -3c )(a -c )=0,又由a >c ,因此有2a =3c ,故a c =32. 【答案】32。

高三数学二轮复习:专题二 数列

高三数学二轮复习:专题二 数列
解答
(2)若数列an+bn是首项为 1,公比为 2 的等比数列,求数列{bn}的前 n 项和. 解 因为数列{an+bn}是首项为1,公比为2的等比数列, 所以an+bn=2n-1, 因为an=2n-1,所以bn=2n-1-(2n-1). 设数列{bn}的前n项和为Sn, 则Sn=(1+2+4+…+2n-1)-[1+3+5+…+(2n-1)] =11--22n-n1+22n-1=2n-1-n2, 所以数列{bn}的前n项和为2n-1-n2(n∈N*).
热点一 等差数列、等比数列的运算
1.通项公式 等差数列:an=a1+(n-1)d; 等比数列:an=a1·qn-1. 2.求和公式 等差数列:Sn=na1+ 2 an=na1+nn2-1d; 等比数列:Sn=a111--qqn=a11--aqnq(q≠1).
3.性质 若m+n=p+q, 在等差数列中am+an=ap+aq; 在等比数列中am·an=ap·aq.
板块三 专题突破 核心考点
专题二 数 列
第1讲 等差数列与等比数列
[考情考向分析]
1.等差、等比数列基本量和性质的考查是高考热点,经常以小 题形式出现. 2.数列求和及数列与函数、不等式的综合问题是高考考查的重 点,考查分析问题、解决问题的综合能力.
内容索引
热点分类突破 真题押题精练
热点分类突破
押题依据 解析 答案
2.在等比数列{an}中,a3-3a2=2,且5a4为12a3和2a5的等差中项,则
{an}的公比等于
A.3
B.2或3
√C.2
D.6
押题依据 等差数列、等比数列的综合问题可反映知识运用的综合性和 灵活性,是高考出题的重点.
押题依据 解析 答案
3.已知各项都为正数的等比数列{an}满足 a7=a6+2a5,存在两项 am,an 使得 am·an=4a1,则m1 +4n的最小值为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中档题专练(二)
1.(镇江高三期末)在△ABC中,角A,B,C所对的边分别为a,b,c,若bcosA+acosB=-2ccosC.
(1)求C的大小;
(2)若b=2a,且△ABC的面积为2√3,求c.
2.如图,在正方体ABCD-A1B1C1D1中,O,E分别为B1D,AB的中点.
(1)求证:OE∥平面BCC1B1;
(2)求证:平面B1DC⊥平面B1DE.
3.在数列{a n}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,其公比为q k.
(1)若q k=2(k∈N*),求a1+a3+a5+…+a2k-1;
.
(2)若对任意的k∈N*,a2k,a2k+1,a2k+2成等差数列,其公差为d k,设b k=1
q q-1
①求证{b k}成等差数列,并指出其公差;
②若d1=2,试求数列{d k}的前k项的和D k.
答案精解精析
1.解析 (1)由正弦定理q sin q =q sin q =q
sin q ,且bcosA+acosB=-2ccosC 得: sinBcosA+sinAcosB=-2sinCcosC,所以sin(B+A)=-2sinCcosC. 又A,B,C 为三角形内角,所以B+A=π-C,所以sinC=-2sinCcosC. 因为C∈(0,π),所以sinC>0. 所以cosC=-1
2,
所以C=2
3π.
(2)因为△ABC 的面积为2√3, 所以12absinC=2√3,所以ab=4√3
sin q .
由(1)知C=23π,所以sinC=√3
2, 所以ab=8.
又b=2a,解得a=2,b=4,
所以c 2
=a 2
+b 2
-2abcosC=22
+42
-2×2×4×(-1
2)=28, 所以c=2√7.
2.证明 (1)连接BC 1,设BC 1∩B 1C=F,连接OF,
因为O,F 分别是B 1D 与B 1C 的中点,所以OF∥DC,且OF=1
2DC,又E 为AB 的中点,所以EB∥DC,且EB=1
2DC, 从而OF∥EB,OF=EB,即四边形OEBF 是平行四边形,所以OE∥BF,又OE ⊄平面BCC 1B 1,BF ⊂平面BCC 1B 1,所以OE∥平面BCC 1B 1.
(2)因为DC⊥平面BCC 1B 1,BC 1⊂平面BCC 1B 1,所以BC 1⊥DC,又BC 1⊥B 1C,且DC,B 1C ⊂面B 1DC,DC∩B 1C=C,所以BC 1⊥面B 1DC,而BC 1∥OE,所以OE⊥面B 1DC,又OE ⊂面B 1DE,所以面B 1DC⊥面B 1DE.
3.解析 (1)因为q k =2,所以q
2q +1q 2q -1
=4,故a 1,a 3,a 5,…,a 2k-1是首项a 1=1,公比为4的等比数列,所以
a 1+a 3+a 5+…+a 2k-1=1-4q 1-4=1
3(4n
-1).
(2)①因为a 2k ,a 2k+1,a 2k+2成等差数列,所以2a 2k+1=a 2k +a 2k+2,
而a 2k =
q 2q +1q q ,a 2k+2=a 2k+1·q k+1,所以1
q q
+q k+1=2, 所以b k+1=1
q q +1-1=q q
q q -1
=b k +1,即
b k+1-b k =1,
所以{b k }成等差数列,其公差为1. ②因为d 1=2,所以a 3=a 2+2,即q 22=a 1a 3=a 2+2, 所以a 2=2或a 2=-1. (i)当a 2=2时,q 1=
q 2
q 1
=2,所以b 1=
1
q 1-1
=1,所以b k =1+(k-1)×1=k,即
1
q q -1
=k,得q k =
q +1
q
.所以q 2q +1q 2q -1
=q q 2
=(q +1q )2, a 2k+1=(
q +1q )2·(q q -1)2·…·(21)2·a 1=(k+1)2
,a 2k =q 2q +1q q
=k(k+1), 所以d k =a 2k+1-a 2k =k+1,D k =q (2+q +1)2
=
q (q +3)
2.
(ii)当a 2=-1时,q 1=q 2
q 1
=-1,所以b 1=
1
q 1-1
=-12
,b k =-12
+(k-1)×1=k -32
,

1
q q -1
=k-3
2
,得
q k =q -1
2q -32
.所以q
2q +1q 2q -1=q q 2=(q -1
2q -32
)2
,
a 2k+1=(
q -1
2
q -32
)2
·(q -3
2
q -52
)2
·…·(
1-
121-32
)2
·a 1=(2k-1)2
,a 2k =q 2q +1
q q
=(2k-1)(2k-3), 所以d k =a 2k+1-a 2k =4k-2,D k =q (2+4q -2)
2
=2k 2
.
综合得D k =
q (q +3)
2
或D k =2k 2
.。

相关文档
最新文档