线面所成的角

合集下载

线面角的求法总结

线面角的求法总结

线面角的三种求法1.直接法:平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。

通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。

例1 (如图1 )四面体 ABCS中,SA,SB,SC 两两垂直,/ SBA=45 , / SBC=60 , M 为 AB的中点,求(1)BC与平面SAB所成的角。

(2) SC与平面ABC所成的角。

解:(1)•/ SC± SB,SC丄 SA,••• SC丄平面SAB 故SB是斜线BC在平面SAB上的射影,•••/ SBC是直线BC与平面SAB所成的角为60°。

(2)连结 SM,CM,贝U SM 丄 AB,又••• SC± AB, • AB 丄平面 SCM,•••面ABC丄面SCM过S作SH丄CM于H, 则SH丄平面 ABC•CH即为SC在面ABC内的射影。

/ SCH为SC与平面ABC所成的角。

sin / SCH=SH /SC•SC与平面ABC所成的角的正弦值为V 7/7(“垂线”是相对的, SC是面SAB的垂线,又是面 ABC的斜线.作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。

)2.利用公式sin 0 =h/ i其中0是斜线与平面所成的角, h是垂线段的长,i是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。

例2 (如图 2)长方体 ABCD-A 1B1C1D1 , AB=3 ,BC=2, A 1A= 4 ,求 AB 与面 AB1C1D解:设点 B 到AB i C i D 的距离为h,T V B - ABC =V A -BBC.'. 1 / 3 S ^ ABC h= 1/3 SM BC AB ,易得 h=12/ 5 设AB 与 面A B 1C 1D 所成的角为0 ,则sin 0 =h/AB=4 /5图2 3. 利用公式 cos 0 =cos 0 i cos 0 2已知,如图,AO 是平面〉的斜线,A 是斜足,0B 垂直于平面 直线AB 是斜线在平面a 内的射影。

直线与平面所成的角的教案

直线与平面所成的角的教案

直线与平面所成的角教学目标:1. 理解直线与平面所成的角的定义及其性质;2. 学会运用直角三角形的知识求解直线与平面所成的角;3. 能够运用直线与平面所成的角解决实际问题。

教学重点:直线与平面所成的角的定义及其性质,求解直线与平面所成的角的方法。

教学难点:直线与平面所成的角的求解,将实际问题转化为直线与平面所成的角的问题。

教学准备:直角三角形模型,平面模型,直线模型。

教学过程:一、导入(5分钟)1. 引入直线与平面所成的角的概念,让学生思考在日常生活中遇到的直线与平面所成的角,如楼梯的扶手与地面的夹角等。

2. 引导学生观察直角三角形,让学生认识到直角三角形中的直角就是直线与平面所成的角。

二、新课讲解(15分钟)1. 讲解直线与平面所成的角的定义:直线与平面相交时,直线与平面内的任意一条直线所成的角,称为直线与平面的角。

2. 讲解直线与平面所成的角的性质:直线与平面所成的角是直线与平面内的所有角中最小的角。

3. 讲解求解直线与平面所成的角的方法:利用直角三角形,将直线与平面所成的角转化为直角三角形中的角。

三、实例分析(10分钟)1. 分析实例:楼梯的扶手与地面的夹角。

2. 引导学生运用直角三角形求解直线与平面所成的角。

3. 分析实例:墙角的直角。

4. 引导学生运用直角三角形求解直线与平面所成的角。

四、课堂练习(5分钟)1. 让学生独立完成练习题,巩固所学知识。

2. 引导学生运用直线与平面所成的角的知识解决实际问题。

五、总结与拓展(5分钟)1. 总结直线与平面所成的角的定义、性质和求解方法。

2. 拓展思维:直线与平面所成的角在现实生活中的应用,如建筑设计、导航等。

教学反思:通过本节课的学习,学生应掌握直线与平面所成的角的定义、性质和求解方法,并能运用所学知识解决实际问题。

在教学过程中,要注意引导学生观察实例,培养学生的空间想象能力。

结合练习题和实际问题,提高学生的运用能力。

六、直线与平面所成的角的测量教学目标:1. 学会使用工具(如量角器)测量直线与平面所成的角;2. 理解测量直线与平面所成角的方法及其原理;3. 能够准确地测量直线与平面所成的角。

线面角的求法总结

线面角的求法总结

线面角的三种求法1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。

通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。

例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。

(2)SC 与平面ABC 所成的角。

解:(1) ∵SC ⊥SB,SC ⊥SA,BMHSCA图1∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。

(2) 连结SM,CM ,则SM ⊥AB,又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。

∠SCH 为SC 与平面ABC 所成的角。

sin ∠SCH=SH /SC∴SC 与平面ABC 所成的角的正弦值为√7/7(“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。

) 2. 利用公式sin θ=h /ι其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。

例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。

解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB ,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5A 1C 1D 1H4CB 123BAD图2∴AB 与面AB 1C 1D 所成的角为arcsin 4/5 3. 利用公式cos θ=cos θ1·cos θ2(如图3) 若 OA 为平面的一条斜线,O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的一条直线,其中θ为OA 与OC 所成的角,B αOAC图3θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么 cos θ=cos θ1·cos θ2 (同学们可自己证明),它揭示了斜线和平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角(常称为最小角定理)例3(如图4) 已知直线OA,OB,OC 两两所成的角为60°, ,求直线OA 与 面OBC 所成的角的余弦值。

线面角的求法总结

线面角的求法总结

线面角的三种求法1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。

通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。

例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。

(2)SC 与平面ABC 所成的角。

解:(1) ∵SC ⊥SB,SC ⊥SA,BMHSCA图1∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。

(2) 连结SM,CM ,则SM ⊥AB,又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。

∠SCH 为SC 与平面ABC 所成的角。

sin ∠SCH=SH /SC∴SC 与平面ABC 所成的角的正弦值为√7/7(“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。

) 2. 利用公式sin θ=h /ι其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。

例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。

解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB ,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5A 1C 1D 1H4C123BAD图2∴AB 与面AB 1C 1D 所成的角为arcsin 4/5 3. 利用公式cos θ=cos θ1·cos θ2(如图3) 若 OA 为平面的一条斜线,O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的一条直线,其中θ为OA 与OC 所成的角,B αOAC图3θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么 cos θ=cos θ1·cos θ2 (同学们可自己证明),它揭示了斜线和平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角(常称为最小角定理)例3(如图4) 已知直线OA,OB,OC 两两所成的角为60°, ,求直线OA 与 面OBC 所成的角的余弦值。

直线与平面所成的角的定义

直线与平面所成的角的定义

直线与平面所成的角的定义:
①直线和平面所成的角有三种:
a.斜线和平面所成的角:一条直线与平面α相交,但不和α垂直,这条直线叫做平面α的斜线.斜线与α的交点叫做斜足,过斜线上斜足以外的点向平面引垂线,过垂足与斜足的直线叫做斜线在平面α内的射影,平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.
b.垂线与平面所成的角:一条直线垂直于平面,则它们所成的角是直角。

c.一条直线和平面平行,或在平面内,则它们所成的角为00.
②取值范围:00≤θ≤900.
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”
最小角定理:
斜线和它在平面内的射影所成的角(即线面角),是斜线和这个平面内的所有直线所成角中最小的角。

求直线与平面所成的角的方法:
(1)找角:求直线与平面所成角的一般过程:①通过射影转化法,作出直线与平面所成的角;
②在三角形中求角的大小.
(2)向量法:设PA是平面α的斜线,,向量n为平面α的法向量,设PA与平面α所成的角为θ,则。

线面所成角公式

线面所成角公式

线面所成角公式线面所成角(又称线棱所成角)是一类几何计算中的一个基础概念,可以在几何学中发挥重要作用,也是机械设计与结构分析方面经常使用的概念。

它作为实体几何学中的基本概念,具有普遍意义,涉及两条相交的线段或曲线和一个空间平面之间所形成的角度。

线面所成角的角度可以用以下公式来表达:α = arccos((ab) / (ab))其中,α表示两条线段之间的夹角,a和b分别表示两条线段的向量,而“”表示两个向量的点积,ab表示两个向量的模的乘积,即两个向量的模的乘积。

线面所成角的计算首先要计算两条相交线段或曲线对应的向量,即a和b,然后利用以上公式计算出a和b之间的夹角α,由此可以得出两条相交线段或曲线之间的夹角。

线面所成角概念在几何学、机械设计及结构分析中被广泛使用,是一种重要的几何计算工具。

它可以用来计算一个物体的总夹角、方位角等,以此得到物体整体形状的正确性。

此外,线面所成角在机械设计与结构分析中无处不在,它可以用来计算出机械部件连接和改变形态时的夹角变化,从而确定出部件的最佳连接方式,检查出机械结构动态变形,同时也可以更好地预测结构及机械部件的受力情况,从而确定出最优的机械设计方案。

线面所成角的计算以及其在几何学和机械设计中的使用,为我们的学习和科技发展提供了重要的支撑。

其公式的推导和应用不止于此,因此,有必要深入研究线面所成角的计算公式,以及在几何学和机械设计中的应用,加深对线面所成角的理解,以改善科技发展与人类文明之间的联系。

总之,线面所成角公式是一个重要的算法和工具,它可以被广泛应用于几何学,机械设计和结构分析,为科学教育和科技发展提供了重要的支撑。

研究线面所成角及其公式能够帮助我们更深入地了解它,把科学和技术发展和人类文明的联系更加紧密,进而促使科技进步和社会发展。

线面所成的角

线面所成的角
O
| AC || AB | cos cos cos , 在直角OAC中| AC || AO | cos , cos cos cos .
例1 已知AB为平面内的一条射线,B为斜足,AO
, O为垂足, BC为内的一条射线, ABC 60 , OBC 450 , 求斜线AB和平面所成的角. 解: A
3 3

BC ⊥平面PAC
P
又BC=1,tan ∠BPC=
∠BPC=30
A
即BP与平面PAC所成的角为30 .
1
B 1 C
例2、如图,在正方体 ABCD A1 B1C1 D1 中, 求 A1 B 与平面A1B1CD所成的角 与平面ABCD所成的角
练习4、
D1
C1
B1
A1 D
AD1与平面ABCD所成角 A1B与平面BB1D1D所成角 A
例题
例1 . 如图,在Rt△ ABC中,已知
∠C=90,AC=BC=1,PA⊥平面ABC,且
PA=
2 ,求PB与平面PAC所成的角.PAC NhomakorabeaB
解:PA ⊥平面ABC BC ⊥平面PAC PA 平面ABC 又AC ⊥BC PA AC=A
PB与平面PAC所角为∠BPC


AC=1, PA= 2 PC= 3
小结 1. 平面的一条斜线和它在平面上的射影所成 的锐角,叫做这条直线和这个平面所成的角。 2.最小角原理: 斜线 和平面所成的角,是 这条斜线和平面内任 意的直线所成的一切 角中最小的角。


求直线(或斜线)与平面所成的角关 键是确定斜线在平面的射影. 其步骤是:一找,二证,三求。
O

线面角的求法总结

线面角的求法总结

线面角的求法总结线面角是立体几何中的一个重要概念,指的是直线与平面之间的夹角。

在实际问题中,线面角的求法有多种方法,包括正投影法、平行线交线法、倾斜线投影法等。

下面将从这些不同的求法角度,总结线面角的求法方法。

一、正投影法正投影法是线面角的一种常用求法方法。

具体的求法步骤是:首先,以直线上的两点为基点,分别作两条垂直于平面的直线,将平面上的两个点投影到这两条垂直线上。

然后,连接两个投影点与基点,即可得到线面角。

简单来说,就是将线段的两个端点在平面上做垂线,再连接垂线与线段的两个端点所构成的三角形。

二、平行线交线法平行线交线法是另一种求解线面角的常用方法。

它适用于直线与平面的交点在平行线上的情况。

具体的求法步骤是:首先,找到平行于直线的两条线,并找出这两条线与交线的交点。

然后,以这两个交点为基点,分别作两条直线与交线相交,再连接交线两个端点与这两个交点,即可得到线面角。

简单来说,就是在平行线上找到与线段相交的两条线,将线段的两个端点与两个交点连线所构成的三角形。

三、倾斜线投影法倾斜线投影法是应用于倾斜线与平面的角的求法方法。

具体的求法步骤是:首先,判断倾斜线是否与平面相交,如果相交,则找到交点。

然后,以交点为基点,分别作两条垂直于平面的直线,并将交点投影到这两条垂直线上。

最后,连接两个投影点与交点,即可得到线面角。

简单来说,就是将倾斜线段的一个端点与交点连线,再以交点为顶点做一个角的投影。

四、线面角的特殊情况求解除了以上常用的求解线面角的方法外,还有一些特殊情况需要考虑。

例如,如果线段与平面平行,则线面角为无穷大;如果线段垂直于平面,则线面角为直角,即90度;如果线段在平面上,则线面角为0度。

这些特殊情况可以根据实际问题的需要灵活运用,以求解线面角。

总之,线面角的求法有多种方法,根据具体的问题和实际情况选择合适的方法进行求解。

正投影法、平行线交线法和倾斜线投影法是常用的求解方法,可以满足大多数情况下的求解需要。

浅谈线线角、线面角、面面角的定义方式及其中蕴含的数学基本思想

浅谈线线角、线面角、面面角的定义方式及其中蕴含的数学基本思想

浅谈线线角、线面角、面面角的定义方式北京市顺义区第九中学101300高中阶段在学习空间线、面位置关系的时候,会给出线线角、线面角及面面角的定义,本文以角形成的定义方式及蕴含的基本思想为主,进行研究。

1、直线与直线所成的角:(1)共面:同一平面内的两直线所成角,是利用两直线位置关系,平行、重合所成角为0度,如果相交就取交线所构成的锐角(或直角)。

(2)异面:如图所示,已知两条异面直线a和b,经过空间任一点O分别作直线a′∥a,b′∥b,我们把直线a′与b′所成的角叫做异面直线a与b所成的角(或夹角)。

θ定义方式:是发生定义法(即构造定义方式)定义中的“空间中任取一点O”,意味着:角的大小与O 点选取的位置无关;通过平移把异面直线所成角转化成两相交直线,是将空间图形问题转化成平面图形问题的定义方式,体现了定义的纯粹性和完备性。

2、直线和平面所成的角:如图,一条直线和一个平面相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A叫做斜足.过斜线上斜足以外的一点P向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角。

规定:一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角。

3、面面所成的角:(1)在二面角的棱l上任取一点O,以该点O为垂足,在半平面和内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的角称为二面角的平面角.( 2)作二面角的平面角的方法方法一:(定义法)在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图所示,∠AOB为二面角α­a­β的平面角.方法二:(垂线法)过二面角的一个面内一点作另一个平面的垂线,过垂足作棱的垂线,连接该点与垂足,利用线面垂直可找到二面角的平面角或其补角.如图所示,∠ACB为二面角α­m­β的平面角.4、线线、线面、面面所成角的定义方式线线、线面、面面所成角的定义方式是“属加种差定义法”。

线面角的求法总结

线面角的求法总结

线面角的三种求法1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。

通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。

例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。

(2)SC 与平面ABC 所成的角。

解:(1) ∵SC ⊥SB,SC ⊥SA,BMHSCA图1∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。

(2) 连结SM,CM ,则SM ⊥AB,又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。

∠SCH 为SC 与平面ABC 所成的角。

sin ∠SCH=SH /SC∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。

) 2. 利用公式sin θ=h /ι其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。

例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。

A 1C 1D 1H4C123BAD解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB ,易得h=12/5设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5图23. 利用公式cos θ=cos θ1·cos θ2已知,如图,AO 是平面α的斜线,A 是斜足,OB 垂直于平面α,B 为垂足,则直线AB 是斜线在平面α内的射影。

高中数学必修二立体几何角的问题-教师版(含几何法和向量法)

高中数学必修二立体几何角的问题-教师版(含几何法和向量法)

立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。

过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。

平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。

一条直线垂直于平面,我们就说它们所成的角是直角。

一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。

二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。

常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010 解析:建立空间直角坐标系如图.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010.答案:B例 2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥ ∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥又PA AE A ⋂=,∴DE ⊥平面PAE (2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,PD =Rt DCE ∆中,DE =在Rt DEP ∆中,2PD DE =,∴030DPE ∠=例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥ 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥ 且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥ 又BG AD ⊥,AD ∥BC ,∴BG BC ⊥∴PBG ∠为二面角A BC P --的平面角在Rt PBG ∆中,PG BG =,∴045PBG ∠=例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( D ) A.3 B.22C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。

线面角的求法总结

线面角的求法总结

线面角的求法总结三种求解线面角的方法1.直接法:当平面的斜线与斜线在平面内的射影相交时,它们所成的角即为直线与平面所成的角。

一般通过解直角三角形来计算,其中垂线段是最重要的元素,它可以联系各线段。

例如,在四面体ABCS中,SA、SB、SC两两垂直,且∠SBA=45°,∠SBC=60°,M为AB的中点,求(1)BC与平面SAB所成的角。

(2)SC与平面ABC所成的角。

解:(1)由于SC垂直于SB和SA,因此SB是BC在平面SAB上的射影,∴∠XXX为60°。

2)连接SM和CM,得到SM垂直于AB。

由于SC垂直于AB,因此AB垂直于平面SCM,从而面ABC垂直于面SCM。

过S作SH⊥CM于H,则SH⊥平面ABC,∴CH即为SC在面ABC内的射影。

因此,∠SCH为SC与平面ABC所成的角,其正弦值为√7/7.2.利用公式sinθ=h/ι,其中θ是斜线与平面所成的角,h是垂线段的长,ι是斜线段的长。

求出垂线段的长是关键也是难点,可以使用三棱锥的体积相等来求解。

例如,在长方体ABCD-A1B1C1D1中,AB=3,BC=2,A1A=4,求AB与面AB1C1D1所成的角的正弦值。

解:设点B到AB1C1D1的距离为h,由于VAB1C1D1=VA1B1C1D,因此1/3S△AB1C1·h=1/3S△BB1C1·AB,解得h=12/5.设AB与面AB1C1D1所成的角为θ,则sinθ=h/AB=4/5.3.利用公式cosθ=cosθ1·cosθ2已知,其中AO是平面α的斜线,A是斜足,OB垂直于平面α,B为垂足,则直线AB是斜线在平面α内的射影。

设AC是平面α内的任意一条直线,且OBC垂直于AC,垂足为C,则∠BAO=θ1,∠BAC=θ2.例如,如图所示,求直线AB与平面α所成的角的余弦值。

解:由于OB垂直于平面α,因此∠XXX即为直线AB与平面α所成的角。

线面角的三种求法

线面角的三种求法
其中θ是斜线与平面所成的角, h是 垂线段 的长,l是斜线段的长,其中求出垂线段的 长(即斜线上的点到面的距离)既是关键 又是难点,为此可用三棱锥的体积自等来 求垂线段的长。
长方体ABCD A1B1C1D1 , AB 3,BC 2, A1A 4,求AB与面AB1C1D 所成的角的正弦值
设点B到平面 AB1C1D的距离为 h 1
练 习
1.AO与平面斜交,O为斜足,AO与平面
成角,B是A在上的射影,OD是内的
直线,∠BOD=30,∠AOD=60,则
sin =
6
解:
3
由最小角原理得ຫໍສະໝຸດ cosAOD cosBODcos
即cos 60 cos30 cos

A
O
B
C
D
cos 3
3
“垂线”是相对的,SC是面 SAB的垂线,又是面 ABC 的斜线. 作面 的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂 直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。
例题
例1 . 如图,在Rt△ ABC中,已知
∠C=90,AC=BC=1,PA⊥平面ABC,且 PA= 2 ,求PB与平面PAC所成的角.
A
B
α
O
D
C
解:∵∠AOB=∠AOC ∴ OA 在面OBC 内的射影在∠BOC 的平分线OD上,则∠AOD即为OA与面OBC所成的角,可知
∠DOC=30° ,cos∠AOC=cos∠AOD·cos∠DOC ∴cos60° =cos∠AOD·cos30°∴ cos∠AOD= √3/3 ∴ OA 与 面OBC所成的角的余弦值为√3/3。
VB AB1C1 VABB1C1 3 SBB1C1 • AB 得h 12

线面直线所成的角

线面直线所成的角

线面直线所成的角线面直线所成的角是指当一条直线与一个面相交时,所形成的两个角。

一个角位于面的一侧,被称为外角;另一个角位于面的另一侧,被称为内角。

线面直线所成的角在几何学中经常被应用,具有重要的实际意义和应用价值。

1.概述线面直线所成的角线面直线所成的角是指当一条直线与一个面相交时所形成的两个角。

这两个角是外角和内角。

外角是指直线位于面的一侧,被称为外的角度;内角则位于面的另一侧,被称为内角。

外角和内角的度数加起来等于180度。

2.线面直线所成角的性质和特点线面直线所成的角具有一些性质和特点,这些性质和特点可以用于解决与线面直线相关的问题。

(1)线面直线所成的角相等性如果两条直线与同一个面相交,且它们分别形成的角相等,则这两条直线就是相等的。

(2)线面直线所成的角互补性如果两条直线与同一个面相交,且一个角是直角,则这两条直线就是互相垂直的。

(3)线面直线所成的角的平行性如果两条直线与同一个平面相交,且它们分别形成的内角相等,则这两条直线是平行的。

(4)线面直线所成的角的补角性如果两条直线与同一个面相交,且一个角是直角,则这两个角是补角。

3.线面直线所成角的应用线面直线所成的角在几何学中有着广泛的应用。

它们可以帮助我们解决许多与线面直线相关的实际问题。

(1)斜面与地面的夹角当一个斜面与地面相交时,它们形成了一条直线与一个面相交的情况。

这时,斜面与地面的夹角就是线面直线所成的角。

我们可以利用斜面与地面的夹角来计算斜面的倾斜程度,以及在斜面上放置物体时的稳定性。

(2)航空航天中的进近角在航空航天领域中,进近角指的是飞机或火箭的飞行航向与水平面之间的夹角。

进近角可以影响飞行器的进近路径和着陆速度。

通过调整进近角,可以更好地控制飞行器的下滑角度和速度,以确保安全着陆。

(3)地理学中的地球与赤道的倾角地球的自转轴与赤道面之间的夹角被称为地球的倾角。

地球的倾角对地球的季节变化和气候分布有着重要的影响。

通过研究地球的倾角,我们可以更好地理解地球的旋转规律,以及不同地区季节变化的原因。

线面角及三垂线定理

线面角及三垂线定理

P 证明:∵ PA⊥平面ABC
AC是斜线PC在平面ABC上的射影
又∵BC平面ABC 且AC ⊥ BC
∴由三垂线定理得 PC ⊥ BC
A
B C
11
精选ppt
例2 直接利用三垂线定理及逆定理证明下列各题:
(1) PA⊥正方形ABCD所在平面,O为对角线BD的中点 求证:PC⊥BD (2) 已知:PA⊥平面ABC,PB=PC,M是BC的中点, 求证:BC⊥AM
垂心
A
内心
内心
14
C O
B
精选ppt
三垂线定理解题的关键:找三垂!
怎么找?
解 一找直线和平面垂直
P


二找平面的斜线在平面 内的射影和平面内的 一条直线垂直
α
A Oa
顾 注意:由一垂、二垂直接得出第三垂
并不是三垂都作为已知条件
15
精选ppt
应用三垂线定理及逆定理证明直线垂 直的步骤:
“一垂二射三证明” “一垂”:找平面及平面的垂线
7
a⊥PO
精选ppt
2.三垂线逆定理
逆定理:在平面内的一条直线, 如果和这个平面的一条斜线垂直, 那么它就和这条斜线的射影垂直。
8
精选ppt
3.强调
1)分清原定理和逆定理的条件和结论
原定理: 线与射影垂直
线与斜线垂直
逆定理 2)两个定理中涉及到的三个垂直
①线面垂直 ②线射垂直 ③ 线斜垂直
9
精选ppt
“二射”:找斜线在平面上的射影
“三证明”:用定理证明直线垂直
它在平面上的射影所成
的锐角,叫做这条直线
和这个平面所成的角。
一条直线垂直与平面,它们所成的角是直角;

专题 立体几何之所成角-(人教A版2019必修第二册) (教师版)

专题 立体几何之所成角-(人教A版2019必修第二册) (教师版)

立体几何之所成角1 异面直线所成的角①范围(0∘ ,90∘];②作异面直线所成的角:平移法.如图,在空间任取一点O,过O作a′ // a ,b′ // b,则a′ ,b′所成的θ角为异面直线a ,b所成的角.特别地,找异面直线所成的角时,经常把一条异面直线平移到另一条异面直线的特殊点(如线段中点,端点等)上,形成异面直线所成的角.2 线面所成的角①定义如下图,平面的一条斜线(直线l)和它在平面上的射影(AO)所成的角,叫做这条直线和这个平面所成的角.一条直线垂直平面,则θ=90°;一条直线和平面平行或在平面内,则θ=0°.②范围[0∘ ,90∘]3 二面角①定义从一条直线出发的两个半平面所组成的图形叫做二面角.在二面角的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB 构成的∠AOB叫做二面角的平面角.②范围[0° ,180°].【题型一】异面直线所成的角【典题1】如图,正方体ABCD—A1B1C1D1中,点E ,F分别是AA1,AD的中点,则CD1与EF所成角为()A.0°B.45°C.60°D.90°【解析】连结A1D、BD、A1B,∵正方体ABCD—A1B1C1D1中,点E ,F分别是AA1,AD的中点,EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD ,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选 C.【点拨】①找异面直线所成的角,主要是把两条异面直线通过平移使得它们共面,可平移一条直线也可以同时平移两条直线;②平移时常利用中位线、平行四边形的性质;【典题2】如图所示,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1 ,AD 的中点,那么异面直线OE和FD1所成角的余弦值等于.【解析】取BC的中点G.连接GC1,则GC1∥FD1,再取GC的中点H,连接HE、OH,则∵E是CC1的中点,∴GC1∥EH,∴∠OEH为异面直线所成的角.在△OEH中,OE=√3,HE=√52,OH=√52.由余弦定理,可得cos∠OEH=OE 2+EH2−OH22OE⋅EH=3⋅√2=√155.故答案为√155【点拨】本题利用平移法找到异面直线所成的角(∠OEH)后,确定含有该角的三角形(△OEH),利用解三角形的方法(正弦定理,余弦定理等)把所求角∠OEH最终求出来.【典题3】如图,已知P是平行四边形ABCD所在平面外一点,M,N分别是AB ,PC的中点.(1)求证:MN∥平面PAD;(2)若MN=BC=4 ,PA=4√3,求异面直线PA与MN所成的角的大小.【解析】(1)证明:取PD中点Q,连AQ、QN,则AM∥QN,且AM=QN,∴四边形AMNQ为平行四边形∴MN∥AQ又∵AQ在平面PAD内,MN不在平面PAD内∴MN∥面PAD;(2)解方法一∵MN∥AQ∴∠PAQ即为异面直线PA与MN所成的角∵MN=BC=4 ,PA=4√3,∴AQ=4,设PQ=x,根据余弦定理可知cos∠AQD+cos∠AQP=0即16+x 2−488x +16+x2−168x=0,解得x=4在三角形AQP中,AQ=PQ=4 ,AP=4√3∴cos∠PAQ=2×4×4√3=√32,即∠PAQ=30°∴异面直线PA与MN所成的角的大小为30°方法二过点A作AH⊥PD交PD于H,如图∵MN=BC=4,∴H是QD的中点设HD=x,则QH=x,PQ=2x,在Rt△AQD和Rt△APH利用勾股定理可得AH2=16−x2=48−9x2,解得x=2∴cos∠PAQ=PHAP =4√3=√32,即∠PAQ=30°∴异面直线PA与MN所成的角的大小为30°【点拨】本题中所成角∠PAQ找到后,无法在一个三角形里求出,此时把问题转化为平面几何问题, 再利用解三角形的方法进行求解.【题型二】线面所成的角【典题1】如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB= 2CD=2BC,EA⊥EB.(1)求证:AB⊥DE;(2)求直线EC与平面ABE所成角的正弦值.【解析】(1)证明:取AB中点O,连接EO,DO.∵EB=EA,∴EO⊥AB.∵四边形ABCD为直角梯形,AB=2CD=2BC,AB⊥BC,∴四边形OBCD为正方形,∴AB⊥OD.又∵EO∩OD=O,∴AB⊥平面EOD.∴AB⊥ED.(2)∵平面ABE⊥平面ABCD,且AB⊥BC,∴BC⊥平面ABE.则∠CEB为直线EC与平面ABE所成的角.设BC=a,则AB=2a,BE=√2a,∴CE=√3a,在直角三角形CBE中,sin∠CEB=CBCE =√3=√33.即直线EC与平面ABE所成角的正弦值为√33.【点拨】本题中的“直线EC与平面ABE所成的角”是根据线面角的定义直接在题目原图上找到的,在含所求角∠CEB的直角三角形CBE中求出角度!【典题2】如图,四边形ABCD为正方形,PA⊥平面ABCD,且AB=4,PA=3,点A在PD上的射影为G点,E点在AB边上,平面PEC⊥平面PDC.(1)求证:AG∥平面PEC;(2)求BE的长;(3)求直线AG与平面PCA所成角的余弦值.【解析】(1)证明:∵CD ⊥AD,CD ⊥PA∴CD ⊥平面PAD ∴CD ⊥AG,又PD ⊥AG∴AG ⊥平面PCD作EF ⊥PC 于F,因面PEC ⊥面PCD∴EF ⊥平面PCD∴EF ∥AG,又AG ⊄面PEC,EF ⊂面PEC,∴AG ∥平面PEC(2)由(1)知A 、E 、F 、G 四点共面,又AE ∥CD ∴AE ∥平面PCD∴AE ∥GF ∴四边形AEFG 为平行四边形,∴AE =GF∵PA =3,AD =AB =4 ∴PD =5,AG =125, 在Rt △PAGP 中,PG 2=PA 2−AG 2=8125 ∴PG =95 又GF CD =PG PD∴GF =3625 ∴AE =3625,故BE =6425(3)∵EF ∥AG,所以AG 与平面PAC 所成角等于EF 与平面PAC 所成的角,过E 作EO ⊥AC 于O 点,易知EO ⊥平面PAC,又EF ⊥PC,∴OF 是EF 在平面PAC 内的射影∴∠EFO 即为EF 与平面PAC 所成的角EO =AEsin45°=3625×√22=18√225,又EF =AG =125,∴sin∠EFO=EOEF =18√225×512=3√210故cos∠EFO=√1−sin2∠EFO=√8210所以AG与平面PAC所成角的余弦值等于√8210.【点拨】①若在题目中不能直接找到所求线面角,则可用“作高法”确定所求角,比如下图中,求直线AP与平面α所成的角,具体步骤如下:(1) 如图,过点P作平面α的高PO,垂足为O,则AO是线段AP在平面α上的投影;(2) 找到所求角θ;(3) 求解三角形APO进而求角θ.(此方法关键在于找到垂足O的位置,证明到PO⊥平面α,如本题中EO⊥平面PAC的证明)②本题若直接求“AG与平面PAC所成角”,过点G做高有些难度,则由EF∥AG,能把“AG与平面PAC所成角”转化为“EF与平面PAC所成的角”,这方法称为“间接法”吧.【典题3】如图,正四棱锥S-ABCD中,SA=AB=2,E,F,G分别为BC,SC,CD的中点.设P为线段FG上任意一点.(Ⅰ)求证:EP⊥AC;(Ⅰ)当P为线段FG的中点时,求直线BP与平面EFG所成角的余弦值.【解析】证明:(Ⅰ)连接AC交BD于O,∵S-ABCD是正四棱锥,∴ SO⊥平面ABCD,∴SO⊥AC,又∵AC⊥BD,SO∩BD=O,∴AC⊥平面SBD,∴AC⊥SD,∵F,G分别为SC,CD的中点,∴SD∥FG,∴AC⊥GF,同理AC⊥EF,∴AC⊥平面GEF,又∵PE⊂平面GEF,∴EP⊥AC.(Ⅰ) 方法一过B作BH⊥GE于点H,连接PH,∵BD⊥AC,BD∥GF,∴BH∥AC,由(Ⅰ)知:AC⊥平面GEF,∴BH⊥平面GEF,∴∠BPH就是直线BP与平面EFG所成的角,∵SA=AB=2,∴在Rt△BHP中,解得BH=√22,PH=√132,PB=√152,(易知△BHE是等腰直角三角形,又由斜边BE=1,∴BH=√22;在三角形PGH中,PG=12,GH=3√22,∠PGH=π4,用余弦定理可得PH=√132)则cos∠BPH=PHPB =√19515,故直线BP与平面EFG所成角的余弦值为√19515.方法二设过点B作平面EFG的垂直,垂直为T,则∠BPT就是直线BP与平面EFG所成的角,BT是点B到平面PGE的距离,由已知条件可求GF=EF=1,GE=√2,则∠GFE=90°,∴S△PEG=12S△GFE=12×12=14,由于P、F是中点,易得点P到平面ABCD的距离ℎ1=14SO=√24,而S△GEB=12S△GCB=12×1=12,对于三棱锥P−GEB,由V B−PEG=V P−GEB⇒13×BT×S△PEG=13×ℎ1×S△GEB⇒112BT=√224⇒BT=√22,在正四棱锥S-ABCD中可求PB=√152,(方法较多,提示过点P作平面ABCD的高PI)∴sin∠BPT=BTBP =√3015∴cos∠BPT=√1−sin∠BPT=√19515,故直线BP与平面EFG所成角的余弦值为√19515.【点拨】①本题第二问中方法一就是用“做高法”,计算量有些大;方法二是觉得垂足H的位置难确定,可设点B到平面EFG的投影为T(即垂足),再用“等积法”求高BT,则sin∠BPT=BTBP,可求所求角∠BPT,这种方法称为“等积法”;②思考:上一题试试用“等积法”!【题型三】二面角【典题1】如图,在棱长为a的正方体ABCD-A1B1C1D1中,AC 与BD相交于点O.求二面角 A1-BD-A 的正切值.【解析】在正方体中BD⊥平面A1ACC1,∴AO⊥BD,A1O⊥BD,∴二面角A1-BD-A的平面角为∠A1OA由题中的条件求出:AO=√22a ,AA1=a∴tan∠A1OA=√22a=√2,所以二面角 A1-BD-A 的正切值为√2.【点拨】本题根据二面角的定义找到二面角二面角A1-BD-A的平面角为∠A1OA,再在三角形AOA1内用解三角形的方法求解角∠A1OA.【典题2】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=√6,点E是棱PB的中点.(1)求直线AD与平面PBC的距离;(2)若AD=√3,求二面角A-EC-D的平面角的余弦值.【解析】(1)在矩形ABCD中,AD∥BC,从而AD∥平面PBC,故直线AD与平面PBC的距离为点A到平面PBC的距离,因PA⊥底面ABCD,故PA⊥AB,可得△PAB为等腰直角三角形,又点E是棱PB的中点,故AE⊥PB,∵BC⊥AB,BC⊥PA,∴BC⊥平面PAB ∴BC⊥AE,从而AE⊥平面PBC,故AE之长即为直线AD与平面PBC的距离,在Rt△PAB中,PA=AB=√6,所以AE=12PB=12√PA2+AB2=√3(2)过点D作DF⊥CE于F,过点F做FG⊥CE,交AC于G,连接DG,则∠DFG为所求的二面角的平面角.由(1)知BC⊥AE,又AD∥BC,得AD⊥AE,从而DE=√AE2+AD2=√6在Rt△CBE中,CE=√BE2+BC2=√6,由CD=√6,所以△CDE为等边三角形,故F为CE的中点,且DF=CD•sinπ3=3√22因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG∥AE.∴G点为AC的中点,FG=12AE=√32,则在Rt△ADC中,DG=12√AD2+CD2=32,所以cos∠DFG=DF 2+FG2−DG22DF⋅FG=√63【点拨】若在题目中不能直接得到所求二面角,就需要构造出二面角,比如本题求二面角A-EC-D,解题具体步骤如下(1) 过点D作DF⊥EC,过点F作FG⊥EC交AC于点D,则二面角∠DFG为所求的二面角的平面角;(2) 确定含角∠DFG的三角形DFG,利用解三角形的方法求出角∠DFG,常见的是求出三角形三边再用余弦定理.【典题3】如图,已知三棱锥P-ABC,PA⊥平面ABC,∠ACB=90°,∠BAC=60°,PA=AC,M为PB的中点.(1)求证:PC⊥BC.(2)求二面角M-AC-B的大小.【解析】(1)证明:由PA⊥平面ABC,∴PA⊥BC,又因为∠ACB=90°,即BC⊥AC.∴BC⊥面PAC,∴PC⊥BC.(2)取AB中点O,连结MO、过O作HO⊥AC于H,连结MH,∵M是PB的中点,∴MO∥PA,又∵PA⊥面ABC,∴MO⊥面ABC.∴∠MHO为二面角M-AC-B的平面角.设AC=2,则BC=2√3,MO=1,OH=√3,在Rt△MHO中,tan∠MHO=MOHO =√3=√33.二面角M-AC-B的大小为30∘.【点拨】求二面角也可以转化为线面角,比如求二面角D-AB-C,解题思路如下过点D作DE⊥AB,则二面角D-AB-C等于直线ED与平面ABC所成的角或其补角,若过点D作DF⊥平面ABC,则二面角D-AB-C是锐角,等于角∠DEF;二面角D-AB-C是钝角,等于角∠DEF的补角.1(★)在正方体ABCD﹣A′B′C′D′中,点P在线段AD′上运动,则异面直线CP与BA′所成的角θ的取值范围是()A.0 <θ <π2B.0 <θ≤π2C.0≤θ≤π3D.0 <θ≤π3【答案】D【解析】∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为π3,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0 <θ≤π3.故选D.2(★★)如图所示的几何体,是将高为2、底面半径为1的圆柱沿过旋转轴的平面切开后,将其中一半沿切面向右水平平移后形成的封闭体.O1,O2,O2′分别为AB ,BC ,DE的中点,F为弧AB的中点,G为弧BC的中点.则异面直线AF与GO2′所成的角的余弦值为.【答案】√1010【解析】如图,连接AF、FB、BG、GC,∵F为半圆弧AFB的中点,G为半圆弧BGC的中点,由圆的性质可知,G、B、F三点共线,且AF=CG,FB=GB,AB=BC,∴△AFB≌△CGB,∴AF∥CG,则∠CGO2′即为所求的角或其补角,又∵半径为1,高为2,且△AFB,△CG B都是等腰Rt△,∴CG=√2,CO2′=GO2′=√1+22=√5,∴在△CGO2′中,cos∠CGO2′=√52√22√522√2⋅√5=√1010,即异面直线AF与GO2′所成的角余弦值√1010.故答案为√1010.3 (★★)如图所示,在正方体ABCD-A1B1C1D1中,M是AB上一点,N是A1C的中点, MN⊥平面A1DC.(1)求证:AD1⊥平面A1DC;(2)求MN与平面ABCD所成的角.【答案】(1) 见解析(2)π4【解析】(1)证明:由ABCD-A1B1C1D1为正方体,得CD⊥平面ADD1A1,AD1⊂平面ADD1A1∴CD⊥AD1,又AD1⊥A1D,且A1D∩CD=D,∴AD1⊥平面A1DC;(2)解:∵MN⊥平面A1DC,又由(1)知AD1⊥平面A1DC,∴MN∥AD1,∴AD1与平面ABCD所成的角,就是MN与平面ABCD所成的角,∵D1D⊥平面ABCD,∴∠D1AD即为AD1与平面ABCD所成的角,,由正方体可知∠D1AD=π4∴MN与平面ABCD所成的角为π.44(★★★) 如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P ,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.【答案】(1) 见解析(2)√55【解析】(1)证明:因为P,Q分别为AE,AB的中点,所以PQ∥EB.又DC∥EB,因此PQ∥DC,又PQ 平面ACD,从而PQ∥平面ACD.(2)如图,连接CQ,DP,因为Q为AB的中点,且AC=BC,所以CQ⊥AB.因为DC⊥平面ABC,EB∥DC,所以EB⊥平面ABC,因此CQ⊥EB. 故CQ⊥平面ABE.EB=DC,所以四边形CQPD为平行四边形,故DP∥CQ,因此DP⊥平面ABE,由(1)有PQ∥DC,又PQ=12∠DAP为AD和平面ABE所成的角,在Rt△DP A中,AD=√5,DP=1,sin∠DAP=√5,即AD与平面ABE5。

线面角与三垂线定理

线面角与三垂线定理

α
A
Oa
注意:由一垂、二垂直接得出第三垂 并不是三垂都作为已知条件
应用三垂线定理及逆定理证明直线垂 直的步骤:
“一垂二射三证明” “一垂”:找平面及平面的垂线
“二射”:找斜线在平面上的射影
“三证明”:用定理证明直线垂直
精品文档 欢迎下载
读书破万卷,下笔如有神--杜甫
线面角及其三垂线定理
一、直线与平面所成的角
B
垂线
斜线
C AC
垂足
一条直线和一个平 面相交,但不和这个平 面垂直,这条直线叫做 这个平面的斜线,斜线 和平面的交点叫做斜足

过斜线上斜足以外的一点向平面引垂线
,过垂足和斜足的直线叫做斜线在这个平面 上的射影;
平面的一条斜线和
它在平面上的射影所成
的锐角,叫做这条直线
A
B C
例2 直接利用三垂线定理及逆定理证明下列各题:
(1) PA⊥正方形ABCD所在平面,O为对角线BD的中点 求证:PC⊥BD (2) 已知:PA⊥平面ABC,PB=PC,M是BC的中点, 求证:BC⊥AM
ቤተ መጻሕፍቲ ባይዱ
(3) 在正方体AC1中,求证:A1C⊥BD,A1C⊥BC1
P
P
A
D
O
A
B
C
(1)
(2)
D1
BCC1B1和平面A1B1CD内的射 影,就可以求出A1B和平面
A1
BCC1B1和平面A1B1CD所成的
角。
D
C1 B1
O
C
A
B
二、三垂线定理
三线概念: 平面的斜线、垂线、射影
如图PO是平面α的斜线,
O为斜足; PA是平面α
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由最小角原理得
cos ABC cos OBC cos


0
B
O C
即cos 60 cos45 cos
0 0
cos60 2 cos . 0 cos 45 2
练 习
1.AO与平面斜交,O为斜足,AO与平面 成角,B是A在上的射影,OD是内的 直线,∠BOD=30,∠AOD=60,则 sin =
O
C
B
例3 如图,在正方体ABCD-A1B1C1D1中,求 AD1和平面A1D1CB所成的角。 分析:找出AD1在平 D1 C1 面A1D1CB内的射影。
A1 B1
O D A B C
1 OA AD1 2
AD1O 30 .
0
求直线(或斜线)与平面所成的角关键 是确定斜线在平面的射影 其步骤是:一找,二证,三求。
6 3

A
解: 由最小角原理得
cos AOD cos BOD cos
O

C

B D
即cos 60 cos30 cos
0 0
3 cos 3
练习
A
C
2.已知斜线段的长是它在 O E 平面β上射影的2倍,则 B 斜线和平面β所成的角 D β 0 ______ 60 。 3.求证两条平行直线和一个平面所成的角相等. 如果两条直线与一个平面所成的角相等, 已知: AB, CD是平面的斜线且AB // CD, 求证: AB, CD与平面 所成的角相等. 它们平行吗? 不一定。 证明: 过A, C分别作AO , CE , 连BO,DE. ∵AB//CD,AO//CE,又∠AOB=∠CED=900 ∴∠ABO=∠CDE。 即两平行直线与平面所成角相等
A
l
O


B
复习回顾
1、点在平面上的射影是一个点,斜线在平面 上的射影是一条直线;直线在平面上的射影是 一个点或一条直线 2、从平面外同一点分别作该平面的垂线段和斜 线段: (1)射影相等的两条斜线段相等,射影较长的斜 线段也较长; (2)相等的斜线段的射影相等,较长的斜线段的 射影也较长; (3)垂线段比任何一条斜线段都短。
A
∵AB<AC,∴sinθ<sin∠AOD
l
∴θ<∠AOD
斜线和平面所成的角,是这条斜线和平面 内经过斜足的直线所成的一切角中最小的角。
引例
如图,AO是平面π的 斜线,OB ⊥平面π于B, AD是π内不与AB重合的直 A B 线∠OAB= ,∠BAD= , C D ∠OAD= ,求证:cos =cos cos 证明: 设|AO|=1则 | AB || AO | cos cos ,
小结 1. 平面的一条斜线和它在平面上的射影所成 的锐角,叫做这条直线和这个平面所成的角。 2.最小角原理: 斜线 和平面所成的角,是 这条斜线和平面内任 意的直线所成的一切 角中最小的角。


求直线(或斜线)与平面所成的角关 键是确定斜线在平面的射影. 其步骤是:一找,二证,三求。
O
| AC || AB | cos cos cos , 在直角OAC中| AC || AO | cos , cos cos cos .
例1 已知AB为平面内的一条射线,B为斜足,AO
0
, O为垂足, BC为内的一条射线, ABC 60 , OBC 450 , 求斜线AB和平面所成的角. 解: A
3 3

BC ⊥平面PAC
P
又BC=1,tan ∠BPC=
∠BPC=30
即BP与平面PAC所成的角为30 .
A
1
B 1 C
例2、如图,在正方体 ABCD A1 B1C1 D1 中, 求 A1 B 与平面 与平面A ABCD 所成的角 所成的角 1B1CD
练习4、
D1
C1
B1
A1 D
AD1与平面ABCD所成角 A1B与平面BB1D1D所成角 A
1、平面的斜线和平面所成的角 平面的一条斜线 和它在平面上的射影 所成的锐角,叫做这 条直线和这个平面所 成的角。 一条直线垂直于平面,它们 所成的角是直角; 一条直线和平面平行,或在平面内,它们 所成的角是0 的角。 直线和平面所成角的范围是[0,90]。
最小角原理
l是平面 的斜线,A是l 上任意一点,AB是平面 的垂线,B是垂足, O OB是斜线l的射影,θ是斜 B 线l与平面 所成的角. C D 则θ与∠AOD的大小关系如何? AC 在Rt △AOB 和 AB sin AOD sin Rt △AOC 中 AO AO
例题
例1 . 如图,在Rt△ ABC中,已知
∠C=90,AC=BC=1,PA⊥平面ABC,且
PA=
2 ,求PB与平面PAC所成的角.
P
A
C
B
解:PA ⊥平面ABC BC ⊥平面PAC PA 平面AHale Waihona Puke C 又AC ⊥BC PA AC=A
PB与平面PAC所角为∠BPC


AC=1, PA= 2 PC= 3
相关文档
最新文档