集合公开课课件资料

合集下载

数学广角集合ppt课件公开课

数学广角集合ppt课件公开课

事件概率计算方法
01
古典概型
当样本空间中每个样本点发生的可能性相等时,事件A的概率等于事件
A包含的样本点个数与样本空间样本点总数之比。
02 03
几何概型
当样本空间是一个区域(如线段、平面图形、立体图形等)时,事件A 的概率等于事件A所占的区域面积(或体积)与样本空间所占的区域面 积(或体积)之比。
频率估计概率
通过大量重复试验,用事件A发生的频率来近似估计事件A的概率。
条件概率与独立性
条件概率
在已知事件B发生的条件下,事件A发生的概率,记作P(A|B)。条件概率的计算公 式为P(A|B) = P(AB) / P(B)。
事件的独立性
如果事件A的发生与否对事件B的发生概率没有影响,则称事件A与事件B相互独 立。对于相互独立的事件A和B,有P(AB) = P(A)P(B)。
局和管理的措施。
案例四
生态环境模型。数学建模在生态环境领域 的应用包括水质模型、大气污染模型等, 可以为环境保护和治理提供决策支持。
06
总结回顾与拓展延伸
关键知识点总结回顾
集合的基本概念
包括元素、集合、子集、真子集等概念的定义和性质。
集合的运算
包括交集、并集、补集等运算的定义、性质和计算方法。
集合的表示方法
适当使用动画和交互效果可以 增强图表的吸引力和互动性, 提高观众的参与度。
案例:统计图表在数据分析中应用
1
案例一
某电商平台的销售数据分析。利用柱状 图和折线图展示不同商品的销售数量和 销售额的变化趋势,帮助商家了解市场 需求和竞争情况。
2
案例二
某城市空气质量监测数据分析。利用饼 图展示不同污染物在空气中的占比情况 ,利用散点图展示污染物浓度与气象因 素之间的关系,为环保部门制定治理措 施提供依据。

高中数学集合ppt课件

高中数学集合ppt课件

描述法
总结词
通过描述集合中元素的共同特征来展 示集合的方法。
详细描述
描述法适用于集合元素数量较多,无 法一一列举的情况。例如,集合 B={x|x>2},可以通过描述法表示为 {x|x>2}。
韦恩图法
总结词
通过图形表示集合及其关系的方法。
详细描述
韦恩图法是一种直观的表示方法,通过圆圈、椭圆等图形来 表示不同的集合,以及它们之间的关系。这种方法有助于理 解集合的并、交、差等运算。
总结词
表示两个或多个集合中共有的元 素
详细描述
交集是指两个或多个集合中共有 的元素组成的集合。可以用符号 "∩"表示交集,例如A∩B表示集合 A和集合B的交集。
并集
总结词
表示两个或多个集合中所有的元素, 不考虑重复
详细描述
并集是指两个或多个集合中所有的元 素组成的集合,不考虑重复。可以用 符号"∪"表示并集,例如A∪B表示集 合A和集合B的并集。
互异性
• 互异性是指集合中的元素互不相同,即集合中不会有重复的元素。例如,集合 {1,2,3}中没有重复的元素,而集合{1,2,2,3,3}中有重复的元素2和3。
05
集合的应用
在数学中的应用
1 2
3
集合论
集合论是数学的基础理论之一,它为数学概念提供了一种抽 象的描述方式。通过集合,数学中的许多概念,如函数、数 列、平面几何等都可以被统一地表达和描述。
在经济学中,集合的概念也经常被使 用。例如,可以将一组商品看作一个 集合,然后对这组商品进行分析和比 较。
计算机科学
在计算机科学中,集合的概念被广泛 应用于数据结构和算法的设计。例如 ,数组、链表、栈、队列等数据结构 都是基于集合的。

集合课件ppt课件

集合课件ppt课件

函数与映射
集合在函数和映射的概念中起着关键 作用。函数可以看作是一种特殊的集 合关系,其中每个输入元素都与输出 元素相关联。
在计算机科学中的应用
数据结构
在计算机科学中,集合常被用作实现各种数据结构的基础 ,如哈希表、队列和栈等。集合提供了快速插入、删除和 查找等操作的方法。
算法设计与分析
在Hale Waihona Puke 法设计和分析中,集合用于表示问题实例、状态和转 换等。通过集合运算,我们可以实现各种算法逻辑,如排 序、搜索和图算法等。
统计学与社会学
在统计学和社会学中,集合用于描述人口分布、市场调查和民意调查 等。通过集合运算,我们可以分析数据并得出有意义的结论。
05 集合的扩展知识
无限集
无限集定义
无限集是包含无穷多个元素的集 合,无法完全列举其所有元素。
无穷大与无穷小
无限集中的元素可以按其数量大小 分为无穷大和无穷小,分别表示集 合中元素的数量趋于无穷和趋于零 。
A⊆B。
02
超集定义
如果集合A中的所有元素都是集合B中的元素,并且B中至少有一个元素
不属于A,则称B是A的超集,记作B⊇A。
03
子集与超集的性质
子集和超集之间存在互补关系,即对于任意集合A,存在一个与之对应
的超集A',使得A和A'的并集等于全集。
THANKS FOR WATCHING
感谢您的观看
数据库与信息检索
在数据库和信息检索中,集合用于表示数据记录、查询条 件和结果等。通过集合运算,可以实现高效的数据检索和 管理。
在日常生活中的应用
分类与分组
在日常生活中,集合的概念用于分类和分组事物。例如,将一组物 品分成几组、将人群分为不同年龄段或职业类别等。

集合的课件

集合的课件
泛型集合
在泛型编程中,集合被视为一个泛型 类,可以存储任意类型的数据。通过 使用泛型集合,开发人员可以编写更 加灵活和可复用的代码。
03
泛型集合的优点
泛型集合具有类型安全、可扩展性和 性能优越等优点。类型安全可以减少 运行时错误,可扩展性使得代码更加 灵活,而性能优越则可以提高程序的 执行效率。
集合与数据结构
数据结构的概念
数据结构是一种组织数据的方式 ,它定义了数据之间的逻辑关系 和存储方式。在计算机科学中, 数据结构被广泛应用于各种算法 和程序设计中。
常见的数据结构
在数据结构中,有一些常见的数 据结构,如数组、链表、栈、队 列、树等。这些数据结构都有自 己独特的性质和用途。
集合与数据结构的关 系
集合是一种特殊的数据结构,它 用于存储一组元素。集合与数据 结构的关系主要体现在它们之间 的交互和运用上。例如,在实现 一些算法时,开发人员需要使用 集合来存储和处理数据。
THANKS
感谢观看
集合的定理
01 02 03 04
集合定理的内容
包括德摩根定理、包含排斥原理、子集原理等。
集合定理的应用 在数学、逻辑等领域都有广泛的应用,例如在解决实际问题时,可以
使用包含排斥原理来计算重叠部分的数量。
集合的证明方法
直接证明法 通过已知条件直接推导出结论。
适用于比较简单的命题。
集合的证明方法
反证法 假设与命题相反的条件成立,然后推导出矛盾的结论。
运算律
补集运算满足分配律,即 Ac∩B=(A∩B)c, Ac∪B=(A∪B)c。
03
CATALOGUE
特殊集合
空集
01
定义
不包含任何元素的集合称为空集。

集合的含义及其表示公开课一等奖课件省赛课获奖课件

集合的含义及其表示公开课一等奖课件省赛课获奖课件
思考2:由“good中的字母”构 成的集合中的元素是什么?
思考3:由“1,2,3”构成的集合 与由“3,2,1”构成的集合同样
集合的有关概念
5、集合中元素的特性
集合中的元素含有下列三个特性:
①拟定性:集合中的元素必须是拟 定的。即拟定了一种集合,任何一种对 象是不是这个集合的元素也就拟定了.
②互异性:集合中的元素是互异的。 即集合元素是没有重复现象的.
N----全体非负整数形成的集合普通简称自然数集 (或非负整数集);
N*(或N+)----非负整数集内排除0的集,也称正整 数集;
Z----全体整数形成的集合普通称整数集; Q----全体有理数形成的集合普通称有理数集; R----全体实数形成的集合普通称实数集。
思考1:“我们班比较勤奋的学 生”能构成一种集合吗?
请元的同 素如元窗 及果素们 这两都比 两个是较 个集B的集集合元合合所素间{含1,,的B2的,中3关元,4的系}素与元?完集素全合也相{都2似,是3(,即1A,4的A}中中元的 素),则称这两个集合相等. 如:{北京,天津,上海,重庆}= {上海,北京,天津, 重庆}
(2)描述法: 将集合的全部元素都含有的性质
6、集合的分类
(1)有限集:含有有限个元素的集合; (2)无限集:含有无限个元素的集合。
问题:
方程x2+1=0的全部实数解能够构成集合吗?
上面的方程是无解的,也就是这个集合是没 有元素的,像这样的不含任何元素的集合我
们称之为空集,记作 .
例2.用适宜的办法表达下列集合,并判断与否为 有限集。
(1)全部非负偶数构成的集合;
(满足的条件)表达出来,写成{x|p(x)}
代表元素
的形式. 其中x为集合的代表元 素,p(x)为集合中全部元素满足的条

集合课件PPt

集合课件PPt

集合的传递性、吸收性、反对称性
传递性
如果A包含B,B包含C,则A包含C。
吸收性
如果A包含B,则A并B等于A。
反对称性
如果A包含B,B包含A,则A等于B。
集合运算的应用
用于解决数学问题中 的分类和合并问题。
用于逻辑推理和证明 中的概念和定理的表 述和证明。
用于处理集合之间的 关系和运算,如交、 并、补等。
集合的表示方法
列举法
将集合的元素一一列举出来,用 大括号{}括起来。例如:{1,2,3}表 示一个包含三个元素的集合。
描述法
通过描述集合中元素的共同特征 来表示集合。例如:{x|x是正方形 }表示所有正方形的集合。
集合的分类
01
02
03
有限集
包含有限个元素的集合。 例如:{1,2,3}是一个有限 集。
无限集
包含无限个元素的集合。 例如:自然数的集合N是 一个无限集。
空集
不包含任何元素的集合。 例如:{}是一个空集。
02 集合运算
交集、并集、补集
交集
由两个集合中共有的元素 组成的集合称为这两个集 合的交集。
并集
由两个或两个以上集合的 所有元素组成的集合称为 这些集合的并集。
补集
在集合A中,不属于A的元 素组成的集合称为A的补 集。
应用
关系在数据库、人工智能和自然语言处理等领域都有广泛的应用。
等价关系与划分
定义
等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。自反性指任何元素都 与自己有这种关系,对称性指如果a与b有这种关系,则b与a也有这种关系,传递性指如 果a与b有这种关系,b与c也有这种关系,则a与c也有这种关系。
证明数学定理

集合课件完整版整理.ppt

集合课件完整版整理.ppt
② A={长方形}, B={平行四边形方形};
③ A={x|x2-3x+2=0},
B={1,2}.
课件
练习1:观察下列各组集合,并指明两个
集合的关系
① A=N+ ,B=N;
AB
② A={长方形}, B={平行四边形方形};
③ A={x|x2-3x+2=0},
B={1,2}.
课件
练习1:观察下列各组集合,并指明两个
课件
第一讲 集合的含义及其表示
课件
知识点
1. 1到5正整数; 2. 中国古典四大名著; 3. 高一10班的全体学生; 4. 我校篮球队的全体队员;
课件
1.集合的概念: 我们把研究对象统称为元素.把一些
元素组成的全体叫做集合,简称“集”.
课件
2.分辨集下合列是否能构成集合
高一2班很高的男生 中国很长的河流 接近于0的数
显然这个集合没有元素.我们把这样的 集合叫做空集,记作.
课件
7.重要的数集:
➢ N:自然数集(含0) ➢ N+:正整数集(不含0) ➢ Z:整数集 ➢ Q:有理数集 ➢ R:实数集
课件
例题
• 例题1下列各项中,不可以组成集合的是 ()
• A.所有的正数 • B.等于2的数 • C.接近于0的数 • D.不等于0的偶数
B. ②③⑥⑦⑧ D. ②③⑤⑥⑦⑧
课件
课件
3.集合的表2 示方法: 集合常用大写字母表示 元素常用小写字母表示
描述法、列举法
课件
课件
课件
4.集合与元素的关系:
如果a是集合A的元素,就说a属于集 合A,记作a∈A.
如果a不是集合A的元素,就说a不属 于集合A,记作aA.

集合的概念ppt课件

集合的概念ppt课件
04
差集的应用举例:在数据筛选中,可以使用差集运算找出满足某一条 件但不满足另一条件的记录。
补集及其运算
补集的定义:对于全集U 和它的一个子集A,由全 集U中所有不属于A的元 素组成的集合称为A的补 集,记作∁UA或~A。
补集的运算性质:满足德 摩根定律,即 ∁U(A∩B)=(∁UA)∪(∁UB) , ∁U(A∪B)=(∁UA)∩(∁UB) 。
集合的包含关系
01
集合包含的定义
对于两个集合A和B,如果集合A的每一个元素都是集合B的元素,则称
集合B包含集合A。
02
集合包含的性质
如果集合B包含集合A,则A是B的子集,即A⊆B。
03
集合包含的符号表示
B⊇A表示集合B包含集合A。
04
集合的应用
集合在数学中的应用
01
02
03
描述数学对象
集合论是数学的基础,用 于描述各种数学对象及其 性质,如数、点、线、面 等。
偏序集的概念
偏序集的定义
偏序集是一种具有部分顺序关系的集合,其中元素之间的比较不是完全的,而是部分的。 偏序关系通常表示为≤。
偏序集的性质
偏序集具有一些重要的性质,如自反性、反对称性和传递性。此外,偏序集还可以有最大 元、最小元、上界和下界等概念。
偏序集的应用
偏序集在数学、计算机科学、经济学等领域有着广泛的应用,如用于描述数据结构中的排 序问题、经济学中的偏好关系等。
THANKS FOR WATCHING
感谢您的观看
似,但要考虑隶属度的影响。
幂集的概念
幂集的定义
给定集合A,由A的所有 子集(包括空集和A本 身)组成的集合称为A 的幂集,记作P(A)。
幂集的性质

数学集合课件ppt课件

数学集合课件ppt课件
无限集
具有无限数量元素的集合。例如,自 然数集合N包含无限多的元素,因此N 是一个无限集。
幂集的性质
幂集是原集合所有子集的集合。
对于任何集合A,其幂集记为 P(A),包含了A的所有子集。
幂集的性质表明,一个集合的元 素个数等于其幂集中元素的个数 。因此,一个集合的幂集总是比
原集合大或相等。
04
集合的应用
数学集合课件ppt
目录 Contents
• 集合的基本概念 • 集合的运算 • 集合的性质 • 集合的应用基本概念
集合的定义
总结词
集合是由确定的、不同的元素所组成的总体。
详细描述
集合是数学中一个基本概念,它是由一组确定的、不同的元素所组成。这些元 素可以是数字、字母、图形等,它们被用来描述具有某种特性的事物。
集合中的元素具有互异性,即集合中不会有重复的元素。此外,集合中的元素是 无序的,即集合中元素的排列顺序并不影响集合本身。
02
集合的运算
集合的交集
01
02
03
总结词
表示两个集合中共有的元 素组成的集合
详细描述
设集合A和集合B,它们的 交集记作A∩B,表示同时 属于A和B的元素组成的集 合。
举例
若A={1,2,3,4}, B={3,4,5,6},则 A∩B={3,4}。
在计算机科学中的应用
数据结构与算法
集合在计算机科学中被广泛应用于数据结构和算法的设计 。例如,集合可以用来表示动态数据结构中的元素,如哈 希表和并查集等。
数据库系统
在数据库系统中,集合用来表示数据表中的行或记录,通 过集合操作来实现数据的查询、插入、删除和更新等操作 。
离散概率论与离散随机过程
离散概率论和离散随机过程是计算机科学中研究随机现象 的重要工具,集合在这个领域中也被广泛应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昨天买的
今天买的
两项都参加的
具, 两天一共可能买了多少种文具?
昨天买的
今天买的
两项都参加的
5+6-5=6(种)
你有什么收获?
延伸:
三(2)班喜欢上网的男同学名单
类别
学号
喜欢聊天
1
2
3
4
5
6
喜欢玩游戏
1
2
7
8
9
10
喜欢看电影
1
2
7
11
12
13
怎么用维恩图表示呢?
数学广角——集合
陶山丰和小学 任绵绵
爸爸 爸爸 儿子 儿子
一共有几人?
可是我数了一下, 我们班才7名女生呀!
类别
学号
喜欢跳绳 1 4 5 2
喜欢踢毽 3 6 2 7 5
站队啦!站队啦! 喜欢跳绳的人站左边! 喜欢踢毽的人站右边!
韦恩图,也译作文氏图。
韦恩(John Venn1834——1923年,英国数学家)
昨天买的
今天买的
两项都参加的
5+6-1=10(种)
昨天买了5种文具,今天买了6种文具, 两天一共可能买了多少种文具?
昨天买的
今天买的
两项都参加的
5+6-2=9(种)
昨天买了5种文具,今天买了6种文具, 两天一共可能买了多少种文具?
昨天买的
今天买的
两项都参加的
5+6-3=8(种)
昨天买了5种文具,今天买了6种文具, 两天一共可能买了多少种文具?
喜欢跳绳的 (4人)
喜欢踢毽的 (5人)


⑥⑦





⑥⑦



只喜欢跳绳
(2人)


⑥⑦



只喜欢踢毽
(3人)


⑥⑦



既喜欢跳绳又喜欢踢毽
(2人)
类别
学号
喜欢跳绳 1 4 5 2
喜欢踢毽 3 6 2 7 5
一共有几人?
可是我数了一下, 我们班才7名女生呀!
① ② ⑥⑦ ④⑤ ③
4 + 5 - 2 = 7(人)
练习一:
会游泳
会飞翔
①⑤ ⑥⑨
②④ ③⑦ ⑧ ⑩
我该站哪里?
练习二: 两天一共买了多少种文具?
昨天买的文具:
今天买的文具:
5+6-3=8(种)
昨天买了5种文具,今天买了6种文具, 两天一共可能买了多少种文具?
昨天买的
今天买的
5+6=11(种)
昨天买了5种文具,今天买了6种文具, 两天一共可能买了多少种文具?
相关文档
最新文档