人教备战中考数学提高题专题复习旋转练习题含详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、旋转真题与模拟题分类汇编(难题易错题)
1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)请问EG与CG存在怎样的数量关系,并证明你的结论;
(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)
【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立
【解析】
【分析】
(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.
(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明
△AMG≌△ENG,得出AG=EG;最后证出CG=EG.
(3)结论依然成立.
【详解】
(1)CG=EG.理由如下:
∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=1
2
FD,
同理.在Rt△DEF中,EG=1
2
FD,∴CG=EG.
(2)(1)中结论仍然成立,即EG=CG.
证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;
在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.
∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.
证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,
∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,
∴MF∥CD∥AB,∴EF⊥MF.
在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE
∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.
∵MG=CG,∴EG=1
MC,∴EG=CG.
2
(3)(1)中的结论仍然成立.理由如下:
过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.
由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证
∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC
∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG
【点睛】
本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.
2.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.
(1)探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.
他的证明思路如下:
第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.
第二步:证明△APM≌△ANM,得MP=MM.
第一步:证明∠POM=90°,得OM2+OP2=MP2.
最后得到OM2+BN2=MN2.
请你完成第二步三角形全等的证明.
(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).
【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.
【解析】
【分析】
(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明
△APM≌△ANM,再利用勾股定理即可解决问题;
(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.
【详解】
(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.
∵点A(0,4),B(4,4),
∴OA=AB,∠OAB=90°,
∵∠NAP=∠OAB=90°,∠MAN=45°,
∴∠MAN=∠MAP,
∵MA=MA,AN=AP,
∴△MAN≌△MAP(SAS).
(2)如图2中,结论仍然成立.
理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.
∵∠NAP =∠OAB =90°,∠MAN =45°,
∴∠MAN =∠MAP ,
∵MA =MA ,AN =AP ,
∴△MAN ≌△MAP(SAS),
∴MN =PM ,
∵∠ABN =∠AOP =135°,∠AOB =45°,
∴∠MOP =90°,
∴PM 2=OM 2+OP 2,
∴OM 2+BN 2=MN 2;
(3)如图3中,若点B 是MN 的中点,求MN 的长.
设MN =2x ,则BM =BN =x ,
∵OA =AB =4,∠OAB =90°,
∴OB =2,
∴OM =2﹣x ,
∵OM 2+BN 2=MN 2.
∴2﹣x)2+x 2=(2x)2,
解得x =﹣26或﹣2﹣6(舍弃)
∴MN =﹣26.
【点睛】
本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.
3.(探索发现)
如图,ABC ∆是等边三角形,点D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .小明在探索这个问题时发现四边形ABCE 是菱形. 小明是这样想的: