初一数学第二学期期中考试试题(2)

合集下载

吉林省长春市东北师范大学附属中学2023-2024学年七年级下学期期中数学试题(解析版)

吉林省长春市东北师范大学附属中学2023-2024学年七年级下学期期中数学试题(解析版)

2023-2024学年东北师大附中初中部初一年级数学学科试卷第二学期期中考试考试时长:120分钟试卷分值:120分一、选择题(共8小题,每题3分,共24分)1. 如图,下列四种通信标志中,其图案是轴对称图形的是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查了轴对称图形的识别,根据轴对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.【详解】解:A 、不是轴对称图形,故此选项不符合题意;B 、不是轴对称图形,故此选项不符合题意;C 、是轴对称图形,故此选项符合题意;D 、不是轴对称图形,故此选项不符合题意;故选:C .2. 已知,下列不等式成立的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了不等式的基本性质,易错在不等式的基本性质3,不等式两边同时乘以或除以同一个负数,不等号的方向改变.不等式性质:基本性质1.不等式两边同时加上或减去同一个整式,不等号的方向不变.基本性质2.不等式两边同时乘以或除以同一个正数,不等号的方向不变.基本性质3.不等式两边同时乘以或除以同一个负数,不等号的方向改变.根据性质逐一分析即可.【详解】解:A .∵,∴,故不符合题意;B . ∵,∴,a b >a b->-22a b -<-22a b <0a b -<a b >a b -<-a b >a b -<-∴,故符合题意;C .∵,∴,故不符合题意;D . ∵,∴,故不符合题意.故选:B .3. 一副三角板,按如图所示叠放在一起,则图中的度数为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了与三角板有关的运算以及三角形内角和性质,先得出,再运用三角形内角和进行列式,计算即可作答.【详解】解:如图所示:由题意得出,∴,∵,∴,故选:C .4. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形【答案】C【解析】【分析】一个多边形的镶嵌应该符合其内角度数可以整除360°【详解】A 、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;22a b -<-a b >22a b >a b >0a b ->α∠60︒65︒75︒85︒115ABD ABC ∠=∠-∠=︒6045ABD ABC ∠=︒∠=︒,1604515ABD ABC ∠=∠-∠=︒-︒=︒90D Ð=°180901575α∠=︒-︒-︒=︒B 、四边形内角和为360°,能整除360°,能密铺,故此选项不合题意;C 、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D 、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意;故选C .【点睛】本题主要考查图形的镶嵌问题,重点是掌握多边形镶嵌的原理.5. 已知是关于x ,y 的方程,x +ky =3的一个解,则k 的值为( )A. -1B. 1C. 2D. 3【答案】B【解析】【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:∵是关于x 、y 的方程x +ky =3的一个解,∴把代入到原方程,得1+2k =3,解得k =1,故选:B .【点睛】本题主要考查了二元一次方程的解的定义,解一元一次方程,熟知方程的解是使方程两边相等的未知数的值是解题的关键.6. 一个三角形两边的长分别是3和5,则这个三角形第三边的长可能是( )A. 1B. C. 2 D. 4【答案】D【解析】【分析】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.先根据三角形的三边关系求出x 的取值范围,再求出符合条件的x 的值即可.【详解】解:设三角形第三边的长为x ,则,即,只有选项D 符合题意.故选D .7. 不等式的解集在数轴上表示正确的是( )12x y =⎧⎨=⎩12x y =⎧⎨=⎩12x y =⎧⎨=⎩1.55353x -<<+28x <<53x -≥A.B.C.D.【答案】A【解析】【分析】本题考查的是解一元一次不等式,利用数轴表示不等式的解集.先求出不等式的解集,再在数轴上表示出来不等式的解集即可,注意大于小于用空心,大于等于小于等于用实心,大于大于等于开口向右,小于小于等于开口向左.【详解】解:,,数轴上表示:,故选:A .8. 某学校为学生配备物理电学实验器材,一个电表包内装有1个电压表和2个电流表.某生产线共60名工人,每名工人每天可生产14个电压表或20个电流表.若分配名工人生产电压表,名工人生产电流表,恰好使每天生产的电压、电流表配成套,则可列出方程组( )A. B. C. D. 【答案】D【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是得到电压表数量和电流表数量的等量关系.【详解】解:若分配名工人生产电压表,名工人生产电流表,由题意,得.故选:D .二、填空题(共6小题,每小题3分,共18分)9. 已知二元一次方程,用含x 的代数式表示y ,则______.为53x -≥∴2x ≤x y 6022014x y y x+=⎧⎨⨯=⎩6014202x y x y +=⎧⎪⎨=⎪⎩601420x y x y +=⎧⎨=⎩6021420x y x y+=⎧⎨⨯=⎩x y 6021420x y y y +=⎧⎨⨯=⎩327x y +=y =【答案】【解析】【分析】本题考查了解二元一次方程,根据,将x 看成已知数,进行移项,再系数化1,即可作答.【详解】解:∵∴故答案为:10. 在通过桥洞时,往往会看到如图所示标志:这是限制车高的标志,表示车辆高度不能超过,通过桥洞的车高应满足的不等式为_____________.【答案】##【解析】【分析】根据不等式的定义列不等式即可.【详解】解:∵车辆高度不能超过,∴.故答案为.【点睛】本题主要考查列不等式,掌握不等式的定义是解答本题的关键.11. 不等式组的最小整数解为_________.【答案】【解析】【分析】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集,根据“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:解不等式组得:,∴最小整数解为,故答案为:.的7322x -327x y +=327x y +=273y x=-7322y x =-7322x -5m m x 5x ≤5x≥5m 5x ≤5x ≤10{212x x -<-≥210{212x x -<-≥32x ≥2212. 如图,正五边形ABCDE 和正六边形EFGHMN 的边CD 、FG 在直线l 上,正五边形在正六边形左侧,两个正多边形均在l 的同侧,则的大小是___度.【答案】48【解析】【分析】利用正多边形的内角和,求出其中一个角的度数,进一步求出三角形DEF 的两个内角,最后由三角形内角和定理来求解.【详解】解:正五边形内角和为且在直线上,,正六边形内角和为且在直线上,,在中,,,,,故答案是:.【点睛】本题考查了正多边形的内角、三角形的内角和定理,解题的关键是:掌握正多边形内角和的求法.13. 我国传统数学名著九章算术记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两问牛、羊各一直金几何?”译文问题:“假设有头牛、只羊,值两银子;头牛、只羊,值两银子,问一头牛、一只羊一共值多少两银子?”则头牛、只羊一共值 ______ 两银子.【答案】【解析】【分析】设每头牛值两银子,每只羊值两银子,根据“头牛、只羊,值两银子;头牛、只羊,值两银子”,可得出关于,的二元一次方程组,利用,即可求出结论.DEF ∠ 540︒CD l 5401085EDC ︒∴∠==︒ 720︒FG l 7201206EFG ︒∴∠==︒EDF 180DEF EDF EFD ∠=︒-∠-∠18010872EDF ∠=︒-︒=︒ 18012060EFD ∠=︒-︒=︒48DEF ∴∠=︒48《》.52192516115x y 52192516x y ()7+÷①②【详解】解:设每头牛值两银子,每只羊值两银子,根据题意得:,得:,∴头牛、只羊一共值两银子,故答案为:.【点睛】本题考查了二元一次方程组的应用以及数学文化,找准等量关系,正确列出二元一次方程组是解题的关键.14. 为了更好的开展大课间活动,某班级计划购买跳绳和呼啦圈两种体育用品,已知一个跳绳8元,一个呼啦圈12元.准备用120元钱全部用于购买这两种体育用品(两种都要买且钱全部用完),则该班级的购买方案有______种.【答案】4【解析】【分析】设购买个跳绳,个呼啦圈,利用总价单价数量,即可得出关于,的二元一次方程,结合,均为正整数,即可得出购买方案的数量.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.【详解】解:设购买个跳绳,个呼啦圈,依题意得:,.,均为正整数,为3的倍数,或或或,该班级共有4种购买方案.故答案为:4.三、解答题(共10小题,共78分)15. 解方程组:(1)x y 52192516x y x y +=⎧⎨+=⎩①②()7+÷①②5x y +=1155x y =⨯x y x y x y 812120x y +=2103y x ∴=-x y x ∴∴38x y =⎧⎨=⎩66x y =⎧⎨=⎩94x y =⎧⎨=⎩122x y =⎧⎨=⎩∴23328y x x y =-⎧⎨+=⎩(2)【答案】(1) (2)【解析】【分析】本题主要考查了解二元一次方程组:(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组即可.【小问1详解】解:把①代入②得:,解得,把代入①得,∴方程组的解为;小问2详解】解:得:,解得,把代入①得:,解得,∴方程组解为.16. 解下列不等式(组):(1);(2)【的28452x y x y +=⎧⎨-=⎩21x y =⎧⎨=⎩32x y =⎧⎨=⎩23328y x x y =-⎧⎨+=⎩①②()32238x x +-=2x =2x =2231y =⨯-=21x y =⎧⎨=⎩28452x y x y +=⎧⎨-=⎩①②2⨯-①②714y =2y =2y =228x +=3x =32x y =⎧⎨=⎩()32723x +≥()313122x x x x ⎧->⎪⎨--≥⎪⎩【答案】(1) (2)无解【解析】【分析】本题考查了解一元一次不等式以及解一元一次不等式组,正确掌握相关性质内容是解题的关键.(1)先去括号,再移项合并同类项,系数化1,即可作答.(2)分别算出每个不等式组的解集,再取公共部分的解集,即可作答.【小问1详解】解:,,,;【小问2详解】解:,由,得,解得,由,得,解得,此时不等式组无解.17. 如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的,线段在网格线上.(1)画出边上的高线;(2)画出边上的中线;(3)在线段上任取一点P ,则的面积是______.【答案】(1)见详解 (2)见详解(3)513x ≥()32723x +≥62123x +≥62x ≥13x ≥()313122x x x x ⎧->⎪⎨--≥⎪⎩()31x x ->33x x ->32x >3122x x --≥243x x -≥-1x ≤ABC MN AB CD BC AE MN ABP【解析】【分析】本题考查了三角形的高,中线的定义,运用网格求面积,正确掌握相关性质内容是解题的关键.(1)过点C 作垂直于的延长线,交点为点,即可作答.(2)根据网格特征以及中线定义,进行作图即可;(3)根据平行线之间的距离处处相等的性质,得出与的距离为5,再结合三角形面积公式进行计算,即可作答.【小问1详解】解:边上的高线如图所示:【小问2详解】解: 边上的中线如图所示:【小问3详解】解:如图所示:∴的面积.CD BA D MN AB AB CD BC AE ABP 12552=⨯⨯=18. 如图,在中,是的角平分线,,,求的度数.【答案】【解析】【分析】根据三角形外角的性质,角平分线的定义以及三角形的内角和定理即可得到结论.此题主要考查了三角形外角的性质,角平分线的定义,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.【详解】解:∵.∴,∵是角平分线,∴,在中,.19.若一个多边形的内角和的比它的外角和多,那么这个多边形的边数是多少?【答案】12【解析】【分析】设这个多边形的边数是n ,根据题意,列方程求解即可.【详解】解:设这个多边形的边数是n ,由题意得:,解得:,答:这个多边形的边数是12.【点睛】本题考查了多边形的内角和和外角和定理,熟练掌握两个定理是解题的关键.20. 在长方形中,放入5个形状大小相同的小长方形(空白部分),其中,,求图中阴影部分图形的面积.ABC AN ABC 50B ∠=︒80ANC ∠=︒C ∠70︒5080ANC B BAN B ANC ∠=∠+∠∠=︒∠=︒,,805030BAN ANC B ∠∠∠=-=︒-︒=︒AN BAC ∠223060BAC BAN ∠=∠=⨯︒=︒ABC 180180506070C B BAC ∠=︒-∠-∠=︒-︒-︒=︒1490︒1(2)180360904n -⨯︒=︒+︒1(2)180360904n -⨯︒=︒+︒12n =ABCD 8cm AB =12cm BC =【答案】【解析】【分析】设小长方形的长为,宽为,根据图形中大长方形的长和宽列二元一次方程组,求出和的值,即可解决问题.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设小长方形的长为,宽为,根据题意,得:,解得:,每个小长方形的面积为,阴影部分的面积.21. 阅读下列材料:小明同学在学习二元一次方程组时遇到了这样一个问题:解方程组.小明发现,如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的看成一个整体,把看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令,.原方程组化为,解得,把代入,,得,解得,236cm xcm ycm x y xcm ycm 3128x y x y +=⎧⎨+=⎩62x y =⎧⎨=⎩∴()22612cm ⨯=∴()281251236cm =⨯-⨯=23237432323832x y x yx y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩()23x y +()23x y -23m x y =+23n x y =-743832m nm n ⎧+=⎪⎪⎨⎪+=⎪⎩6024m n =⎧⎨=-⎩6024m n =⎧⎨=-⎩23m x y =+23n x y =-23602324x y x y +=⎧⎨-=-⎩914x y =⎧⎨=⎩原方程组的解为.(1)学以致用:运用上述方法解方程组:(2)拓展提升:已知关于x ,y 的方程组的解为,请直接写出关于m 、n 的方程组的解是______.【答案】(1) (2)【解析】【分析】本题主要考查了换元法解二元一次方程组:(1)结合题意,利用整体代入法求解,令,得,解得即即可求解;(2)结合题意,利用整体代入法求解,令,,则可化为,且解为则有,求解即可.【小问1详解】解:令,,原方程组化为,解得,∴914x y =⎧⎨=⎩()()()()213211224x y x y ⎧++-=⎪⎨+--=⎪⎩111222a xb yc a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩()()1112222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩11x y =⎧⎨=⎩143m n =⎧⎪⎨=-⎪⎩1m x =+2n y =-23124m n m n +=⎧⎨-=⎩21m n =⎧⎨=-⎩1221x y +=⎧⎨-=-⎩2x m =+3y n =-()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩121222a x b y c a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩2334m n +=⎧⎨-=⎩1m x =+2n y =-23124m n m n +=⎧⎨-=⎩21m n =⎧⎨=-⎩,解得:,∴原方程组的解为 ;【小问2详解】解:在中,令,,则可化为,∵方程组解为,∴,,故答案为:.22. “粮食生产根本在耕地、出路在科技”.为提高农田耕种效率,今年开春某农村合作社计划投入资金购进甲、乙两种农耕设备,已知购进2台甲种农耕设备和1台乙种农耕设备共需4.2万元;购进1台甲种农耕设备和3台乙种农耕设备共需5.1万元.(1)求甲种农耕设备和乙种农耕设备单价各是多少万元;(2)若该合作社决定购买甲、乙两种农耕设备共7台,且购进甲、乙两种农耕设备总资金不超过10万元,求最多可以购进甲种农耕设备多少台.【答案】(1)1台甲种农耕设备需1.5万元,1台乙种农耕设备需1.2万元; (2)5台【解析】【分析】(1)设购进1台甲种农耕设备需万元,1台乙种农耕设备需万元,根据“购进2台甲种农耕设1221x y +=⎧∴⎨-=-⎩11x y =⎧⎨=⎩11x y =⎧⎨=⎩()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩2x m =+3y n =-()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩121222a x b y c a x b y c +=⎧⎨+=⎩121222a x b y c a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩2334m n +=⎧⎨-=⎩143m n =⎧⎪∴⎨=-⎪⎩143m n =⎧⎪⎨=-⎪⎩x y备和1台乙种农耕设备共需4.2万元;购进1台甲种农耕设备和3台乙种农耕设备共需5.1万元”,可得出关于,的二元一次方程组,解之即可得出结论;(2)设购进甲种农耕设备台,则购进乙种农耕设备台,利用总价单价数量,结合总价不超过10万元,可得出关于的一元一次不等式,解之可得出的取值范围,再取其中的最大整数值,即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.【小问1详解】解:设购进1台甲种农耕设备需万元,1台乙种农耕设备需万元,根据题意得:,解得:.答:购进1台甲种农耕设备需1.5万元,1台乙种农耕设备需1.2万元;【小问2详解】解:设购进甲种农耕设备台,则购进乙种农耕设备台,根据题意得:,解得:,又为正整数,的最大值为5.答:最多可以购进甲种农耕设备5台.23. 【探究】如图①,在中,点D 是延长线上一点,的平分线与的平分线相交于点P .则有,请补全下面证明过程:证明:平分,平分,,______(______).______(三角形的一个外角等于与它不相邻的两个内角的和),.x y m ()7m -=⨯m m x y 2 4.23 5.1x y x y +=⎧⎨+=⎩1.51.2x y =⎧⎨=⎩m ()7m -()1.5 1.2710m m +-≤153m ≤m m ∴ABC BC ABC ∠BP ACD ∠CP 12P A ∠=∠BP ABC ∠CP ACD ∠2ABC PBC ∴∠=∠2ACD ∠=∠ACD A ∠=∠+∠ 22PCD A PBC ∴∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角的和),.【应用】如图②,在四边形中,设,,若,四边形的内角与外角的角平分线相交于点P .为了探究的度数与和的关系,小明同学想到将这个问题转化图①的模型,因此,延长了边与交于点A .如图③,若,,则,因此.【拓展】如图④,在四边形中,设,,若,四边形的内角与外角的角平分线所在的直线相交于点P ,请直接写出______.(用含有和的代数式表示)【答案】探究:;角平分线的定义;;;应用:;;拓展:【解析】【分析】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义:探究:根据三角形外角的性质和角平分线的定义结合已给推理过程求解即可;应用:先利用平角的定义和三角形内角和定理求出的度数,再有探究的结论即可得到答案;拓展:延长交的延长线于A ,则由三角形内角和定理可得;再由题意可得分别平分,则.【详解】解:探究:证明:平分,平分,,(角平分线的定义).(三角形的一个外角等于与它不相邻的两个内角的和),._____PCD PBC ∠=∠+∠ 12P A ∴∠=∠MNCB M α∠=N β∠=180αβ+>︒MBC ∠NCD ∠BP CP ,P ∠αβBM CN 106BMN∠=︒124MNC ∠=︒______A ∠=︒______P ∠=︒MNCB M α∠=N β∠=180αβ+<︒MBC ∠NCD ∠P ∠=αβPCD PBC P 50︒25︒121902αβ︒--A ∠MB NC 180A αβ=︒--∠PB PC ,ABH ACB ∠,∠11190222P A αβ==︒--∠BP ABC ∠CP ACD ∠2ABC PBC ∴∠=∠2ACD PCD ∠=∠ACD A ABC ∠=∠+∠Q 22PCD A PBC ∴∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角的和),,故答案为:;角平分线的定义;;;应用:延长了边与交于点A .如图③,∵,,∴,∴,∴,故答案:;.拓展:如图,延长交的延长线于A ,∵,,∴;∵四边形的内角与外角的角平分线所在的直线相交于点P ,∴分别平分,∴,故答案为:.24. 如图①,点O 为数轴原点,,正方形的边长为6,点P 从点O 出发,沿射线方向运动,速度为每秒2个单位长度,设运动时间为t 秒,请回答下列问题.为PCD P PBC ∠=∠+∠ 12P A ∴∠=∠PCD PBC P BM CN 106BMN∠=︒124MNC ∠=︒1807418056AMN BMN ANM MNC =︒-=︒=︒-=︒∠∠,∠∠18050A AMN ANM =︒--=︒∠∠∠1252P A ∠=∠=︒50︒25︒MB NC M α∠=N β∠=180180A M N αβ=︒--=︒--∠∠∠MBC ∠NCD ∠PB PC ,ABH ACB ∠,∠11190222P A αβ==︒--∠121902αβ︒--3OA =ABCD OA(1)点A 表示的数为______,点D 表示的数为______.(2)的面积为6时,求t 的值.(3)如图②,当点P 运动至D 点时,立即以原速返回,到O 点后停止.在点P 运动过程中,作线段,点E 在数轴上点P 右侧,以为边向上作正方形,当与面积和为16时,直接写出t 的值.【答案】(1)3,9(2)t的值为秒或秒 (3)或或或.【解析】【分析】(1)根据线段的长和正方形的边长可以求解.(2)根据点的运动速度与运动时间得出运动路程,对应数数轴得出结论.(3)根据点运动确定正方形的位置再去讨论与面积和为16时的值.本题考查了数轴与动点的结合,表示出点的运动距离是本题的解题关键.【小问1详解】解: ,且为数轴原点,在的右侧,表示的数为3,正方形的边长为6,,表示的数为9.故答案是3,9;【小问2详解】解:∵的面积为6,∴,解得,点从点开始运动且速度为每秒2个单位长度,,APC △3PE =PE PEFG DPF ABG 12521318t =23631614918OA P P DPF ABG t P 3OA = O O A ∴ 639OD ∴=+=D ∴APC △116622APC S AP CD AP =⨯=⨯⨯=△2AP =P O 2OP t ∴=∵,∴当点在之间时,则,解得,∴当点在的延长线上时,则,解得,∴的面积为6时,t 的值为秒或秒;【小问3详解】解:①当P 点在A 点左侧时,,由题意得:连接,如图所示:∵,∴,∵速度为每秒2个单位长度,设运动时间为t 秒,∴,∴,∴,,∵与面积和为16,∴,解得,当P 点在A 点右侧时,连接,如图所示:3OA =P AO 3322AP OP t =-=-=12t =P OA 3232AP OP t =-=-=52t =APC △12522OP t =BG AG PF FD ,,,36OA AD ==,9OD =902t ≤≤32PA OA OP t =-=-()11279233222DPF S PD EF t t =⨯⨯=-⨯=- ()116329622ABGS AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 27396162DPF ABG S S t t +=-+-= 1318t =BG AG PF FD ,,,同理得,,∵与面积和为16,∴,解得,②点从向运动时,则,连接,如图所示:∴此时,,∵与面积和为16,∴,()11279233222DPF S PD EF t t =⨯⨯=-⨯=- ()116236922ABGS AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 27369162DPF ABG S S t t +=-+-= 236t =P D O 9999222t <≤+=BG AG PF FD ,,,9926222PD t AP AD PD t ⎛⎫⎛⎫=⨯-=-=-- ⎪ ⎪⎝⎭⎝⎭,119272332222DPF S PD EF t t ⎛⎫=⨯⨯=⨯-⨯=- ⎪⎝⎭ 119662456222ABG S AB AP t t ⎡⎤⎛⎫=⨯⨯=⨯⨯--=- ⎪⎢⎥⎝⎭⎣⎦ DPF ABG 273456162DPF ABG S S t t +=-+-=解得,当P 点在A 点左侧时,由题意得:连接,如图所示:∴,此时,,∵与面积和为16,∴,解得,综上:或或或.316t =BG AG PF FD ,,,92292962152PD t t AP PD AD t t ⎛⎫=⨯-=-=-=--=- ⎪⎝⎭,119272332222DPF S PD EF t t ⎛⎫=⨯⨯=⨯-⨯=- ⎪⎝⎭ ()11621564522ABG S AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 273645162DPF ABG S S t t +=-+-= 14918t =1318t =23631614918。

三帆中学2020-2021学年第二学期期中初一数学学科 试题及参考答案

三帆中学2020-2021学年第二学期期中初一数学学科 试题及参考答案

北京三帆中学2020-2021学年度第二学期期中考试试卷初一 数学学科分层班级____ 班级____ 姓名____ 学号____ 成绩____ 注意:(1)时间100分钟,满分100分;(2)请将答案填写在答题纸上.一、选择题(每题3分,共30分) 1. 8的立方根是( )A. 2B. -2C. 4D. -4 2. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=140°,则∠2的度数是( ) A. 30° B. 40° C. 50° D. 60°3. 若不等式的解集为x ≤-4,在数轴上表示此解集,下列图形中正确的是( )A. B. C. D.4. 已知x <y ,下列不等式中,正确的是( )A. x +1>y +1B. x ―1>y ―1C. 2x <2yD. ―2x <―2y5. 2019年4月29日中国北京世界园艺博览会开幕,会徽取名“长城之花”,如图1所示. 在下面右侧的四个图形中,能由图1经过平移得到的图形是( )6. 在平面直角坐标系中,将点P (―4,―1)先向右平移5个单位长度,再向上平移3个单位长度后得到的点的坐标是( ) A. (1,2)B. (2,1)C. (―1,2)D. (1,―2)7. 若a ,b 为实数,且满足210a b -++=,则a ―b 的值为( )A. -3B. -1C. 1D. 3 8. 下列命题中,正确的是( )A. 相等的两个角一定是对顶角图1A .B .C .D .cba21第2题图B. 互补的两个角一定是邻补角C. 两直线平行,内错角相等D. 垂直于同一条直线的两条直线互相垂直9. 如图,红领巾公园健走步道环湖而建,以红军长征路为主题.右图是利用平面直角坐标系画出的健走步道路线上主要地点 的大致分布图,这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,如果表示遵义的点的坐标为 (―5,7),表示腊子 口的点的坐标为(4,―1),那么这个平面直角坐标系原点所在 位置是( )A. 泸定桥B. 包座C. 瑞金D. 湘江10. 如图,在平面直角坐标系中,已知点M (1,3),N (4,3),连结MN . 若对于平面内一点P ,线段MN 上都存在点Q ,使得PQ ≤1,则称点P 是线段MN 的“邻近点”.已知点A (―1,3),点B (2,52) ,点C (0,4)和点D (5,2),其中是线段MN 的“邻近点”的是( ) A. 点A B. 点B C. 点C D. 点D二、填空题(每题2分,共16分)11. x 的2倍与5的差大于13,用不等式表示为_________________. 12. 如图,直线AB ,CD 交于点O ,OE 平分∠BOC ,∠1=23°,则∠AOD = °.13. 若m <13<n ,且m ,n 是两个连续的整数,则m +n 的值为 .14. 如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )挖渠,才能使水渠AB 的长度最短,这样做的依据是__________________.15. 若点(231)A m m -+,在y 轴上,则m 的值为______, 点A 的坐标为_________.16. 如图,在公园的长方形草地内修建了宽为2米的道路后,剩余的草地面积是 平方米.第9题图BCE 1ODC BA 第10题图第12题图 第14题图第16题图EBDFA C17. 已知关于x 的一元一次不等式x mx 251->+的解集是24+<m x ,如图,数轴上的A ,B ,C ,D 四个点中,实数m 对应的点可能是 .18.五子棋是一种两人对弈的棋类游戏,规则是:一方执黑子,一方执白子,由黑方先行,白方后行.在正方形棋盘中,双方交替下子, 每次只能下一子,下在棋盘横线与竖线的交叉点上,最先在棋盘横 向、竖向或斜向形成连续的相同颜色五个棋子的一方为胜. 如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以 点O 为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一 个点. 若白子A 的坐标为(5,1),此时轮到黑方下子,记其此步 所下黑子为B ,为了保证不让白方在两步之内(含两步)获胜, 黑子B 的坐标可以为 .三、解答题 (第19-21题各4分,第22, 25, 26题各6分,第23, 24题各5分,第27, 28题各7分,共54分) 19.计算:()2021316271.-+-20.计算:()2364+25.---21.解不等式:()()52431 5.x x --+-<22.解不等式组:7426,215+132x x x x -+⎧⎪-⎨-≤⎪⎩<1, 并把它的解集在数轴上表示出来.23.如图,AB ⊥BD ,EF ⊥BD ,∠A +∠C =180°.以下是小聪同学证明CD ∥EF 的推理过程及理由,请你在横线上补充完整其推理过程或理由. 证明:∵ AB ⊥BD ,EF ⊥BD (已知),∴ ∠B =∠EFD =90°(__________________).∴ AB ∥(_____)(______________________________). ∵ ∠A +∠C =180°(已知),∴ AB ∥CD (___________________________________). ∴ CD ∥EF (___________________________________).24.已知:如图,CD 平分∠ACB ,过点D 作DE ∥BC 交AC 于E .AO第18题图第17题图(1)补全图形;(2)若∠AED = 80︒,求∠EDC的度数.25.在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(5,1),B(5,6),C(1,4).(1)在所给的图中,画出这个平面直角坐标系;平移2个单位长度,得到△A1B1C1.画出平移后的△A1B1C1,并写出A1点的坐标为;(3)直接写出△A1B1C1的面积为;(4)已知点P在y轴上,且△A1C1P的面积为4,直接写出P点的坐标为.26. 为了响应节能减排的号召,推动绿色生活方式,某4S店准备购进A型和B型两种不同型号的电动汽车. 经市场调查发现,如果购进2辆A型车和1辆B型车,需要66万元;如果购进2辆A 型车和2辆B型车,需要96万元.(1)A型电动汽车的单价是万元,B型电动汽车的单价是万元;(2)该4S店最终决定本月购进这两种电动汽车共20辆,但是总费用不超过500万元,那么该4S店最少需要购进A型电动汽车多少辆?27. 在数学实践课上,老师让同学们借助“两条平行线AB,CD和一副直角三角尺”开展数学活动.图①图②(1)如图①,小明把三角尺60°角的顶点G放在直线CD上,∠F=90°.若∠1=2∠2,则∠1=______°;(2)如图②,小颖把等腰直角三角尺的两个锐角的顶点E,G分别放在直线AB,CD上,请用等式表示∠AEF与∠FGC之间满足的数量关系_________________(不用证明);(3)在图②的基础上,小亮把三角尺60°角的顶点放在点F 处,即∠PFQ =60°. 如图③,FM 平分∠EFP 交直线AB 于点M ,FN 平分∠QFG 交直线CD 于点N . 将含60°角的三角尺 绕着点F 转动,且使FG 始终在∠PFQ 的内部,请问∠AMF +∠CNF 的值是否发生变化?若不变,求出它的值;若变化,说明理由. 图③28. 在平面直角坐标系中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义:“水平底”a 为任意两点横坐标差的最大值,“铅垂高”h 为任意两点纵坐标差的最大值,则“矩面积” S =ah . 已知:如图,A (1,2),B (―3,0).(1)若点C 的坐标为(2,―1),则A ,B ,C 三点的“水平底”a =5, “铅垂高”h =3,“矩面积”S = ah = ;(2)点P 在x 轴上,若A ,B ,P 三点的“矩面积”为10,求点P 的坐标; (3)点M (m ,4m ),①若A ,B ,M 三点的“矩面积”为8,直接写出满足题意的m 的取值范围; ②若m >1,直接写出A ,B ,M 三点的“矩面积”S 的取值范围. 备用图北京三帆中学2020-2021学年度第二学期期中考试初一 数学学科参考答案及评分标准一、选择题(每题3分,共30分)二、填空题(每题2分,共16分)11. 2x -5>1312. 46° 13. 7 14. 垂线段最短 15. 2,(0,7) 16. 180 17. A 18. (7,3)或(3,7)三、解答题 (第19-21题各4分,第22、25-26题各6分,第23-24题各5分,第27-28题各7分,共54分)19. (4()20211-解:=431--20. (4-解: 38=-+ 21. (4分)解不等式()()524315--+-<x x . 解:去括号,得 5104335--+-<x x 移项,得 5335104--++<x x 合并,得 212<x系数化1,得 6<x22.(6分)解不等式组7426215132x x x x -<+⎧⎪⎨-+-≤⎪⎩,①,②1并把它的解集在数轴上表示出来.解:解不等式①,得2x <.解不等式②,得1x ≥-.把不等式①和②的解集在数轴上表示出来:(数轴略). 所以原不等式组的解集为12x -≤<. 23.(5分)垂直定义EF ,同位角相等,两直线平行 同旁内角互补,两直线平行 平行于同一直线的两直线平行24.(5分)(1)补全图形 (2) ∵∠AED=80°∵DE ∥BC∴∠ACB=∠AED=80° ∵CD 平分∠ACB∴1402=DCB ACB ∠∠=︒ ∵ DE ∥BC∴∠EDC=∠DCB=40°25.(6分)(1)画平面直角坐标系(图略)(2)画三角形△A 1B 1C 1(图略) A 1(0,-1) (3)△ABC 的面积为10 (4)(0,-3)或(0,1)26. (6分)解:(1)18,30;(2)设购进A型电动汽车x辆,则购进B型电动汽车(20-x)辆.根据题意,得1830(20)500x x+-≤.解得183x≥.∵x为正整数,∴9x≥∴x最小为9.答:该4S店最少需要购进A型电动汽车9辆.27.(7分)(1)80°;(2)∠AEF+∠FGC=90°;(3)∠AMF+∠CNF的值不变,为75°.28.(7分)(1)15;(2)(2,0)或(-4,0)(有过程);(3)①12m≤≤;②S>16.。

人教版七年级下册数学期中试题试卷

人教版七年级下册数学期中试题试卷

人教版七年级下册数学期中考试试卷一、选择题(共10小题,每小题2分,满分20分)1.的相反数是()A.B.C.﹣D.+12.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,已知∠1=∠2,∠3=80°,则∠4=()A.80°B.70°C.60°D.50°4.下面四个图形中,∠1与∠2是邻补角的是()A.B.C.D.5.在数﹣3.14,,0,π,,0.1010010001…中无理数的个数有()A.3个B.2个C.1个D.4个6.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米7.点(﹣1,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴8.如图,AB∥CD,那么∠A+∠C+∠AEC=()A.360°B.270°C.200°D.180°9.三个实数﹣,﹣2,﹣之间的大小关系是()A.﹣>﹣>﹣2B.﹣>﹣2>﹣C.﹣2>﹣>﹣D.﹣<﹣2<﹣10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)B.C.(3,4)D.(4,3)二、填空题(共8小题,每小题3分)11.2﹣的绝对值是.12.已知点P的坐标为(﹣2,3),则点P到y轴的距离为.13.如图,已知AB、CD相交于点O,OE⊥AB,∠EOC=28°,则∠AOD=度.14.在平面直角坐标系中,一青蛙从点A(﹣1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为.15.如图,直线AB、CD相交于点E,DF∥AB.若∠D=65°,则∠AEC=.16.﹣4是的立方根.17.A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A1B1,点A1、B1的坐标分别为(2,a),(b,3),则a+b=.18.如图,a∥b,∠1+∠2=70°,则∠3+∠4=°三、解答题(共6小题,满分56分)19.计算:﹣|2﹣|﹣.20.一个正数x的平方根是3a﹣4和1﹣6a,求x的值.21.如图,平移坐标系中的△ABC,使AB平移到A1B1的位置,再将△A1B1C1向右平移3个单位,得到△A2B2C2,画出△A2B2C2,并写出△A2B2C2各顶点的坐标.22.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.23.如图所示,△ABO中,A,B两点的坐标分别为(2,4),(7,2),C,G,F,E分别为过A,B两点所作的y轴、x轴的垂线与y轴、x轴的交点.求△AOB 的面积.24.如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C与∠AED的大小关系吗?并说明理由.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.的相反数是()A.B.C.﹣D.+1【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数是﹣,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【专题】常规题型.【分析】根据各象限点的坐标的特点解答.【解答】解:点P(﹣2,1)在第二象限.故选B.【点评】本题考查了点的坐标,熟记四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)是解题的关键.3.如图,已知∠1=∠2,∠3=80°,则∠4=()A.80°B.70°C.60°D.50°【考点】平行线的性质.【分析】本题主要利用两直线平行,内错角相等进行做题.【解答】解:根据∠1=∠2,∠1=∠5得到:∠5=∠2,则a∥b∴∠4=∠3=80度.故选A.【点评】本题在证明两直线平行的基础上,进一步运用了平行线的性质,两直线平行,内错角相等.4.下面四个图形中,∠1与∠2是邻补角的是()A.B.C.D.【考点】对顶角、邻补角.【分析】根据邻补角的定义,相邻且互补的两个角互为邻补角进行判断.【解答】解:A、B选项,∠1与∠2没有公共顶点且不相邻,不是邻补角;C选项∠1与∠2不互补,不是邻补角;D选项互补且相邻,是邻补角.故选D.【点评】本题考查邻补角的定义,是一个需要熟记的内容.5.在数﹣3.14,,0,π,,0.1010010001…中无理数的个数有()A.3个B.2个C.1个D.4个【考点】无理数.【分析】由于无理数就是无限不循环小数,利用无理数的概念即可判定选择项.【解答】解:在数﹣3.14,,0,π,,0.1010010001…中,∵=4,∴无理数有,π,0.1010010001…共3个.故选A.【点评】此题要熟记无理数的概念及形式.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米【考点】生活中的平移现象.【分析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,求出即可.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故选:C.【点评】此题主要考查了生活中的平移现象,根据已知得出所走路径是解决问题的关键.7.点(﹣1,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴【考点】点的坐标.【分析】根据坐标轴上点的坐标特征解答即可.【解答】解:点(﹣1,0)在x轴的负半轴.故选B.【点评】本题考查了点的坐标,熟记坐标轴上点的坐标特征是解题的关键.8.如图,AB∥CD,那么∠A+∠C+∠AEC=()A.360°B.270°C.200°D.180°【考点】平行线的性质.【专题】计算题.【分析】过点E作EF∥AB,根据平行线的性质,∠A+∠C+∠AEC就可以转化为两对同旁内角的和.【解答】解:过点E作EF∥AB,∴∠A+∠AEF=180°;∵AB∥CD,∴EF∥CD,∴∠C+∠FEC=180°,∴(∠A+∠AEF)+(∠C+∠FEC)=360°,即:∠A+∠C+∠AEC=360°.故选A.【点评】有两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.9.三个实数﹣,﹣2,﹣之间的大小关系是()A.﹣>﹣>﹣2B.﹣>﹣2>﹣C.﹣2>﹣>﹣D.﹣<﹣2<﹣【考点】实数大小比较.【分析】根据两个负数绝对值大的反而小来比较即可解决问题.【解答】解:∵﹣2=﹣,又∵<<∴﹣2>﹣>﹣.故选C.【点评】本题考查了用绝对值比较实数的大小,比较简单.10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)【考点】坐标确定位置.【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.【解答】解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点评】本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.二、填空题(共8小题,每小题3分,满分24分)11.2﹣的绝对值是﹣2.【考点】实数的性质.【分析】根据差的绝对值是大数减小数,可得答案.【解答】解:2﹣的绝对值是﹣2.故答案为:﹣2.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.12.已知点P的坐标为(﹣2,3),则点P到y轴的距离为2.【考点】点的坐标.【分析】根据点到y轴的距离等于横坐标的长度解答.【解答】解:∵点P的坐标为(﹣2,3),∴点P到y轴的距离为2.故答案为:2.【点评】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的长度是解题的关键.13.如图,已知AB、CD相交于点O,OE⊥AB,∠EOC=28°,则∠AOD=62度.【考点】垂线;对顶角、邻补角.【分析】根据垂直的性质可以得到∠BOC的度数,然后利用对顶角的性质即可求解.【解答】解:∵OE⊥AB,∴∠EOB=90°,∴∠BOC=90°﹣∠EOC=90°﹣28°=62°,∴∠AOD=∠BOC=62°.故答案是:62°.【点评】此题主要考查了垂线和角平分线的定义,要注意领会由直角得垂直这一要点.14.在平面直角坐标系中,一青蛙从点A(﹣1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为(1,2).【考点】坐标与图形变化-平移.【专题】常规题型.【分析】根据向右移动,横坐标加,纵坐标不变;向上移动,纵坐标加,横坐标不变解答.【解答】解:点A(﹣1,0)向右跳2个单位长度,即﹣1+2=1,向上2个单位,即:0+2=2,∴点A′的坐标为(1,2).故答案为:(1,2).【点评】本题考查了平移与坐标与图形的变化,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.15.如图,直线AB、CD相交于点E,DF∥AB.若∠D=65°,则∠AEC=115°.【考点】平行线的性质.【分析】根据平行线性质求出∠BED,根据对顶角相等求出∠AEC即可.【解答】解:∵DF∥AB,∴∠BED=180°﹣∠D,∵∠D=65°,∴∠BED=115°,∴∠AEC=∠BED=115°,故答案为:115°.【点评】本题考查了对顶角和平行线的性质的应用,注意:两直线平行,同旁内角互补.16.﹣4是﹣64的立方根.【考点】立方根.【分析】根据立方根的定义,即可解答.【解答】解:∵=﹣4,∴﹣4是﹣64的立方根.故答案为:﹣64.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.17.A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A1B1,点A1、B1的坐标分别为(2,a),(b,3),则a+b=2.【考点】坐标与图形变化-平移.【分析】根据点A、B平移后横纵坐标的变化可得线段AB向右平移1个单位,向上平移了1个单位,然后再确定a、b的值,进而可得答案.【解答】解:由题意可得线段AB向右平移1个单位,向上平移了1个单位,∵A、B两点的坐标分别为(1,0)、(0,2),∴点A1、B1的坐标分别为(2,1),(1,3),∴a+b=2,故答案为:2.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.18.如图,a∥b,∠1+∠2=70°,则∠3+∠4=110°.【考点】平行线的性质.【分析】先根据平行线的性质得出∠3=∠5,故可得出∠4+∠5=110°,再由三角形外角的性质得出∠6的度数,根据三角形内角和定理即可得出结论.【解答】解:∵a∥b,∴∠3=∠5.∵∠1+∠2=70°,∴∠6=110°,∴∠3+∠4=∠4+∠5=∠6=110°,故答案为:110°.【点评】本题考查的是平行线的性质,在解答此题时熟知三角形内角和定理这一隐藏条件.三、解答题(共6小题,满分56分)19.计算:﹣|2﹣|﹣.【考点】实数的运算.【专题】计算题.【分析】原式第一项利用二次根式的性质化简,第二项利用绝对值的代数意义化简,最后一项利用立方根定义计算即可得到结果.【解答】解:原式=5﹣2++3=6+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.一个正数x的平方根是3a﹣4和1﹣6a,求x的值.【考点】平方根.【分析】根据一个正数的平方根有两个,且互为相反数,可得出a的值,继而得出x的值.【解答】解:由题意得3a﹣4+1﹣6a=0,解得:a=﹣1,则3a﹣4=﹣7,故x的值是49.【点评】本题考查了平方根的知识,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.21.如图,平移坐标系中的△ABC,使AB平移到A1B1的位置,再将△A1B1C1向右平移3个单位,得到△A2B2C2,画出△A2B2C2,并写出△A2B2C2各顶点的坐标.【考点】作图-平移变换.【分析】根据图形平移的性质画出△A2B2C2,并写出各点坐标即可.【解答】解:如图所示,△A2(6,4),B2(5,﹣1),C2(8,2).【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.22.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【考点】平行线的性质.【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.23.如图所示,△ABO中,A,B两点的坐标分别为(2,4),(7,2),C,G,F,E分别为过A,B两点所作的y轴、x轴的垂线与y轴、x轴的交点.求△AOB 的面积.【考点】坐标与图形性质;三角形的面积.【分析】根据点A、B的坐标求出AC、CO、OE、BE、AF、EF的长度,然后根据S△AOB=S矩形ACOF+S梯形AFEB﹣S△ACO﹣S△BOE列式计算即可得解.【解答】解:∵A(2,4),B(7,2),∴AC=2、CO=4、OE=7、BE=2、AF=4、EF=OE﹣OF=7﹣2=5,由图可知,S △AOB =S 矩形ACOF +S 梯形AFEB ﹣S △ACO ﹣S △BOE ,=2×4+(2+4)×5﹣×2×4﹣×7×2,=8+15﹣4﹣7,=23﹣11,=12.【点评】本题考查了坐标与图形性质,三角形的面积,仔细观察图形,列出△AOB 的面积表达式是解题的关键.24.如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C 与∠AED 的大小关系吗?并说明理由.【考点】平行线的判定与性质.【专题】探究型.【分析】∠C 与∠AED 相等,理由为:由邻补角定义得到∠1与∠DFE 互补,再由已知∠1与∠2互补,根据同角的补角相等可得出∠2与∠DFE 相等,根据内错角相等两直线平行,得到AB 与EF 平行,再根据两直线平行内错角相等可得出∠3与∠ADE 相等,由已知∠B 与∠3相等,利用等量代换可得出∠B 与∠ADE 相等,根据同位角相等两直线平行得到DE 与BC 平行,再根据两直线平行同位角相等可得证.【解答】解:∠C 与∠AED 相等,理由为:证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),∴∠2=∠DFE (同角的补角相等),∴AB ∥EF (内错角相等两直线平行),∴∠3=∠ADE (两直线平行内错角相等),又∠B=∠3(已知),∴∠B=∠ADE(等量代换),∴DE∥BC(同位角相等两直线平行),∴∠C=∠AED(两直线平行同位角相等).【点评】此题考查了平行线的判定与性质,以及邻补角定义,利用了转化及等量代换的思想,灵活运用平行线的判定与性质是解本题的关键.。

苏科版七年级下学期期中模拟数学试题2及答案

苏科版七年级下学期期中模拟数学试题2及答案

第二学期期中考试试卷(七年级数学)命题人:文林中学 黄兆兰 审核人:钱永芹一、选择题(每题3分,共24分;请将答案填在答题卷上) 1.下列计算正确的是A .336a a a +=B .33(2)2a a =C .325()a a =D .56a a a ⋅=2.下列算式能用平方差公式计算的是A .(2)(2)a b b a +-B .11(1)(1)22x x +-- C .(3)(3)x y x y --+ D .()()m n m n ---+ 3.如图,不一定能推出a ∥b 的条件是A.13∠=∠B .24∠=∠C .14∠=∠D .23180∠+∠=︒第3题图 第4题图 第8题图 4.如图,下列说法正确的是A .1∠与C ∠是同位角B .1∠与3∠是对顶角C .3∠与C ∠是内错角D .B ∠与3∠是同旁内角5.把多项式(1)(1)(1)m m m +-+-提公因式(1)m -后,余下的部分是 A .1m +B .2mC .2D .2m +6.在ABC ∆中,B ∠是A ∠的2倍,C ∠比A ∠大20︒,则A ∠的度数为 A .40°B .60°C .80°D .90°7.一个边长为a 的正方形,若将其边长增加6cm ,则新的正方形的面积增加 A .236cmB .212acmC .2(3612)a cm +D .以上都不对8.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到DEF ∆的位置,∠B=90°,AB=10,DH=4,平移距离为6,求阴影部分的面积为A .24B .36C .40D .48二、填空题(每空2分,共24分;请将答案填在答题卷上) 9.计算:0(2)-= ;21()2-= ;20162015(0.5)2-⋅= .10.微电技术的不断进步,使半导体教材的精细加工尺寸幅度缩小,某种电子元件的面积大约为0.000 0007平方毫米,用科学记数法表示为 平方毫米.11.如果一个多边形的内角和为1440︒,那么这个多边形的边数是 .12.若22m =,23n=,则322m n+ = .13.已知在△ABC 中有两个角的大小分别为40°和70°,则这个三角形是 ;14.若(2)9x m x +-+是一个完全平方式,则的值是 .15.一个大正方形和四个全等的小正方形按如图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是 (用含a 、b 的代数式表示).第15题图 第16题图 第17题图16.如图,小明在操场上从A 点出发,沿直线前进10米后向左转40º,再沿直线前进10米后向左转40º…照这样走下去,他第一次回到出发地A 点时,一共走了米.17.如图,线段1AC n =+(其中n 为正整数),点B 在线段AC 上,在线段AC同侧作正方形ABMN 及正方形BCEF ,连接AM 、ME 、EA 得到AME ∆.当AB =1时,AME ∆的面积记为S 1;当AB =2时,AME ∆的面积记为S 2;当AB =3时,AME∆的面积记为S 3;则 S 3-S 2= .(七年级数学)命题人:文林中学 黄兆兰 审核人:钱永芹一、选择题(每题3分,共24分)9. ; ; . 10. 平方毫米.11. .12. .13. , . 14. .15. .16. 米.17. . 三、解答题(本大题共有8小题,共52分,请写出必要的演算或推理过程.) 18.(本题满分12分,每小题3分)计算:(1) ()022213.142(3)()2π---++-- (2)232321(2)(3)()4xy x y xy -⋅-⋅(3) 23552122(2)a a a a a a ⋅⋅+--÷ (4)2(21)(21)4(1)x x x +---19.(本题满分6分,每小题3分)因式分解 (1)22()()a x y b x y +-+ (2)42816x x -+20. 对于任何实数,我们规定符号c a db=bc ad -,例如:3142=3241⨯-⨯=2- (1)按照这个规律请你计算32- 54的值;(2)按照这个规定请你计算,当0132=+-a a 时,21-+a a13-a a 的值. (本题满分4分)21.画图并填空:(本题满分4分)如图,在方格纸内将△ABC 经过一次平移后得到△A′B′C′,图中标出了点B 的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图: (2)画出AB 边上的中线CD ; (3)画出BC 边上的高线AE ; (4)设格点小正方形边长为1, △A′B′C′的面积为 .22.如图所示,已知AD ∥BC ,AE 平分∠BAD ,CD 与AE 相交于点F ,∠CFE=∠E .试说明AB ∥DC .(本题6分)23.(本题满分6分)如图,在ABC ∆中,CD 、CE 分别是ABC ∆的高和角平分线,BAC α∠=,B β∠=αβ(>). (1)若70α=︒,40β=︒,求DCE ∠的度数;(2)试用α、β的代数式表示DCE ∠的度数(直接写出结果);(3)如图②,若CE 是ABC ∆外角ACF ∠的平分线,交BA 延长线于点E , 且30αβ-=︒,求DCE ∠的度数.24.(本题满分6分)我们可以用几何图形来解决一些代数问题,如图(甲)可以来解释222()2a b a ab b +=++.(1)图(乙)是四张全等的矩形纸片拼成的图形, 请利用图中阴影部分面积的不同表示方法,写出 一个关于a 、b 代数恒等式表示; (2)请构图解释:2222 222a b c a b c ab bc ac ++=+++++();(3)请先构图,后分解因式:2232a ab b ++.25.(本题满分8分)已知:∠MON=40°,OE 平分∠MON ,点A 、B 、C 分别是射线OM 、OE 、ON 上的动点(A 、B 、C 不与点O 重合),连接AC 交射线OE 于点D .设∠OAC=x°.(1)如图1,若AB ∥ON ,则①∠ABO 的度数是 ; ②当∠BAD=∠ABD 时,x= ;当∠BAD=∠BDA 时,x= .(2)如图2,若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.(七年级数学)一、选择题(每题3分,共24分)9.1;4;12. 10.7710-⨯平方毫米.11.十.12.72.13.等腰三角形,4或6.14.8或-4.15.ab.16.90米.17.52.三、解答题18.(1) ()022213.142(3)()2π---++--(2)232321(2)(3)()4xy x y xy -⋅-⋅11944=++- ……2分 36461894x y x y xy =-⋅⋅ ……2分164= ……3分81318x y =- ……3分(3) 23552122(2)a a a a a a ⋅⋅+--÷ (4) 2(21)(21)4(1)x x x +---1010104a a a =+- ……2分 22414(21)x x x =---+……1分104a = ......3分 2241484x x x =--+- (2)分85x =- ……3分19.(1)22()()a x y b x y +-+ (2)42816x x -+22()()x y a b =+- ……2分 22(4)x =- ……1分 ()()()x y a b a b =++-……3分 []2(2)(2)x x =+- ……2分22(2)(2)x x =+- ……3分20. (1)32- 542543101222=-⨯-⨯=--=-; ……2分 (2)2310a a -+= 231a a ∴-=-∴ 21-+a a 13-a a22(1)(1)3(2)136a a a a a a a =+---=--+2261211a a =-+-=-= ……4分21.(1)补全△A ′B ′C ′……1分 (2)画出中线CD ……2分(3)画出高线AE ……3分 (4) 8 . ……4分22.AD BC 2E ∴∠=∠ ……2分AE 平分∠BAD 12∴∠=∠ 1E ∴∠=∠ ……4分 又 ∠CFE =∠E 1CFE ∴∠=∠ ∴AB ∥DC ……6分23.(1)15DCE ∠=︒……2分 (2)2DCE αβ-∠=……4分(3)75DCE ∠=︒……6分24.(1)22()()4a b a b ab -=+-……2分第(2)题图……4分 第(3)题图……5分 分解因式:22(3)()22a a a ab b b b ++=++……6分. 25.(1)①20︒ ②120︒;60︒ 每空1分(2)若70ADB ABD ∠=∠=︒,则50x =︒;……2分若70CAB ABD ∠=∠=︒,则20x =︒;……2分 若BAD ADB ∠=∠,则35x =︒;……2分50x ∴=︒、20︒、35︒时,△ADB 中有两个相等的角.。

七年级数学下册期中试题

七年级数学下册期中试题

七年级数学下册期中试题七年级数学下册期中试题无论是身处学校还是步入社会,我们会经常接触并使用试题,试题可以帮助参考者清楚地认识自己的知识掌握程度。

你知道什么样的试题才是规范的吗?下面是店铺精心整理的七年级数学下册期中试题,欢迎大家分享。

七年级数学下册期中试题篇1第1卷(选择题共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各图中,∠1与∠2互为余角的是()2.下列计算正确的是()A.(xy)3=xy3B.x5÷x5=xC.3x25x3=15x5D.5x2y3+2x2y3=10x4y93.下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短;⑤同角或等角的余角相等;⑥经过直线外一点,有且只有一条直线与这条直线平行,其中假命题有()A.1个B.2个C.3个D.4个4.已知是二元一次方程组的解,则的值是()A.B.C.D.5.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°第5题图6.如图,AB∥CD,下列结论中错误的是()A.B.C.D.7.下列计算中,运算正确的是()A.(a﹣b)(a﹣b)=a2﹣b2B.(x+2)(x﹣2)=x2﹣2C.(2x+1)(2x﹣1)=2x2﹣1D.(﹣3x+2)(﹣3x﹣2)=9x2﹣48.下列运算中,运算错误的有()①(2x+y)2=4x2+y2,②(a-3b)2= a2-9b2 ,③(-x-y)2=x2-2xy+y2 ,④(x- )2=x2-2x+ ,A.1个B.2个C.3个D.4个9.小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A .B.C.D.10.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y 匹,那么可列方程组为()A.B.C.D.11.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B 分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°12.观察下列各式及其展开式……请你猜想的展开式第三项的系数是()A.35B.45C.55D.66第2卷(非选择题共102分)二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在题中横线上.)13.甲型H1N1流感球形病毒细胞的直径约为0.00000156 m,这个数用科学记数法表示是_____ ___.14.如果是二元一次方程,那么a = .b = .15.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;•而若两人同时同向而行,乙可在14小时后追上甲,设甲的速度为x千米/时,乙的速度为y•千米/时,列出的二元一次方程组为 .16.如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是 .(填序号)能够得到AB∥CD的条件是 .(填序号)第16 题图17.若a>0且 , ,则的值为___ .的值为___ .18.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,这两个角的度数分别是 .三、解答题(本大题共10个小题.共78分.解答应写出文字说明、证明过程或演算步骤.)19.计算(每小题3分,共12分)(1)(2)20.解方程组(每小题3分,共6分)(1)解方程组:(2)解方程组:21.化简求值(每小题4分,共8分)(1) .其中(2) .其中22.尺规作图(本小题满分4分)如图,过点A作BC的平行线EF(说明:只允许尺规作图,不写作法,保留作图痕迹,要写结论.)23.填空,将本题补充完整.(本小题满分7分)如图,已知EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.解:∵EF∥AD(已知)∴∠2=()又∵∠1=∠2(已知)∴∠1=(等量代换)∴AB∥GD()∴∠BAC+=180°()∵∠BAC=70°(已知)∴∠AGD=° 第23题图24.列二元一次方程组解应用题(本小题满分7分)某工厂去年的总收入比总支出多50万元,今年的总收入比去年增加10%,总支出节约20%,因而总收入比总支出多100万元.求去年的总收入和总支出.25.列二元一次方程组解应用题(本小题满分8分)已知一个两位数,它的十位上的.数字与个位上的数字的和为12,•若对调个位与十位上的数字,得到的新数比原数小18,求原来的两位数。

2022-2023学年度第二学期初一年级期中考试 (数学)(含答案)082340

2022-2023学年度第二学期初一年级期中考试 (数学)(含答案)082340

2022-2023学年度第二学期初一年级期中考试 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1. 在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A. B. C. D.2. 如图,下列各点在阴影区域内的是( )A.B.C.D.3. ,,,,,中,无理数的个数是( )A.个B.个C.个D.个4. 在一次数学活动课上,老师让同学们借助一副三角板画平行线,.下面是小曼同学的作法,老师说:“小曼的作法正确”,请回答:小曼的作图依据是( )(3,2)(−3,2)(3,−2)(−3,−2)π227−3–√343−−−√3 3.14160.3˙1234AB CDA.内错角相等,两直线平行B.两直线平行,内错角相等C.过直线外一点有且只有一条直线与已知直线平行D.同位角相等,两直线平行5. 下列命题:①圆的切线垂直于经过切点的半径;②掷一枚有正反面的均匀硬币,正面和反面朝上的概率都是;③相等的圆心角所对的弧相等;④某种彩票的中奖率为,佳佳买张彩票一定能中奖.其中,正确的命题是( )A.①②B.①②③C.①②④D.①②③④6. 在平面直角坐标系中,对于点,我们把点叫做点的友好点.已知点的友好点为,点的友好点为,点的友好点为…,这样依次得到点,,,…,,若点的坐标为,则点的坐标为( )A.B.C.D.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7. 比较大小:________(填“”,“”或“”).8. 已知是一个正整数,是整数,则的最小值为________.9. 如图,,与,分别交于点,,为的平分线.若,,那么的值是________.10. 如图,若菱形的顶点,的坐标分别为,点在轴上,则点的坐标是________.0.511010xOy P(x,y)P'(1−y,x−1)P A 1A 2A 2A 3A 3A 4A 1A 2A 3A n A 1(2,1)A 2019(2,1)(0,1)(0,−1)(2,−1)10−−√3><=n 135n−−−−√n AC//BD AB AC BD A B BC ∠ABD ∠1=(x+15)∘∠2=(2x+70)∘x ABCD A B (3,0),(−2,0)D y C11. 如图,,, ,则________度.12. 将含有角的三角板的直角顶点放置于互相平行的两条直线中的一条上(如图),如果 ,那么_______.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )13. 计算:.14. 如图,直线,被直线,所截,,直线分别交和于点,.点在直线上,,求证:.请在下列括号中填上理由:证明;因为(已知),所以(________).又因为 (已知),所以,即,所以________(同位角相等,两直线平行),所以(________).15. 如图,在中, ,,点从点出发沿方向以秒的速度向点匀速运动,同时点从点出发沿方向以秒的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点,运动的时间是秒.过点作于点,连接,.用含的代数式式表示________,________.AB//CD ∠BAP =120∘∠APC =40∘∠PCD =30∘∠1=40∘∠2=∘+×−|−1|(−3)28–√3–√6–√AB CD MN PM AB//CD MN AB CD E F Q PM ∠AEP =∠CFQ ∠EPQ +∠FQP =180∘AB//CD ∠AEM =∠CFM ∠AEP =∠CFQ ∠AEM +∠AEP =∠CFM +∠CFQ ∠MEP =∠MFQ ∠EPQ +∠FQP =180∘Rt △ABC ∠B =90∘,AC =20cm ∠A =60∘D C CA 2cm/A E A AB 1cm/B D E t (0<t ≤10)D DF ⊥BC F DE EF (1)t AD =DF =四边形能够成为菱形吗?如果能,请求出相应的值;如果不能,请说明理由;当为何值时,的面积为,请说明理由;当为何值时,为直角三角形.(请直接写出值)16. 小明和爸爸、妈妈到汉字公园游玩,回到家后,他利用平面直角坐标系画出了公园景区地图,如图所示.可是他忘记了在图中标出原点,轴及轴.只知道长廊的坐标为和农家乐的坐标为,请你帮他画出平面直角坐标系,并写出其他各点的坐标. 17. 已知点是直线上一点,,为从点引出的两条射线,,.如图,求的度数;如图,在的内部作,请直接写出与之间的数量关系________;在的条件下,若为的角平分线,试说明.18. 如图,已知,.求证:.19. 如图,已知点在 的边上.利用三角板根据要求画图:①过点作线段,垂足为点;②过点作直线,垂足为点,交于点;结合所画图形,写出与相等的所有角.20. 通过《实数》一章的学习,我们知道是一个无限不循环小数,因此的小数部分我们不可能全部写出来.聪明的小丽认为的整数部分为,所以减去其整数部分,差就是的小数部分,所以用来表示的小数部分.根据小丽的方法请完成下列问题:的整数部分为________,小数部分为________ ;AEFD t (2)t △DEF c 93–√2m 2(3)t △DEF t x y E (4,−3)B (−5,3)O AB OC OD O ∠BOD =30∘∠COD =∠AOC 87(1)1∠AOC (2)2∠AOD ∠MON =90∘∠AON ∠COM (3)(2)OM ∠BOC ∠AON =∠CON DE//AF ∠CDA =∠DAB ∠1=∠2P ∠AOB OA (1)P PC ⊥OB C P MN ⊥OA P OB D (2)∠CPO 2–√2–√2–√12–√2–√−12–√2–√(1)33−−√−−√8−–√已知的整数部分, 的整数部分为,求的立方根.21. 在平面直角坐标系中,已知点.当点在轴的左侧时,求的取值范围;若点到两坐标轴的距离相等,求点的坐标.22.如图,直线,点是,之间(不在直线,上)的一个动点.若与都是锐角,如图甲,写出与,之间的数量关系并说明原因;若把一块三角尺(,)按如图乙方式放置,点,,是三角尺的边与平行线的交点,若,求的度数;将图乙中的三角尺进行适当转动,如图丙,直角顶点始终在两条平行线之间,点在线段上,连接,且有,求与之间的数量关系.23. 如图,在直角坐标系中,已知,,将线段平移至,点在轴正半轴上(不与点重合),连接,,,.写出点的坐标;当的面积是的面积的倍时,求点的坐标;设,,,判断,,之间的数量关系,并说明理由.(2)10−−√a 8−5–√b a +b Q(4−2n,n−1)(1)Q y n (2)Q Q PQ//MN C PQ MN PQ MN (1)∠1∠2∠C ∠1∠2(2)∠A =30∘∠C =90∘D E F ∠AEN =∠A ∠BDF (3)C G CD EG ∠CEG =∠CEM ∠GEN ∠BDF xOy A(6,0)B(8,6)OA CB D x A OC AB CD BD (1)C (2)△ODC △ABD 3D (3)∠OCD =α∠DBA =β∠BDC =θαβθ参考答案与试题解析2022-2023学年度第二学期初一年级期中考试 (数学)试卷一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1.【答案】D【考点】生活中的平移现象【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是.【解答】解:图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.观察图形可知图案通过平移后可以得到.故选.2.【答案】A【考点】点的坐标【解析】先判断出阴影区域在第一象限,且长宽为的矩形,进而判断在阴影区域内的点.【解答】解:观察图形可知:阴影区域在第一象限,是长宽为的正方形,、在第一象限,且,,所以点在阴影区域内,故正确;、在第二象限,故错误;、在第四象限,故错误;、在第三象限,故错误.故选.3.【答案】B【考点】无理数的判定【解析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:,等;开方开不尽的数;以及…,等有这样规律的数.由此即可判定选择项.D D D 44A (3,2)3<42<4(3,2)B (−3,2)C (3,−2)D (−3,−2)A π2π0.1010010001【解答】解:在,,,,,中,无理数是:,共个.故选.4.【答案】A【考点】平行线的判定【解析】本题考查了作图-复杂作图和平行线的判定方法.【解答】解:,(内错角相等,两直线平行),故选.5.【答案】A【考点】命题与定理真命题,假命题【解析】根据切线的性质对①进行判断;根据概率公式对②进行判断;根据圆心角、弧、弦的关系对③进行判断;根据概率的意义对④进行判断.【解答】解:圆的切线垂直于经过切点的半径,所以①正确;掷一枚有正反面的均匀硬币,正面和反面朝上的概率都是,所以②正确;在同圆或等圆中,相等的圆心角所对的弧相等,所以③错误;某种彩票的中奖率为,佳佳买张彩票不一定能中奖,所以④错误.故选.6.【答案】C【考点】规律型:点的坐标【解析】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每个点为一个循环组依次循环是解题的关键,也是π227−3–√343−−−√3 3.14160.3˙π−3–√2B ∵∠ABC =∠DCB =90°∴AB ∥CD A 0.511010A 4本题的难点.【解答】解:观察发现:,,,,,依次类推,每个点为一个循环组依次循环,余,点的坐标与的坐标相同,为.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7.【答案】【考点】实数大小比较算术平方根【解析】根据,再比较即可.【解答】解:∵,∴,故答案为:.8.【答案】【考点】实数的运算【解析】【解答】解:∵,∴的最小值是.故答案为:.9.【答案】【考点】平行线的性质角的计算【解析】(2,1)A 1(0,1)A 2(0,−1)A 3(2,−1)A 4(2,1)A 5(0,1)A 6…∴5∵2019÷4=5043∴A 2019A 3(0,−1)C >3=9–√32=9<10>310−−√>15135=×3×5=×153232n 151520由平行线的性质可得,再由角平分线的定义得出,得出方程即可解答.【解答】解:,∴,∵平分,∴,∵,,∴,.故答案为:.10.【答案】【考点】坐标与图形性质【解析】【解答】解:∵菱形的顶点,的坐标分别为,,点在轴上,∴,∴,∴由勾股定理知:,∴点的坐标是:,故答案为.11.【答案】【考点】平行线的性质【解析】过点作,由平行线的性质结合的度数可求解的度数,根据可得,即可求解的度数.【解答】解:如图,过点作,∴.∵,∴.∵,∠2+∠ABD =180∘∠ABD =2∠1∵AC//BD ∠2+∠ABD =180∘BC ∠ABD ∠ABD =2∠1∠1=(x+15)∘∠2=(2x+70)∘2+=(x+15)∘(2x+70)∘180∘∴x =2020(−5,4)ABCD A B (3,0)(−2,0)D y AB =5AD =5OD ===4A −O D 2A 2−−−−−−−−−−√−5232−−−−−−√C (−5,4)(−5,4)160P PE//AB ∠APC ∠CPE CD//AB CD//PE ∠C P PE//AB ∠A+∠APE =180∘∠A =120∘∠APE =−=180∘120∘60∘∠APC =40∘∴.∵,∴ ,∴,∴.故答案为:.12.【答案】【考点】平行线的判定与性质【解析】作出辅助线,利用平行线的性质即可得出答案.【解答】解:过点作,如图,∵, ,∴,∴,,∵,∴.故答案为:.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )13.【答案】解:原式 .【考点】实数的运算【解析】【解答】解:原式 . 14.【答案】两直线平行,同位角相等,,两直线平行,同旁内角互补∠CPE =∠APE−∠APC =−=60∘40∘20∘AB//CD CD//PE ∠C +∠CPE =180∘∠C =−=180∘20∘160∘16020E EF//AB EF//AB AB//CD EF//AB//CD ∠1=∠GEF =40∘∠2=∠HEF ∠GEF +∠HEF =60∘∠2=−=60∘40∘20∘20=9+−(−1)24−−√6–√=9+2−+16–√6–√=10+6–√=9+−(−1)24−−√6–√=9+2−+16–√6–√=10+6–√EP//FQ【考点】平行线的判定与性质【解析】根据平行线的判定与性质证明即可.【解答】证明:因为(已知),所以(两直线平行,同位角相等).又因为 (已知),所以,即,所以(同位角相等,两直线平行),所以(两直线平行,同旁内角互补).故答案为:两直线平行,同位角相等;;两直线平行,同旁内角互补.15.【答案】解:由题可得,在中,,则,∵,又,,∴,∴四边形为平行四边形,∴当时,四边形是菱形,∴,∴.依题意可得,,,又,∴,∴和中,,,∴,∵,∴,∴,,∴当或时,的面积为.当,则四边形中,,∴,∴,∴,∴∴,当,则四边形中,,,∴,∴,∴,∴,当时,点,点重合于点,不存在.∴或.【考点】AB//CD ∠AEM =∠CFM ∠AEP =∠CFQ ∠AEM +∠AEP =∠CFM +∠CFQ ∠MEP =∠MFQ EP//FQ ∠EPQ +∠FQP =180∘EP//FQ (1)AD =20−2t Rt △CDF ∠C =30∘DF =CD =t12DF =AE =t DF ⊥BC AB ⊥BC DF//AB DFEA DF =AD DFEA t =20−2t t =203(2)CD =2t AD =20−2t AE =t ∠C =−∠A =−=90∘90∘60∘30∘AB =AC =×20=101212Rt △CDF Rt △ACB CF ==t D −D C 2F 2−−−−−−−−−−√3–√BC ==10A −A C 2B 2−−−−−−−−−−√3–√BF =10−t 3–√3–√△DFE =DF ⋅BF 12=t(10−t)=123–√3–√93–√2t(10−t)=9=1t 1=9t 2t =1t =9△DFE c 93–√2m 2(3)∠FDE =90∘DFEA DF//AB ∠DEA =∠FDE =90∘∠ADE =−=90∘60∘30∘AD =2AE 20−2t =2tt =5∠DEF =90∘DFEA AD//EF ∴∠ADE =∠DEF ∠AED =−=90∘60∘30∘AE =2AD t =2(20−2t)t =8∠DFE =90∘F E B △DEF t =5t =8一元二次方程的应用——其他问题动点问题动点问题的解决方法三角形的面积平行四边形的判定平行四边形的性质勾股定理含30度角的直角三角形【解析】此题暂无解析【解答】解:由题可得,在中,,则,∵,又,,∴,∴四边形为平行四边形,∴当时,四边形是菱形,∴,∴.依题意可得,,,又,∴,∴和中,,,∴,∵,∴,∴,,∴当或时,的面积为.当,则四边形中,,∴,∴,∴,∴∴,当,则四边形中,,,∴,∴,∴,∴,当时,点,点重合于点,不存在.∴或.16.【答案】(1)AD =20−2t Rt △CDF ∠C =30∘DF =CD =t12DF =AE =t DF ⊥BC AB ⊥BC DF//AB DFEA DF =AD DFEA t =20−2t t =203(2)CD =2t AD =20−2t AE =t ∠C =−∠A =−=90∘90∘60∘30∘AB =AC =×20=101212Rt △CDF Rt △ACB CF ==t D −D C 2F 2−−−−−−−−−−√3–√BC ==10A −A C 2B 2−−−−−−−−−−√3–√BF =10−t 3–√3–√△DFE =DF ⋅BF 12=t(10−t)=123–√3–√93–√2t(10−t)=9=1t 1=9t 2t =1t =9△DFE c 93–√2m 2(3)∠FDE =90∘DFEA DF//AB ∠DEA =∠FDE =90∘∠ADE =−=90∘60∘30∘AD =2AE 20−2t =2tt =5∠DEF =90∘DFEA AD//EF ∴∠ADE =∠DEF ∠AED =−=90∘60∘30∘AE =2AD t =2(20−2t)t =8∠DFE =90∘F E B △DEF t =5t =8解:由题意可知,本题是以点为坐标原点,为轴的正半轴,建立平面直角坐标系,如图所示,则,,的坐标分别为:,,.【考点】位置的确定【解析】此题暂无解析【解答】解:由题意可知,本题是以点为坐标原点,为轴的正半轴,建立平面直角坐标系,如图所示,则,,的坐标分别为:,,.17.【答案】解:由题意可知:,,,∵,,∴,∴.证明:∵,,∴,∵是的角平分线∴,∵,∴,∵,∴,∴.【考点】角的计算角平分线的定义【解析】D (0,0)DA y A C F A(0,4)C(−3,−2)F (5,5)D (0,0)DA y A C F A(0,4)C(−3,−2)F (5,5)(1)∠AOB =180∘∠BOD =30∘∠AOD =∠AOB−∠BOD =150∘∠AOD =∠AOC +∠COD ∠COD =∠AOC 87∠AOC +∠AOC =87150∘∠AOC =70∘∠AON +=∠COM20∘(3)∠AOC =70∘∠AOB =180∘∠BOC =∠AOB−∠AOC =110∘OM ∠BOC ∠COM =∠BOC =1255∘∠MON =90∘∠CON =∠MON −∠COM =35∘∠AOC =70∘∠AON =∠AOC −∠CON =35∘∠AON =∠CON AOC +∠AOC8(1)由题意可知:=,即∴=,即可求解;(2)由图可见:=;(3)是的角平分线,可以求出==,而==,∴=.【解答】解:由题意可知:,,,∵,,∴,∴.解:由题知,,,所以,即.故答案为:.证明:∵,,∴,∵是的角平分线∴,∵,∴,∵,∴,∴.18.【答案】证明:∵,∴.∵,∴,∴.【考点】平行线的性质【解析】此题暂无解析【解答】证明:∵,∴.∵,∴,∴.19.【答案】解:如图所示:直线,点,即为所求;∠AOD ∠AOC +∠COD ∠AOC +∠AOC 87150∘∠AON +20∘∠COM OM ∠BOC ∠CON ∠MON −∠COM 35∘∠AON ∠AOC −∠CON 35∘∠AON ∠CON (1)∠AOB =180∘∠BOD =30∘∠AOD =∠AOB−∠BOD =150∘∠AOD =∠AOC +∠COD ∠COD =∠AOC 87∠AOC +∠AOC =87150∘∠AOC =70∘(2)∠AOM =∠AOC +∠COM =∠AOC +70∘∠AOM =∠AON +∠MON =∠AON +90∘∠AOC +=∠AON +70∘90∘∠AON +=∠COM 20∘∠AON +=∠COM 20∘(3)∠AOC =70∘∠AOB =180∘∠BOC =∠AOB−∠AOC =110∘OM ∠BOC ∠COM =∠BOC =1255∘∠MON =90∘∠CON =∠MON −∠COM =35∘∠AOC =70∘∠AON =∠AOC −∠CON =35∘∠AON =∠CON DE//AF ∠EDA =∠DAF ∠CDA =∠DAB ∠CDA−∠EDA =∠DAB−∠DAF∠1=∠2DE//AF ∠EDA =∠DAF ∠CDA =∠DAB ∠CDA−∠EDA =∠DAB−∠DAF∠1=∠2(1)MN C D∵,,∴,又∵与是对顶角,∴,∴与相等的角有 ,.【考点】作图—复杂作图垂线余角和补角【解析】此题暂无解析【解答】解:如图所示:直线,点,即为所求;∵,,∴,又∵与是对顶角,∴,∴与相等的角有 ,.20.【答案】,∵,∴,∴的整数部分.∵,∴的整数部分,∴,∴的立方根为.【考点】估算无理数的大小立方根的应用(2)∠PDO +∠O =∠DPO =90∘∠CPO +∠O =∠PCO =90∘∠CPO =∠PDO ∠BDM ∠PDO ∠BDM =∠CPO ∠CPO ∠PDO ∠BDM (1)MN C D (2)∠PDO +∠O =∠DPO =90∘∠CPO +∠O =∠PCO =90∘∠CPO =∠PDO ∠BDM ∠PDO ∠BDM =∠CPO ∠CPO ∠PDO ∠BDM 5−533−−√(2)9<10<163<<410−−√10−−√a =32<<35–√8−5–√b =5a +b =88=28–√3【解析】此题暂无解析【解答】解:∵,∴,即的整数部分为,小数部分为.故答案为:; .∵,∴,∴的整数部分.∵,∴的整数部分,∴,∴的立方根为.21.【答案】解:根据题意得,,即,解得.若点到两坐标距离相等,∴,∴,即或,解得或,∴或.【考点】点的坐标【解析】无无【解答】解:根据题意得,,即,解得.若点到两坐标距离相等,∴,∴,即或,解得或,∴或.22.【答案】解:.理由如下:如图,过作,∵,(1)25<33<365<<633−−√33−−√5−533−−√5−533−−√(2)9<10<163<<410−−√10−−√a =32<<35–√8−5–√b =5a +b =88=28–√3(1)4−2n <02n >4n >2(2)Q |4−2n|=|n−1|4−2n =±(n−1)4−2n =n−14−2n =−n+1n =53n =3Q(,)2323Q(−2,2)(1)4−2n <02n >4n >2(2)Q |4−2n|=|n−1|4−2n =±(n−1)4−2n =n−14−2n =−n+1n =53n =3Q(,)2323Q(−2,2)(1)∠C =∠1+∠2C CD//PQ PQ//MN∴,∴,,∴,即.∵,∴,由可得,,∴,∴.设,则,由可得,,∴,∴,∴.即.【考点】平行线的判定与性质平行线的性质角的计算【解析】无无无【解答】解:.理由如下:如图,过作,∵,∴,∴,,∴,即.∵,∴,由可得,,∴,∴.设,则,由可得,,∴,∴,∴.即.23.【答案】解:如图,PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF (1)∠C =∠1+∠2C CD//PQ PQ//MN PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF (1)1∵,,∴,,∴;设,当的面积是的面积的倍时,若点在线段上,∵,∴,∴,∴;若点在线段延长线上,∵,∴,∴,∴.∴的坐标为或;如图,过点作,由平移的性质知.∴.∴,.若点在线段上,,即;若点在线段延长线上,,即.故数量关系为或.【考点】几何变换综合题坐标与图形性质【解析】(1)由点的坐标的特点,确定出,,得出;(2)分点在线段和在延长线两种情况进行计算;(3)分点在线段上时,和在延长线两种情况进行计算;【解答】解:如图,A(6,0)B(8,6)FC =AE =8−6=2OF =BE =6C(2,6)(2)D(x,0)△ODC △ABD 3D OA OD =3AD ×6x =3××6(6−x)1212x =92D(,0)92D OA OD =3AD ×6x =3××6(x−6)1212x =9D(9,0)D (,0)92(9,0)(3)2D DE//OC OC//AB OC//AB//DE ∠OCD =∠CDE ∠EDB =∠DBA D OA ∠CDB =∠CDE+∠EDB =∠OCD+∠DBAα+β=θD OA ∠CDB =∠CDE−∠EDB =∠OCD−∠DBAα−β=θα+β=θα−β=θFC =2OF =6C(2,6)D OA OA D OA α+β=θOA α−β=θ(1)1∵,,∴,,∴;设,当的面积是的面积的倍时,若点在线段上,∵,∴,∴,∴;若点在线段延长线上,∵,∴,∴,∴.∴的坐标为或;如图,过点作,由平移的性质知.∴.∴,.若点在线段上,,即;若点在线段延长线上,,即.故数量关系为或.A(6,0)B(8,6)FC =AE =8−6=2OF =BE =6C(2,6)(2)D(x,0)△ODC △ABD 3D OA OD=3AD ×6x =3××6(6−x)1212x =92D(,0)92D OA OD =3AD×6x =3××6(x−6)1212x =9D(9,0)D (,0)92(9,0)(3)2D DE//OC OC//AB OC//AB//DE ∠OCD =∠CDE ∠EDB =∠DBA D OA ∠CDB =∠CDE+∠EDB =∠OCD+∠DBA α+β=θD OA ∠CDB =∠CDE−∠EDB =∠OCD−∠DBA α−β=θα+β=θα−β=θ。

北京市铁路第二中学2023~2024学年第二学期初一下期中数学试卷

北京市铁路第二中学2023~2024学年第二学期初一下期中数学试卷

北京市铁路第二中学2023—2024学年度第二学期初一数学期中考试试卷(试卷满分110分考试时长100分钟)第Ⅰ卷(主卷部分,共100分)一、选择题(本题共20分,每小题2分)以下每个小题中,只有一个选项是符合题意的. 1.下列式子正确的是( )A.B.C.D.2.下列选项中,可由如图2023年杭州亚运会会徽“潮涌”平移得到的是( )A. B. C. D.3. 下列实数3.14159260.2,1.212212221…,17,2−π,−2020,中,无理数有().A. 1个B. 2个C. 3个D. 4个4. 已知,则下列不等式一定成立的是().A. B. C. D.5.已知关于x的方程2x+4=m﹣x的解为非负数,则m的取值范围是( )A.m≤B.m≥C.m≤4 D.m≥46.在平面直角坐标系中,将点(m,n)先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是( )A.(m﹣2,n﹣1)B.(m﹣2,n+1)C.(m+2,n﹣1)D.(m+2,n+1)7. 如图,直线与直线相交于点,,且平分,若,则的度数为()39±=283=--416=-()222-=-ba>22a b->-22ba<1212-<-ba22->-baAB C D O OE OF⊥OACOE∠50DOE∠=︒BOF∠A. B. C. D. 8.如图是北京地铁部分线路图.若崇文门站的坐标为(4,﹣1),北海北站的坐标为(﹣2,4),则复兴门站的坐标为( )A .(﹣1,﹣7)B .(﹣7,1)C .(﹣7,﹣1)D .(1,7)9.给出以下四个命题:①如果两个角互补,那么这两个角都是锐角;②如果两条直线被第三条直线所截,同旁内角互补,那么同位角相等;③如果一个角的两边分别与另一个角的两边互相垂直,那么这两个角互补;④平面上3条直线,最多可把平面分成7个部分。

其中正确的命题为()A .①②③④ B .②④ C .④ D .①③10.如图,在一个单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,⋯⋯是斜边在x 轴上,斜边长分别为2,4,6的等腰直角三角形.若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1, ﹣1),A 3(0,0),则依图中所示规律,A 2025的横坐标为( )A .1014B .﹣1014C .1012D .﹣1012二.填空题:(本题共18分,每小题2分,第12、18题3分)11、由,用来表示,得.1213. 若点在y轴上,则P 点坐标为. 14.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为20︒25︒30︒35︒06911=--y x y x _____________=x 31_______-(2,31)P m m -+____________________________________.15、已知为实数,且,则16、如图,17.在平面直角坐标系中,已知点A (2,1),直线AB 与x 轴平行,若AB =4,则点B 的坐标为 .18、如图,直线AB ∥CD ,E 为直线AB 上一点,EH ,EM 分别交直线CD 于点F ,M ,EH 平分∠AEM ,MN ⊥AB ,垂足为点N ,∠CFH =α.(1)MN ME (填“>”或“=”或“<”),理由是 ;(2)∠EMN = (用含α的式子表示). 第16题图 第18题图三.解答题(本题共27分,19题8分,20题12分,21、24题每题5分,22、23、25题每题6分,26、27题每题7分)(2)20. 解方程及方程组(1); (2)(3)21.解不等式,并把解集表示在数轴上.y x,x x y 411431-+-+=_________34的平方根为y x +︒=∠︒=∠⊥___________2,1201,,////则于点P GH PS EF CD AB 234182161119⎪⎪⎭⎫ ⎝⎛--+-+)、计算(2--15722=+x ()092313=-+x ⎩⎨⎧=+=-421532y x y x 323125+<-+x x22.如图,BE平分∠ABC,∠E=∠1,∠3+∠ABC=180°,试说明DF∥AB.请完善解答过程,并在括号内填写相应的理论依据.解:∵BE平分∠ABC,∴∠1=∠2(①___________________________),∵∠E=∠1(已知),∴∠E=∠2(等量代换),∴② (③_____________________________),∴∠A+∠ABC=180°(④ __________),∵∠3+∠ABC=180°(已知),∴⑤ (⑥_____________________________)∴DF∥AB(同位角相等,两直线平行).23.如图,点C,D在直线AB上,∠ACE+∠BDF=180°,EF∥AB.(1)求证:CE∥DF;(2)∠DFE的角平分线FG交AB于点G,过点F作FM⊥FG交CE的延长线于点M.若∠CMF=55°,先补全图形,再求∠CDF的度数.24.如图,某校的饮水机有温水、开水两个按钮,温水和开水共用一个出水口.温水的温度为30℃,流速为20mL /s ;开水的温度为100℃,流速为15mL /s .整个接水的过程不计热量损失.(1)甲同学用空杯先接了6s 温水,再接4s 开水,接完后杯中共有水_____ mL ;(2)乙同学先接了一会儿温水,又接了一会儿开水,得到一杯280mL 温度为40℃的水(不计热损失),求乙同学分别接温水和开水的时间.25.如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别为A (﹣2,3),B (﹣3,1),C (0,﹣2).(1)将△ABC 向右平移4个单位后得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)求△ABC 的面积;(3)定义:在平面直角坐标系中,横坐标与纵坐标都是整数的点称为“整点”,请直接写出△A 1B 1C 1内部所有的整点的坐标.26.已知:AB ∥CD ,E 、G 是AB 上的点,F 、H 是CD 上的点,∠1=∠2.(1)如图1,求证:EF ∥GH ;(2)如图2,过F 点作FM ⊥GH 交GH 延长线于点M ,作∠BEF 、∠DFM 的角平分线交于点N ,EN 交GH 于点P ,求证:∠N =45°;(3)如图3,在(2)的条件下,作∠AGH 的角平分线交CD 于点Q ,若物理常识:开水和温水混合时会发生热传递,开水放出的热量等于温水吸收的热量,可以转化为:开水的体积×开水降低的温度=温水的体积×温水升高的温度.3∠FEN =4∠HFM,直接写出的值.27.对平面直角坐标系xOy 中,给出如下定义:对于任意两个点M (x 1,y 1),N (x 2,y 2),M 与N 的“直角距离”记为d MN ,d MN =|x 1﹣x 2|+|y 1﹣y 2|.例如:点M (1,5)与N (7,2)的“直角距离”d MN =|1﹣7|+|5﹣2|=9.(1)已知点A (4,﹣1).①点A 与点B (1,2)的“直角距离”d AB = ;②若点A 与点C (﹣2,m )的“直角距离”d AC =7,则m 的值为 .(2)已知D (﹣1,﹣1)和E (1,2).①在点G (﹣1,1),H (,),K (2,﹣1)中,到D ,E 两个点的“直角距离”之和最小的是 ;②若点F (4,﹣3),若平面直角坐标系中的点P 满足d PD +d PE +d PF 最小,直接写出点P 的坐标: ;③若点Q 在平面直角坐标系中,满足 (d QD +d QE )最小且|d QD ﹣d QE |最小,请在右侧平面直角坐标系中直接画出所有符合条件的点Q 所组成的图形.第MPN GQH∠∠Ⅱ卷(附加卷部分,共10分)一.填空题(本题共10分, 第1题2分,第2题3分,第3题5分)1.如图,在四边形ABCD纸片中AD∥BC,AB∥CD,将纸片折叠,点A、D分别落在E、F 处,折痕为MN,EM与BC交于点P.若∠D+∠CNF=140°,则∠BPM的度数为 °.2.某日小王驾驶一辆小型车到某地办事,上午9:00到达,在路边的电子收费停车区域内停车.收费白天(7:00~19:00)首小时内小型车:1.5元/15分钟大型车:3元/15分钟首小时后小型车:2.25元/15分钟大型车:4.5元/15分钟夜间(19:00(不含)~次日7:00(不含))小型车:1元/2小时大型车:2元/2小时不足一个计时单位按一个计时单位收取费用(1)如果他9:50离开,那么应缴费 元;(2)如果他离开时缴费15元,那么停车的时长t(单位:分钟)的取值范围是 .3.在平面直角坐标系中,对于与原点不重合的两个点和,关于,的方程称为点的“照耀方程”.若是方程的解,则称点“照耀”了点例如,点的“照耀方程”是,且是该方程的解,则点“照耀”了点.(1)下列点中被点“照耀”的点为____________.,,(2)若点同时被点和点“照耀”,则可求出 , 。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。

2023-2024学年全国初中七年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中七年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中七年级下数学人教版期中考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 3/4D. 1.52.下列各数中,是负数的是()A. 0B. 3C. 2D. 1/23.下列各数中,是正数的是()A. 3B. 0C. 1/2D. 1.54.下列各数中,是正分数的是()A. 3/4B. 0C. 1/2D. 1.55.下列各数中,是负分数的是()A. 3/4B. 0C. 1/2D. 1.56.下列各数中,是正整数的是()A. 2B. 0C. 1/2D. 37.下列各数中,是负整数的是()A. 2B. 0C. 1/2D. 38.下列各数中,是正无理数的是()A. √2B. 0C. √3D. 1.59.下列各数中,是负无理数的是()A. √2B. 0C. √3D. 1.510.下列各数中,是分数的是()A. √2B. 0C. 3/4D. 1.5二、填空题(每题2分,共20分)1.若a是正数,b是负数,则a+b的值()2.若a是正数,b是负数,则ab的值()3.若a是正数,b是负数,则ab的值()4.若a是正数,b是负数,则a/b的值()5.若a是正数,b是负数,则a+b的绝对值()6.若a是正数,b是负数,则ab的绝对值()7.若a是正数,b是负数,则ab的绝对值()8.若a是正数,b是负数,则a/b的绝对值()9.若a是正数,b是负数,则a+b的平方()10.若a是正数,b是负数,则ab的平方()三、解答题(每题5分,共30分)1.解方程:3x5=2x+72.解方程:2x+3=5x43.解方程:4x3=2x+94.解方程:5x+4=3x85.解方程:6x5=4x+76.解方程:7x+6=5x9四、应用题(每题10分,共20分)1.某水果店有苹果和香蕉两种水果,苹果每斤5元,香蕉每斤3元。

小明想买3斤苹果和2斤香蕉,一共需要多少钱?2.某学校组织了一次运动会,参加跑步的学生有男生和女生两种,男生有20人,女生有15人。

七年级数学下册期中考试试卷(附带答案)

七年级数学下册期中考试试卷(附带答案)

七年级数学下册期中考试试卷(附带答案)(试卷满分:150分;考试时间:120分钟)学校:___________姓名:___________班级:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算正确的是()A.a2·a4=a8B.a4+a4=a8C.(ab)3= a³b3D.(a2)4=a62.泉城广场鲜花盛放,数郁金香最为耀眼,某品种郁金香花粉直径约为0,000000032米,数据0.000000032用科学记数法表示为()A.0.32x10-7B.3.2x10-8C.3.2x10-7D.32x10-93.研究表明,雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾的程度B.城市中心C.雾霾D.城市中心区立体绿化面积4.在下列四组线段中,能组成三角形的是( )A.2,2,5B.3,7,10C.3,5,9D.4,5,75.如图AB ∥CD,若∠1=40°,则∠2=()A.100°B.120°C.140°D.150°(第5题图)(第6题图)(第9题图)(第10题图)6.如图,从人行横道线上的点P处过马路,沿线路PB行走距离最短,其依据的几何学原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.下列各式中,可以用平方差公式计算的是( )A.(a-b)(a-b)B.(3a+2b)(3a-2b)C.(a+b)(2a-b)D.(2a+b)(-2a-b )8.已知x2+mx+25是一个完全平方式,则m的值为( )A.±5B.10C.﹣10D.±109.如图:OB=OD,添加下列条件后不能保证△AOB≌△COD的是()A.OA=OCB.AB=CDC.∠A=∠CD.∠B=∠D10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息,已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了36分钟:③乙用16分钟追上甲:④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分)11.若一个角是38°,则这个角的余角为.12.4m2n÷(-2m)= .13.在△ABC中,∠A:∠B:∠C=5:6:7,则△ABC是(填入"锐鱼三角形"、"直角三角形"或"钝角三角形").14.农村"雨污分流"工程是"美丽乡村"战略的重要组成部分,我县某村要铺设一条全长为1000米的"雨污分流"管道,现在工程队铺设管道施工x天与铺设管道y米之间的关系用表格表示如下,则施工8天后,未铺设的管道长度为米.15.如图,AD是△ABC的中线,已知△ABD的周长为16cm,AB比AC长3cm,则△ACD的周长为。

江苏省苏州市立达中学校2023-2024学年七年级下学期期中数学试题(解析版)

江苏省苏州市立达中学校2023-2024学年七年级下学期期中数学试题(解析版)

苏州市立达中学校2023-2024学年度第二学期期中考试试卷初一数学一、选择题1. 下列等式从左到右的变形中,属于因式分解的是( )A. x 2-6x =x (x -6)B. (x +3)2=x 2+6x +9C. x 2-4+4x =(x +2)(x -2)+4xD. 8a 2b 4=2ab 2·4ab 2【答案】A【解析】【详解】分析:直接利用因式分解的定义分析得出答案.详解:A 、x 2-6x=x (x-6),正确;B 、(x+3)2=x 2+6x+9,是多项式的乘法运算,故此选项错误;C 、x 2-4+4x=(x+2)(x-2)+4x ,不符合因式分解的定义,故此选项错误;D 、8a 2b 4=2ab 2·4ab 2,不符合因式分解的定义,故此选项错误.故选A .点睛:此题主要考查了分解因式的定义,正确把握定义是解题关键.2. 下列运算正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题考查整式混合运算,涉及同底数幂的乘法、单项式乘以单项式、积的乘方、幂的乘方及同底数幂的除法运算等知识,根据整式相关运算法则逐项验证即可得到答案,熟记底数幂的乘法、单项式乘以单项式、积的乘方乘方、幂的乘方及同底数幂的除法运算法则是解决问题的关键.【详解】解:A 、由同底数幂的乘法运算法则可知,,计算错误,不符合题意;B 、由单项式乘以单项式运算法则可知,,计算错误,不符合题意;C 、由积乘方、幂的乘方运算法则可知,,计算错误,不符合题意;D 、由同底数幂的除法运算法则可知,,计算正确,符合题意;故选:D .的326a a a ⋅=236m n m n ⋅=+()32528b b -=-()32()a a a -÷-=3256a a a a ⋅=≠2366m n mn m n ⋅=≠+()3265288b b b -=-≠-()32()a a a -÷-=3. 若二次三项式是一个完全平方式,则的值为( )A. 6B. C. D. 12【答案】C【解析】【分析】本题主要考查了完全平方式,根据题意可知两平方项分别为,据此可得一次项可以为,由此可得答案.【详解】解:∵二次三项式是一个完全平方式,∴,∴,故选:C .4. 若等腰三角形的两边长分别为和,则它的周长为( )A. B. 或 C. D. 以上都不对【答案】C【解析】【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【详解】解:当是腰时,3+3<8,不符合三角形三边关系,故舍去;当是腰时,周长;故它的周长为.故选:C .【点睛】本题考查等腰三角形,三角形三边的关系,注意分类讨论思想的应用和三角形三边关系是解题的关键.5. 一个多边形的边数每增加一条,这个多边形的( )A. 内角和增加360°B. 外角和增加360°C. 对角线增加一条D. 内角和增加180°【答案】D【解析】【详解】因为n 边形的内角和是(n ﹣2)•180°,当边数增加一条就变成n +1,则内角和是(n ﹣1)•180°,236x mx ++m 6±12±226x ,12x ±222366x mx x mx ++=++2612mx x x =±⋅⋅=±12m =±3cm 8cm 14cm14cm 19cm 19cm 3cm 8cm ()88319cm =++=19cm内角和增加:(n ﹣1)•180°﹣(n ﹣2)•180°=180°;故选D .6. 若一个三角形的3个外角的度数之比,则与之对应的3个内角的度数之比为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了三角形的外角及其性质及三角形的外角与它相邻的内角互补的知识,设三角形的3个外角度数分别为、、,根据三角形的外角及其性质解出三角形的3个外角度数分别为、、,再求出对应的内角,即可得出对应的3个内角的度数之比.【详解】解:设三角形的3个外角度数分别为、、,根据题意得,解得,所以三角形的3个外角度数分别为、、,则对应的三角形的3个内角度数分别为、、,所以对应的3个内角的度数之比为.故选:C .7. 某小区有一正方形草坪,如图所示,小区物业现对该草坪进行改造,将该正方形草坪边方向的长度增加4米,边方向的长度减少4米,则改造后的长方形草坪面积与原来正方形草坪面积相比( )A. 增加8平方米B. 增加16平方米C. 减少16平方米D. 保持不变【答案】C【解析】【分析】本题考查根据图形列代数式解决实际问题,涉及平方差公式、整式减法运算等知识,读懂题意,准确表示出改造前后的长方形草坪面积与原来正方形草坪面积,利用整式运算求解即可得到答案,利用代数式表示出图形面积是解决问题的关键.【详解】解:如图所示:2:3:43:2:44:3:25:3:13:1:52x 3x 4x 80︒120︒160︒2x 3x 4x 234360x x x ++=︒40x =︒80︒120︒160︒100︒60︒20︒100:60:205:3:1︒︒︒=ABCD AB AD设正方形草坪的边长为米,则由题意可知,,,,,即改造后的长方形草坪面积与原来正方形草坪面积相比减少16平方米,故选:C .8. 在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“”.如记;.已知,则的值是( )A. 4B. 5C. D. 【答案】B【解析】【分析】本题考查多项式乘以多项式、整式的加减,由系数可知,再根据题中新定义,将已知等式左边展开化简,然后使常数项相等即可求解.【详解】解:∵系数为5,∴,∴,ABCD x 4AE x =-4AG x =+2S x ∴=正方形()()24416S x x x =+-=-矩形()221616S S x x ∴-=--=正方形矩形∑1123...(1)n k k n n ==++++-+∑()()()()334...n k x k x x x n =+=+++++∑()()221570n k x k x k xmx =⎡⎤+-+=+-⎣⎦∑m 5-4-2x 6n =2x 6n =()()21nk x k x k =⎡⎤+-+⎣⎦∑(2)(1)(3)(2)(4)(3)(5)(4)(6)(5)x x x x x x x x x x =+-++-++-++-++-()()()()2222226122030x x x x x x x x x x =+-++-++-++-++-25570x x =+-∵,∴,故选:B .二、填空题9. 微电子技术使半导体材料的精细加工尺寸大幅度缩小,某种电子元件的面积大约为平方毫米,数据用科学记数法表示为 _____________.【答案】【解析】【分析】绝对值小于1正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解.故答案为:【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10. 计算的结果是______.【答案】【解析】【分析】本题主要考查了同底数幂乘法的逆运算,积的乘方的逆运算,把原式先变形为,进一步变形得到,据此求解即可.【详解】解:的()()221570nk x k x k x mx =⎡⎤+-+=+-⎣⎦∑5m =0.000000650.0000006576.510-⨯10n a -⨯70.00000065 6.510-=⨯76.510-⨯10n a -⨯110a ≤<()2021202320222 1.513⎛⎫⨯⨯- ⎪⎝⎭1.5-()202120212113.5.51⎛⎫⎝⨯⨯⨯- ⎪⎭()20212 1.51153.⎛⎫⨯⨯- ⎪⨯⎝⎭()2021202320222 1.513⎛⎫⨯⨯- ⎪⎝⎭()202120212113 1.5.5⎛⎫=⨯⨯⨯- ⎪⎝⎭()20212 1.511.53⎛⎫=⨯⨯- ⎪⨯⎝⎭,故答案为:.11. 若,则的取值范围是______.【答案】【解析】【分析】本题主要考查了零指数幂,根据零指数幂有意义的条件是底数不为0进行求解即可.【详解】解:∵,∴,∴,故答案为;.12. 若2x ﹣y =3,xy =3,则=_____.【答案】21【解析】【分析】首先将已知条件平方,进而将已知代入求出答案.【详解】解:∵2x ﹣y =3,∴,∵xy =3;∴=9+4xy =21;故答案为:21.【点睛】本题主要考查完全平方公式,熟记公式及用整体代入求值是解题的关键.13. 已知,则的值为______.【答案】【解析】【分析】本题主要考查了整式的化简求值,先求出,再利用平方差公式,完全平方公式和单项式乘以多项式的计算法则去括号后,合并同类项,最后利用整体代入法代值计算即可得到答案.【详解】解:∵,()20211511.⨯=⨯-1.5=- 1.5-()021b +=b 2b ≠-()021b +=20b +≠2b ≠-2b ≠-224y x +()2222494x y x xy y --+==224y x +230x x --=()()()()2215222x x x x x +-+++-823-=x x 230x x --=∴,∴.14. 如图,是的中线,是的中线,于点.若,,则长为______.【答案】9【解析】【分析】本题考查了三角形的面积、三角形的中线的性质等知识,由,,推出再根据三角形的面积公式即可得出答案【详解】解:∵是的中线,∴,∵是的中线,∴,∴,,∴,23-=x x ()()()()2215222x x x x x +-+++-222441524x x x x x =++--+-25x x =-+35=+8=AD ABC BE ABD △EFBC ⊥F 36ABC S =△4EF =BC 12ABD ABC S S = 12BDE ABD S S = 1136944BDE ABC S S ==⨯=△△AD ABC 12ABD ABC S S = BE ABD △12BDE ABD S S = 1136944BDE ABC S S ==⨯=△△12BDE S BD EF =⋅△192BD EF ⋅=即,解得:,∴,故答案为:9.15. 如图,AB ∥DE ,∠ABC =80°,∠CDE =150°,则∠BCD 的度数为_____°.【答案】50【解析】【分析】过点C 作FG ∥AB ,根据平行线的传递性得到FG ∥DE ,根据平行线的性质得到∠B =∠BCF ,∠CDE+∠DCF =180°,根据已知条件等量代换得到∠BCF =80°,由等式性质得到∠DCF =30°,于是得到结论.【详解】解:如图,过点C 作FG ∥AB ,因为FG ∥AB ,AB ∥DE ,所以 FG ∥DE ,所以∠B =∠BCF ,(两直线平行,内错角相等 )∠CDE+∠DCF =180°,(两直线平行,同旁内角互补)又因为∠B =80°,∠CDE =150°,所以∠BCF =80°,(等量代换)∠DCF =30°,(等式性质)所以∠BCD =50°.故答案为:50.【点睛】本题主要考查平行线的性质,关键是根据平行线的性质得到角之间的等量关系.16. 如图,将纸片沿折叠,使点落在四边形内点的位置,则与之间的数量关系为______.1492BD ⨯⨯=92BD =9BC =ABC DE A BCDE A 'A ∠12∠+∠【答案】【解析】【分析】本题主要考查了折叠的性质,三角形外角的性质,先由折叠的性质,再由三角形外角的性质可得,,由此即可得到.【详解】解:由折叠的性质知:.由三角形的外角性质知:,;∴,即.故答案为:.17. 如图,在同一平面内,于点于点,连接平分交于点,点为延长线上一点,连接,下列结论:①;②;③;④;⑤若,则,正确的有______.【答案】①②③④【解析】【分析】本题主要考查了平行线的性质与判定,三角形外角的性质,三角形内角和定理,由垂直可得,即可证明①;根据条件证明,即可证明②;根据角平分线的性质和第②问的结论即可证明③;根据角平分线的性质和即可证明④;根据题中条件找到即可证明⑤.【详解】解:∵,,∴,∴,故①正确;122A∠+∠=∠DAE DA E '∠=∠1EAA EA A ''∠=∠+∠2DAA DA A ''∠=∠+∠122A ∠+∠=∠DAE DA E '∠=∠1EAA EA A ''∠=∠+∠2DAA DA A ''∠=∠+∠122DAE DA E DAE '∠+∠=∠+∠=∠122A ∠+∠=∠122A ∠+∠=∠AB BC ⊥,B DC BC ⊥C ,AD DE ADC ∠BC E F CD ,AF BAF EDF ∠=∠BAD ADF ∠=∠AF ED ∥2ADC F ∠=∠1902CED ADC ∠+∠=︒13ADE BAD ∠=∠160AFD BED ∠+∠=︒AB CD EDA DAF ∠=∠DC BC ⊥23ADC BAD ∠=∠AB BC ⊥DC BC ⊥AB CD BAD ADF ∠=∠∵,,∴,∴,故②正确;∴,∵平分,∴,∴,∴,故③正确;∵,∴,∵平分,∴,∴,故④正确;∵,∴,∵,平分,∴,∴,∴,∴,∵,平分,∴,,∴,∴,故⑤错误;故答案为;①②③④.BAF EDF ∠=∠BAD ADF ∠=∠EDA DAF ∠=∠AF ED ∥CDE F ∠=∠DE ADC ∠CDE ADE ∠=∠ADE F ∠=∠2ADC F ∠=∠DC BC ⊥90CED CDE ∠+∠=︒DE ADC ∠CDE ADE ∠=∠1902CED ADC ∠+∠=︒AB CD 180BAD CDA ∠+∠=︒13ADE BAD ∠=∠DE ADC ∠23ADC BAD ∠=∠21803BAD BAD ∠+∠=︒108BAD ∠=︒72ADC ∠=︒2ADC F ∠=∠DE ADC ∠36ADE CDE ∠==︒∠36F ∠=︒126BED CDE DCE ∠=+=︒∠∠162AFD BED ∠+∠=︒18. 当______时,代数式的值为1.【答案】或或【解析】【分析】本题主要考查了有理数的乘方计算和零指数幂,根据1的任何次方都为1,负1的偶次方为1 ,非零底数的零指数结果为1进行求解即可.【详解】解:当,即时,原式,符合题意;当,即时,原式,符合题意;当,即时,原式,符合题意;综上所述,当或或时,代数式的值为1.故答案为:或或.三、解答题19. 计算:(1)(2)(3)(4)【答案】(1)(2)(3)(4)【解析】【分析】本题主要考查了乘法公式,零指数幂,负整数指数幂,积的乘方和同底数幂乘除法计算:(1)先计算积的乘方,同底数幂乘除法,最后合并同类项即可得到答案;(2)先计算零指数幂,负整数指数幂和乘方,再计算加减法即可得到答案;(3)先根据完全平方公式和平方差公式去括号,然后合并同类项即可得到答案;(4)先把原式变形为,然后利用完全平方公式和平方差公式进行计算即可得到x =()201623x x ++1-2-2016-231x +==1x -120162015111-+===231x +=-2x =-()()220162014111-+=-=-=20160x +=2016x =-()02016231=-⨯+==1x -2x =-2016x =-()201623x x ++1-2-2016-()32248232a a a a a -+⋅-÷()30202213.1412π-⎛⎫--- ⎪⎝⎭()()()2223a b b a a b +---()()33x y x y +--+626a -8-22568a ab b -+-2269x y y -+-()()33x y x y +---⎡⎤⎡⎤⎣⎦⎣⎦答案.【小问1详解】解:;【小问2详解】解:;【小问3详解】解;;【小问4详解】解:.20. 把下列各式因式分解:(1);(2);(3)(4)()32248232a a a a a -+⋅-÷666272a a a =-+-626a =-()30202213.1412π-⎛⎫--- ⎪⎝⎭181=--8=-()()()2223a b b a a b +---()2222469a b a ab b =-+--+2222469a b a ab b =-+-+-22568a ab b =-+-()()33x y x y +--+()()33x y x y =+---⎡⎤⎡⎤⎣⎦⎣⎦()223x y =--()2269x y y =--+2269x y y =-+-2425x -269a a -+2464x -22344ab a b b --【答案】(1)(2)(3)(4)【解析】【分析】本题主要考查了分解因式:(1)直接利用平方差公式分解因式即可;(2)直接利用完全平方公式分解因式即可;(3)先提取公因数4,再利用平方差公式分解因式即可;(4)先提取公因式,再利用完全平方公式分解因式即可.【小问1详解】解:;【小问2详解】解:;【小问3详解】解:;【小问4详解】解:.21. 如图,在每个小正方形边长为1的方格纸内将经过一次平移后得到,图中标出了点的对应点.根据下列条件,利用格点和直尺画图:()()2525x x +-()23a -()()444x x +-()22--b a b b -2425x -()()2525x x =+-269a a -+()23a =-2464x -()2416x =-()()444x x =+-22344ab a b b --()2244b a ab b =--+()22b a b =--ABC A B C ''' B B '(1)补全;(2)利用格点在图中画出边上的高线;【答案】(1)见解析(2)见解析【解析】【分析】本题考查作图—平移变换,画三角形的高:(1)根据点B 和点的位置确定平移方式为向左平移5个单位长度,向下平移2个单位长度,据此找到A 、C 对应点的位置,然后顺次连接即可得到答案;(2)根据网格的特点结合三角形高的定义作图即可.【小问1详解】解:如图所示,即为所求;【小问2详解】解:如图所示,即为所求;22. (1)已知,求的值.(2)已知,求的值.【答案】(1);(2)【解析】【分析】本题主要考查了幂的乘方及其逆运算,同底数幂乘法及其逆运算:A B C ''' AC BE B 'A C ''、A B C '''、、A B C ''' BE 233m n +=927m n ⋅105,106x y ==3210x y +274500(1)根据幂的乘方的逆运算法则得到,进而根据同底数幂乘法计算法则把原式变形为,据此代值计算即可;(2)先由幂的乘方计算法则得到,再根据同底数幂乘法的逆运算法则得到,据此代值计算即可.详解】解:(1)∵,∴;解:∵,∴,∴,∴.23. 如图,AD ⊥BC ,垂足D ,点E 、F 分别在线段AB 、BC 上,∠1=∠2,∠C +∠ADE =90°.(1)求证:DE ∥AC ;(2)判断EF 与BC 的位置关系,并证明你的猜想.【答案】(1)详见解析;(2)EF ⊥BC ,证明详见解析.【解析】【分析】(1)根据垂直的定义得到∠1+∠C =90°,等量代换得到∠1=∠ADE ,于是得到结论;(2)等量代换得到∠2=∠ADE ,根据平行线的性质即可得到结论.【为2392733m n m n ⋅=⋅233m n +321012536x y ==,1022331100x x y y +=⋅10233m n +=927m n⋅()()2333m n=⋅2333m n=⋅233m n+=33=27=105,106x y ==()()3232105106x y ==,321012536x y ==,1022331101253645000x y x y +⋅=⨯==10【详解】(1)证明:∵AD ⊥BC ,∴∠1+∠C =90°,∵∠C +∠ADE =90°,∴∠1=∠ADE ,∴DE ∥AC ;(2)解:EF ⊥BC ,理由:∵∠1=∠2,∠1=∠ADE ,∴∠2=∠ADE ,∴EF ∥AD ,∴∠EFD =∠ADC =90°,∴EF ⊥BC .【点睛】本题主要考查了垂直的定义及平行线的性质与判定,关键是根据“同角的余角相等”来得到角的等量关系,进而求证问题.24. (1)填空:,,,……(2)探索(1)中式子的规律,试写出第个等式,并说明第个等式成立;(3)计算【答案】(1)见解析;(2)详见解析;(3)【解析】【分析】此题主要考查了探寻数列规律问题.(1)根据乘方的运算法则计算即可;(2)根据式子规律可得,然后利用提公因式可以证明这个等式成立;(3)设题中的表达式为,再根据同底数幂的乘法得出的表达式,相减即可.【详解】(1).(2)第个等式为:左边右边左边右边.(3)设( )1022___2-==( )2122___2-==( )3222___2-==n n 0123100022222++++⋯+100121-11222n n n ---=12n -a 2a 10021132222212,22422,22842-=-=-=-=-=-=n 11222n n n ---= ()111222212n n n n ---=-=-=12n -=∴=11222n n n --∴-=0123100022222a =++++⋯+则②-①得:故:.25. 先阅读后解题:若,求m 和n 的值.解:等式可变形为:即,因为,,所以,即,.像这样将代数式进行恒等变形,使代数式中出现完全平方式的方法叫做“配方法”.请利用配方法,解决下列问题:(1)已知的三边长a ,b ,c 都是正整数,且满足,则的周长是______;(2)求代数式的最小值是多少?并求出此时a ,b 满足的数量关系;(3)请比较多项式与的大小,并说明理由.【答案】(1)9(2)3, (3),理由见解析【解析】【分析】(1)根据配方法,可得a ,b 的值,在根据三角形三边的关系,可得c 的值,根据三角形的周长,可得答案;(2)根据配方法,可得非负数的和,根据非负数的性质,可得答案;(3)根据多项式的减法计算,然后根据配方法化简多项式的差,可得结论.【小问1详解】123100122222a =+++⋯+100121a =-0123100010012222221a =++++⋯+=-2226100m m n n ++-+=2221690m m n n +++-+=()()22130m n ++-=()210m +≥()230n -≥10m +=30n -=1m =-3n =ABC 222216330a b a b +--+=ABC 2244487a b ab a b ++--+234x x +-2223x x +-22b a +=234x x +-<2223x x +-222216330a b a b +--+= ()()221240a b ∴-+-=已知的三边长a ,b ,c 都是正整数,的周长是故答案为:【小问2详解】当时,的最小值为3【小问3详解】【点睛】本题考查了非负数的性质,利用配方法得出非负数的和是解题关键.26. 数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性,形(几何)侧重研究物体形的方面,具有直观性.“以形释数”是利用数形结合思想证明代数问题的一种体现,做整式的乘法运算时,利用几何直观的方法和面积法获取结论,在解决整式运算问题时经常运用.()()210240a b -≥-≥ ,()10240a b ∴-=-=,14a b ∴==, ABC 35c ∴<<4c ∴=∴ABC 1449++=92244487a b ab a b ++--+()()22427b a b a =+-++()2223b a =+-+()220b a +-≥ ∴22b a +=2244487a b ab a b ++--+234x x +-()2223x x +--2234223x x x x =+---+21x x =-+-213024x ⎛⎫=---< ⎪⎝⎭∴234x x +-<2223x x +-【问题探究】探究1:如图1所示,大正方形的边长是,它是由两个小正方形和两个长方形组成,所以大正方形的面积等于这四个图形的面积之和.根据等积法,我们可以得出结论:探究2:请你根据探究1所使用的等积法,从图2中探究出的结果.【形成结论】(1)探究2中 ;【应用结论】(2)利用(1)问所得到的结论求解:已知,,求的值;【拓展应用】(3)在(2)的条件下,求的值.【答案】(1) ;(2);(3)【解析】【分析】本题主要考查了完全平方公式在几何图形中的应用,熟练掌握完全平方公式,采用数形结合的思想,准确进行计算是解此题的关键.(1)根据大正方形的面积为大正方形边长的平方,也可以表示为几个小正方形和长方形的面积之和,由此即可得出答案;(2)结合(1)中的公式进行计算即可;(3)先求出,再结合,进行计算即可得出答案.【详解】解:(1)由图可得:()a b +()2222a b a ab b +=++()2a b c ++()2a b c ++=0a b c ++=2224a b c ++=ab bc ca ++22222222a b b c c a a ab b ++++222222a b c ab bc ac +++++2ab bc ca ++=-222222222a b b c c a a ab b ++=++2222224a b b c c a ++=c a b =--大正方形的边长为,故大正方形的面积为,大正方形的面积还可以表示为,,故答案为:;(2),,,;(3) ,,,,,,即,,.27. 已知,如图,,直线交于点,交于点,点是线段上一点,分别在射线上,连接平分平分.()a b c ++()2a b c ++222222a b c ab bc ac +++++()2222222a b c a b c ab bc ac ∴++=+++++222222a b c ab bc ac +++++0a b c ++= 2224a b c ++=()()()22222044ab bc ca a b c a b c ∴++=++-++=-=-2ab bc ca ∴++=-()2222222222222ab bc ca a b b c c a ab c abc a bc ++=+++++ ()2222222222222a b b c c a ab bc ca ab c abc a bc∴++=++---()()222abc a b c =--++420abc =-⨯4=0a b c ++= c a b ∴=--2224a b c ++=Q ()2224a b a b ∴++--=222224a b ab ++=222a b ab ∴++=22222222422a b b c c a a ab b ++∴==++AB CD MN AB M CD N E MN ,P Q ,MB ND ,,PE EQ PF ,MPE QF ∠DQE ∠(1)如图1,当时,求的度数;(2)如图2,求与之间的数量关系,并说明理由.【答案】(1)(2),理由见解析【解析】【分析】(1)延长交于,设,交于点,设,则,根据可表示出,进而根据三角形内角和推论表示出,进而表示出,在和中,由三角形内角和得出关系式,进一步得出结果;(2)类比(1)的方法过程,即可得出结果.【小问1详解】解:延长交于,设,交于点,如图所示:平分,设,则,,,,,,平分,,在和中,,,PE QE ⊥PFQ ∠PEQ ∠PFQ ∠135︒2180PFQ PEQ ∠∠-=︒PE CD G PE FQ H 2APE α∠=12FPH APE ∠∠α==AB CD PGQ ∠EQD ∠EQH ∠EQH △PFH △PE CD G PE FQ H PF Q MPE ∠2APE α∠=12FPH APE ∠∠α==∥ AB CD 2PGQ APE ∠∠α∴==PE QE ⊥ 90QEH QEG ∠∴==︒902EQD QEG PGQ ∠∠∠α∴=+=︒+QF DQE ∠1452EQH EQD ∠∠α∴==︒+EQH △PFH △=180HEQ HQE EHQ ∠+∠+∠︒180FPH FHP PFH ∠∠∠++=︒,,即,,故答案为:;【小问2详解】解:延长交于,设,交于点,如图所示:平分,设,则,,,,,平分,,和中,,,,,即,.【点睛】本题考查了平行线性质,角平分线定义,三角形内角和定理及其推论等知识,解决问题的关键数形结合,准确找出各个角度之间的和差倍分关系列方程.在PHF EHQ ∠∠=HEQ HQE FPH PFH ∠∠∠∠∴+=+9045PFH αα∠︒+︒+=+135PFH ∠∴=︒135︒PE CD G PE FQ H PF Q MPE ∠2APE α∠=12FPH APE ∠∠α==∥ AB CD 2PGQ APE ∠∠α∴==180GEQ PEQ ∠∠=︒- 1802EQD QEG PGQ PEQ ∠∠∠∠α∴=+=︒-+QF DQE ∠119022HQE EQD PEQ ∠∠α∠∴==︒+-EQH △PFH △=180PEQ HQE EHQ ∠+∠+∠︒180FPH FHP PFH ∠∠∠++=︒PHF EHQ ∠∠=PEQ HQE FPH PFH ∠∠∠∠∴+=+1902PEQ PEQ PFQ ∠α∠α∠+︒+-=+2180PFQ PEQ ∠∠∴-=︒。

七年级第二学期数学期中考试试题含答案

七年级第二学期数学期中考试试题含答案

七年级第二学期数学期中考试(考试总分:100 分)一、单选题(本题共计10小题,总分30分)1.(3分)1.医学研究发现一种新病毒的直径约为0.000043毫米,则这个数用科学记数法表示为()A.0.43×10﹣4B.0.43×104C.4.3×10﹣5D.0.43×1052.(3分)2.观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是()A.B.C.D.3.(3分)3.下列运算正确的是()A.a4•a2=a8B.a6÷a2=a3C.(2ab2)2=4a2b⁴D.(a3)2=a54.(3分)4.下列各题可以用平方差公式计算的是()A.(2x+y)(y﹣2x)B.(x+2)(2+x)C.(x﹣y)(﹣x+y)D.(x﹣2)(x+1)5.(3分)5.下列分解因式中,正确的是()A.3m2﹣6m=3m(m﹣3)B.a2b+ab+a=a(ab+b)C.x2+y2=(x+y)2D.﹣x2+2xy﹣y2=﹣(x﹣y)26.(3分)6.二元一次方程5x﹣y=2的一个解为()A.B.C.D.7.(3分)7.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数()A.28°B.22°C.32°D.38°8.(3分)8.已知3a=10,9b=5,则3a﹣2b的值为()A.5 B.C.D.29.(3分)9.小明到药店购买了一次性医用口罩和N95口罩共40个,其中一次性医用口罩数量比N95口罩数量的3倍多4个,设购买一次性医用口罩x个,N95口罩y个,根据题意可得方程组()A.B.C.D.10.(3分)10.如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边的长为3,则另一边的长为()A.2a+5B.2a+8C.2a+3D.2a+2二、填空题(本题共计6小题,总分18分)11.(3分)11.计算:x(x﹣2y)=.12.(3分)12.如图,直线a∥b,直线c与直线a、b相交,∠1=135°,∠2=.13.(3分)13.已知是二元一次方程7x+2y=10的一组解,则m的值是.14.(3分)14.若关于x,y的二元一次方程组,则x+y=.15.(3分)15.如图,将△ABC沿BC方向平移至△DEF处,若EC=2BE=4,则CF的长为.16.(3分)16.(x﹣a)(x2+ x +b)的结果中不含x的一次项,则a-b的值是.三、解答题(本题共计8小题,总分52分)17.(6分)17.(6分)计算:(1)(﹣2)2﹣20200+3﹣2;(2)2x3y2•(﹣9x2)÷(6x4y).18.(6分)18.(6分)如图所示,已知AD∥BC,BE平分∠ABC,∠A=110°.求∠ADB的度数.19.(6分)19.(6分)如图,点M是△ABC外的一点,请你在网格内完成作图:(1)作过点M且平行于BC的直线.(2)画出△ABC先向左平移2个单位,再向上平移1个单位后的△A'B'C'.20.(6分)20.(6分)解方程:(1)(2)21.(6分)21.(6分)先化简再求值:[(2x+y)(2x﹣y)﹣(2x﹣3y)2]÷(﹣2y),其中x=1,y=﹣2.22.(6分)22.(6分)“脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.现欲将一批脐橙运往外地销售,若用2辆A 型车和1辆B型车载满脐橙一次可运走10吨;用1辆A型车和2辆B型车载满脐橙一次可运走11吨.现有脐橙31吨,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.23.(6分)23.(6分)教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如求代数式2x2+4x﹣6的最小值.2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m + 4=.(2)分解因式:x2+6x﹣7=.(3)当a,b为何值时,多项式a2+b2﹣4a+6b+18有最小值,并求出这个最小值.24.(10分)24.(10分)已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度数.答案一、单选题(本题共计10小题,总分30分)1.(3分)1.【解答】解:将0.000 043用科学记数法表示为4.3×10﹣5.故选:C.2.(3分)2.【解答】解:因为平移不改变图形的形状和大小,只改变图形的位置,所以在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是C选项的图案,故选:C.3.(3分)3.【解答】解:A.a4•a2=a6,故本选项不合题意;B.a6÷a2=a4,故本选项不合题意;C.(2ab2)2=4a2b4,正确;D.(a3)2=a6,故本选项不合题意;故选:C.4.(3分)4.【解答】解:由平方差公式判断:A答案:(2x+y)(y﹣2x)=y2﹣(2x)2=y2﹣4x2,满足条件;B答案:(x+2)(2+x)不满足条件;C答案:(x﹣y)(﹣x+y)=﹣(x﹣y)(x﹣y)不满足条件;D答案:(x﹣2)(x+1)不满足条件;故选:A.5.(3分)5.【解答】解:A、3m2﹣6m=3m(m﹣2),故此选项错误;B、a2b+ab+a=a(ab+b+1),故此选项错误;C、x2+y2,无法分解因式,不合题意;D、﹣x2+2xy﹣y2=﹣(x﹣y)2,正确.故选:D.6.(3分)6.【解答】解:是方程5x﹣y=2的一个解,故选:D.7.(3分)7.【解答】解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵∠1=38°,∴∠AEC=∠ABC﹣∠1=22°,∵GH∥EF,∴∠2=∠AEC=22°,故选:B.8.(3分)8.【解答】解:∵9b=5,∴32b=5,又∵3a=10,∴3a﹣2b=3a÷32b=10÷5=2.故选:D.9.(3分)9.【解答】解:依题意,得:.故选:D.10.(3分)10.【解答】解:如图所示:由题意可得:拼成的长方形一边的长为3,另一边的长为:AB+AC=a+4+a+1=2a+5.故选:A.二、填空题(本题共计6小题,总分18分)11.(3分)11.【解答】解:x(x﹣2y)=x2﹣2xy.故答案为:x2﹣2xy.12.(3分)12.【解答】解:∵直线a∥b,∴∠2+∠3=180°,而∠3=∠1=135°,∴∠2=180°﹣135°=45°.故答案为45°.13.(3分)13.【解答】解:把代入方程7x+2y=10,得,28+2m=10,解得m=﹣9,故答案为:﹣9.14.(3分)14.【解答】解:,①+②,得3x+3y=6,∴3(x+y)=6,∴x+y=2,故答案为:2.15.(3分)15.【解答】解:∵△ABC沿BC方向平移至△DEF处.∴BE=CF,∵EC=2BE=4,∴BE=2,∴CF=2.故答案为:2.16.(3分)16.【解答】解:(x﹣a)(x2+ x +b)=x3+ x2+bx- ax2﹣ax-ab =x3+(1+a) x2 -(a-b)x﹣ab,∵(结果中不含x的一次项,∴a﹣b=0,故答案为:0.三、解答题(本题共计8小题,总分52分)17.(6分)17.【解答】解:(1)(﹣2)2﹣20200+3﹣2=4﹣1+=3;(2)2x3y2•(﹣9x2)÷(6x4y)=﹣18x5y2÷6x4y=﹣3xy.18.(6分)18.【解答】解:如图所示:∵AD∥BC,∴∠A+∠ABC=180°,∠ADB=∠CBD,又∵∠A=110°,∴∠ABC=180°﹣110°=70°,又∵BE平分∠ABC,∴∠CBD=∴∠CBD=×70°=35°∴∠ADB=35°.19.(6分)19.【解答】解:(1)如图,直线l即为所求;(2)如图,△A'B'C'即为所求.20.(6分)20.【解答】解:方程组的解为{x=2y=1;(2)方程组的解为{x=32y=−1.21.(6分)21.【解答】解:原式=(4x2﹣y2﹣4x2+12xy﹣9y2)÷(﹣2y)=(12xy﹣10y2)÷(﹣2y)=﹣6x+5y,当x=1,y=﹣2时,原式=﹣6﹣10=﹣16.22.(6分)22.【解答】解:(1)设1辆A型车载满脐橙一次可运送x吨,1辆B型车载满脐橙一次可运送y吨,依题意,得:,解得:.答:1辆A型车载满脐橙一次可运送3吨,1辆B型车载满脐橙一次可运送4吨.(2)依题意,得:3a+4b=31,∵a,b均为正整数,∴或或.∴一共有3种租车方案,方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆.(3)方案一所需租金为100×1+120×7=940(元);方案二所需租金为100×5+120×4=980(元);方案三所需租金为100×9+120×1=1020(元).∵940<980<1020,∴最省钱的租车方案是方案一,即租A型车1辆,B型车7辆,最少租车费为940元.23.(6分)23.【解答】解:(1)m2﹣4m+4=(m﹣2)2故答案为(m﹣2)2(2)分解因式:x2+6x﹣7=(x+7) ( x—1) .(3)∵a2+b2﹣4a+6b+18=(a﹣2)2+(b+3)2+5,∴当a=2,b=﹣3时,多项式a2+b2﹣4a+6b+18有最小值5;24.(10分)24.【解答】(1)证明:如图1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.∴∠BGF+∠DHE=180°,∴AB∥CD;(2)证明:如图2,过点M作MR∥AB,又∵AB∥CD,∴AB∥CD∥MR.∴∠GMR=∠AGM,∠HMR=∠CHM.∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.(3)解:如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,∵射线GH是∠BGM的平分线,∴,∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,∵,∴,∴∠FGN=2β,过点H作HT∥GN,则∠MHT=∠N=2α,∠GHT=∠FGN=2β,∴∠GHM=∠MHT+∠GHT=2α+2β,∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,∵AB∥CD,∴∠AGH+∠CHG=180°,∴90°+α+2α+3β=180°,∴α+β=30°,∴∠GHM=2(α+β)=60°.。

初一数学第二学期期中考试试卷(含答案)

初一数学第二学期期中考试试卷(含答案)

初一数学第二学期期中考试试卷(含答案)试卷满分:120分考试时间:100分钟一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,由AB CD ∥,能得到12∠=∠的是( )2.下列各网格中的图形是用其图形中的一部分平移得到的是-------------( )A B C D 3.下列计算正确的是( )A .a 2+a 3=a 5B .a·a 2=a 2C .(ab)3=ab 3D .(-a 2)2=a 44.如图,已知△ABC 中,∠A =40°,剪去∠A 后成四边形,则∠1+∠2的和的度数为( )A .220°B .210°C .140°D .120°第4题图 5.如图,BE 、CF 都是△ABC 的角平分线,且∠BDC=1100,则∠A 的度数为( )A .50B .40C .70D .3506. 如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC 中BC 边上的高是( )A. CF ;B.BE ;C.AD ;D.CD ; 7.如果,,那么三数的大小为( ) A. B. C. D. 8.若(x+5)(2x-n)=2x 2+mx-15,则( )A .m=-7,n=3B .m=7,n=-3C .m=-7,n=-3D .m=7,n=3(),990-=a ()11.0--=b 235-⎪⎭⎫ ⎝⎛-=c c b a >>b a c >>b c a >>a b c >>A CB D1 2 A CB D1 2 A .B .12 ACDC . B C AD .12 F E D CB A 第5题图 AB C D E F第6题图9. 如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形 内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分 别为5、6、7,四边形DHOG 面积为( )A . 5B .6C .8D .9 10.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729, 37=2187…解答下列问题:3+32+33+34…+32013的末位数字是( ) A .0 B .1 C .3 D .7二、填空题(本大题共8小题,每空3分,共30分)11.一种细菌的半径是0.00000038厘米,用科学计数法表示为___ 厘米.12.若 ,3,6==n m a a =-n m a 2________ .若3=n x ,则=⋅n n x x )21()2(_______. 13. 二次三项式9)1(2++-x k x 是一个完全平方式,则k 的值是_________.14.一个多边形的每一个外角都是30°,则这个多边形是__ 边形,它的内角和是____°. 15.三角形两边长分别为2和8,若该三角形第三边长为奇数,则该三角形的第三边为________.16. 如图,直线a ,b 所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图,画PC ∥a ,量出直线b 与PC 的夹角度数,即直线a ,b 所成角的度数,请写出这种做法的理由______________________.17.设m2+m −1=0,则m 3+2m 2+2014=________.18.如图a 是长方形纸带,∠DEF=22°,将纸带沿EF 折叠成图b,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是________°.三、解答题(本大题共60分.解答时应写出文字说明、证明过程或演算步骤).19.计算(每小题4分,共12分) (1)()()1331721-⎪⎭⎫ ⎝⎛--+-+-π(2)234232)3()2(x x x x --⋅+-(3) −x (2x +1)−(2x +3)(1−x ) (4)(x+1)2﹣(x+2)(x-2)20. (本题5分)先化简,再求值:2(32)(32)5(1)(1)x x x x x +--+--, 其中220120x x --=AEBCG D H F O 题9图a bD BAC P(图2)第16题第18题图A DC BE F C BG 图a图c21.(本题10分)如下图,在每个小正方形边长为1的方格纸中, △ABC 的顶点都在方格纸格点上.(1)将△ABC 经过平移后得到△A′B′C′,图中标出了点B的对应点B',补全△A′B′C′;(2)若连接AA ',BB ',则这两条线段之间的关系是; (3)画出AC 边上的高线BD ;(4)画出△ABC 中AC 边上的中线BE ;(5)△BCE的面积为 .22.(本题5分)如图,AD ∥BE ,AE 平分∠BAD ,CD 与AE 相交于F ,∠CFE=∠E .求证:AB ∥CD .23.(本题6分)如图,DE ⊥AB ,EF ∥AC ,∠A=32°,①求∠DEF 的度数.②若∠F 比∠ACF大60°,求∠B 的度数..B′G FED CBA...11618141219×23...13×2323S 4=S 3×13S 3=S 2×13S 2=S 1×13S 1=13...24.(本题6分)某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B =90°,∠A=30°;图②中,∠D = 90°,∠F =45°.图③是该同学所做的一个实验:他将△DEF 的直角边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在△DEF 沿AC 方向移动的过程中,该同学发现:F 、C 两点间的距离______________;连接FC ,∠FCE 的度数_______________.(填“不变”、“逐渐变大”或“逐渐变小”)(2)△DEF 在移动的过程中,∠FCE 与∠CFE 度数之和是否为定值,请加以说明; (3)能否将△DEF 移动至某位置,使F 、C 的连线与AB 平行?请求出∠CFE 的度数.25.(本题6分)利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.你能利用数形结合的思想解决下列问题吗? (1)如图①,边长为1的正方形,依次取正方形面积的21、41、81、…、n 21,根据图示我们可以知道:21+41+81+161+…+n21=__________.(用含有n 的式子表示)(2)如图②,边长为1的正方形,依次取剩余部分的32,根据图示: 计算:+++2729232…+n 32=__________.(用含有n 的式子表示)(3)如图③是一个边长为1的正方形,根据图示:计算:++++8182749231…+n n 321-=__________.(用含有n 的式子表示)图①图②图③26.(本题10分)如图,已知点A、B分别在∠MON的边ON、OM上(不与点O重合),AD平分∠BAN,BC平分∠ABM,直线AD,BC相交于点C.(1)如图1,若∠MON = 90°,试猜想∠ACB=________°;(2)如图2,在(1)的基础上,若∠MON每秒钟变小10°,经过了t秒(0 <t < 9),①试用含t的代数式表示∠ACB的度数;②并求出当t取何值时,∠MON与∠ACB的度数相等;(3)如图3,在(2)的条件下,若BC平分∠ABO,其它条件不改变,请直接写出∠BCD 与∠MON的关系.参考答案1. B2. C3. D4. A5. B6. C7. C8. D9. B 10. C 11. 3.8×107- 12.329 13. 5, -7 14. 十二 1800 15. 7, 9 16. 两直线平行,同位角相等 17. 2015 18. 114° 19. (1) -9 ( 2) -16x 6 (3) -3 (4) 2x+520. 化简结果是 3x 2-3x-5 (3分) 求值结果是 6031 (2分) 21. (每小题2分)(1)略 (2)平行且相等 (3)略 (4)略 (5)4 22.23. (每小题3分)① 122° ② 28° 24. (每小题2分)(1)逐渐变小,逐渐变大(2)和为定值,是45° (3)15°25.(每小题2分)(1)n 211- (2)n 311- (3)n n 321-26.(1)∠ACB = 45° .…. ….….2分 (2)∠ACB =(45+5t )°.…..…..5分 由 90-10t = 45 + 5t , 得t =3. .…..8分∴ 当t = 3时,∠MON 与∠ACB 的度数相等;(没写答不扣分)…. …. …..8分 (3)∠BCD = 21∠MON . …. …. …. …. …. …. …. ….…. ….. …. ….. …. …..10分。

七年级第二学期初一数学期中考试试卷

七年级第二学期初一数学期中考试试卷

2022-2023学年第二学期期中考试试卷初一数学一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卷相对应的位置上)1.下列生活现象中,属于平移的是()A.卫星绕地球运动B.钟表指针的运动C.电梯从底楼升到顶楼D.教室门从开到关2.下列运算正确的是()A.x 2+x 3=x 6B.x 2·x 3=x 6C.(3x )3÷3x =9x 2D.(-xy 2)2=-x 2y 43.下列计算正确的是()A.(x -y )2=x 2+2xy -y 2B.(x +y )2=x 2+y 2C.(x +y )(x -y )=x 2-y 2D.(-x +y )(x -y )=x 2-y 24.下列各组线段能组成三角形的是()A.3cm 、4cm 、5cmB.4cm 、6cm 、10cmC.3cm 、3cm 、6cmD.5cm 、12cm 、18cm5.下列由左边到右边的变形,属于因式分解的是()A.a 2+2a +1=a (a +2)+1B.(x +1)(x -1)=x 2-1C.a 2+2a +4=(a +2)2D.-a 2+4a -4=-(a -2)26.当x 2-3x =1时,代数式2x 2-6x +3的值为()A.2B.3C.4D.57.下列图形中,由∠1+∠2=180°能推理得到AB ∥CD 的是()8.如图,长为y ,宽为x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长为5,下列说法中正确的是()①小长方形的较长边为y -15;②阴影A 的较短边和阴影B 的较短边之和为x -y +5:③若x 为定值,则阴影A 和阴影B 的周长和为定值:④当x =15时,阴影A 和阴影B 的面积和为定值.A.①③④ B.②④C.①③D.①④二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相对应位置上.)9.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,则0.0000002cm 用科学记数法可表示为cm .10.计算:3-2=.A B CD12A.AB CD12B.ABCD12C.12D.y x5第8题图11.因式分解:x 2-6x +9=.12.若一个多边形的每个外角都相同且为72°,则这个多边形有条边.13.若3m =8,3n =2,则3m +n =.14.如图所示,直线a 、直线b 被直线c 所截,且直线a ∥b ,∠1=125°,则∠2=°.15.如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连接MD 和ME .设AP =a ,BP =b ,如果a +b =10, ab =15.则阴影部分的面积为.16.阅读材料:求1+2+22+23+24+⋯+22013的值.解:设S =1+2+22+23+24+⋯+22012+22013,将等式两边同时乘以2得:2S =2+22+23+2425+⋯+22013+22014将下式减去上式得2S -S =22014-1即S =22014-1即1+2+22+23+24+⋯+22013=22014-1请你仿照上述方法,计算1+2-1+2-2+2-3+2-4+2-5+2-6=.三、三、解答题(本大题共11小题,共82分,把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)17.(本题共3小题,每小题4分,共12分)计算(1)(-1)2-32+(π-3.14)0(2)(-3a 3)2-2a 2·a 4+(a 2)3(3)(x +6)2+(1+x )(1-x )18.(本题共2题,每小题4分,共8分)因式分解(1)ax 2+5a(2)3x 2+6xy +3y 219.(本题共4分)先化简,再求值:(x +4)(x -4)+(x -3)2,其中x =1.abc 12第14题图A BC DEFP M 第15题图20.(本题共6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示,现将△ABC 平移,使点A 与点D 重合,点E 、F 分别是B 、C 的对应点.(1)请画出平移后的△DEF ,并画出AB 边上的中线CG ;(2)若连接AD 、BE ,则这两条线段之间的关系是_________;(3)△DEF 的面积为_________;21.(本题共6分)如图,已知∠1+∠4=180°,∠3=∠B ,试证明DE ∥BC .完成以下解答过程中的空缺部分:解:∵∠1+∠4=180°(已知)∠1=∠2( )∴_______=180°(等量代换)∴EG ∥AB ( )∴∠B =∠EGC ( )∵∠3=∠B (已知)∴∠3=∠EGC (  )∴________(内错角相等,两直线平行)22.(本题共6分)在ax +1与bx +1的乘积中,x 2的系数为-3,x 的系数为-6,求a 2+b 2的值.23.(本题共6分)我们可以将一些形如ax 2+bx +c (a ≠0)的多项式变形为a (x +m )2+n 的形式,例如x 2+4x -5=x 2+4x +22-22-5=(x +2)2-9,我们把这样的变形叫做多项式ax 2+bx +c (a ≠0)的配方法;已知关于a ,b 的代数式满足a 2+b 2+2a -4b +5=0,请你利用配方法求a +b 的值.A BCD24.(本题共7分)如图,长方形ABCD 中,∠BAD =∠B =∠D =∠C =90°,AD ∥BC ,E 为边BC 上一点,将长方形沿AE 折叠(AE 为折痕),使点B 与点F 重合, EG 平分∠CEF 交CD 于点G ,过点G 作HG ⊥EG 交AD 于点H .(1)请判断HG 与AE 的位置关系,并说明理由.(2)若∠CEG =20°,求∠DHG 的度数.25.(本题共7分)规定两数a ,b 之间的一种运算,记作(a ,b );如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,9)=,(,16)=2,(-2,-8)=;(2)有同学在研究这种运算时发现一个现象:(3n ,4n )=(3,4),他给出了如下的证明:设(3n ,4n )=x ,∴(3n )x =4n 即(3x )n =4n ∵3x >0∴3x =4即(3,4)=x ,∴(3n ,4n )=(3,4).①若(4,5)=a ,(4,6)=b ,(4,30)=c ,请你尝试运用上述这种方法证明a +b =c .②猜想[(x -1)n ,(y +1)n +[(x -1)n ,(y -2)n =(,)(结果化成最简形式).ABCDEFGH26.(本题共10分)在几何问题中,当求几个角之间的等量关系时,可以设未知数,通过“设而不解”的方法,以它们为中间量,结合三角形的性质和已知条件,构建所求角之间的等量关系;当需要求出某个角的具体度数时,我们可以通过设未知数的方式,根据问题中的等量关系列方程,并将方程进行求解,最后得到所求角的度数。

北京市顺义区仁和中学2023-2024学年七年级下学期期中数学试题(解析版)

北京市顺义区仁和中学2023-2024学年七年级下学期期中数学试题(解析版)

仁和中学2023-2024学年度第二学期期中考试初一年级数学试卷一、选择题(每题2分,共20分)1. 不等式的解集在数轴上表示正确的是( )A. B.C.D.【答案】D【解析】【分析】本题主要考查了一元一次不等式的求解,在数轴上表示不等式解集;解不等式,即可得出合适的选项.【详解】解:解不等式,可得,故不等式解集在数轴上表示为:故选:D .2. 下列命题中,假命题是( )A. 同角的补角相等B. 同一平面内,过一点有且只有一条直线与已知直线垂直C. 如果,,那么D. 两条直线被第三条直线所截,同旁内角互补【答案】D【解析】【分析】利用同角的补角的性质、垂直的定义、平行线的性质等知识分别判断后即可.【详解】解:A 、同角的补角相等,是真命题,故本选项不符合题意;B 、同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故本选项不符合题意;C 、如果,,那么,是真命题,故本选项不符合题意;D、两条平行直线被第三条直线所截,同旁内角互补,故原命题是假命题,故本选项符合题意;的10x +<10x +<10x +<1x <-10x +<a b =b c =a c=a b =b c =a c =【点睛】考查了命题与定理的知识,解题的关键是了解同角的补角的性质、垂直的定义、平行线的性质等知识,难度不大.3. 下列各组数值中,哪个是方程的解( )A. B. C. D. 【答案】B【解析】【分析】将四个选项分别代入原方程,能使方程左右两边相等的未知数的值是方程的解.【详解】解:将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项符合题意;将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项不符合题意.故选:.【点睛】本题主要考查了二元一次方程的解.正确利用二元一次方程的解的意义是解题的关键.4. 如图,,射线在内部,下列说法一定成立的是( )A. 和互余B. 和互补C. 和互为对顶角D. 和相等21x y +=21x y =⎧⎨=⎩13x y =-⎧⎨=⎩13x y =⎧⎨=-⎩22x y =⎧⎨=-⎩ 21x y =⎧⎨=⎩5=≠A ∴ 13x y =-⎧⎨=⎩1==B ∴13x y =⎧⎨=-⎩1=-≠C ∴ 22x y =⎧⎨=-⎩2=≠D ∴B AO OB ⊥OC AOB ∠1∠2∠1∠2∠1∠2∠1∠2∠【解析】【分析】本题考查了角的互余概念、对顶角的定义,准确理解角的互余概念,对顶角的定义是解题的关键.【详解】解:∵,∴,又∵射线在内部,∴,∴和互余,故选A5. 如图,下列条件中,能判断的是( )A. B. C. D. 【答案】A【解析】【分析】由平行线的判定方法,即可判断.【详解】解:A.,由内错角相等,两直线平行,能判断,故A 符合题意;B.不是被截成的内错角,不能判断,故B 不符合题意;C. 不是被截成的内错角,不能判断,故C 不符合题意;D.不是被截成的同旁内角,不能判断,故D 不符合题意;故选:A .【点睛】本题考查平行线的判定,熟练掌握:①内错角相等,两直线平行;②同位角相等,两直线平行;③同旁内角互补,两直线平行,是解题的关键.6. 如图,由可以得到的结论是( )AO OB ⊥90AOB ∠=︒OC AOB ∠1290∠∠+=︒1∠2∠AB CD 12∠=∠13∠=∠14∠=∠13180∠+∠=︒12∠=∠AB CD 13∠∠、AB CD 、()AD BC AB CD 14∠∠、AB CD 、()AD BC AB CD 13∠∠、AB CD 、()AD BC AB CD AB CD ∥A. B. C. D. 【答案】B【解析】【分析】由平行线的性质,角平分线的定义逐项判断可求解【详解】解:A .当平分时,,故此选项不符合题意;B .当时,,故此选项符合题意;C .当时,,故此选项不符合题意;D .当平分时,,故此选项不符合题意.故选:B .【点睛】本题考查平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.掌握平行线的性质是解题的关键.也考查了角平分线的定义.7. 将一个长方形的长减少,宽变成现在的2倍,设这个长方形的长为,宽为,则下列方程中正确的是( )A. B. C. D. 【答案】C【解析】【分析】根据长方形的长减少宽变成现在的2倍,列出方程即可.【详解】解:设这个长方形的长为,宽为,根据题意得:,故C 正确.故选:C .【点睛】本题主要考查了列二元一次方程,解题的关键是找出题目中的等量关系.8. 实数,对应的位置如图所示,下列式子正确的是( )A. B. C. D. 【答案】D【解析】【分析】根据数轴得出a 和b 的范围,进而得出,,根据有理数运算法则逐一判断即可.【详解】解:由数轴可得:,,∴,,12∠=∠14∠=∠23∠∠=34∠∠=AC BAD ∠12∠=∠AB CD ∥14∠=∠AD BC ∥23∠∠=AC BCD ∠34∠∠=5cm cm x cm y 52x y+=52x y +=+52x y -=52x y -=+5cm=cm x cm y 52x y -=a b 22a b <22a b -<-50a +<44a b +<+a b <a b >54a -<<-3<<4b a b <a b >∴,,,,故A 、B 、C 错误,D 正确,故选:D .【点睛】本题考查了利用数轴判断式子的正负,有理数运算和符号之间的关系,乘、除法注意:同号得正,异号得负.9. 如图为小丽和小欧依次进入电梯时,电梯因超重而警示音响起的过程,且过程中没有其他人进出.已知当电梯乘载的重量超过400千克时警示音响起,且小丽、小欧的重量分别为50千克、70千克.若小丽进入电梯前,电梯内已乘载的重量为千克,则的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】由图可得,小丽的重量为50千克,且进入电梯后,警示音没有响起,小欧的重量分别为70千克.且进入电梯后,警示音响起,分别列出不等式即可求解.【详解】由题意可知:当电梯乘载的重量超过400千克时警示音响起,小丽进入电梯前,电梯内已乘载的重量为x 千克,由图可知:小丽的重量为50千克,且进入电梯后,警示音没有响起,所以此时电梯乘载的重量,解得因为小欧的重量为70千克.且进入电梯后,警示音响起,所以此时电梯乘载的重量,解得因此的取值范围是故选:A【点睛】本题考查了一元一次不等式组的应用,解决本题的关键是根据题意找到不等关系.22a b >22a b ->-50a +>44a b +<+x x 280350x <≤280400x <≤330350x <≤330400x <≤50400x +≤350x ≤5070400x ++>280x >x 280350x <≤10. 已知关于的不等式组有以下说法:①当时,则不等式组的解集是;②若不等式组的解集是,则;③若不等式组无解,则;④若不等式组的整数解只有,0,1,2,则.其中正确的说法有( )A. ①③B. ②④C. ①②③D. ①②③④【答案】C【解析】【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:关于的不等式组,①当时,则不等式组的解集是,故本小题正确,符合题意;②若不等式组的解集是,则,故本小题正确,符合题意;③若不等式组无解,则,故本小题正确,符合题意;④若不等式组的整数解只有,0,1,2,则,故本小题错误,不符合题意;故选:C .【点睛】本题考查的是由不等式组的解集情况求参数,熟知解一元一次不等式组的基本步骤是解题的关键.二、填空题(每题2分,共20分)11. 用不等式表示“的3倍与7的差小于11”为______.【答案】【解析】【分析】首先表示“的3倍”为,再表示“与7的差”为,最后再表示“小于11”为.【详解】解:∵“的3倍”为,再表示“与7的差”为,∴用不等式表示“的3倍与7的差小于11”为:,故答案为:.【点睛】本题考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”、“至少”、“最多”等等,正确选择不等号.x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-2m =x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-23m <≤m 3711m -<m 3m 37m -3711m -<m 3m 37m -m 3711m -<3711m -<12. 已知方程的三个解为方程的三个解为则方程组的解为______.【答案】【解析】【分析】根据方程组解的定义,能够同时满足方程组中的两个方程的解是方程组的解观察得出两个方程的解中相同的解为方程组的解.【详解】解:根据方程组的解的定义,能够同时满足方程组中的两个方程的解是方程组的解,可知是这两个方程中所有的解中能同时满足两个方程的解,∴方程组的解为,故答案为:.【点睛】此题主要是考查了方程组的解的定义,能够熟练掌握同时满足方程组中的两个方程的解是方程组的解是解答此题的关键.13. 如图,利用工具测量角,则的大小为______.【答案】##30度【解析】【分析】根据对顶角的性质解答即可.【详解】解:量角器测量的度数为,根据对顶角相等的性质,可得,故答案为:.【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.的24x y -+=1,2;x y =-⎧⎨=⎩0,4;x y =⎧⎨=⎩1,6,x y =⎧⎨=⎩1x y +=2,3;x y =-⎧⎨=⎩1,2;x y =-⎧⎨=⎩0,1.x y =⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩1∠30︒30︒130∠=︒30︒14. 如图,将含有的直角三角板的两个顶点分别放在直尺的一组对边上,如果,那么______°.【答案】40【解析】【分析】首先根据题意求出,然后根据平行线的性质求解即可.【详解】解:如图,∵∴ ∵∴.故答案为:40.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.15. 下列命题中,①对顶角相等;②内错角相等;③平行于同一条直线的两条直线平行;④若,则.是真命题的是______.【答案】①③【解析】【分析】根据对顶角的性质判断①;根据平行线的性质判断②;根据平行公理的推论判断③;根据平方根定义判断④.【详解】解:①对顶角相等,是真命题;②内错角不一定相等,是假命题;③平行于同一条直线的两条直线互相平行,是真命题;60︒120∠=︒2∠=140EBC ABC ∠=∠-∠=︒120∠=︒140EBC ABC ∠=∠-∠=︒EB CD∥240EBC ∠=∠=︒22a b >a b >④若,则a 不一定大于b ,是假命题;故答案为:①③.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16. 如果关于的不等式的解集为,则的值是___________.【答案】1【解析】【分析】解不等式得,结合关于的不等式的解集为,得出,解之可得答案.详解】解:∵,∴,则, ∵关于的不等式的解集为,∴, 解得,故答案为:1.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.17. 在一本书上写着方程组的解是,其中的值被墨渍盖住了,但我们可解得的值为___________.【答案】【解析】【分析】根据,代入中,解得;把,代入中,即可求出的值.【22a b >x 3223x a a +≤-1x ≤-a 253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-3223x a a +≤-325x a ≤-253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-1a =43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩y p 321x =3x y +=2y =1x =2y =4x py +=p【详解】解:∵方程组的解是,∴代入中,解得,把,代入,得解得.故答案为:.【点睛】本题考查二元一次方程组的知识,解题的关键是代入中,求出.18. 如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A 是135°,则第二次的拐角∠B 是________, 根据是________________.【答案】①. 135° ②. 两直线平行,内错角相等【解析】【分析】由两次转弯后,和原来的方向相同可知拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:如图:∵两次转弯后,和原来的方向相同,∴AC∥BD,∴∠B=∠A=135°(两直线平行,内错角相等).故答案为135°;两直线平行,内错角相等.【点睛】本题考查了平行线性质的应用,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.19. 如图,四边形纸片,.折叠纸片,使点D 落在上的点处,点C 落在点处,折痕为.若,则______.43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩1x =3x y +=2y =1x =2y =4x py +=124p +=32p =321x =3x y +=2y =ABCD AD BC ∥ABCD AB 1D 1C EF 102EFC ∠=︒1AED ∠=︒【答案】24【解析】【分析】根据平行线的性质可得,再根据折叠的性质可得,然后利用平角的定义求解即可.【详解】∵,∴,∵,∴,∵折叠纸片,使点D 落在上的点处,∴,∴,故答案为:24.【点睛】本题考查了折叠的性质,平行线的性质,平角的定义等知识点,熟练掌握其性质是解决此题的关键.20. 某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,经整理形成统计表如表:累计工作时长最多件数(时)种类(件)12345678甲类件305580100115125135145乙类件1020304050607080(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为_____元;180EFC DEF ∠+∠=︒178DEF D EF ∠=∠=︒AD BC ∥180EFC DEF ∠+∠=︒102EFC ∠=︒18010278DEF ∠=︒-︒=︒ABCD AB 1D 178DEF D EF ∠=∠=︒1180787824AED ∠=︒-︒-︒=︒(2)如果快递员一天累计送x小时甲类件,y小时乙类件,且x+y=8,x,y均为正整数,那么他一天的最大收入为_____元.【答案】①. 160②. 180【解析】【分析】(1)根据表格数据得出答案即可;(2)根据x+y=8,x,y均为正整数,把所有收入可能都计算出,即可得出最大收入.【详解】解:(1)由统计表可知:如果该快递员一天工作8小时只送甲类件,则他的收入是1×145=145(元)如果该快递员一天工作8小时只送乙类件,则他的收入是2 × 80= 160 (元)∴他一天的最大收入是160元;(2)依题意可知:x和y均正整数,且x+y= 8①当x=1时,则y=7∴该快递员一天的收入是1 ×30+2×70=30+ 140= 170 (元);②当x=2时,则y=6∴该快递员-天的收入是1×55+2×60=55+120=175(元);③当x=3时,则y=5∴该快递员一天的收入是1× 80+2×50= 80+ 100= 180 (元);④当x=4时,则y=4∴该快递员一天的收入是1×100+2×40= 100+80 = 180 (元);⑤当x=5时,则y=3∴该快递员一天的收入是1×115+2×30=115十60 = 175 (元);⑥当x=6时,则y=2∴该快递员一天的收入是1 × 125+ 2× 20= 125+40 = 165 (元);⑦当x=7时,则y=1∴该快递员一天的收入是1×135+2×10=135+20= 155 (元)综上讨论可知:他一天的最大收入为180元.故填:160;180.【点睛】本题主要考查二元一次方程的应用,在给定的“x+y=8,x,y均为正整数”的条件下,分情况讨论出最大收入即可.三、解答题(共60分,第21-24题,每题3分,第25题5分,第26-27题,每题4分,第28题6分,第29-31题,每题5分,第32-33题7分)21. 解方程组【答案】【解析】【分析】利用加减消元法求解可得;【详解】解:,得∴把代入①,得∴所以,原方程组的解为【点睛】此题考查了解二元一次方程组,利用了消元的思想,解决本题的关键是要掌握消元的方法,即代入消元法与加减消元法.22. 解方程组:【答案】【解析】【分析】方程组整理后,方程组利用加减消元法求解即可.【详解】整理得,得,解得,将代入①得:342,328.x y x y +=⎧⎨-=⎩21x y =⎧⎨=-⎩342,328.x y x y +=⎧⎨-=⎩①②-①②66y =-1y =-1y =-()3412x +⨯-=2x =2,1.x y =⎧⎨=-⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩12x y =⎧⎨=⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩24321x y x y +=⎧⎨-=-⎩①②2⨯+①②77x =1x =1x =214y ⨯+=∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.23. 解不等式,并把解集在数轴上表示出来.【答案】,图见解析【解析】【分析】先去括号,再移项、合并同类项、最后系数化为1即可,再在数轴上把解集表示出来.【详解】解:去括号得,,去括号得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:【点睛】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,是基础知识要熟练掌握.24. 解不式组:并求出它的整数解.【答案】,整数解为3或4【解析】【分析】本题考查了解一元一次不等式组,不等式组的整数解.熟练掌握解一元一次不等式组,不等式组的整数解是解题的关键.先分别求出两个不等式的解集,进而可得不等式组的解集,最后求整数解即可.【详解】解:,,,12x y =⎧⎨=⎩()3157x x +-≤2x ≥-3357x x +-≤3573x x -≤-24x -≤2x ≥-()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩24x <≤()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩()224x x -->224x x -+>,,,,解得,,∴不等式组的解集为,整数解为3或4.25. 完成下列计算,并在括号内填写推理依据.如图,,直线分别交、于点E 和点F ,过点E 作交直线于点G .若,计算的度数.解:∵,∴ ( ).∵,∴ ().∴ .【答案】;两直线平行,内错角相等;垂直定义;;;【解析】【分析】由平行线的性质得,由垂直的定义得,进而可求的度数.【详解】解:∵,∴(两直线平行,内错角相等).∵,∴(垂直定义).∴.1213x x +≥-()1231x x +≥-1233x x +≥-4x -≥-4x ≤24x <≤AB CD MN AB CD EG MN ⊥CD 60EGF ∠=︒MEB ∠AB CD 60EGF ︒=∠=EG MN ⊥90MEG ∠=︒MEB ∠=-906030=︒-︒=︒BEG ∠MEG ∠BEG ∠60BEG EGF ︒∠=∠=90MEG ∠=︒MEB ∠AB CD 60BEG EGF ︒∠=∠=EG MN ⊥90MEG ∠=︒906030MEB MEG BEG ︒︒︒∠=∠-∠=-=故答案为:;两直线平行,内错角相等;垂直定义;;.【点睛】本题考查了平行线的性质,垂直的定义,数形结合是解答本题的关键.26. 如图,在三角形中,平分,求的度数.【答案】【解析】【分析】根据平行线的性质可得,根据角平分线的性质可得,则,最后根据三角形的一个外角定于与它不相邻两个内角之和,即可解答.【详解】解:∵,∴,∵平分,∴,∴,∵,∴.【点睛】本题主要考查了平行线的性质,角平分线的定义,三角形的外角定理,解题的关键是掌握两直线平行,内错角相等;三角形的一个外角定于与它不相邻两个内角之和.27. 如图,点B 、C 在线段异侧,E 、F 分别是线段、上的点,和分别交于点G 和点H .已知,,.求证:.BEG ∠MEG ∠BEG ∠ABC CD ,,80ACB DE BC AED ∠∠=︒∥EDC ∠40︒BCD EDC ∠=∠ECD BCD ∠=∠ECD EDC ∠=∠DE BC ∥BCD EDC ∠=∠CD ACB ∠ECD BCD ∠=∠ECD EDC ∠=∠80AED ∠=︒180402EDC ∠=⨯︒=︒AD AB CD EC BF AD AEG AGE ∠=∠DGC C ∠=∠180BEC BFD ∠+∠=︒EC BF ∥【答案】见解析【解析】【分析】先证明出,从而得到,得到,再根据条件,得出,再根据平行线的判定求解即可.【详解】证明:证明:∵,,又∵∴,∴∴∵∴∴.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.28. 围棋,起源于中国,古代称为“弈”,是棋类鼻祖,距今已有4000多年的历史.某商家销售A 、B 两种材质的围棋,每套进价分别为200元、170元,下表是近两个月的销售情况:销售数量销售时段A 种材质B 种材质销售收入第一个月3套5套1800元第二个月4套10套3100元(1)求A 、B 两种材质的围棋每套的售价.(2)若商家准备用不多于5400元的金额再采购A 、B 两种材质的围棋共30套,求A 种材质的围棋最多能采购多少套?(3)在(2)的条件下,商店销售完这30套围棋能否实现利润为1300元的目标?请说明理由.【答案】(1)A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;(2)A 种材质的围棋最多能采购10套;(3)商店销售完这30套围棋能实现利润为1300元的目标;理由见解析.【解析】AEG C ∠=∠AB CD ∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD ∠=∠AEG AGE ∠=∠DGC C ∠=∠DGC AGE∠=∠AEG C ∠=∠AB CD∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD∠=∠EC BF ∥【分析】(1)设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,根据表格中的销量和收入列方程组求解即可;(2)设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,根据“用不多于5400元的金额再采购A 、B 两种材质的围棋共30套”列不等式求解即可;(3)设销售利润为w ,根据题意列出一次函数解析式,然后利用一次函数的性质求解.【小问1详解】解:设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,由题意得:,解得:,答:A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;【小问2详解】解:设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,由题意得:,解得:,所以a 的最大值为10,答:A 种材质的围棋最多能采购10套;【小问3详解】解:商店销售完这30套围棋能实现利润为1300元的目标;理由:设销售利润为w ,由题意得:,∵,∴w 随a 的增大而增大,∵a 的最大值为10,∴当时,w 取最大值1300,即商店销售完这30套围棋能实现利润为1300元的目标.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用以及一次函数的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列出方程组、不等式以及一次函数解析()30a -3518004103100x y x y +=⎧⎨+=⎩250210x y =⎧⎨=⎩()30a -()200170305400a a +-≤10a ≤()()()25020021017030101200w a a a =-+--=+100>10a =式.29. 已知:如图,点D 在线段上,过点D 作交线段于点E ,连接,过点D 作于点F ,过点F 作交线段于点G .(1)依题意补全图形;(2)用等式表示与的数量关系,并证明.【答案】(1)见解析;(2),证明见解析.【解析】【分析】(1)根据题意画出图形即可;(2)根据平行线的性质得出,,等量代换得出,根据,可知,进而可得出结论.【小问1详解】解:图形如下:【小问2详解】解:,证明:∵,∴,∵,∴,∴,∵,∴,∴,AB DE BC ∥AC CD DF BC ⊥FG CD ∥AB CDE ∠DFG ∠90CDE DFG ∠+∠=︒12∠=∠23∠∠=13∠=∠DF BC ⊥3490∠+∠=°90CDE DFG ∠+∠=︒DE BC ∥12∠=∠CD FG ∥23∠∠=13∠=∠DF BC ⊥3490∠+∠=°1490∠+∠=︒即.【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.30. 解答题:解方程组时,由于,的系数及常数项的数值较大,如果用常规的代入消元法、加减消元法来解,不仅计算量大,而且易出现运算错误,而采用下面的解法则比较简单:①②得,所以③,③①得,解得,从而,所以原方程组的解是.请你运用上述方法解方程组:.【答案】【解析】【分析】仿照例子,利用加减消元法可解方程组求解.【详解】解:,得:,∴③,③①得:,解得:,将代入③得:,∴原方程组的解为.90CDE DFG ∠+∠=︒323538303336x y x y +=⎧⎨+=⎩①②x y -222x y +=1x y +=35⨯-33x =-=1x -2y =12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩①②-②①333x y +=1x y +=2018⨯-22x =-=1x -=1x -2y =12x y =-⎧⎨=⎩【点睛】本题主要考查二元一次方程组解法,解二元一次方程组由代入消元法和加减消元法.31. 先阅读绝对值不等式和的解法,再解答问题:①因为,从数轴上(如图1)可以看出只有大于而小于6的数的绝对值小于6,所以的解集为.②因为,从数轴上(如图2)可以看出只有小于的数和大于6的数的绝对值大于6,所以的解集为或.(1)的解集为_________,的解集为_________;(2)已知关于x ,y 的二元一次方程组的解满足,其中m 是负整数,求m 的值.【答案】(1),或(2)【解析】【分析】本题考查了绝对值的意义,不等式组的解集,加减消元法解二元一次方程组等知识.理解题意是解题的关键.(1)根据题意求解集即可;(2)加减消元法解二元一次方程组得,由题意知,,即,,可求,然后作答即可.【小问1详解】解:由题意知,的解集为,的解集为或;故答案为:,或;【小问2详解】解:,的||6x <||6x >||6x <6-||6x <66x -<<||6x >6-||6x >6x <-6x >||2x <||5x >254482x y m x y m -=+⎧⎨+=-+⎩||3x y +≤22x -<<5x <-5x >1-42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩472333m m +-≤23m -≤323m -≤-≤15m -≤≤||2x <22x -<<||5x >5x <-5x >22x -<<5x <-5x >254482x y m x y m -=+⎧⎨+=-+⎩①②得,,解得,,将代入①得,,解得,,∴,∵,∴,即,∴,解得,,∵m 是负整数,∴m 的值为.32. 已知:如图,直线,点A 、B 在直线a 上(点A 在点B 左侧),点C 、D 在直线b 上(点C 在点D 左侧),和相交于点E .(1)求证:;(2)分别作和的角平分线相交于点F .① 结合题意,补全图形;② 用等式表示和的数量关系,并证明.【答案】(1)见解析(2)①见解析;②;见解析【解析】【分析】(1) 过点E 作,证明 ,,可得,从而可得答案;2⨯-②①921y m =-73y m =-73y m =-72543x m m ⎛⎫--=+ ⎪⎝⎭423x m =+42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩||3x y +≤472333m m +-≤23m -≤323m -≤-≤15m -≤≤1-a b ∥AD BC BED BAD BCD ∠=∠+∠BAD ∠BCD ∠AFC ∠BED ∠12AFC BED ∠=∠EM AB ∥BAD AEM ∠=∠BCD MEC ∠=∠AEC BAD BCD ∠=∠+∠(2)①根据题意补全图形即可;②过点F 作,可得 ,证明,可得,结合、分别平分和,可得,结合,从而可得答案.【小问1详解】过点E 作,∴ ,∵,∴,∴,∵,∴,∵,∴.【小问2详解】①补全图形如图所示:②;证明:过点F 作,∴∵,∴,FN AB ∥AFN BAF ∠=∠NFC FCD ∠=∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠EM AB ∥BAD AEM ∠=∠AB CD ∥EM CD ∥BCD MEC ∠=∠AEC AEM MEC ∠=∠+∠AEC BAD BCD ∠=∠+∠AEC BED ∠=∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠FN AB ∥AFN BAF ∠=∠AB CD ∥FN CD ∥∴,∵,∴,∵、分别平分和,∴,∵,∴.【点睛】本题考查的是平行公理的应用,平行线的性质,角平分线的定义,熟练的利用平行线的性质进行证明是解本题的关键.33. 给出如下定义:如果一个未知数的值使得方程和不等式(组)同时成立,那么这个未知数的值称为该方程与不等式(组)的“关联解”.例如:已知方程和不等式,对于未知数,当时,使得,同时成立,则称是方程与不等式 的“关联解”.(1)判断是否是方程与不等式的“关联解”_____(填是或否);判断是方程与不等式(组)①,②,③中_______的“关联解”;(只填序号)(2)如果是关于的方程与关于的不等式组的“关联解”,那么____,的取值范围是_______;(3)如果是关于方程与关于的不等式组的“关联解”,求的取值范围.【答案】(1)否;①;(2);;(3).【解析】的NFC FCD ∠=∠AFC AFN NFC ∠=∠+∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠321x -=40x +>x 1x =3121⨯-=41450x +=+=>1x =321x -=40x +>3x =260x -=()234x +<=1x -231x +=1322x -<132x ->2050x x ->⎧⎨-<⎩2x =x 20x a -=x ()11212x x a b +⎧>-⎪⎨⎪+-≤⎩=a b x m =x 24x n -=x 121n m x m n x ⎧-+>-⎪⎨⎪-->-⎩m 4a =3b ≥-36m <<【分析】(1)根据“关联解”的定义求解即可;(2)根据“关联解”的定义,将代入方程即可求出,再解不等式得:,即可得出答案;(3)根据“关联解”的定义得出不等式组,求解即可【小问1详解】解:当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,成立,则是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式组 的“关联解”;故答案为:否;①;【小问2详解】解:根据题意可得:,解得:,不等式组解不等式得:,即,解得:;故答案为:;;【小问3详解】2x =4a =②8122b +-≥4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩3x =2360⨯-=()2334+<3x =260x -=()234x +<=1x -()2131⨯-+=13122--<=1x -231x +=1322x -<=1x -()2131⨯-+=1132-->=1x -231x +=132x ->=1x -()2131⨯-+=120150-->⎧⎨--<⎩=1x -231x +=2050x x ->⎧⎨-<⎩220a ⨯-=4a =()11212x x a b +⎧>-⎪⎨⎪+-≤⎩①②②212b a x +-≤8122b +-≥3b ≥-4a =3b ≥-解:根据题意可得:,∴,不等式组为,化简得:,解不等式组得:.【点睛】本题考查解一元一次不等式组,方程的解,正确理解新定义是解题的关键.24m n -=42-=m n 4122412m m m m m m -⎧-+>-⎪⎪⎨-⎪-->-⎪⎩4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩36m <<。

浙江省宁波市镇海区镇海区仁爱中学2023-2024学年七年级下学期期中数学试题(解析版)

浙江省宁波市镇海区镇海区仁爱中学2023-2024学年七年级下学期期中数学试题(解析版)

仁爱中学2023学年第二学期初一数学期中测试卷考试时间:120分钟,总分120分一、选择题(本题共10小题,每小题3分,共30分,每小题只有一个答案正确)1. 下列方程中,是二元一次方程的是( )A. B. C. D. 【答案】A【解析】【分析】本题主要考查二元一次方程的概念,根据二元一次方程满足的条件:为整式方程;只含有2个未知数;未知数的项的最高次数是1,逐一判断即可,要求熟悉二元一次方程的形式及其特点:只含有2个未知数,未知数的项的最高次数是1的整式方程.【详解】解:A 、该方程符合二元一次方程的定义,此选项符合题意;B 、该式子不是等式,不符合二元一次方程的定义,此选项不符合题意;C 、该方程中含有未知数的项的最高次数是2,不符合二元一次方程的定义,此选项不符合题意;D 、该方程不是整式方程,此选项不符合题意;故选:A .2. 计算的正确结果是( )A. B. C. D. 【答案】B【解析】【分析】直接运用同底数幂乘法公式计算即可.【详解】解:.故选:B .【点睛】本题主要考查了同底数幂乘法,掌握并灵活利用是解答本题的关键.3. 石墨在我国储能丰富,我国在石墨烯研究上具有独特的优势.石墨烯是现在世界上最薄的纳米材料,其理论厚度应是.数据0.0000098用科学记数法表示是( )A. B. C. D. 【答案】C【解析】6x y +=2x y +23x y +=12x y +=23a a ⋅4a 5a 6a 9a 235a a a ⋅=m n m n a a a +⋅=0.0000098m 50.9810-⨯69.810⨯69.810-⨯59.810-⨯【分析】科学记数法的表示形式为的形式,其中,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正整数,当原数绝对值时,n 是负整数.【详解】解:.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 下列从左到右变形,是分解因式的是( )A. B. C. D. 【答案】D【解析】【分析】本题考查因式分解,根据因式分解的定义:将一个多项式写成几个整式的积的形式叫因式分解逐个判断即可得到答案;【详解】解:由题意可得,,不是因式分解,故A 不符合题意,,不是因式分解,故B 不符合题意,,不是因式分解,故C 不符合题意,,是因式分解,故D 符合题意,故选:D .5. 如图,的内错角是( )A. B. C. D. 【答案】B【解析】的10n a ⨯110a ≤<10≥1<60.00000989.810-=⨯10n a ⨯110a ≤<2233=⋅a b ab ab()2313+-=+-x x x x ()()2339a a a +-=-()22422a a a a +=+2233=⋅a b ab ab ()2313x x x x +-=+-()()2339a a a +-=-()22422a a a a +=+1∠2∠3∠4∠5∠【分析】本题主要考查了内错角、同旁内角、同位角的定义,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间并且在第三条直线(截线)的同旁,则这样一对角叫内错角.根据内错角、同旁内角、同位角的定义确定各角间的关系,据此即可解答.【详解】解:如图:根据内错角、同旁内角、同位角的定义可得:的内错角是,的同旁内角是,的同位角是.故选B .6. 已知,则代数式的值为( )A. 30B. 36C. 42D. 48【答案】B【解析】【分析】此题主要考查了平方差公示的运用,代数式求值,先利用平方差公式进行因式分解,再代入计算即可求值.【详解】解:,故选:B .7. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点,若,,则的度数为( )A. B. C. D. 【答案】C【解析】1∠3∠1∠2∠1∠5∠26a b +=22412a b b -+26a b += 22412a b b∴-+()()2212a b a b b=+-+()6212a b b=-+12612a b b=-+()62a b =+36=1x ∠=︒2y ∠=︒3∠()x y -︒(180)x y --︒(180)x y -+︒(90)x y +-︒【分析】本题考查了对顶角相等,平行线的性质,三角形外角的性质.明确角度之间的数量关系是解题的关键.由题意知,,由平行线的性质可得,,即,根据,计算求解即可.【详解】解:由题意知,,由平行线的性质可得,,即,∴,故选:C .8. 两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大990.若设较大的两位数为,较小的两位数为,根据题意可列方程组( )A. B. C. D. 【答案】C【解析】【分析】本题考查由实际问题抽象出二元一次方程组,根据题意可得等量关系:①两个两位数的和为68,②比大990,根据等量关系列出方程组.【详解】根据题意,得.故选:C .9. 已知关于x ,y 的二元一次方程组(a 是常数),若不论a 取什么实数,代数式(k 是常数)的值始终不变,则k 的值为( )A. B. C. 1 D. 2【答案】A【解析】【分析】本题主要考查二元一次方程组的应用,将方程组中的两个方程变形后联立消掉a 即可得出结论,2POF y ∠=∠=︒1180PFO ∠+∠=︒1801180PFO x ∠=︒-∠=︒-︒3POF PFO ∠=∠+∠2POF y ∠=∠=︒1180PFO ∠+∠=︒1801180PFO x ∠=︒-∠=︒-︒()0311880POF PFO y x y x -+︒∠=∠+∠=︒+︒-︒=x y 681010990x y x y y x +=⎧⎨+-+=⎩()()681010990x y x y y x +=⎧⎨+-+=⎩()()68100100990x y x y y x +=⎧⎨+-+=⎩()()1068100100990x y x y y x +=⎧⎨+-+=⎩100x y +100y x +68(100)(100)990x y x y y x +=⎧⎨+-+=⎩21346x y a x y a +=-+⎧⎨-=+⎩kx y -1-2-将方程组中的两个方程联立消掉是解题的关键.【详解】解:关于x ,y 的二元一次方程组,可得,即,故k 的值为,故选:A .10. 如图,在长方形中放入一个大正方形和两个大小相同的小正方形及,其中在边上,与在同一条直线上且,延长交于点K ,三个阴影部分的面积分别记为,,,已知长方形的面积,则下列式子可计算出的是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了整式与几何图形,延长交于点,得到,即四边形的面积为,再得到,即四边形的面积为,再利用得到四边形的面积为4,即可解答,正确作出辅助线是解题的关键.【详解】解:如图,延长交于点,两个大小相同的小正方形及,,21346x y a x y a +=-+⎧⎨-=+⎩①②4⨯+①②5510x y +=2x y --=1-ABCD AEFG 1111H I J K 222H I J D 11I J BC GF 11K J 112GF K J -=22J I AB 1S 2S 3S 2KBCJ 123S S S ++1232S S S ++1232S S S ++1232S S S ++22H I BC N 11GK OJ =21I NJ O 2S 22LI OJ =21LI I N 2S 112GF K J -=KLME 22H I BC N 1111H I J K 222H I J D 211DJ K J GO ∴==,即,四边形的面积等于,同理可得,,四边形的面积等于,,,即,,,四边形为正方形,两个大小相同的小正方形及,,,,即,正方形的面积为4,长方形的面积已知,已知,故答案为:D .1111GO K O K J K O ∴-=-11GK OJ =∴21I NJ O 2S 1GD I N =22I N J C = ∴21LI NI 3S 112GF K J -= ()()11112GK K F K F FJ ∴+-+=112GK FJ -=1GK KB = 12KB FJ KE ∴-== AEFG 1111H I J K 222H I J D AE EF ∴=11AK H K MF ==AE AK EF MF ∴-=-2KE EM ==∴KEML 2KBCJ 12324S S S ++∴+二、填空题(本题共6小题,每小题4分,共24分)11. 计算:﹣3a •(4b )=_____.【答案】【解析】【分析】利用单项式乘单项式的法则进行运算即可.【详解】解:.故答案为:.【点睛】本题考查了单项式乘单项式,解答的关键是对单项式乘单项式的法则的掌握.12. 已知方程,用关于x 的代数式表示y ,则______.【答案】【解析】【分析】本题考查了等式的性质,把x 看作已知数求出y 即可,把x 看作已知数求出是解本题的关键.【详解】解:,,故答案为:.13. 如图,已知,直线交得与,若,则度数为______.【答案】##55度的12ab-3(4)3412a b ab ab -⋅=-⨯=-12ab -310x y -=y =310x -310x y -= 310y x ∴=-310x -AB CD ∥EF AB CD ,1∠2∠2170∠-∠=︒1∠55︒【解析】【分析】本题考查了平行线的性质,根据对顶角相等可得,再利用平行线的性质,即可解答,熟知两直线平行,同旁内角互补,是解题的关键.【详解】解:,,,,,解得,故答案为:.14. 已知实数a ,b 满足,,则的值为______.【答案】497【解析】【分析】本题考查了利用完全平方公式变形进行计算,根据题意得出,再将变形为,代入求解即可.【详解】解:,,,.故答案为:497.15. 如图,点E ,F 为长方形边上两点,为锐角,将长方形沿翻折,点A ,B 分别落在,处,交边于点G ,若图中所有钝角中最大的度数为,则的度数为______°.13,24∠=∠∠=∠13,24∠=∠∠=∠ AB CD ∥3412180∴∠+∠=∠+∠=︒2170∠-∠=︒ ()122118070∴∠+∠-∠-∠=︒-︒155∠=︒55︒()215a b -=4ab =44a b +2223a b +=44a b +()()2422422a a b b b a =++-()222215a b a ab b -=-+= 4ab =22152152423a b ab ∴+=+=+⨯=()()()2224422222222222324497a b a b a b a b ab ∴+=+-=+-=-⨯=ABCD AD BC ,EFB ∠EF A 'B 'A B ''AD 140︒CFB ∠'【答案】或【解析】【分析】本题考查了折叠性质,平行线的性质求角度,三角形外角性质,邻补角的相关计算,延长至,根据矩形性质可得,,由折叠可知,从而得到,根据题意分两种情况,以及,根据平行线性质,邻补角以及三角形外交性质进行求解即可.【详解】解:如图,延长至,四边形为长方形,,,由折叠可知:,,即,由图可知,图中的钝角一共有3个为,当时,,当时,,,,,,40︒50︒EF MN AD BC ∥90A '∠=︒A E B F ''∥AEA BFB ''∠=∠140AEA BFB ''∠=∠=︒140A GD '∠=︒EF MN ABCD AD BC ∴∥90A '∠=︒A E B F ''∥21EFB EFB '∴∠=∠∠=∠,12EFB EFB '∴∠+∠=∠+∠AEA BFB ''∠=∠AEA BFB A GD '''∠∠∠,,140AEA BFB ''∠=∠=︒180=18014040B FC B FB ''∠=︒-∠-=︒140A GD '∠=︒90A '∠=︒ 1409050A EG '∴∠=︒-︒=︒AD BC ∥ MEG EFC ∴∠=∠1EFB '∠=∠,即,,故答案为:或.16. 有12个正整数,它们中最大的数为a ,对于任意一个整数都等于这12个数中的某一个数或一部分数之和,则a 的最小值为______.【答案】1024【解析】【分析】本题考查了递推法的应用,根据任意一个整数等于这12个数中某一个数或一部分数之和,可以应用递推法推出1,2,4,8,32,64,128,256,512可以相加为1至1023中的任意值,因为,满足,进而得出a 的最小值.【详解】解:由于任意一个整数等于这12个数中某一个数或一部分数之和,12个数中一定有1,2,,故没有3,一定有4,由此往下可知:,,,一定有8,整数中有1,2,4,8,,,,,,,下一个数为16,由此我们可以发现1,2,4,8,可以相加为1至15中的数值,下一个为,1,2,4,8,32中可以相加为1至31中的数值,下一个为,递推得:这十二个数中必有1,2,4,8,32,64,128,256,512,1024,到1024截止,,1,2,4,8,32,64,128,256,512可以相加为1至1023中的任意值,,满足a 的最小值为1024,故答案为:1024.三、解答题(本题有8个小题,共66分.其中17,18题每题6分,19题9分,20题5分,21题8分,22,23题每题10分,24题12分)17. 解方程组.1MEG EFC EFB '∴∠-∠=∠-∠GEA CFB ''∠=∠50CFB GEA ''∴∠=∠=︒40︒50︒()12024b b ≤≤()12024b b ≤≤202410241000=+2024b = ()12024b b ≤≤∴123+=415+=426+=4127++=∴ 819+=8210+=8412+=84113++=84214++=812415+++=∴∴161632+=∴323264+=2024b ≤ ∴202410241000=+ 2024b =∴(1);(2).【答案】(1); (2).【解析】【分析】本题考查了解一元二次方程,熟知相关计算方法是解题的关键.(1)利用代入法,即可解答;(2)先去分母,再利用加减法,即可解答.【小问1详解】解:将代入,得,解得,将代入,解得,方程组解为;【小问2详解】解:将整理,可,将与相加,可得,解得,代入后得,的46x y x y =-⎧⎨+=⎩()112332112x y x y +⎧+=⎪⎨⎪-+=⎩15x y =⎧⎨=⎩352x y =⎧⎪⎨=-⎪⎩4x y =-46y y -+=5y =5y =4x y =-1x =∴15x y =⎧⎨=⎩1123x y ++=()3216x y ++=()3216x y ++=()32112x y -+=618x =3x =312y +=-解得,∴方程组的解为.18. 计算.(1);(2).【答案】(1)(2)【解析】【分析】本题考查了实数的混合运算,整式的混合运算,涉及零指数幂,负整数指数幂,利用完全平方公式进行运算等知识,熟练掌握运算法则是解题关键.(1)利用乘方,零指数幂,负整数指数幂计算各项,再进行计算即可;(2)利用完全平方公式,单项式除以单项式计算,再合并同类项即可.【小问1详解】解:;【小问2详解】.19. 分解因式.(1);(2);(3).52y =-352x y =⎧⎪⎨=-⎪⎩()()12024011π32-⎛⎫-⨯-+ ⎪⎝⎭()()22242a b a b ab -+÷322a b +()()12024011π32-⎛⎫-⨯-+ ⎪⎝⎭112=⨯+3=()()22242a b a b ab -+÷2222a ab b ab=-++22a b =+24ab a -244x y xy y -+()()29a x y x y +-+【答案】(1);(2);(3).【解析】【分析】本题考查了因式分解,熟练运用相关方法是解题的关键.(1)利用提取公因式法,即可解答;(2)先利用提取公因式法,再利用公式法,即可解答;(3)先利用提取公因式法,再利用公式法,即可解答;【小问1详解】解:;【小问2详解】解:;【小问3详解】解:.20. 先化简,再求值:,其中.【答案】,【解析】【分析】本题考查了整式的化简求值,先利用整式的乘法计算,合并后代入求得数值即可.【详解】解:原式()22a b -()221y x -()()()33a a x y +-+24ab a -()22a b =-244x y xy y-+()2441y x x =-+()221y x =-()()29a x y x y +-+()()29x y a =+-()()()33a a x y =+-+()()232333a a a a a ----2a =()233aa -12-()23233a a a a =---+()233a a a =-()233a a =-当时,原式.21. 如图,在所给的网格图(每个小格均为边长是1的正方形)中完成下列各题:(1)作出三角形ABC 向右平移3格,向上平移4格后所得的三角形;(2)连结,,判断与的位置关系,并求四边形的面积.【答案】(1)见解析(2);面积为.【解析】【分析】(1)将三角形的三个顶点进行平移,然后连接即可;(2)根据平移性质即可判断;利用网格求面积即可;【小问1详解】解:如图即为所求图形;【小问2详解】解:三角形ABC 向右平移3格,向上平移4格后所得的三角形,,四边形的面积为.22. 如图,已知F ,E 分别是射线上的点.连接,其中平分,平分,.(1)试说明;的2a =12=-111A B C 1AA 1BB 1AA 1BB 11AA B B 11AA BB ∥11 111A B C 11AA BB ∴∥11AA B B ()25412341251112222+⨯⨯⨯⨯+⨯---=AB CD ,AC AE EF ,,AE BAC ∠EF AED ∠AC CE =AB CD ∥(2)若,求的度数.【答案】(1)见解析;(2).【解析】【分析】本题考查了平行线的判定与性质,等腰三角形的性质,角平分线的定义,熟练运用相关性质是解题的关键.(1)通过,可得,利用角平分线的定义可得,从而利用等量代换可得,然后利用内错角相等,两直线平行可得,即可解答;(2)根据已知可得,然后利用平行线的性质可得,从而利用角平分线的定义可得,再利用平角定义可得,最后进行计算可求出,从而求出的度数,即可解答.【小问1详解】解:如图,,平分,,,;【小问2详解】解:,,,,平分,,,,,,,的度数为.30AFE CAE ∠-∠=︒AFE ∠70︒AC CE =23∠∠=12∠=∠13∠=∠AB CD ∥230AFE ∠=∠+︒230AFE FED ∠=∠=∠+︒22260AED FED ∠=∠=∠+︒3180AED ∠+∠=︒240∠=︒AFE ∠AC CE = 23∴∠=∠AE BAC ∠12∴∠=∠13∠∠∴=AB CD ∴∥30AFE CAE ∠-∠=︒ 230AFE ∴∠=∠+︒AB CD ∥ 230AFE FED ∴∠=∠=∠+︒EF AED ∠22260AED FED ∴∠=∠=∠+︒3180AED ∠+∠=︒ 32260180∴∠+∠+︒=︒32∠=∠ 240∴∠=︒23070AFE ∴∠=∠+︒=︒AFE ∴∠70︒23. 根据以下素材,探索完成任务.背景为了迎接2023杭州亚运会,某班级开展知识竞赛活动,去咖啡店购买A 、B 两种款式咖啡作为奖品.素材1若买10杯A 款咖啡,15杯B 款咖啡需230元;若买25杯A 型咖啡,25杯B 型咖啡需450元.素材2为了满足市场的需求,咖啡店推出每杯2元的加料服务,顾客在选完款式后可以自主选择加料或者不加料.小华恰好用了208元购买A 、B 两款咖啡,其中A 款不加料的杯数是总杯数的.问题解决任务1问A 款咖啡和B 款咖啡的销售单价各是多少元?任务2在不加料的情况下,购买A 、B 两种款式的咖啡(两种都要),刚好花200元,问有几种购买方案?任务3求小华购买的这两款咖啡,其中B 型加料的咖啡买了多少杯(直接写出答案)?【答案】任务1:A 型咖啡的每杯价格为8元,B 型咖啡每杯价格为10元;任务2:四种;任务3:6杯【解析】【分析】任务1:设A 型咖啡的每杯价格为x 元,B 型咖啡每杯价格为y 元,列出二元一次方程组,解方程的13组即可求解;任务2:设A 型咖啡为m 杯,B 型咖啡为n 杯,列出二元一次方程,可得,根据m ,n 均为正整数,即可求解;任务3:设A 型不加料为a 杯,总的杯数为3a 杯,设A 型的加料和B 型的不加料为b 杯,则B 的加料为杯,根据A 型的加料和B 型的不加料的价格均为每杯10元,可得总花费为:,即可得,根据,可得,问题随之得解.【详解】解:任务1:设A 型咖啡的每杯价格为x 元,B 型咖啡每杯价格为y 元,由题可知:,解得:,即A 型咖啡的每杯价格为8元,B 型咖啡每杯价格为10元;任务2:设A 型咖啡为m 杯,B 型咖啡为n 杯,则,∴,∵m ,n 均为正整数,∴解得:,,,,即有共有四种方案;任务3:买了6杯设A 型不加料为a 杯,总的杯数为3a 杯,设A 型的加料和B 型的不加料共为b 杯,则B 的加料为杯,∵A 型的加料和B 型的不加料的价格均为每杯10元,∴总花费为:,∴,∵,∴,4205n m =-2a b -()810122208a b a b ++-=104861616b b a ++==+20a b -≥6147b ≤10152302525450x y x y +=⎧⎨+=⎩①②810x y =⎧⎨=⎩810200m n +=4205n m =-204m n =⎧⎨=⎩158m n =⎧⎨=⎩1012m n =⎧⎨=⎩516m n =⎧⎨=⎩()2a b -()810122208a b a b ++-=104861616b b a ++==+20a b -≥826016b b +⎛⎫+-≥ ⎪⎝⎭解得:,∵a ,b 是整数,∴,,∴(杯).【点睛】本题主要考查了二元次一方程组的应用,以及根据题意解二元一次方程等知识,问题的难点是任务三,根据A 型的加料和B 型的不加料的价格均为每杯10元,列出总花费为:,是解答本题的关键.24. 对于任意的正整数n ,记,当n 等于1,2,…k ,…n 时,记的值分别为,…,….(1)的值为______;与2000最接近的的值为______;(2)对于任意的n ,的值是否一定为正整数?若是,请说明理由;若不是,请举例说明;(3)①求的值;②已知m 为小于100的正整数,存在正整数k 使得,求出所有可能的m 的值.(需写出过程)【答案】(1)10,2024(2)是,证明见解析(3)①;②11,19,29,41,55,71,89【解析】【分析】本题考查了代数式求值,有理数乘方的计算,含乘方的有理数混合运算,因式分解的应用,寻找到式子的规律是解题关键.(1)将代入,即可求出的值,根据题意可得出,根据,,,即可确定出,从而得出结果;(2)首先根据题意得到,然后分情况证明既能被2整除,也能被3整除即可;6147b ≤8b =7a =22786a b -=⨯-=()810122208a b a b ++-=32326n n n n A ++=n A 1A 2A k A n A 3A k A n A 213243100991111A A A A A A A A +++⋅⋅⋅----212376k k k k m A A A A +++-⋅-⋅=991013n =3A ()()1212000k k k ++≈3219621=322=10648323=1216722=k ()()321232623n n n n n n n A ++++==⨯()()12n n n ++(3)①根据进行计算即可;②根据规律进行计算即可.【小问1详解】解:的值为;,,即,,,,,,,故答案为:10,2024;【小问2详解】是正整数,证明如下:,由于2和3为质数,故需证明既能被2整除,也能被3整除即可.当n 为偶数时,为两个偶数与一个奇数的积,积也为偶数,能被2整除,当n 为奇数时,为两个奇数与一个偶数的积,积也为偶数,能被2整除;当n 是3的倍数时,能被3整除,当n 除3余1时,则能被3整除,故能被3整除,当n 除3余2时,则能被3整除,故能被3整除,综上所述,的值是正整数;【小问3详解】①,,()()1122n n n n A A +++-=3A 3203332316+⨯+⨯=323220006k k k k A ++=≈ 323212000k k k ∴++≈()()1212000k k k ++≈3219621= 322=10648323=12167106481200012167<<22k ∴=23242422026k A ⨯⨯∴==()()321232623n n n n n n n A ++++==⨯ ()()12n n n ++()()12n n n ++()()12n n n ++()()12n n n ++2n +()()12n n n ++1n +()()12n n n ++n A ()()32123266n n n n n n n A ++++== ()()()11236n n n n A ++++=,,;②,整理可得:,由于k 是正整数,所以可取1,2,3,4,5,6,7,故m 可能的值为11,19,29,41,55,71,89.1n nA A +∴-()()()()()123122323n n n n n n +++++=-⨯⨯()()()12323n n n n +++-=⨯()()122n n ++=()()11212n n n n A A +++∴=-213243100991111A A A A A A A A ∴+++⋅⋅⋅----2222334100101=++⋅⋅⋅+⨯⨯⨯11111122334100101⎛⎫=⨯-+-+⋅⋅⋅+- ⎪⎝⎭99101=123k k k k A A A A +++⋅-⋅()()()()()()()()()()()123234123456666k k k k k k k k k k k k +++++++++++=⋅-⋅()()()()12346k k k k ++++=()222551166k k m ++--==255m k k =++。

初一下学期数学期中考试试卷

初一下学期数学期中考试试卷

初一下学期数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是实数?A. πB. iC. √2D. 0.33333...2. 以下哪个表达式表示了正确的乘法分配律?A. a(b + c) = ab + acB. a + bc = ab + acC. a(b - c) = ab - acD. a(b + c) = ab - ac3. 如果一个数的平方等于9,那么这个数是?A. 3B. -3C. 3或-3D. 以上都不是4. 以下哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 圆D. 平行四边形5. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 以上都不是6. 以下哪个选项是正确的因式分解?A. x^2 - 4 = (x + 2)(x - 2)B. x^2 - 4 = (x + 4)(x - 4)C. x^2 - 4 = (x + 2)(x + 2)D. x^2 - 4 = (x - 2)(x - 2)7. 以下哪个选项是正确的不等式?A. 3x > 2x + 1B. 3x < 2x + 1C. 3x = 2x + 1D. 3x ≤ 2x + 18. 以下哪个选项是正确的比例关系?A. 2:3 = 4:6B. 2:3 = 4:5C. 2:3 = 6:9D. 2:3 = 6:89. 以下哪个选项是正确的几何图形的面积公式?A. 正方形的面积 = 边长× 边长B. 长方形的面积 = 长× 宽C. 三角形的面积 = 底× 高÷ 2D. 以上都是10. 以下哪个选项是正确的几何图形的周长公式?A. 正方形的周长= 4 × 边长B. 长方形的周长= 2 × (长 + 宽)C. 圆形的周长= 2 × π × 半径D. 以上都是二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______或______。

初一级数学下学期期中考试题

初一级数学下学期期中考试题

初一级数学下学期期中考试题数学制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动同学们主动学习和克服困难的内在动力,今天小编就给大家看看七年级数学,希望大家来参考哦初一级数学下期中考试题一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个选项是符合题目要求.1.(3分)4的平方根是( )A.±2B.﹣2C.2D.2.(3分)在实数,,,,3.14中,无理数有( )A.1个B.2个C.3个D.4个3.(3分)如图,直线a、b被直线c所截,下列条件能使a∥b的是( )A.∠1=∠6B.∠2=∠6C.∠1=∠ 3D.∠5=∠74.(3分)在平面直角坐标系中,点P(﹣3,4)位于( )A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)下列说法中正确的有( )①±2都是8的立方根;② =±4;③ 的平方根是± ;④﹣ =2⑤﹣9是81的算术平方根.A.1个B.2个C.3个D.4个6.(3分)如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( )A.右转80°B.左转80°C.右转100°D.左转100°7.(3分)如图,小手盖住的点的坐标可能为( )A.(4,3)B.(﹣4,3)C.(﹣4,﹣3)D.(4,﹣3)8.(3分)有一个数值转换器,原理如下:当输入的x=64时,输出的y等于( )A.2B.8C.D.9.(3分)把一副直角三角板ABC(含30°、60°角)和CDE(含45°、45°角)如图放置,使直角顶点C重合,若DE∥BC,则∠1的度数是( )A.75°B.105°C.110°D.120°10.(3分)如图,直径为1个单位长度的圆从A点沿数轴向右滚动(无滑动)两周到达点B,则点B表示的数是( )A.πB.2πC.2π﹣1D.2π+1.二、填空题(每小题2分,共16分)11.(2分) 的立方根是.12.(2分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.13.(2分)已知点A(﹣1,b+2)在坐标轴上,则b= .14.(2分)线段AB两端点的坐标分别为A(2,4),B(5,2),若将线段AB平移,使得点B的对应点为点C(3,﹣1).则平移后点A的对应点的坐标为.15.(2分)点P到x轴的距离是2,到y轴的距离是3,且点P在y 轴的右侧,在x轴上方,则P点的坐标是.16.(2分)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度.17.(2分)如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F为圆心,大于 EF长为半径作圆弧,两弧交于点G,作射线BG交CD于点H.若∠D=116°,则∠DHB的大小为度.18.(2分)如图1,一张四边形纸片ABCD,∠A=50°,∠C=150°.若将其按照图2所示方式折叠后,恰好MD′∥AB,ND′∥BC,则∠D的度数为.三、解答题(共7小题,共54分)19.(5分)计算: + .20.(10分)解方程(1)(x﹣4)2=4(2) (x+3)3﹣9=021.(6分)已知2x﹣y的平方根为±4,﹣2是y的立方根,求﹣2xy 的平方根.22.(8分)如图,将三角形ABC向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:A1 ,B1 ,C1 ;(2)画出平移后三角形A1B1C1;(3)求三角形ABC的面积.23.(8分)如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.请将解题过程填写完整.解:∵EF∥AD(已知)∴∠2=( )又∵∠1=∠2(已知)∴∠1=∠3()∴AB∥( )∴∠BAC+=180°()∵∠BAC=70°(已知)∴∠AGD=.24.(7分)阅读理解∵ < < ,即2< <3.∴ 的整数部分为2,小数部分为﹣2∴1< ﹣1<2∴ ﹣1的整数部分为1.∴ ﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)a﹣b的值25.(10分)若∠A与∠B的两边分别垂直,请判断这两个角的等量关系.(1)如图1,∠A与∠B的关系是;如图2,∠A与∠B的关系是;(2)若∠A与∠B的两边分别平行,试探索这两个角的等量关系,画图并证明你的结论.参考答案与试题解析一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个选项是符合题目要求.1.(3分)4的平方根是( )A.±2B.﹣2C.2D.【解答】解:4的平方根是:± =±2.故选:A.2.(3分)在实数,,,,3.14中,无理数有( )A.1个B.2个C.3个D.4个【解答】解:,是无理数,故选:B.3.(3分)如图,直线a、b被直线c所截,下列条件能使a∥b的是( )A.∠1=∠6B.∠2=∠6C.∠1=∠3D.∠5=∠7【解答】解:∵∠2=∠6(已知),∴a∥b(同位角相等,两直线平行),则能使a∥b的条件是∠2=∠6,故选:B.4.(3分)在平面直角坐标系中,点P(﹣3,4)位于( )A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点(﹣3,4)的横纵坐标符号分别为:﹣,+,∴点P(﹣3,4)位于第二象限.故选:B.5.(3分)下列说法中正确的有( )①±2都是8的立方根;② =±4;③ 的平方根是± ;④﹣ =2⑤﹣9是81的算术平方根.A.1个B.2个C.3个D.4个【解答】解:①2都是8的立方根,故此选项错误;② =4,故此选项错误;③ 的平方根是± ,正确;④﹣ =2,正确;⑤9是81的算术平方根,故此选项错误.故选:B.6.(3分)如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( )A.右转80°B.左转80°C.右转100°D.左转100°【解答】解:60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.故选:A.7.(3分)如图,小手盖住的点的坐标可能为( )A.(4,3)B.(﹣4,3)C.(﹣4,﹣3)D.(4,﹣3)【解答】解:A、(4,3)在第一象限,故A错误;B、(﹣4,3)在第二象限,故B错误;C、(﹣4,﹣3)在第三象限,故C正确;D、(4,﹣3)在第四象限,故D错误;故选:C.8.(3分)有一个数值转换器,原理如下:当输入的x= 64时,输出的y等于( )A.2B.8C.D.【解答】解:由图表得,64的算术平方根是8,8的算术平方根是 ;故选:D.9.(3分)把一副直角三角板ABC(含30°、60°角)和CDE(含45°、45°角)如图放置,使直角顶点C重合,若DE∥BC,则∠1的度数是( )A.75°B.105°C.110°D.120°【解答】解:∵DE∥BC,∴∠E=∠ECB=45°,∴∠1=∠ECB+∠B=45°+60°=105°,故选:B.10.(3分)如图,直径为1个单位长度的圆从A点沿数轴向右滚动(无滑动)两周到达点B,则点B表示的数是( )A.πB.2πC.2π﹣1D.2π+1.【解答】解:A点表示的数加两个圆周,可得B点,﹣1+2π,故选:C.二、填空题(每小题2分,共16分)11.(2分) 的立方根是﹣.【解答】解:∵(﹣ )3=﹣,∴﹣的立方根根是:﹣ .故答案是:﹣ .12.(2分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是9 .【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9,故答案为:9.13.(2分)已知点A(﹣1,b+2)在坐标轴上,则b= ﹣2 .【解答】解:∵点A(﹣1,b+2 )在坐标轴上,横坐标是﹣1,∴一定不在y轴上,当点在x轴上时,纵坐标是0,即b+2=0,解得:b=﹣2.故填﹣2.14.(2分)线段AB两端点的坐标分别为A(2,4),B(5,2),若将线段AB平移,使得点B的对应点为点C(3,﹣1).则平移后点A的对应点的坐标为(0,1) .【解答】解:∵B(5,2),点B的对应点为点C(3,﹣1).∴变化规律是横坐标减2,纵坐标减3,∵A(2,4),∴平移后点A的对应点的坐标为 (0,1),故答案为(0,1).15.(2分)点P到x轴的距离是2,到y轴的距离是3,且点P在y 轴的右侧,在x轴上方,则P点的坐标是(3,2) .【解答】解:设点P坐标为(x,y),由题意|y|=2,|x|=3,x>0,y>0,∴x=3,y=2,∴点P坐标(3,2).故答案为(3,2).16.(2分)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=80 度.【解答】解:∵AB∥CD,∠1=45°,∴∠C=∠1=45°,∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°,故答案为:80.17.(2分)如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F为圆心,大于 EF长为半径作圆弧,两弧交于点G,作射线BG交CD于点H.若∠D=116°,则∠DHB的大小为32 度.【解答】解:∵AB∥CD,∴∠D+∠ABD=180°,又∵∠D=116°,∴∠ABD=64°,由作法知,BH是∠ABD的平分线,∴∠DHB= ∠ABD=32°;故答案为:32.18.(2分)如图1,一张四边形纸片ABCD,∠A =50°,∠C=150°.若将其按照图2所示方式折叠后,恰好MD′∥AB,ND′∥BC,则∠D的度数为80°.【解答】解:∵△MND′由△MND翻折而成,∴∠1=∠D′MN,∠2=∠D′NM,∵MD′∥AB,ND′∥BC,∠A=50°,∠C=150°∴∠1+∠D′MN=∠A=50°,∠2+∠D′NM=∠C=150°,∴∠1=∠D′MN= ∠A= =25°,∠2=∠D′NM= ∠C= =75°,∴∠D=180°﹣∠1﹣∠2=180°﹣25°﹣75°=80°.故答案是:80°.三、解答题(共7小题,共54分)19.(5分)计算: + .【解答】解:原式=4﹣3﹣ + =2.20.(10分)解方程(1)(x﹣4)2=4(2) (x+3)3﹣9=0【解答】解:(1)∵(x﹣4)2=4,∴x﹣4=2或x﹣4=﹣2,解得:x=6或x=2;(2)∵ (x+3)3﹣9=0,∴ (x+3)3=9,则(x+3)3=27,∴x+3=3,所以x=0.21.(6分)已知2x﹣y的平方根为±4,﹣2是y的立方根,求﹣2xy的平方根.【解答】解:根据题意知2x﹣y=16、y=﹣8,则x=4,∴±=±=±=±8.22.(8分)如图,将三角形ABC向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:A1 (4,7) ,B1 (1,2) ,C1 (6,4) ;(2)画出平移后三角形A1B1C1;(3)求三角形ABC的面积.【解答】解:(1)结合所画图形可得:A1坐标为(4,7),点B1坐标为(1,2),C1坐标为(6,4).(2)所画图形如下:(3)S△ABC=S矩形EBGF﹣S△ABE﹣S△GBC﹣S△AFC=25﹣﹣5﹣3= .23.(8分)如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.请将解题过程填写完整.解:∵EF∥AD(已知)∴∠2=∠3( )又∵∠1=∠2(已知)∴∠1=∠3()∴AB∥DG ( )∴∠BAC+∠AGD=180°()∵∠BAC=70°(已知)∴∠AGD=110°.【解答】解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°(已知),∴∠AGD=110°.故答案为:∠3;两直线平行,同位角相等;等量代换;DG,内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°.24.(7分)阅读理解∵ < < ,即2< <3.∴ 的整数部分为2,小数部分为﹣2∴1< ﹣1<2∴ ﹣1的整数部分为1.∴ ﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)a﹣b的值【解答】解:(1)∴ < < ,∴4< <5,∴1< ﹣3<2,∴a=1,b= ﹣4;(2)a﹣b=1﹣( ﹣4)=1﹣ +4=5﹣ .25.(10分)若∠A与∠B的两边分别垂直,请判断这两个角的等量关系.(1)如图1,∠A与∠B的关系是∠A=∠B;如图2,∠A与∠B的关系是∠A+∠B=180°;(2)若∠A与∠B的两边分别平行,试探索这两个角的等量关系,画图并证明你的结论.【解答】(1)如图1,∠A=∠B,∵∠ADE=∠BCE=90°,∠AED=∠BEC,∴∠A=180°﹣∠ADE﹣∠A ED,∠B=180°﹣∠BCE﹣∠BEC,∴∠A=∠B,如图2,∠A+∠B=180°;∴∠A+∠B=360°﹣90°﹣90°=180°.∴∠A与∠B的等量关系是互补;故答案为:∠A=∠B,∠A+∠B=180°;(2)如图3,∠A=∠B,∵AD∥BF,∴∠A=∠1,∵AE∥BG,∴∠1=∠B,∴∠A=∠B;如图4,∠A+∠B=180°,∵AD∥BG,∴∠A=∠2,∵AE∥BF,∴∠2+∠B=180°,∴∠A+∠B=180°.七年级数学下学期期中试卷一、选择题(每题3分,共30分)1.(3分)实数9的算术平方根为(哦)A.3B.C.D.±32.(3分)下列实数是无理数的是( )A.3.14159B.C.D.3.(3分)点P(﹣2,3)所在象限为( )A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)下列图形中,由∠1=∠2能得到AB∥CD的是( )A. B. C. D.5.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F 在同一条直线上,若∠ADE=125°,则∠DBC的度数为( )A.55°B.65°C.75°D.125°6.(3分)如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点( )A.(1,3)B.(﹣2,1)C.(﹣1,2)D.(﹣2,2)7.(3分)交换下列命题的题设和结论,得到的新命题是假命题的是( )A.两直线平行,同位角相等B.相等的角是对顶角C.所有的直角都是相等的D.若a=b,则a﹣3=b﹣38.(3分)4根火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形变成的象形文字是( )A. B. C. D.9.(3分)如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于( )A.10°B.20°C.30°D.50°10.(3分)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( )A.2B.3C.4D.5二、填空题:(每题3分,共18分)11.(3分)写出一个在x轴正半轴上的点坐标.12.(3分)若一个数的立方根等于这个数的算术平方根,则这个数是.13.(3分)若的整数部分为a,小数部分为b,求a2+b﹣的值为.14.(3分)如图,在一块长为30米,宽为16米的长方形草地上,有两条宽都为1米的纵、横相交的小路,这块草地的绿地面积为平方米.15.(3分)观察下列各式:(1) =5;(2) =11;(3) =19;…根据上述规律,若 =a,则a= .16.(3分)如图,直线l1∥l2,∠α=∠β,∠1=38°,则∠2=.三、解答题(共8题,共72分)17.(8分)计算:﹣ +|1﹣ |.18.(8分)解方程:(1)3x2=27(2)2(x﹣1)3+16=0.19.(8分)直线a,b,c,d的位置如图所示,已知∠1=58°,∠2=58°,∠3=70°,求∠4的度数.20.(8分)如图,已知点P是直线AB外一点,按下列语句画出图形:(1)过点P作PC⊥AB,垂足为C;(2)过点P作PD∥AB.观察你所作的图形,猜想CP与PD的位置关系.21.(8分)完成下面的证明过程:如图所示,直线AD与AB,CD分别相交于点A,D,与EC,BF 分别相交于点H,G,已知∠1=∠2,∠B=∠C.求证:∠A=∠D.证明:∵∠1=∠2,(已知)∠2=∠AGB()∴∠1=( )∴EC∥BF()∴∠B=∠AEC()又∵∠B=∠C(已知)∴∠AEC=( )∴( )∴∠A=∠D()22.(10分)观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为,又由203<19000<303,猜想19683的立方根十位数为,验证得19683的立方根是(2)请你根据(1)中小明的方法,完成如下填空:① =; ② =;③ =.23.(10分)如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(a,b),且a= + ﹣3.(1)直接写出点C的坐标;(2)直接写出点E的坐标;(3)点P是CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x,y,z之间的数量关系,并证明你的结论.24.(12分)(1)如图1,梯形ABCD中对角线交于点O,AB∥CD,请写出图中面积相等的三角形;(2)如图2,在直角坐标系中,O是坐标原点,点A(﹣2,3),B(2,1).①分别求三角形ACO和三角形BCO的面积及点C的坐标;②请利用(1)的结论解决如下问题:D是边OA上一点,过点D作直线DE平分三角形ABO的面积,并交AB于点E(要有适当的作图说明).参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)实数9的算术平方根为( )A.3B.C.D.±3【解答】解:∵32=9,∴9的算术平方根是3.故选:A.2.(3分)下列实数是无理数的是( )A.3.14159B.C.D.【解答】解: =﹣3,无理数为: .故选:C.3.(3分)点P(﹣2,3)所在象限为( )A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P的横坐标为负,纵坐标为正,∴点P(﹣2,3)所在象限为第二象限.故选:B.4.(3分)下列图形中,由∠1=∠2能得到AB∥CD的是( )A. B. C. D.【解答】解:如图所示:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),故选:B.5.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F 在同一条直线上,若∠ADE=125°,则∠DBC的度数为( )A.55°B.65°C.75°D.125°【解答】解:∵∠ADE=125°,∴∠ADB=180°﹣∠ADE=55°,∵AD∥BC,∴∠DBC=∠ADB=55°.故选:A.6.(3分)如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点( )A.(1,3)B.(﹣2,1)C.(﹣1,2)D.(﹣2,2)【解答】解:以“将”位于点(1,﹣2)为基准点,则“炮”位于点(1﹣3,﹣2+3),即为(﹣2,1).故选:B.7.(3分)交换下列命题的题设和结论,得到的新命题是假命题的是( )A.两直线平行,同位角相等B.相等的角是对顶角C.所有的直角都是相等的D.若a=b,则a﹣3=b﹣3【解答】解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是真命题;交换命题D的题设和结论,得到的新命题是若a﹣3=b﹣3,则a=b是真命题,故选:C.8.(3分)4根火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形变成的象形文字是( )A. B. C. D.【解答】解:原图形平移后,水平的火柴头应在左边,竖直的火柴头应是一上一下.只有B符合.故选:B.9.(3分)如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于( )A.10°B.20°C.30°D.50°【解答】解:∵直线AB∥CD,∠AHG=50°,∴∠AKG=∠XKG=50°.∵∠CKG是△KMG的外角,∴∠KMG=∠CKG﹣∠G=50°﹣30°=20°.∵∠KMG与∠FMD是对顶角,∴∠FMD=∠KMG=20°.故选:B.10.(3分)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( )A.2B.3C.4D.5【解答】解:如图,∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.故选:C.二、填空题:(每题3分,共18分)11.(3分)写出一个在x轴正半轴上的点坐标(1,0) .【解答】解:写出一个在x轴正半轴上的点坐标(1,0),故答案为:(1,0).12.(3分)若一个数的立方根等于这个数的算术平方根,则这个数是0或1 .【解答】解:∵算术平方根与立方根都等于它本身的数是0和1.故填0和1.13.(3分)若的整数部分为a,小数部分为b,求a2+b﹣的值为6 .【解答】解:∵ < < ,∴3< <4,∴ 的整数部分为:a=3,小数部分为:b= ﹣3,∴a2+b﹣ =32+ ﹣3﹣ =6.故答案为:6.14.(3分)如图,在一块长为30米,宽为16米的长方形草地上,有两条宽都为1米的纵、横相交的小路,这块草地的绿地面积为435 平方米.【解答】解:由图象可得,这块草地的绿地面积为:(30﹣1)×(16﹣1)=435.故答案为:435.15.(3分)观察下列各式:(1) =5;(2) =11;(3) =19;…根据上述规律,若 =a,则a= 155 .【解答】解:=11×14+1=154+1=155.故答案为:155.16.(3分)如图,直线l1∥l2,∠α=∠β,∠1=38°,则∠2=142°.【解答】解:延长AB交l2于点E,∵∠α=∠β,∴AB∥DC,∴∠3+∠2=180°,∵l1∥l2,∴∠1=∠3=38°,∴∠2=180°﹣38°=142°,故答案为:142°.三、解答题(共8题,共72分)17.(8分)计算:﹣ +|1﹣ |.【解答】解:原式=5﹣4+ ﹣1= .18.(8分)解方程:(1)3x2=27(2)2(x﹣1)3+16=0.【解答】解:(1)3x2=27∴x2=9,∴x=±3.(2)∵2(x﹣1)3+16=0,∴(x﹣1 )3=﹣8,∴x﹣1=﹣2∴x=﹣1.19.(8分)直线a,b,c,d的位置如图所示,已知∠1=58°,∠2=58°,∠3=70°,求∠4的度数.【解答】解:如图所示,∵∠1=58°,∠2=58°,∴∠1=∠2=58°,∴a∥b,∴∠5=∠3=70°,∴∠4=180°﹣∠5=110°.20.(8分)如图,已知点P是直线AB外一点,按下列语句画出图形:(1)过点P作PC⊥AB,垂足为C;(2)过点P作PD∥AB.观察你所作的图形,猜想CP与PD的位置关系.【解答】解:(1)如图所示:点C即为所求;(2)如图所示:PD即为所求;则CP与PD互相垂直.21.(8分)完成下面的证明过程:如图所示,直线AD与AB,CD分别相交于点A,D,与EC,BF 分别相交于点H,G,已知∠1=∠2,∠B=∠C.求证:∠A=∠D.证明:∵∠1=∠2,(已知)∠2=∠AGB(对顶角相等)∴∠1=∠AGB( 等量代换)∴EC∥BF(同位角相等,两直线平行)∴∠B=∠AEC(两直线平行,同位角相等)又∵∠B=∠C(已知)∴∠AEC=∠C( 等量代换)∴AB∥ CD( 内错角相等,两直线平行)∴∠A=∠D(两直线平行,内错角相等)【解答】证明:∵∠1=∠2,(已知)∠2 =∠AGB(对顶角相等)∴∠1=∠AGB(等量代换),∴EC∥BF(同位角相等,两直线平行)∴∠B=∠AEC(两直线平行,同位角相等),又∵∠B=∠C(已知)∴∠AEC=∠C(等量代换)∴AB∥CD(内错角相等,两直线平行),∴∠A=∠D(两直线平行,内错角相等),故答案为:对顶角相等,∠AGB,等量代换,同位角相等,两直线平行,两直线平行,同位角相等,∠C,等量代换,AB∥CD,内错角相等,两直线平行,两直线平行,内错角相等.22.(10分)观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为7 ,又由203<19000<303,猜想19683的立方根十位数为 2 ,验证得19683的立方根是27(2)请你根据(1)中小明的方法,完成如下填空:① =49 ; ② =﹣75 ;③ =0.81 .【解答】解:(1)先估计19683的立方根的个位数,猜想它的个位数为7,又由203<19000<303,猜想19683的立方根十位数为2,验证得19683的立方根是27(2)① =49; ② =﹣75;③ =0.81.故答案为:(1)7,2,27;(2)49,﹣72,0.81.23.(10分)如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(a,b),且a= + ﹣3.(1)直接写出点C的坐标(﹣3,2) ;(2)直接写出点E的坐标(﹣2,0) ;(3)点P是CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x, y,z之间的数量关系,并证明你的结论.【解答】解:(1)∵a= + ﹣3,∴b=2,a=﹣3,∵点C的坐标为(a,b),∴点C的坐标为:(﹣3,2);故答案为:(﹣3,2);(2)∵点B在y轴上,点C的坐标为:(﹣3,2),∴B点向左平移了3个单位长度,∴A(1,0),向左平移3个单位得到:(﹣2,0)∴点E的坐标为:(﹣2,0);故答案为:(﹣2,0);(3)x+y=z.证明如下:如图,过点P作PN∥CD,∴∠CBP=∠BPN又∵BC∥AE,∴PN∥AE∴∠EAP=∠APN∴∠CBP+∠EAP=∠BPN+∠APN=∠APB,即x+y=z.24.(12分)(1)如图1,梯形ABCD中对角线交于点O,AB∥CD,请写出图中面积相等的三角形;(2)如图2,在直角坐标系中,O是坐标原点,点A(﹣2,3),B(2,1).①分别求三角形ACO和三角形BCO的面积及点C的坐标;②请利用(1)的结论解决如下问题:D是边OA上一点,过点D作直线DE平分三角形ABO的面积,并交AB于点E(要有适当的作图说明).【解答】解:(1)∵AB∥DC,∴S△ABD=S△ABC,S△ADC=S△BDC,∴S△AOD=S△BOC.(2)∵点A(﹣2,3),B(2,1),∴直线AB的解析式为y=﹣ x+2,∴C(0,2)∴S△AOC= ×2×2=2,S△BOC= ×2×2=2,,(3 )连接CD,过点O作OE∥CD交AB于点E,连接DE,则DE 就是所作的线.关于初一数学下期中考试题一、选择题(每小题3分,共30分)1.下列计算正确的是 ( )A.a3•a2=a6B.a5+a5=a10C.(- 3a3)2=6a6D.(a3)2•a=a72.如图所示,边长为m+3的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是 ( )A.m+3B.m+6C.2m+3D.2m+63.如果一个角的补角是150°,那么这个角的余角的度数是 ( )A.30°B.60°C.90°D.120°4.如图所示,已知AB∥CD,∠E=28°,∠C=52°,则∠EAB的度数是( )A.28°B.52°C.70°D.80°5.如果□×3ab=3a2b,那么□内应填的代数式是 ( )A.abB.3abC.aD.3a6.若a2- b2=,a- b=,则a+b的值为 ( )A.-B.C.1D.27.如图所示,∠1=∠2,∠3=80°,则∠4等于 ( )A.80°B.70°C.60°D.50°8.正常人的体温一般在37 ℃左右,但一天中的不同时刻不尽相同,如图所示反映了一天24小时内小红的体温变化情况,下列说法错误的是( )A.清晨5时体温最低B.下午5时体温最高C.这一天小红体温T(℃)的范围是36.5≤T≤37.5D.从5时至24时,小红体温一直是升高的9.如图所示,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是 ( )A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时10.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……用s1,s2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是 ( )二、填空题(每小题4分,共32分)11.化简:6a6÷3a3=.12.如图所示,AB⊥l1,AC⊥l2,垂足分别为B,A,则A点到直线l1的距离是线段的长度.13.已知x+y=- 5,xy=6,则x2+y2= .14.如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=58°,则∠2=.15.一个角与它的补角之差是20°,则这个角的大小是.16.某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:排数1 2 3 4 …座位数50 53 56 59 …上述问题中,第五排、第六排分别有个、个座位;第n排有个座位.17.弹簧的长度与所挂物体的质量的关系如图所示,由图可知不挂重物时弹簧的长为.18.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的关系: .三、解答题(共58分)19.(8分)先化简,再求值:(1)2a(a+b)- (a+b)2,其中a=3,b=5.(2)x(x+2y)- (x+1)2+2x,其中x=,y=- 25.20.(8分)已知一个角的补角等于这个角的余角的4倍,求这个角的度数.21.(10分)如图所示,已知AD与AB,CD交于A,D两点,EC,BF与AB,CD交于E,C,B,F,且∠1=∠2,∠B=∠C.(1)试说明CE∥BF;(2)你能得出∠B=∠3和∠A=∠D这两个结论吗?若能,写出你得出结论的过程.22.(12分)小明某天上午9时骑自行车离开家,15时回到家,他有意描绘了离家的距离与时间的变化情况(如图所示).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?23.(10分)先阅读下面例题的解答过程,再解答后面的问题.例:已知代数式9- 6y- 4y2=7,求2y2+3y+7的值.解:由9- 6y- 4y2=7,得- 6y- 4y2=7- 9,即6y+4y2=2,因此3y+2y2=1,所以2y2+3y+7=1+7=8.问题:已知代数式14x+5- 21x2=- 2,求6x2- 4x+5的值.24.(10分)小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的关系式;(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖西瓜赚了多少钱?【答案与解析】1.D(解析:a3•a2=a5,a5+a5=2a5,(- 3a3)2=9a6,(a3)2•a=a6•a=a7.)2.C(解析:按照图形剪拼的方法,观察探索出剩余部分拼成的长方形一边长为3,另一边的长是由原正方形的边长m+3与剪出的正方形边长m合成的,为m+3+m=2m+3.)3.B(解析:由题意可知这个角是180°- 150°=30°,所以它的余角是90°- 30°=60°.)4.D(解析:过E点作EF∥CD,则易知∠FEC=128°,所以∠FEA=100°,因为EF∥AB,所以∠EAB=80°.)5.C(解析:要求□,则相当于□=3a2b÷3ab=a.)6.B(解析:由(a+b)(a- b)=a2- b2,得(a+b)=,即可得到a+b=.)7.A(解析:因为∠1=∠2,所以∠2与∠1的对顶角相等,所以由同位角相等,两直线平行可得a∥b,再由两直线平行,内错角相等可得∠4=∠3=80°.)8.D(解析:由图象可知图中最底部对应横轴上的数据则是体温最低的时刻,最高位置对应横轴上的数据则是体温最高的时刻,所以清晨5时体温最低,下午5时体温最高,最高体温为37.5 ℃,最低体温为36.5 ℃,则小红这一天的体温范围是36.5≤T≤37.5,从5时到17时,小红的体温一直是升高的趋势,而17时到24时的体温是下降的趋势.所以错误的是从5时到24时,小红的体温一直是升高的.故选D.)9.C(解析:横轴表示时间,纵轴表示速度.当第3分的时候,对应的速度是40千米/时,A对;第12分的时候,对应的速度是0千米/时,B对;从第3分到第6分,汽车的速度保持不变,是40千米/时,行驶的路程为40×=2(千米),C错;从第9分到第12分,汽车对应的速度分别是60千米/时,0千米/时,所以汽车的速度从60千米/时减少到0千米/时,D对.)10.D(解析:根据题意得s1一直增加,s2有三个阶段,(1)增加;(2)睡了一觉,不变;(3)当它醒来时,发现乌龟快到终点了,于是急忙追赶,增加.但乌龟还是先到达终点,即s1在s2的上方.故选D.)11.2a3(解析:6a6÷3a3=(6÷3)×(a6÷a3)=2a3.)12.AB(解析:因为AB⊥l1,由点到直线的距离可知,A点到直线l1的距离是线段AB的长度.)13.13(解析:因为x+y=- 5,所以(x+y)2=25,所以x2+2xy+y2=25.因为xy=6,所以x2+y2=25- 2xy=25- 12=13.)14.32°(解析:由题意得∠ABM=∠1=58°,所以∠2=90°- 58°=32°.)15.100°(解析:设这个角为α,则α- (180°- α)=20°,解得α=100°.)16.62 65 3n+47(解析:从具体数据中,不难发现:后一排总比前一排多3个.根据规律,第n排有50+3(n- 1)个座位,再化简即可.)17.10 cm(解析:不挂重物时,也就是当x=0时,根据图象可以得出y=10 cm.)18.y=(解析:本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数量x的关系式,再进行整理即可得出答案.)19.解:(1)原式=(a+b)(2a- a- b)=(a+b)(a- b)=a2- ab+ab+b2=a2- b2,当a=3,b=5时,原式=32- 52=- 16. (2)原式=x2+2xy- x2- 2x- 1+2x=2xy- 1,当x=,y=- 25时,原式=- 3.20.解:设这个角的度数为x,则180°- x=4(90°- x),解得x=60°.21.解:(1)设∠1的对顶角为∠4.因为∠1=∠4,∠1=∠2,所以∠2=∠4,所以CE∥BF.(2)∠B=∠3,∠A=∠D成立.由(1)得CE∥BF,所以∠3=∠C.又因为∠B=∠C,所以∠B=∠3,所以AB∥CD,所以∠A=∠D.22.解:(1)图象表示了时间、距离的关系,自变量是时间,因变量是距离. (2)由图象看出10时他距家15千米,13时他距家30千米. (3)由图象看出12:00时他到达离家最远的地方,离家30千米. (4)由图象看出11时距家19千米,12时距家30千米,11时到12时他行驶了30- 19=11(千米). (5)由图象看出12:00~13:00时距离没变且时间较长,得12:00~13:00休息并吃午餐. (6)由图象看出回家时用了2小时,路程是30千米,所以回家的平均速度是30÷2=15(千米/时).23.解:由14x+5- 21x2=- 2,得14x- 21x2=- 7,所以2x- 3x2=- 1,即3x2- 2x=1,所以6x2- 4x=2,所以6x2- 4x+5=2+5=7.24.解:(1)设关系式是y=kx,把x=40,y=64代入得40k=64,解得k=1.6.则关系式是y=1.6x. (2)因为降价前西瓜售价为每千克1.6元,所以降价0.4元后西瓜售价每千克1.2元.降价后销售的西瓜为(76- 64)÷1.2=10(千克),所以小明从批发市场共购进50千克西瓜.(3)76- 50×0.8=76- 40=36(元).即小明这次卖西瓜赚了36元钱.。

山东省潍坊市潍城区2023-2024学年七年级下学期期中数学试题(含答案)

山东省潍坊市潍城区2023-2024学年七年级下学期期中数学试题(含答案)

试卷类型:A2023—2024学年度第二学期期中质量检测七年级数学试题注意事项:1.考试时间120分钟,试卷满分150分;2.答卷前,请将试卷密封线内和答题纸上的项目填涂清楚;3.请在答题纸相应位置作答,不要超出答题区域,不要答错位置.第Ⅰ卷(选择题共52分)一、单选题(本大题共8小题,共32分.在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,错选、不选均记0分)1.巨噬细胞是人体的“清道夫”,它是由单核细胞演变而来,一直在为我们的身体做清洁工作,其直径可达0.00008米.将0.00008用科学记数法可表示为()A .B .C .D .2.如图,已知OB 是内部的一条射线,下列说法一定正确的是()A .B .C .可以用表示D .与表示同一个角3.下列方程是二元一次方程的是()A .B .C .D .4.如图,从旗杆AB 的顶端A 处向地面拉一条绳子,绳子底端恰好在地面P 处,若旗杆的高度为13.8米,则绳子AP的长度不可能是()40.810-⨯50.810-⨯4810-⨯5810-⨯AOC ∠2AOC BOC ∠=∠BOC AOB∠<∠AOC ∠O ∠1∠AOB ∠20x y -=10xy +=223x x +=8y x=A .16米B .15米C .14米D .13米5.光在不同介质中的传播速度是不同的,因此光从水中射向空气时,要发生折射.已知在水中平行的光线射向空气中时也是平行的.如图,,则的值为()A .B .C .D .6.小亮在做“化简,并求时的值”一题时,错将看成了,但结果却和正确答案一样.由此可知k 的值是()A .2B .3C .4D .57.某校预安排若干间宿舍给七年级男寄宿生住,若每间宿舍住6人,则有4人住不下,若每间住7人,则有1间只住2人且空余8间宿舍.设该校七年级男寄宿生有x 人,预安排给七年级男寄宿生的宿舍有y 间,则下列方程组正确的是()A .B .C .D .8.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,若,且,则的度数是()A .B .C .D .二、多选题(本大题共4小题,共20分.在每个小题给出的四个选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,错选、多选均记0分)9.如图,下列说法正确的是()140,2120∠=︒∠=︒34∠+∠160︒150︒100︒90︒()()()23263516x k x x x x +⋅+-⋅+++6x =6x =6x =-()647812y x y x +=⎧⎪⎨--+=⎪⎩()64782y x y x -=⎧⎪⎨-+=⎪⎩()64782y x y x +=⎧⎪⎨-+=⎪⎩()647812y x y x-=⎧⎪⎨---=⎪⎩CD BE ∥125∠=︒2∠60︒75︒80︒85︒A .与是对顶角B .与是内错角C .与是同位角D .与是同旁内角10.下列运算正确的是()A .B .C .D .11.解方程组时,下列消元方法正确的是()A .②×3-①,消去xB .①×3+②×2,消去yC .②×2-①×3,消去yD .由②得:,然后代入①中消去x12.如图,的平分线BE 交AC 于点E ,的平分线CD 交AB 于点D ,BE ,CD 相交于点F ,,且于点G ,下列结论中正确的是()A .B .CA 平分C .D .第Ⅱ卷(非选择题共98分)三、填空题(本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分)13.计算:________.14.如图,点O 在直线AB 上,,OE 平分,则的度数为_____°.1∠2∠1∠4∠1∠B ∠4∠D ∠2327a a a a -⋅÷=22(2)(2)222b a b a b ab a ---⋅+=2336(3)27ab a b ---=()122112323nn n n n n a a aa a a a --+⋅-+=-+3216331x y x y +=⎧⎨-=⎩①②313x y =+ABC ∠ACB ∠90,A EG BC ∠=︒∥CG EG ⊥2CEG DCB ∠=∠BCG ∠ADC GCD ∠=∠45DFB ∠=︒109287031︒'-︒'=118,AOC OC OD ∠=︒⊥BOC ∠DOE ∠15.对任意有理数x ,等式总成立,那么________.16.如图,直线,一块三角板ABC ()按如图所示放置.若,则的度数为________°.17.如图,在四边形ABCD 中,,对角线AC ,BD 交于点O ,若三角形AOB 的面积为6,且,则三角形AOD 的面积是_________.18.如图,将一个大长方形ABCD 分割成5个正方形①②③④⑤和1个小长方形⑥,若,则大长方形ABCD 的面积是_______.()()236x x n x mx -+=+-m n =a b ∥60,90A C ∠=︒∠=︒150∠=︒2∠AD BC ∥:1:2AO OC =3,4GF EF ==四、解答题(本题共7小题,满分74分.解答应写出文字说明、证明过程或推演步骤)19.(本题满分8分)计算下列各题:(1);(2).20.(本题满分8分)解下列方程组:(1),(2)21.(本题满分9分)按下列要求画图并填空.如图,P 是的边OB 上一点,(1)过点P 作射线OA 的垂线,垂足为H ;(2)过点P 作射线OB 的垂线,交OA 于点C ;(3)过点P 作直线(点D 在点P 的右侧);(4)与的数量关系是_________.(5)线段PC ,PH ,OC 这三条线段大小关系是________(用“<”号连接),依据是________.22.(本题满分10分)我们知道,一般的数学公式,法则、定义可以正向运用,也可以逆向运用.例如,“同底数幂的乘法”“幂的乘方”“积的乘方”这几个法则的逆向运用表现为:;;;其中m ,n 为正整数.结合以上材料解决下列问题.(1)已知,请把a ,b ,c 用“<”连接起来;(2)若,求的值;(3)化简:.23.(本题满分12分)如图,已知射线,连接AB ,点P 是射线AM 上的一个动点(与点A 不重合),BC ,BD 分别平分和,分别交射线AM 于点C ,D.()23155a a b ⎛⎫-⋅- ⎪⎝⎭()()21241x x x -⋅-+-21327x y x y -=⎧⎨+=⎩()111231211x y x y ⎧+=-⎪⎨⎪+-=⎩AOB ∠PD OA ∥HPC ∠DPC ∠m n m n a a a +=⋅()nmn m a a =()m mm a b ab =5544332,3,4a b c ===2,5a b x x ==32a b x +1031001021384⎛⎫⨯⨯ ⎪⎝⎭AM BN ∥ABP ∠PBN ∠(1)当时,求的度数;(2)试判断与之间的数量关系,并说明理由.24.(本题满分13分)已知用2辆A 型车和1辆B 型车载满货物—次可运货10吨;用3辆A 型车和2辆B 型车载满货物一次可运货17吨.某物流公司现有货物35吨,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金130元/次,请选出最省钱的租车方案,并求出最少租车费.25.(本题满分14分)已知,直线,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB ,CD 之间,当时,求的度数;(2)如图2,点P 在直线AB ,CD 之间,与的角平分线相交于点K ,写出与之间的数量关系,并说明理由;(3)如图3,点P 落在直线CD 的下方,与的角平分线相交于点K ,与有何数量关系?请说明理由.40A ∠=︒CBD ∠APB ∠ADB ∠AB CD ∥56,24BAP DCP ∠=︒∠=︒APC ∠BAP ∠DCP ∠AKC ∠APC ∠BAP ∠DCP ∠AKC ∠APC ∠2023-2024学年度第二学期期中学情诊断七年级数学试题参考答案及评分标准一、单选题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来每小题选对得4分,错选、不选均记0分)题号12345678答案DDADCBAC二、多项选择题(共4小题,每小题5分,共20分.每小题的四个选项中,有多项正确,全部选对得5分,部分选对得3分,错选、多选均记0分)题号9101112答案ADADABDACD三、填空题(本大题共6小题,每小题4分,共24分.只填写最后结果)13.14.15.16.17.318.99四、解答题(本题共6小题,共74分.请写出必要的文字说明、证明过程或演算步骤)19.解:(本题8分,1、2小题每题4分)(1) 4分(2)6分8分20.解:(本题8分,1、2小题每题4分)(1)①+②得:1分解得:2分将代入①得:3分解得:,所以4分(4)化简方程组得:①×2得:③③-②得: 6分将代入①得:3857︒'59︒12110︒()()23627211525555a a b a a b a b ⎛⎫⎛⎫-⋅-=-⋅=- ⎪ ⎪⎝⎭⎝⎭()()2322124124241x x x x x x x x --+-=-+-+-+⋅322651x x x =-+-+48x =2x =2x =221y -=12y =212x y =⎧⎪⎨=⎪⎩24328x y x y -=-⎧⎨-=⎩①②428x y -=-16x =-16x =-()2164y ⨯--=-解得:7分所以 8分21.解:(本题9分)(1)如图所示 1分(2)如图所示 2分(3)如图所示3分(4)互余5分(5),垂线段最短9分22.解:(本题10分)(1)∵3分∴ 4分(2 6分∵∴原式7分(3)10分23.解:(本题12分)(1)∵∴,1分28y =-6281x y =-=-⎧⎨⎩PH PC OC <<()55511112232a ===44411113(3)81b ===()13331114464c ===a c b <<()()323232a baba b xx x xx +=⋅=⋅2,5a b x x ==3225200=⨯=1031003100102100100211138388444⎛⎫⎛⎫⎛⎫⨯⨯=⨯⨯⨯⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭100310010010021001113883816444⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯⨯⨯=⨯⨯⨯=⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,40AM BN A ∠=︒∥180140ABN A ∠=︒-∠=︒∵BC ,BD 分别平分和,∴,3分∴5分(2),7分∵BD 平分,∴,9分∵,∴,∴.12分24.解:(本题13分)(1)设每辆A 型车、B 型车都载满货物一次可以分别运货x 吨、y 吨,根据题意,得,2分解得,3分经检验,方程组的解符合题意.答:1辆A 型车载满货物一次可运3吨,1辆B 型车载满货物一次可运4吨.(2)由(1),得,5分∴,∵a ,b 都是正整数,∴,或,或,∴有3种租车方案:方案一:A 型车9辆,B 型车2辆;方案二:A 型车5辆,B 型车5辆:8分方案三:A 型车1辆,B 型车8辆.(3)∵A 型车每辆需租金100元/次,B 型车每辆需租金130元/次,∴方案一需租金:(元);方案二需租金:(元);方案三需租金:(元). 11分∵12分∴最省钱的租车方案是方案三答:租A 型车1辆,B 型车8辆,最少租车费为1140元.25.解:(本题14分)(1)如图1,过P 作,ABP ∠PBN ∠11,22CBP ABP DBP PBN ∠=∠∠=∠1111140702222CBD CBP DBP ABP PBN ABN ∠=∠+∠=∠+∠=∠=⨯︒=︒2APB ADB ∠=∠PBN ∠2PBN DBN ∠=∠AM BN ∥,APB PBN BDP DBN ∠=∠∠=∠2APB ADB ∠=∠2103217x y x y +=⎧⎨+=⎩34x y =⎧⎨=⎩3435a b +=3543ba -=92a b =⎧⎨=⎩55a b =⎧⎨=⎩ 1 8a b =⎧⎨=⎩910021301160⨯+⨯=510051301150⨯+⨯=110081301140⨯+⨯=116011501140>>PE AB ∥∵,∴,∴, 2分∵∴4分(2).理由如下: 5分如图2,过K 作,∵,∴,∴,∴,过P 作,同理可得,,∵与的角平分线相交于点K ,∴, 8分∴,∴;9分(3).理由如下:10分如图3,过K 作,AB CD ∥PE AB CD ∥∥,APE BAP CPE DCP ∠=∠∠=∠56,24BAP DCP ∠=︒∠=︒562480APC APE CPE BAP DCP ∠=∠+∠=∠+∠=︒+︒=︒2AKC APC ∠=∠KE AB ∥AB CD ∥KE AB CD ∥∥,AKE BAK CKE DCK ∠=∠∠=∠AKC AKE CKE BAK DCK ∠=∠+∠=∠+∠PF AB ∥APC BAP DCP ∠=∠+∠BAP ∠DCP ∠11,22DCK DCP BAK BAP ∠=∠∠=∠11112222()BAK DCK BAP DCP BAP DCP APC ∠+∠=∠+∠=∠+∠=∠2AKC APC ∠=∠2AKC APC ∠=∠KE AB ∥∵,∴,∴,∴,…分过P 作同理可得,,12分∵与的角平分线相交于点K ,∴,3分∴,∴.14分AB CD ∥KE AB CD ∥∥,BAK AKE DCK CKE ∠=∠∠=∠AKC AKE CKE BAK DCK ∠=∠-∠=∠-∠PF AB∥APC BAP DCP ∠=∠-∠BAP ∠DCP ∠11,22BAK BAP DCK DCP ∠=∠∠=∠()11112222BAK DCK BAP DCP BAP DCP APC ∠-∠=∠-∠=∠-∠=∠2AKC APC ∠=∠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学


二第
学年度20022001--期中考试试卷
班级 学号 姓名 成绩
一.填空题:(每空2分,共32分 )
1.计算:()()32x x +-= ;2002
2003
2332⎛⎫
⎛⎫
-⨯= ⎪
⎪⎝⎭
⎝⎭

2.用适当的不等号填空:若11a b ->-,则()3a -- ()3b --;
3.线段AB 被依次分为24 ׃3 ׃三部分,已知第一部分与第三部分的和是5.4cm ,则线段AB= cm ; 4.时钟430׃时,时针与分针的夹角是 度; 5.若一个角等于它的余角的
1
2
,则这个角的补角是 ; 6.东北方向与北偏西20˚的两条射线所成的夹角是 度;
7.若0m <,则不等式组2
3m x m x ⎧<-⎪⎪⎨⎪<-⎪⎩的解集是 ;
8.如图,共有 条线段, 角; (题8) (题10) 9.若0,0a ab <->,则23b a a b -+---= ;
10.如图,工厂C 要将废水排入水沟AB ,从工厂C 沿AB 的 方向铺设水管最短,这是因为 ;
11.一个多项式除以2
21x -,商式为2x -,余式为1x -,则这个多项式是 ; 12.已知2x =时,代数式3
1ax bx ++的值为3-,当2x =-时,代数式3
6ax bx ++的值是 ;
13.平面内有n 个点,其中任意三点均不在一条直线上,则过每两点画直线,一共可以画 条。

二.选择题: ( 每题2分,共16分 ) B
A
C D E
14.在下列计算中,不正确的有:3
4
7
a a a +=;()
5
27a
a =;
623a a a =⋅; ()12
34a a a -=⋅-; 1073a a a a =⋅⋅
A . 2个
B . 3个
C . 4个
D . 5个 15.如果()12x m x ⎛

++
⎪⎝⎭
的乘积中不含关于x 的一次项,那么m 应取 A . 2 B . 2- C .
12 D . 12
- 16.已知方程组21213x y m
x y m
+=-⎧⎨
+=+⎩的解满足0x y +<,则m 的范围是
A . 1m <-
B . 1m <
C . 1m >-
D . 1m > 17.如图:已知 12∠<∠, 那么()1
1212
∠∠-∠与
之间的关系是 A . 互补 B . 互余 C . 和为45˚ D . 和为75˚ 18.已知733
x
=
,321y =,则3y x
+的值为 (题17) A . 9 B . 49 C .
19 D . 49
1 19.如图:下列条件中,能判断直线AB 和CD 互相垂直的有:
①AOC AOD ∠=∠ ② AOC BOD ∠=∠ ③180AOC BOD ∠+∠=︒
④ 3AOC BOD AOD BOC ∠+∠+∠=∠
A . 1个
B . 2个
C . 3个
D . 4个 (题19)
20.如图:∠1的同位角有 A . 1个 B . 2个 C . 3个 D . 4个 21.()
()
2002
2003
33-+-所得的结果为
A . 3-
B . 2002
23-⨯ C . 1- D . 2002
3
-
A
B
C
D
O 1
三.解下列不等式(组)并把解集在数轴上表示出来: ( 每题4分,共8分 ) (题20)
22. 21672513412
x x x +-+-≤- 23.
()
322112
3x x x x
+<+⎧⎪
⎨--<⎪
⎩ 四. 计算题: ( 每题4分,共16分 ) 24. 1
11133m m m m x
x x x -+-⎛⎫
-+ ⎪⎝⎭
25 . ()1809132'42"2︒-︒÷
26.()()()()3123265x x x x -+---
27. ()()()()a b c a b c a b c a b c +++---+-- 五.画图题: (共10分)
28.已知四点A ,B ,C ,D 按照下列语句画出图形 ①作射线AB,AC,DA ②连结BC,CD
③延长BC 交射线DA 的反向延长线于E,延长DC 交射线AB 于F.
29.在图中画出,A B ∠∠的平分线交于点O.再画出点O 到AB 的垂线段OE,点O 到BC 的垂线段OF,用圆规比较OE,OF 的大小:OE OF
(题29)
六.先化简,再求值: (共6分) 30. ()2
2221252a ab b a a b ab ⎛⎫
-+--
⎪⎝⎭
, 其中12,4
a b =-=
七.解答题: (共12分)
31.已知BD 平分ABC ∠,BE 分ABC ∠为2∶5两部分,
24DBE ∠=︒,求ABC ∠的度数。

(题31)
A
B C
A
B
D
E
32.辽南素以“苹果之乡”著称,某乡组织20辆汽车装运A 、B 、C 三种苹果42吨到外地销售,按规定每辆车只装同一种苹果,且必须装满,每种苹果不少于2车,①设用x 辆车装运A 种苹果,用y 辆车装运B 种苹果,根据上
表提供的信息,用x 的代数式表示y ,并求出x 的范围。

②设此外销活动的利润为W (百元),求W 与x 的关系式及最大利润并写出相应的车辆分配方案。

初一数学期中考试答案
一、1、x 2+x-6
2
3
2、<
3、8.1
4、45
5、150°
6、65
7、x<-3
m 8、9 11个 9、-1
10、垂直 垂线段最短
11、2x 3-4x 2+1
12、10 13、
2
)
1(-n n 二、14、C 15、D
16、A 17、B 18、B 19、C 20、C 21、B
三、 22、解:8x+4-18x+21≤2x+5-12 23、解由①得 3+x<4+2x ∴ -12x ≤-32 ∴-x<1 ∴ x 3
8

∴x>1 这个不等式的解在数轴上表示如下: 由②得 3x-3-6<2x ∴x<9
∴⎩⎨⎧<->9
1
x x
这个不等式的解在数轴上表示如下:
∴-1<x<9 四、24、2212233--+-m m m x x x
25、9331442817288'''︒=÷'''︒= 26、6x 2+7x-3-(6x 2-17x+10)=24x-13 27、a 2+b 2+2ab-c 2-(a 2-2ab+b 2-c 2)=4ab
五、28、略
29、图略 =
六、30、=22322322336552b a b a b a b a b a b a +-=+--- 代入得:原式=4
3124312)41()2(341)2(6223=+=⨯-⨯+⨯
-⨯- 31、解:设∠ABE=2x ,则∠EBC=5x ,
∵BD 平分∠ABC ∴2x+24°=5x-24°
∴3x=48° x=16° ∴∠ABC=7x=7×16°=112° 32、①⎩⎨
⎧≤≤-=⇒⎪⎪⎩⎪
⎪⎨⎧≥--≥≥=--++)(922202
202242
)20(21.22.2为整数x x x y y x y x y x y x ②W=6×2.2x+8×2.1y+5×2(20-x-y)=13.2x+16.8(20-2x)+10x=336-10.4x (2≤x ≤9) 当W 最大时,x=2, y=16
∴用2辆车装运A 种苹果;用16辆车装运B 种苹果;用2辆车装运C 种苹果时,最大利润好
336-20.8=315.2(百元)亦即31520元。

相关文档
最新文档