全等三角形在生活中的应用

合集下载

全等三角形应用举例

全等三角形应用举例
解:因为AC=AB,DC=DB,AD=AD
根据"SSS"可证明△ADC≌△ADB
所以∠ADB=∠ADC=90°
即:BC⊥DA
因DE处于垂直位置,故BC处于水平位置。
【例2】如图二,小明同学不慎将一三角形玻璃打碎成两块,他是否只带其中的一块就可以配一块与原来一样的三角形玻璃呢?为什么?
、重要的不是知识的数量,而是知识的质量,有些人知道很多很多,但却不知道最有用的东西。 —— 托尔斯泰
全等三角形应用举例
江苏省赣榆县沙河中学(222141) 张庆华
E-mail:guzqh@
全等三角形在我们的生活中应用非常广泛,本文将通过几个实例与同学们一起来探讨其在生活中应用的奥妙。
【解析】若想配一块和原来三角形全等的三角形玻璃,根据三角形全等的条件,图图中的图②符合"ASA"全等,所以应带②去配玻璃。
【例3】如图三,要测量池塘边上两点P、Q之间的距离,小五在PQ的垂线PM上取两点A、B,使AB=PA,再在B处作出PB的垂线BC,使C、A、Q在同一条直线上,这时测得BC的长就是PQ的长,小王的测量方法对吗?这什么?
【解析】根据步聚可知∠PAQ=∠BAC,AP=AB,∠QPA=∠CBA=90°
根据"ASA"可证明△ABE≌△APQ
所以PQ的长即为BC的ห้องสมุดไป่ตู้。
【练习1】如图四,把两根钢条AA'BB'R的中点O连在一起做成一个测量工件内槽的工具(这种工具叫卡钳),只要量出A'B'的长度,就可以知道工件内径AB的长度,你知道其中的理由吗?
【练习2】工人师傅常用角尺平分一个任意角,方法是:如图五,在∠COD的两边OC、OD上分别取OA=OB,移动角尺使两边相同的刻度分别与A、B重合,这时角尺的顶点M与O的连线,即OM即为∠COD的角平分线,你知道其中的理由吗?

2019苏科版八上数学专题 三角形全等的简单应用

2019苏科版八上数学专题 三角形全等的简单应用

三角形全等的简单应用【学习目标】1.感受三角形全等在生活中的应用;2.能够用三角形全等解决一些实际问题及运动型问题.【典型例题】一.生活中的应用例题1.如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.小河北BA例题2如图,两根长12m的绳子,一端系在旗杆上的同一位置,另一端分别固定在地面上的两个木桩上(绳结处的误差忽略不计),现在只有一把卷尺,如何来检验旗杆是否垂直于地面?请说明理由.DB二.运动型问题中的应用例题3 如图,AB =6cm ,AC =BD =4cm .∠CAB =∠DBA ,点P 在线段AB 上以2cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为t (s ).设点Q 的运动速度为x cm/s ,若使得△ACP 与△BPQ 全等,则x 的值为 .QPDCBA三.全等应用的几个重要模型 (1)中线型例题4 (1)阅读理解:如图1,在△ABC 中,若AB =10,BC =8.求AC 边上的中线BD 的取值范围.小聪同学是这样思考的:延长BD 至E 使DE =BD ,连结CE.利用全等将边AB 转化到CE ,在△BCE 中利用三角形三边关系即可求出中线BD 的取值范围.在这个过程中小聪同学证三角形全等用到的判定方法是 ;中线BD 的取值范围是 .(2)问题解决:如图2,在△ABC 中,点D 是AC 的中点,点M 在AB 边上,点N 在BC 边上,若DM ⊥DN .求证:AM +CN >MN .图1E DCBA图2N M D CBA(2)角平分线型例题5 如图,已知OC 平分∠AOB ,点E 、F 分别在边OA 、OB 上,且EC =FC .若∠AOB =60°,求∠ECF 的度数;OF E CBA(3)K 型全等例题6王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和B 分别与木墙的顶端重合,求两堵木墙之间的距离.变式:如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD 上,转轴B 到地面的距离BD =3m .小亮在荡秋千过程中,当秋千摆动到最高点A 时,测得点A 到BD 的距离AC =2m ,点A 到地面的距离AE =1.8m ;当他从A 处摆动到A ′处时,有A 'B ⊥AB . (1)求A ′到BD 的距离; (2)求A ′到地面的距离.A '地面ED CB A32HF 1A '地面EDC BA拓展提升:例题7(1)如图1:在四边形ABC 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点.且∠EAF =60°.探究图中线段BE ,EF ,FD 之间的数量关系并证明. (提示:延长CD 到G ,使得DG =BE )(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12 ∠BAD ,上述结论是否仍然成立,并说明理由;图1GDFECBA图2DFE CBAO图3N FEB A(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西20°的A 处,舰艇乙在指挥中心南偏东60°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.(可利用(2)的结论)【课后练习】 一、选择题1.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB 是一个任意角,在边OA 、OB 上分别取OM =ON ,移动角尺,使角尺两边相同的到刻度分别与点M 、N 重合,过角尺顶点C 作射线OC 由此作法便可得△NOC ≌△MOC ,其依据是( )A .SSSB .SASC .ASAD .AAS2.某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A.1B.2C.3D.43.如图,平安路与幸福路是两条平行的道路,且都与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处.如果小强同学站在平安路与新兴大街交叉路口,准备去书店,按图中的街道行走,最近的路程为()A.300m B.400m C.500m D.700m二、填空题4.如图所示,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工具,则A'B'的长等于内槽宽AB,那么判定△OAB≌OA'B'的理由是.5. 如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小红从水平位置CD下降40cm时,这时小明离地面的高度是90cm.6.如图,在正方形ABCD 中,AB =8厘米,如果动点P 在线段AB 上以2厘米/秒的速度由A 点向B 点运动,同时动点Q 在以1厘米/秒的速度线段BC 上由C 点向B 点运动,当点P 到达B 点时整个运动过程停止.设运动时间为t 秒,当AQ ⊥DP 时,t 的值为 秒.QP DCBA三、解答题7.为了测量一幢高楼高AB ,在旗杆CD 与楼之间选定一点P .测得旗杆顶C 视线PC 与地面夹角∠DPC =38°,测楼顶A 视线P A 与地面夹角∠APB =52°,量得P 到楼底距离PB 与旗杆高度相等,等于8米,量得旗杆与楼之间距离为DB =33米,计算楼高AB 是多少米?P D B8.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B 点,选对岸正对的一棵树A ; ②沿河岸直走20m 有一树C ,继续前行20m 到达D 处;③从D 处沿河岸垂直的方向行走,当到达A 树正好被C 树遮挡住的E 处停止行走;④测得DE 的长为5米. 求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.9.如图,点C 、E 分别在直线AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF ,再找出CF 的中点O ,然后连结EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补,而且他还发现BC =EF .小华的想法对吗?为什么?OFED C BA10.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形. (1)若固定三根木条AB ,BC ,AD 不动,AB =AD =2cm ,BC =5cm ,如图,量得第四根木条CD =5cm ,判断此时∠B 与∠D 是否相等,并说明理由. (2)若固定一根木条AB 不动,AB =2cm ,量得木条CD =5cm ,如果木条AD ,BC 的长度不变,当点D 移到BA 的延长线上时,点C 也在BA 的延长线上;当点C 移到AB 的延长线上时,点A 、C 、D 能构成周长为30cm 的三角形,求出木条AD ,BC 的长度.DCBA【典型例题】一.生活中的应用例题1.如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.小河北BA【解答】解:(1)根据题意画出图形,如图所示.ED C(2)由题可知∠BAC=∠EDC=90°,60cm=0.6m,AC=20×0.6=12m,DC=20×0.6=12m,DE=100×0.6=60m,∵点E、C、B在一条直线上,∴∠DCE=∠ACB.在△ABC 和△DEC 中,===BAC EDC AC DCDCE ACB ∠∠∠∠⎧⎪⎨⎪⎩∴△ABC ≌△DEC , ∴AB =DE . ∵DE =60m , ∴AB =60m ,答:A 、B 两根电线杆之间的距离大约为60m .例题2如图,两根长12m 的绳子,一端系在旗杆上的同一位置,另一端分别固定在地面上的两个木桩上(绳结处的误差忽略不计),现在只有一把卷尺,如何来检验旗杆是否垂直于地面?请说明理由.B【解答】解:用卷尺测量出BD 、CD ,看它们是否相等,若BD =CD ,则AD ⊥BC .理由如下:∵在△ABD 和△ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩, ∴△ABD ≌△ACD (SSS ), ∴∠ADB =∠ADC ,又∵∠ADB +∠ADC =180°,∴∠ADB =∠ADC =90°, 即AD ⊥BC .二.运动型问题中的应用例题3 如图,AB =6cm ,AC =BD =4cm .∠CAB =∠DBA ,点P 在线段AB 上以2cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为t (s ).设点Q 的运动速度为x cm/s ,若使得△ACP 与△BPQ 全等,则x 的值为 .QPDCBA【解答】解:当△ACP ≌△BPQ , ∴AP =BQ , ∵运动时间相同,∴P ,Q 的运动速度也相同, ∴x =2(s ).当△ACP ≌△BQP 时, AC =BQ =4,P A =PB , ∴t =1.5, ∴x =41.5=83(s ) ∴综上所述,x 的值为2或83s .三.全等应用的几个重要模型 (1)中线型例题4 (1)阅读理解:如图1,在△ABC 中,若AB =10,BC =8.求AC 边上的中线BD 的取值范围.小聪同学是这样思考的:延长BD 至E 使DE =BD ,连结CE.利用全等将边AB 转化到CE ,在△BCE 中利用三角形三边关系即可求出中线BD 的取值范围.在这个过程中小聪同学证三角形全等用到的判定方法是 ;中线BD 的取值范围是 .(2)问题解决:如图2,在△ABC 中,点D 是AC 的中点,点M 在AB 边上,点N 在BC 边上,若DM ⊥DN .求证:AM +CN >MN .图1E DCBA图2N M D CB A【解答】(1)解:∵BD 是AC 边上的中线, ∴AD =CD ,在△ABD 和△CED 中,=ADB CD AD CD BD ED E =⎧=∠∠⎪⎨⎪⎩, ∴△ABD ≌△CED (SAS ), ∴CE =AB =10,在△CBE 中,由三角形的三边关系得:CE -BC <BE <CE -BC , ∴10-8<BE <10+8,即2<BE <18, ∴1<BD <9;故答案为:SAS ;1<BD <9;(2)证明:延长ND 至点F ,使FD =ND ,连接AF 、MF , 同(1)得:△AFD ≌△CND (SAS ), ∴AF =CN ,FD =ND , ∵DM ⊥DN ,∴MDN MDF ∠=∠=90° 在△MDN 和△MDF 中,MD MD MDN MDF DN DF =⎧⎪∠=∠⎨⎪=⎩∴△MDN ≌△MDF ∴MF =MN ,在△AFM 中,由三角形的三边关系得:AM +AF >MF , ∴AM +CN >MNF图2N M DCBA(2)角平分线型例题5 如图,已知OC 平分∠AOB ,点E 、F 分别在边OA 、OB 上,且EC =FC .若∠AOB =60°,求∠ECF 的度数;OF E CBA解:过点C 作CM ⊥OB ,CN ⊥OA ,∵CM ⊥OB ,CN ⊥OA , ∴CNO CMO ∠=∠ ∵OC 平分∠AOB , ∴AOC BOC ∠=∠ 在△NOC 和△MOC 中,CNO CMO NOC MOC OC OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△NOC ≌△MOC ∴CN =CM ,在Rt △ECN 和Rt △FCM 中CN CMCE CF=⎧⎨=⎩ ∴Rt △ECN ≌Rt △FCM , ∴∠NCE =∠MCF ,∴∠AOB +∠ECF =∠AOB +∠NCM =180°, ∵∠AOB =60°, ∴∠ECF =120°;N M OF E CBA(3)K 型全等例题6王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和B 分别与木墙的顶端重合,求两堵木墙之间的距离.【解答】解:由题意得:AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE , ∴∠ADC =∠CEB =90°,∴∠ACD +∠BCE =90°,∠ACD +∠DAC =90°, ∴∠BCE =∠DAC , 在△ADC 和△CEB 中,ADC CEB DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADC ≌△CEB (AAS );由题意得:AD =EC =6cm ,DC =BE =14cm , ∴DE =DC +CE =20(cm ), 答:两堵木墙之间的距离为20cm .变式:如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD 上,转轴B 到地面的距离BD =3m .小亮在荡秋千过程中,当秋千摆动到最高点A 时,测得点A 到BD 的距离AC =2m ,点A 到地面的距离AE =1.8m ;当他从A 处摆动到A ′处时,有A 'B ⊥AB . (1)求A ′到BD 的距离; (2)求A ′到地面的距离.A '地面EDCB A32HF 1A '地面EDC BA解:(1)作A 'F ⊥BD ,垂足为F . ∵AC ⊥BD ,∴∠ACB =∠A 'FB =90°; 在Rt △A 'FB 中,∠1+∠3=90°; 又∵A 'B ⊥AB ,∴∠1+∠2=90°, ∴∠2=∠3;在△ACB 和△BF A '中,23ACB A FB AB A B '∠=∠⎧⎪∠=∠⎨⎪'=⎩∴△ACB ≌△BF A '(AAS ); ∴A 'F =BC∵AC ∥DE 且CD ⊥AC ,AE ⊥DE , ∴CD =AE =1.8;∴BC =BD -CD =3-1.8=1.2, ∴A 'F =1.2,即A '到BD 的距离是1.2m . (2)由(1)知:△ACB ≌△BF A ' ∴BF =AC =2m , 作A 'H ⊥DE ,垂足为H . ∵A 'F ∥DE , ∴A 'H =FD ,∴A 'H =BD -BF =3-2=1,即A '到地面的距离是1m .拓展提升:例题7(1)如图1:在四边形ABC 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点.且∠EAF =60°.探究图中线段BE ,EF ,FD 之间的数量关系并证明. (提示:延长CD 到G ,使得DG =BE ) (2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12 ∠BAD ,上述结论是否仍然成立,并说明理由;图1GDFECBA图2DFE CBAO图3N FEB A(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西20°的A 处,舰艇乙在指挥中心南偏东60°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.(可利用(2)的结论) 【解答】解:(1)EF =BE +DF ; 证明:如图1,延长FD 到G ,使DG =BE ,连接AG , 在△ABE 和△ADG 中,=B ADG DG BE AB AD =⎧∠=∠⎪⎨⎪⎩, ∴△ABE ≌△ADG (SAS ), ∴AE =AG ,∠BAE =∠DAG , ∵∠EAF =12 ∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF ,在△AEF 和△AGF 中,=EAF GA AE AG AF AF F =⎧=∠∠⎪⎨⎪⎩, ∴△AEF ≌△AGF (SAS ), ∴EF =FG ,∵FG =DG +DF =BE +DF , ∴EF =BE +DF ;(2)EF =BE +DF 仍然成立.证明:延长FD 到G ,使DG =BE ,连接AG , ∵∠B +∠ADC =180°,∠ADC +∠ADG =180°, ∴∠B =∠ADG , 在△ABE 和△ADG 中,=B ADG DG BE AB AD =⎧∠=∠⎪⎨⎪⎩, ∴△ABE ≌△ADG (SAS ), ∴AE =AG ,∠BAE =∠DAG , ∵∠EAF =12 ∠BAD , ∴∠GAF =∠DAG +∠DAF=∠BAE +∠DAF =∠BAD -∠EAF =∠EAF ,在△AEF 和△AGF 中,=EAF GA AE AG AF AF F =⎧=∠∠⎪⎨⎪⎩, ∴△AEF ≌△AGF (SAS ), ∴EF =FG ,∵FG =DG +DF =BE +DF , ∴EF =BE +DF ;(3)如图3,连接EF ,延长AE 、BF 相交于点C , ∵∠AOB =20°+90°+(90°-60°)=140°, ∠EOF =70°, ∴∠EOF =12 ∠AOB , 又∵OA =OB ,∠OAC +∠OBC =(90°-20°)+(60°+50°)=180°, ∴符合探索延伸中的条件, ∴结论EF =AE +BF 成立,即EF =1×(60+80)=140(海里). 答:此时两舰艇之间的距离是140海里.图2GDFECBAO图3N FECB A【课后练习】 一、选择题1.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB 是一个任意角,在边OA 、OB 上分别取OM =ON ,移动角尺,使角尺两边相同的到刻度分别与点M 、N 重合,过角尺顶点C 作射线OC 由此作法便可得△NOC ≌△MOC ,其依据是( )A.SSS B.SAS C.ASA D.AAS【解答】解:∵在△ONC和△OMC中ON OM CO CO NC MC=⎧⎪=⎨⎪=⎩,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.2.某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A.1B.2C.3D.4【解答】解:因为第2块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第2块.故选:B.3.如图,平安路与幸福路是两条平行的道路,且都与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处.如果小强同学站在平安路与新兴大街交叉路口,准备去书店,按图中的街道行走,最近的路程为()A .300mB .400mC .500mD .700m【解答】解:如图所示,设老街与平安路的交点为C .∵BC ∥AD ,∴∠DAE =∠ACB ,又∵BC ⊥AB ,DE ⊥AC ,∴∠ABC =∠DEA =90°,在△ABC 和△DEA 中ACB DAE CBA AED AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEA (AAS ),∴EA =BC =300m ,AC =AD =500m ,∴CE =AC -AE =200m ,从B 到E 有两种走法:①BA +AE =700m ;②BC +CE =500m ,∴最近的路程是500m .故选:C .二、填空题4.如图所示,将两根钢条AA ′、BB ′的中点O 连在一起,使AA ′、BB ′可以绕着点O 自由转动,就做成了一个测量工具,则A 'B '的长等于内槽宽AB ,那么判定△OAB ≌OA 'B '的理由是 SAS .【解答】解:∵OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△OAB≌△OA′B′(SAS)所以理由是SAS.5. 如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小红从水平位置CD下降40cm时,这时小明离地面的高度是90cm.【解答】解:在△OCF与△ODG中,OCF ODGCOF DOGOF OG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OCF≌△ODG(AAS),∴CF=DG=40,∴小明离地面的高度是50+40=90,故答案为:90.6.如图,在正方形ABCD中,AB=8厘米,如果动点P在线段AB上以2厘米/秒的速度由A点向B点运动,同时动点Q在以1厘米/秒的速度线段BC上由C点向B点运动,当点P到达B点时整个运动过程停止.设运动时间为t秒,当AQ⊥DP时,t的值为秒.Q PDCB A【解答】解:∵四边形ABCD 是正方形∴AD =AB ,∠B =∠BAD =90°∵AQ ⊥DP∴∠QAD +∠ADP =90°,且∠DAQ +∠BAQ =90°∴∠BAQ =∠ADP ,在△ABQ 和△DAP 中==BAQ ADP AB AD B BAD ⎧∠∠=∠∠⎪⎨⎪⎩∴△ABQ ≌△DAP (ASA )∴AP =CQ∴2t =8-t∴t =83故答案为:83三、解答题7.为了测量一幢高楼高AB ,在旗杆CD 与楼之间选定一点P .测得旗杆顶C 视线PC 与地面夹角∠DPC =38°,测楼顶A 视线P A 与地面夹角∠APB =52°,量得P 到楼底距离PB 与旗杆高度相等,等于8米,量得旗杆与楼之间距离为DB =33米,计算楼高AB 是多少米?PD B【解答】解:∵∠CPD=38°,∠APB=52°,∠CDP=∠ABP=90°,∴∠DCP=∠APB=52°,在△CPD和△P AB中∵CDP ABPDC PBDCP APB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CPD≌△P AB(ASA),∴DP=AB,∵DB=33,PB=8,∴AB=33-8=25(m),答:楼高AB是25米.8.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.【解答】(1)解:河的宽度是5m ;(2)证明:由作法知,BC =DC ,∠ABC =∠EDC =90°,在△ABC 和△EDC 中,ABC EDC BC DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△EDC (ASA ),∴AB =ED ,即他们的做法是正确的.9.如图,点C 、E 分别在直线AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF ,再找出CF 的中点O ,然后连结EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补,而且他还发现BC =EF .小华的想法对吗?为什么?O F E D CBA解:∵O 是CF 的中点,∴CO =FO (中点的定义)在△COB 和△FOE 中=COB EO CO FO EO BO F =⎧=∠∠⎪⎨⎪⎩,∴△COB ≌△FOE (SAS )∴BC =EF (对应边相等)∠BCO =∠F (对应角相等)∴AB ∥DF (内错角相等,两直线平行)∴∠ACE 和∠DEC 互补(两直线平行,同旁内角互补),10.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB ,BC ,AD 不动,AB =AD =2cm ,BC =5cm ,如图,量得第四根木条CD =5cm ,判断此时∠B 与∠D 是否相等,并说明理由.(2)若固定一根木条AB 不动,AB =2cm ,量得木条CD =5cm ,如果木条AD ,BC 的长度不变,当点D 移到BA 的延长线上时,点C 也在BA 的延长线上;当点C 移到AB 的延长线上时,点A 、C 、D 能构成周长为30cm 的三角形,求出木条AD ,BC 的长度.D CBA解:(1)相等.理由:连接AC ,在△ACD 和△ACB 中,∵AC AC AD AB CD BC =⎧⎪=⎨⎪=⎩,∴△ACD ≌△ACB (SSS ),∴∠B =∠D ;D CBA(2)设AD =x ,BC =y , 由题意点C 在点D 右侧,可得25(2)530x y x y +=+⎧⎨+++=⎩, 解得1310x y =⎧⎨=⎩;∴AD =13cm ,BC =10cm .。

利用三角形全等解决实际问题

利用三角形全等解决实际问题

利用三角形全等解决实际问题三角形全等是几何学中的一个重要概念,它具有广泛的应用。

通过运用三角形全等,我们可以解决实际生活和工作中的很多问题。

本文将介绍三角形全等的定义与性质,并通过几个实例来说明如何利用三角形全等解决实际问题。

三角形全等定义与性质在几何学中,三角形全等是指两个三角形的对应边和对应角完全相等。

当两个三角形的三个边和三个角分别相等时,我们可以得出这两个三角形全等的结论。

换句话说,如果两个三角形的三个边长度和三个夹角大小分别相等,那么这两个三角形就是全等的。

利用三角形全等解决实际问题的实例例1:测量高楼的高度假设我们在测量一座高楼的高度时,无法直接测量,但我们可以通过测量影子的长度来获得一些有用的信息。

为了解决这个问题,我们可以利用三角形全等的原理。

首先,选择一棵垂直于地面的直杆,使得直杆的长度和影子的长度成等比例。

然后,测量直杆的长度和它的投影长度,以及高楼的投影长度。

由于直杆和高楼的投影都是等比例关系,而直杆和影子之间的三角形是全等的,我们可以通过设置一个方程组来解决问题,从而计算出高楼的高度。

例2:求解行走距离假设我们需要从A点到B点行走,但由于某些原因,我们只能从A 点看到B点的某一侧,不直接看到B点。

为了确定行走的距离,我们可以利用三角形全等原理。

首先,从A点出发,设想一条虚拟的直线使其与B点相连。

然后,选择一个合适的地方设立一个测量点C,使得C点能够和B点连成一条直线。

测量AC的长度和∠C的角度。

由于三角形ABC与实际的三角形ABD是全等的,我们可以通过计算得到BD的长度,进而确定行走的距离。

总结通过本文的介绍,我们了解了三角形全等的定义与性质,并且通过两个实际问题的解决,展示了如何利用三角形全等来解决实际问题。

三角形全等在几何学中发挥着重要的作用,通过合理运用三角形全等的原理,我们可以解决许多实际问题,提升工作和生活的效率。

虽然本文只提供了两个实例,但是通过进一步的学习和实践,我们可以应用三角形全等的原理解决更多的实际问题。

全等三角形六种常见的实际应用

全等三角形六种常见的实际应用

专训1六种常见的实际应用名师点金:利用三角形全等解决实际问题的步骤:(1)明确应用哪些知识来解决实际问题;(2)根据实际问题抽象出几何图形;(3)结合图形和题意分析已知条件;(4)找到已知与未知的联系,寻求恰当的解决途径,并表述清楚.利用三角形全等测量能到两端的距离1.如图,为了测量出池塘两端A,B之间的距离,在地面上找到一点C,连接BC,AC,使∠ACB=90°,然后在BC的延长线上确定点D,使CD=BC,那么只要测量出AD的长度就得到了A,B两点之间的距离.你能说明其中的道理吗(第1题)利用三角形全等求两端的距离2.【中考·宜昌】杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,|如图,AB∥OH∥CD,相邻两平行线间的距离相等.AC,BD相交于O,OD⊥CD垂足为D.已知AB=20米.请根据上述信息求标语CD的长度.(第2题)利用三角形全等测量物体的内径3.如图,已知零件的外径为a,要求它的厚度x,动手制作一个简单的工具,利用三角形全等的知识,求出x.(第3题)利用三角形全等解决工程中的问题4.如图,工人师傅要在墙壁的点O处用钻打孔,要使孔口从墙壁对面的点B处打开,墙壁厚35 cm,点B与点O的垂直距离AB长20 cm,在点O处作一直线平行于地面,再在直线上截取OC=35 cm,过点C作OC的垂线,在垂线上截取CD=20 cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从点B处打出,这是什么道理`(第4题)利用三角形全等解决面积问题5.育新中学校园内有一块直角三角形(Rt△ABC,∠BAC=90°)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了一串红,在△ACD区域内种植了鸡冠花,并量得两直角边AB=20 m,AC=10 m,求两种花草的种植面积各是多少.(第5题)利用角平分线的判定和性质设计方案6.如图,湖边的三条公路两两相交于A,B,C三点,现计划修建一个商品超市,要求这个超市到三条公路的距离相等,则可供选择的地方有多少处【导学号:】(第6题)答案1.解:因为∠ACB=90°,所以∠ACD=180°-∠ACB=90°.在△ABC和△ADC中,、⎩⎪⎨⎪⎧BC =DC ,∠ACB=∠ACD,AC =AC ,所以△ABC≌△ADC (SAS ). 所以AB =AD. 2.解:∵AB∥DC, ∴∠ABO=∠CDO. 又∵DO⊥CD, ∴∠CDO=90°,∴∠ABO=90°,即BO⊥AB, ∵相邻两平行线间的距离相等, ∴BO=DO.又∵∠AOB=∠COD, ∴△BOA≌△DOC.{∴CD=AB =20米.(第3题)3.解:可设计如图所示的工具,其中O 为AC ,BD 的中点. 在△AOB 和△COD 中, ⎩⎪⎨⎪⎧AO =CO ,∠AOB=∠COD,BO =DO ,所以△AOB≌△COD (SAS ).所以AB =CD ,即CD 的长就是A ,B 间的距离. 因为AB =a -2x , 所以x =a -AB 2=a -CD 2.4.解:在△AOB 和△COD 中,!⎩⎪⎨⎪⎧OA =OC ,∠OAB=∠OCD=90°,AB =CD ,所以△AOB≌△COD (SAS ). 所以∠AOB=∠COD.又因为∠AOB+∠BOC=180°, 所以∠BOC+∠COD=180°,即∠BOD=180°.所以D ,O ,B 三点在同一条直线上. 所以钻头沿着DO 的方向打孔,一定从点B 处打出. 5.解:由已知,AB =20 m ,AC =10 m .在Rt △ABC 的边AB 上取点E ,使AE =AC =12AB.连接DE.∵AD 是∠BAC 的平分线, ∴∠CAD=∠BAD.~又∵AD 是△ACD 和△AED 的公共边, ∴△ACD≌△AED (SAS ). ∴S △ACD =S △AED .又易得S △AED =S △BED =12S △ABD .∴S △ACD =13S △ABC =16×20×10=1003 m 2.S △ABD =2003m 2.答:一串红的种植面积是2003 m 2,鸡冠花的种植面积是1003 m 2.6.解:如图所示.①作出△ABC 的两个内角的平分线,其交点为O 1; ②分别作出△ABC 外角平分线,其交点分别为O 2,O 3. 故满足条件的修建点有三处,即点O 1,O 2,O 3.(第6题)点拨:解题的关键是分情况讨论:分所选位置在三条公路所围三角形的内部和外部两种情况.本章角平分线的性质和判定定理尚未学到,但结合全等三角形的判定及性质,很容易理解角平分线的性质及判定定理.前后呼应相得益彰.。

全等三角形在实际生活中的应用

全等三角形在实际生活中的应用

全等三角形在实际生活中的应用2012-06-05 20:33:53| 分类:默认分类|字号订阅在现实生活中,有很多问题需要用全等三角形的知识来解决。

下面,我们举例谈谈全等三角形在实际生活中的应用。

例1(教材151页)、有一池塘,要测池塘两端A、B间的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA,连结BC并延长到E,使CE=CB,连结DE,量出DE的长,这个长就是A、B之间的距离。

(1)按题中要求画图。

(2)说明DE=AB的理由,并试着把说明的过程写出来。

解:(1)如图1。

(2)因为在△ABC和△DEC中,所以△ABC≌△DEC所以DE=AB例2、如图2,某同学把一块三角形的玻璃摔成了三块,现要到玻璃店去配一块大小、形状完全相同的玻璃,那么他可以()A.带①去B.带②去C.带③去D.带①和②去。

析解:怎样做一个三角形与已知三角形全等,可以依据全等三角形的判定方法进行具体分析,题目中的一块三角形的玻璃被摔成三块,其中①仅留一个角,仅凭一个角无法做出全等三角形;而②没边没角;③存在两角和夹边,于是根据“ASA”不难做出与原三角形全等的三角形。

故应选C。

例3、如图3、小红和小亮两家分别位于A、B两处隔河相望,要测得两家之间的距离,请你设计出测量方案。

分析:本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,使一个三角形在河岸的同一边,通过测量这个三角形中与AB相等的线段的长,就可求出两家的距离。

方案:如图3,在点B所在的河岸上取点C,连结BC并延长到D,使CD=CB,利用测角仪器使得∠B=∠D,A、C、E三点在同一直线上。

测量出DE的长,就是AB的长。

因为∠B=∠D,CD=CB,∠ACB=∠ECD,所以△ACB≌△ECD所以AB=DE。

例4、如图4,点C是路段AB的中点,两人从C点同时出发,以相同的速度分别沿两条直线行走,并同时到过D、E两地,DA⊥AB,EB⊥AB,D、E到路段AB的距离相等吗?为什么?分析:因为两人是以相同的速度从点C同时出发,且同时到达D、E两点,所以CD=CE。

全等三角形的重要意义及其应用——三角形学习方案二

全等三角形的重要意义及其应用——三角形学习方案二

全等三角形的重要意义及其应用——三角形学习方案二。

全等三角形的重要意义:
1.全等三角形是数学中最基本和最重要的概念之一。

全等三角形的研究是三角形学习的核心,也是建立在三角形学习基础之上的。

2.全等三角形的研究可以帮助学生进一步了解三角形的性质、特征和规律,掌握三角形的分类和判定方法,提高数学思维能力和解决问题的能力。

3.全等三角形的研究也可以帮助学生认识到三角形的基本概念和几何学基本原理,这些基本概念和原理对于后续数学学习和其他学科的学习都具有重要的作用。

全等三角形的应用:
1.在测量工程中,全等三角形可以用于求解长度、角度和面积等量值。

通过全等三角形的基本理论,可以快速且准确地确定不可直接测量的物理量。

2.在建筑工程和城市规划领域中,全等三角形的基本原理也是很重要的。

通过分析和应用全等三角形的基本原理,可以预测建筑物和城市中的各种形状和结构的稳定性,确保它们能够在各种情况下各自保持平衡和稳定。

3.在机械制造、航空航天和船舶工程等领域中,全等三角形
也是很重要的。

在这些领域中,人们需要准确地计算和设计各种机件和结构,而全等三角形的基本原理可以帮助人们快速计算、确定和设计这些结构。

全等三角形是三角形学习和数学学科中最基本的概念之一。

通过研究和应用全等三角形,不仅可以帮助学生加深对三角形的认识和理解,还能让他们更好地掌握数学思维方法和解决问题的能力。

同时,全等三角形也被广泛地应用于各个领域,为我们的生活和工作提供了良好的支持和帮助。

相似三角形和全等三角形

相似三角形和全等三角形

相似三角形和全等三角形相似三角形和全等三角形是初中数学中的重要知识点,本文将分别介绍相似三角形和全等三角形的定义、性质以及应用。

一、相似三角形1. 定义相似三角形是指具有相同形状但大小不同的三角形。

即两个三角形的对应角度相等,但对应边长不相等。

2. 性质相似三角形有一些重要的性质:(1) 相似三角形的对应边成比例。

(2) 相似三角形的对应高线、中线、角平分线也成比例。

(3) 相似三角形的面积成比例的平方。

(4) 相似三角形的周长成比例。

(5) 相似三角形的内角和相等。

3. 应用相似三角形在实际应用中有着广泛的用途。

比如:(1) 制图时,可以利用相似三角形的性质,根据已知图形的大小比例绘制出所需图形。

(2) 在建筑工程中,可以通过相似三角形的性质,测量出高度、距离等。

(3) 在计算机图形学中,利用相似三角形的性质,可以将一个图形放大或缩小。

二、全等三角形1. 定义全等三角形是指具有相同大小和形状的三角形。

即两个三角形的对应边长相等,对应角度也相等。

2. 性质全等三角形有一些重要的性质:(1) 全等三角形的对应角度相等。

(2) 全等三角形的对应边相等。

(3) 全等三角形的对应高线、中线、角平分线也相等。

(4) 全等三角形的面积相等。

(5) 全等三角形的周长相等。

3. 应用全等三角形在实际应用中也有着广泛的用途。

比如:(1) 在建筑工程中,可以利用全等三角形的性质,确定角度、距离等。

(2) 在制图时,可以利用全等三角形的性质,绘制出所需图形。

(3) 在计算机图形学中,利用全等三角形的性质,可以进行图形变换,如旋转、平移等。

相似三角形和全等三角形在数学和实际应用中有着广泛的用途。

掌握它们的定义、性质和应用,对于提高数学水平和解决实际问题都具有重要意义。

全等直角三角形在实际生活中的应用

全等直角三角形在实际生活中的应用

全等直角三角形在实际生活中的应用全等直角三角形是一种非常常见且有趣的几何形状。

它在实际生活中有许多应用,下面将介绍其中一些。

建筑设计全等直角三角形在建筑设计中经常被用来计算和确定角度、长度和比例关系。

例如,在设计一个房屋的楼顶斜坡时,建筑师可以利用全等直角三角形的性质来确定合适的斜坡角度以及相关的长度关系。

地理测量全等直角三角形被广泛应用于地理测量领域。

它们可以用来测量难以达到的地点的高度或长度。

例如,在测量一个高山的高度时,可以使用全等直角三角形的原理来计算高山的高度与测量地点的距离。

航海导航全等直角三角形在航海导航中也起着重要的作用。

通过使用全等直角三角形的特性来测量方向和角度,船舶的航向和位置可以被准确地确定。

这对于导航和航海安全至关重要。

数学教学全等直角三角形在数学教学中是一个重要的概念,它帮助学生理解几何学基本原理。

通过实际应用,学生可以更容易地理解全等直角三角形的性质,并将其应用到解决实际问题中。

工程设计除了建筑设计之外,全等直角三角形在其他工程设计领域也起着重要的作用。

例如,在电子工程中,全等直角三角形的性质可以帮助工程师计算电路元件的有效阻抗和相位差。

这对于电路的正确设计和性能优化至关重要。

总结全等直角三角形在实际生活中有许多应用。

无论是在建筑设计、地理测量、航海导航还是数学教学和工程设计中,全等直角三角形的性质都发挥着重要的作用。

了解并应用这些性质可以帮助我们更好地理解和解决实际问题。

全等三角形在生活中的应用

全等三角形在生活中的应用

‘ :AB} }CD.
.‘.[ B=£C.
C

D

图l
又。? BE=CF,BM=CM,
{
面汹}2歹
.·.△BME錾△CMF ?。厶EMB=厶FMC. 7.厶EMF=厶EMB七厶BMF=厶FMC+厶BMF=厶BMC=1 800,
故三条石凳E、F、M恰好在同一条直线上. 二、说理型 例2小丽同学的三角形红领巾如图2所示,不小心撕下了一 个角,小丽想找一块同色 的布料缝补,想出了以下
离的方法,并说明其中的道理. 分析:本题是一道开放性试题,答案不唯
一.如图5,解题的关键是构造出△ABC錾
△ 肋 C, 利 用 全 等 三 角 形 的 性 质 得 肋 =AB, 从

而得出被测距离.解决方案设计型问题通常要 先画出草图.
解: 如图5,在 AB的 垂线卯 上取两 点c 、D,使 cD=曰C,作BF的垂
的 中 点 上 . 试 判 断 三 条 石 凳 E、 肘 、 胎 好 在 同 一 条 直 线 上 吗 ?请 说 明
理由.
分析:要判断三条石凳E、膨、别是 A
E
B
否 在 同 一 条 直 线 上 , 只 要 判 断 £ E胛
=180。是否成立.
解:三条石凳E、,、M恰好在同一
条直线上.理由如下:
连 结 觚 、 MF
线DE,使A、c、E在同一条直线上,根据“A鼢”可以证明△ABc兰
△ 肋 C, 从 而 得 肋 =A曰 . 因 此 , 测 得 册 的 长 就 是 A、 B
两点之间的距离.
评点:在测量某些不 能直接到达的两点之间
的距离时,常常通过作出 新的图形,将它从一个位置转化到另一个能够测出的与之相等的

苏科版八上数学专题 三角形全等的简单应用

苏科版八上数学专题 三角形全等的简单应用

三角形全等的简单应用【学习目标】1.感受三角形全等在生活中的应用;2.能够用三角形全等解决一些实际问题及运动型问题.【典型例题】一.生活中的应用例题1.如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.小河北BA例题2如图,两根长12m的绳子,一端系在旗杆上的同一位置,另一端分别固定在地面上的两个木桩上(绳结处的误差忽略不计),现在只有一把卷尺,如何来检验旗杆是否垂直于地面?请说明理由.DB二.运动型问题中的应用例题3 如图,AB =6cm ,AC =BD =4cm .∠CAB =∠DBA ,点P 在线段AB 上以2cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为t (s ).设点Q 的运动速度为x cm/s ,若使得△ACP 与△BPQ 全等,则x 的值为 .QPDCBA三.全等应用的几个重要模型 (1)中线型例题4 (1)阅读理解:如图1,在△ABC 中,若AB =10,BC =8.求AC 边上的中线BD 的取值范围.小聪同学是这样思考的:延长BD 至E 使DE =BD ,连结CE.利用全等将边AB 转化到CE ,在△BCE 中利用三角形三边关系即可求出中线BD 的取值范围.在这个过程中小聪同学证三角形全等用到的判定方法是 ;中线BD 的取值范围是 .(2)问题解决:如图2,在△ABC 中,点D 是AC 的中点,点M 在AB 边上,点N 在BC 边上,若DM ⊥DN .求证:AM +CN >MN .图1E DCBA图2N M D CBA(2)角平分线型例题5 如图,已知OC 平分∠AOB ,点E 、F 分别在边OA 、OB 上,且EC =FC .若∠AOB =60°,求∠ECF 的度数;OF E CBA(3)K 型全等例题6王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和B 分别与木墙的顶端重合,求两堵木墙之间的距离.变式:如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD 上,转轴B 到地面的距离BD =3m .小亮在荡秋千过程中,当秋千摆动到最高点A 时,测得点A 到BD 的距离AC =2m ,点A 到地面的距离AE =1.8m ;当他从A 处摆动到A ′处时,有A 'B ⊥AB . (1)求A ′到BD 的距离; (2)求A ′到地面的距离.A '地面ED CB A32HF 1A '地面EDC BA拓展提升:例题7(1)如图1:在四边形ABC 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点.且∠EAF =60°.探究图中线段BE ,EF ,FD 之间的数量关系并证明. (提示:延长CD 到G ,使得DG =BE )(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12 ∠BAD ,上述结论是否仍然成立,并说明理由;图1GDFECBA图2DFE CBAO图3N FEB A(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西20°的A 处,舰艇乙在指挥中心南偏东60°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.(可利用(2)的结论)【课后练习】 一、选择题1.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB 是一个任意角,在边OA 、OB 上分别取OM =ON ,移动角尺,使角尺两边相同的到刻度分别与点M 、N 重合,过角尺顶点C 作射线OC 由此作法便可得△NOC ≌△MOC ,其依据是( )A .SSSB .SASC .ASAD .AAS2.某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A.1B.2C.3D.43.如图,平安路与幸福路是两条平行的道路,且都与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处.如果小强同学站在平安路与新兴大街交叉路口,准备去书店,按图中的街道行走,最近的路程为()A.300m B.400m C.500m D.700m二、填空题4.如图所示,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工具,则A'B'的长等于内槽宽AB,那么判定△OAB≌OA'B'的理由是.5. 如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小红从水平位置CD下降40cm时,这时小明离地面的高度是90cm.6.如图,在正方形ABCD 中,AB =8厘米,如果动点P 在线段AB 上以2厘米/秒的速度由A 点向B 点运动,同时动点Q 在以1厘米/秒的速度线段BC 上由C 点向B 点运动,当点P 到达B 点时整个运动过程停止.设运动时间为t 秒,当AQ ⊥DP 时,t 的值为 秒.QP DCBA三、解答题7.为了测量一幢高楼高AB ,在旗杆CD 与楼之间选定一点P .测得旗杆顶C 视线PC 与地面夹角∠DPC =38°,测楼顶A 视线P A 与地面夹角∠APB =52°,量得P 到楼底距离PB 与旗杆高度相等,等于8米,量得旗杆与楼之间距离为DB =33米,计算楼高AB 是多少米?P D B8.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B 点,选对岸正对的一棵树A ; ②沿河岸直走20m 有一树C ,继续前行20m 到达D 处;③从D 处沿河岸垂直的方向行走,当到达A 树正好被C 树遮挡住的E 处停止行走;④测得DE 的长为5米. 求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.9.如图,点C 、E 分别在直线AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF ,再找出CF 的中点O ,然后连结EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补,而且他还发现BC =EF .小华的想法对吗?为什么?OFED C BA10.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形. (1)若固定三根木条AB ,BC ,AD 不动,AB =AD =2cm ,BC =5cm ,如图,量得第四根木条CD =5cm ,判断此时∠B 与∠D 是否相等,并说明理由. (2)若固定一根木条AB 不动,AB =2cm ,量得木条CD =5cm ,如果木条AD ,BC 的长度不变,当点D 移到BA 的延长线上时,点C 也在BA 的延长线上;当点C 移到AB 的延长线上时,点A 、C 、D 能构成周长为30cm 的三角形,求出木条AD ,BC 的长度.DCBA【典型例题】一.生活中的应用例题1.如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.小河北BA【解答】解:(1)根据题意画出图形,如图所示.ED C(2)由题可知∠BAC=∠EDC=90°,60cm=0.6m,AC=20×0.6=12m,DC=20×0.6=12m,DE=100×0.6=60m,∵点E、C、B在一条直线上,∴∠DCE=∠ACB.在△ABC 和△DEC 中,===BAC EDC AC DCDCE ACB ∠∠∠∠⎧⎪⎨⎪⎩∴△ABC ≌△DEC , ∴AB =DE . ∵DE =60m , ∴AB =60m ,答:A 、B 两根电线杆之间的距离大约为60m .例题2如图,两根长12m 的绳子,一端系在旗杆上的同一位置,另一端分别固定在地面上的两个木桩上(绳结处的误差忽略不计),现在只有一把卷尺,如何来检验旗杆是否垂直于地面?请说明理由.B【解答】解:用卷尺测量出BD 、CD ,看它们是否相等,若BD =CD ,则AD ⊥BC .理由如下:∵在△ABD 和△ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩, ∴△ABD ≌△ACD (SSS ), ∴∠ADB =∠ADC ,又∵∠ADB +∠ADC =180°,∴∠ADB =∠ADC =90°, 即AD ⊥BC .二.运动型问题中的应用例题3 如图,AB =6cm ,AC =BD =4cm .∠CAB =∠DBA ,点P 在线段AB 上以2cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为t (s ).设点Q 的运动速度为x cm/s ,若使得△ACP 与△BPQ 全等,则x 的值为 .QPDCBA【解答】解:当△ACP ≌△BPQ , ∴AP =BQ , ∵运动时间相同,∴P ,Q 的运动速度也相同, ∴x =2(s ).当△ACP ≌△BQP 时, AC =BQ =4,P A =PB , ∴t =1.5, ∴x =41.5=83(s ) ∴综上所述,x 的值为2或83s .三.全等应用的几个重要模型 (1)中线型例题4 (1)阅读理解:如图1,在△ABC 中,若AB =10,BC =8.求AC 边上的中线BD 的取值范围.小聪同学是这样思考的:延长BD 至E 使DE =BD ,连结CE.利用全等将边AB 转化到CE ,在△BCE 中利用三角形三边关系即可求出中线BD 的取值范围.在这个过程中小聪同学证三角形全等用到的判定方法是 ;中线BD 的取值范围是 .(2)问题解决:如图2,在△ABC 中,点D 是AC 的中点,点M 在AB 边上,点N 在BC 边上,若DM ⊥DN .求证:AM +CN >MN .图1E DCBA图2N M D CB A【解答】(1)解:∵BD 是AC 边上的中线, ∴AD =CD ,在△ABD 和△CED 中,=ADB CD AD CD BD ED E =⎧=∠∠⎪⎨⎪⎩, ∴△ABD ≌△CED (SAS ), ∴CE =AB =10,在△CBE 中,由三角形的三边关系得:CE -BC <BE <CE -BC , ∴10-8<BE <10+8,即2<BE <18, ∴1<BD <9;故答案为:SAS ;1<BD <9;(2)证明:延长ND 至点F ,使FD =ND ,连接AF 、MF , 同(1)得:△AFD ≌△CND (SAS ), ∴AF =CN ,FD =ND , ∵DM ⊥DN ,∴MDN MDF ∠=∠=90° 在△MDN 和△MDF 中,MD MD MDN MDF DN DF =⎧⎪∠=∠⎨⎪=⎩∴△MDN ≌△MDF ∴MF =MN ,在△AFM 中,由三角形的三边关系得:AM +AF >MF , ∴AM +CN >MNF图2N M DCBA(2)角平分线型例题5 如图,已知OC 平分∠AOB ,点E 、F 分别在边OA 、OB 上,且EC =FC .若∠AOB =60°,求∠ECF 的度数;OF E CBA解:过点C 作CM ⊥OB ,CN ⊥OA ,∵CM ⊥OB ,CN ⊥OA , ∴CNO CMO ∠=∠ ∵OC 平分∠AOB , ∴AOC BOC ∠=∠ 在△NOC 和△MOC 中,CNO CMO NOC MOC OC OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△NOC ≌△MOC ∴CN =CM ,在Rt △ECN 和Rt △FCM 中CN CMCE CF=⎧⎨=⎩ ∴Rt △ECN ≌Rt △FCM , ∴∠NCE =∠MCF ,∴∠AOB +∠ECF =∠AOB +∠NCM =180°, ∵∠AOB =60°, ∴∠ECF =120°;N M OF E CBA(3)K 型全等例题6王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和B 分别与木墙的顶端重合,求两堵木墙之间的距离.【解答】解:由题意得:AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE , ∴∠ADC =∠CEB =90°,∴∠ACD +∠BCE =90°,∠ACD +∠DAC =90°, ∴∠BCE =∠DAC , 在△ADC 和△CEB 中,ADC CEB DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADC ≌△CEB (AAS );由题意得:AD =EC =6cm ,DC =BE =14cm , ∴DE =DC +CE =20(cm ), 答:两堵木墙之间的距离为20cm .变式:如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD 上,转轴B 到地面的距离BD =3m .小亮在荡秋千过程中,当秋千摆动到最高点A 时,测得点A 到BD 的距离AC =2m ,点A 到地面的距离AE =1.8m ;当他从A 处摆动到A ′处时,有A 'B ⊥AB . (1)求A ′到BD 的距离; (2)求A ′到地面的距离.A '地面ED CB A32HF 1A '地面EDC BA解:(1)作A 'F ⊥BD ,垂足为F . ∵AC ⊥BD ,∴∠ACB =∠A 'FB =90°; 在Rt △A 'FB 中,∠1+∠3=90°; 又∵A 'B ⊥AB ,∴∠1+∠2=90°, ∴∠2=∠3;在△ACB 和△BF A '中,23ACB A FB AB A B '∠=∠⎧⎪∠=∠⎨⎪'=⎩∴△ACB ≌△BF A '(AAS ); ∴A 'F =BC∵AC ∥DE 且CD ⊥AC ,AE ⊥DE , ∴CD =AE =1.8;∴BC =BD -CD =3-1.8=1.2, ∴A 'F =1.2,即A '到BD 的距离是1.2m . (2)由(1)知:△ACB ≌△BF A ' ∴BF =AC =2m , 作A 'H ⊥DE ,垂足为H . ∵A 'F ∥DE , ∴A 'H =FD ,∴A 'H =BD -BF =3-2=1,即A '到地面的距离是1m .拓展提升:例题7(1)如图1:在四边形ABC 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点.且∠EAF =60°.探究图中线段BE ,EF ,FD 之间的数量关系并证明. (提示:延长CD 到G ,使得DG =BE ) (2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12 ∠BAD ,上述结论是否仍然成立,并说明理由;图1GDFECBA图2DFE CBAO图3N FEB A(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西20°的A 处,舰艇乙在指挥中心南偏东60°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.(可利用(2)的结论) 【解答】解:(1)EF =BE +DF ; 证明:如图1,延长FD 到G ,使DG =BE ,连接AG , 在△ABE 和△ADG 中,=B ADG DG BE AB AD =⎧∠=∠⎪⎨⎪⎩, ∴△ABE ≌△ADG (SAS ), ∴AE =AG ,∠BAE =∠DAG , ∵∠EAF =12 ∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF ,在△AEF 和△AGF 中,=EAF GA AE AG AF AF F =⎧=∠∠⎪⎨⎪⎩, ∴△AEF ≌△AGF (SAS ), ∴EF =FG ,∵FG =DG +DF =BE +DF , ∴EF =BE +DF ;(2)EF =BE +DF 仍然成立.证明:延长FD 到G ,使DG =BE ,连接AG , ∵∠B +∠ADC =180°,∠ADC +∠ADG =180°, ∴∠B =∠ADG , 在△ABE 和△ADG 中,=B ADG DG BE AB AD =⎧∠=∠⎪⎨⎪⎩, ∴△ABE ≌△ADG (SAS ), ∴AE =AG ,∠BAE =∠DAG , ∵∠EAF =12 ∠BAD , ∴∠GAF =∠DAG +∠DAF=∠BAE +∠DAF =∠BAD -∠EAF =∠EAF ,在△AEF 和△AGF 中,=EAF GA AE AG AF AF F =⎧=∠∠⎪⎨⎪⎩, ∴△AEF ≌△AGF (SAS ), ∴EF =FG ,∵FG =DG +DF =BE +DF , ∴EF =BE +DF ;(3)如图3,连接EF ,延长AE 、BF 相交于点C , ∵∠AOB =20°+90°+(90°-60°)=140°, ∠EOF =70°, ∴∠EOF =12 ∠AOB , 又∵OA =OB ,∠OAC +∠OBC =(90°-20°)+(60°+50°)=180°, ∴符合探索延伸中的条件, ∴结论EF =AE +BF 成立,即EF =1×(60+80)=140(海里). 答:此时两舰艇之间的距离是140海里.图2GDFECBAO图3N FECB A【课后练习】 一、选择题1.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB 是一个任意角,在边OA 、OB 上分别取OM =ON ,移动角尺,使角尺两边相同的到刻度分别与点M 、N 重合,过角尺顶点C 作射线OC 由此作法便可得△NOC ≌△MOC ,其依据是( )A.SSS B.SAS C.ASA D.AAS【解答】解:∵在△ONC和△OMC中ON OM CO CO NC MC=⎧⎪=⎨⎪=⎩,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.2.某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A.1B.2C.3D.4【解答】解:因为第2块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第2块.故选:B.3.如图,平安路与幸福路是两条平行的道路,且都与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处.如果小强同学站在平安路与新兴大街交叉路口,准备去书店,按图中的街道行走,最近的路程为()A .300mB .400mC .500mD .700m【解答】解:如图所示,设老街与平安路的交点为C .∵BC ∥AD ,∴∠DAE =∠ACB ,又∵BC ⊥AB ,DE ⊥AC ,∴∠ABC =∠DEA =90°,在△ABC 和△DEA 中ACB DAE CBA AED AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEA (AAS ),∴EA =BC =300m ,AC =AD =500m ,∴CE =AC -AE =200m ,从B 到E 有两种走法:①BA +AE =700m ;②BC +CE =500m ,∴最近的路程是500m .故选:C .二、填空题4.如图所示,将两根钢条AA ′、BB ′的中点O 连在一起,使AA ′、BB ′可以绕着点O 自由转动,就做成了一个测量工具,则A 'B '的长等于内槽宽AB ,那么判定△OAB ≌OA 'B '的理由是 SAS .【解答】解:∵OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△OAB≌△OA′B′(SAS)所以理由是SAS.5. 如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小红从水平位置CD下降40cm时,这时小明离地面的高度是90cm.【解答】解:在△OCF与△ODG中,OCF ODGCOF DOGOF OG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OCF≌△ODG(AAS),∴CF=DG=40,∴小明离地面的高度是50+40=90,故答案为:90.6.如图,在正方形ABCD中,AB=8厘米,如果动点P在线段AB上以2厘米/秒的速度由A点向B点运动,同时动点Q在以1厘米/秒的速度线段BC上由C点向B点运动,当点P到达B点时整个运动过程停止.设运动时间为t秒,当AQ⊥DP时,t的值为秒.Q PDCB A【解答】解:∵四边形ABCD 是正方形∴AD =AB ,∠B =∠BAD =90°∵AQ ⊥DP∴∠QAD +∠ADP =90°,且∠DAQ +∠BAQ =90°∴∠BAQ =∠ADP ,在△ABQ 和△DAP 中==BAQ ADP AB AD B BAD ⎧∠∠=∠∠⎪⎨⎪⎩∴△ABQ ≌△DAP (ASA )∴AP =CQ∴2t =8-t∴t =83故答案为:83三、解答题7.为了测量一幢高楼高AB ,在旗杆CD 与楼之间选定一点P .测得旗杆顶C 视线PC 与地面夹角∠DPC =38°,测楼顶A 视线P A 与地面夹角∠APB =52°,量得P 到楼底距离PB 与旗杆高度相等,等于8米,量得旗杆与楼之间距离为DB =33米,计算楼高AB 是多少米?PD B【解答】解:∵∠CPD=38°,∠APB=52°,∠CDP=∠ABP=90°,∴∠DCP=∠APB=52°,在△CPD和△P AB中∵CDP ABPDC PBDCP APB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CPD≌△P AB(ASA),∴DP=AB,∵DB=33,PB=8,∴AB=33-8=25(m),答:楼高AB是25米.8.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.【解答】(1)解:河的宽度是5m ;(2)证明:由作法知,BC =DC ,∠ABC =∠EDC =90°,在△ABC 和△EDC 中,ABC EDC BC DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△EDC (ASA ),∴AB =ED ,即他们的做法是正确的.9.如图,点C 、E 分别在直线AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF ,再找出CF 的中点O ,然后连结EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补,而且他还发现BC =EF .小华的想法对吗?为什么?O F E D CBA解:∵O 是CF 的中点,∴CO =FO (中点的定义)在△COB 和△FOE 中=COB EO CO FO EO BO F =⎧=∠∠⎪⎨⎪⎩,∴△COB ≌△FOE (SAS )∴BC =EF (对应边相等)∠BCO =∠F (对应角相等)∴AB ∥DF (内错角相等,两直线平行)∴∠ACE 和∠DEC 互补(两直线平行,同旁内角互补),10.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB ,BC ,AD 不动,AB =AD =2cm ,BC =5cm ,如图,量得第四根木条CD =5cm ,判断此时∠B 与∠D 是否相等,并说明理由.(2)若固定一根木条AB 不动,AB =2cm ,量得木条CD =5cm ,如果木条AD ,BC 的长度不变,当点D 移到BA 的延长线上时,点C 也在BA 的延长线上;当点C 移到AB 的延长线上时,点A 、C 、D 能构成周长为30cm 的三角形,求出木条AD ,BC 的长度.D CBA解:(1)相等.理由:连接AC ,在△ACD 和△ACB 中,∵AC AC AD AB CD BC =⎧⎪=⎨⎪=⎩,∴△ACD ≌△ACB (SSS ),∴∠B =∠D ;D CBA(2)设AD =x ,BC =y , 由题意点C 在点D 右侧,可得25(2)530x y x y +=+⎧⎨+++=⎩, 解得1310x y =⎧⎨=⎩;∴AD =13cm ,BC =10cm .。

两边及一角的平分线相等的三角形全等

两边及一角的平分线相等的三角形全等

三角形是初中数学中重要的几何形状,而全等三角形是其中的一个重要概念。

全等三角形具有相同的形状和相同的大小,是重要的几何性质之一。

在本文中,我们将探讨两边及一角的平分线相等的三角形全等的性质和应用。

一、全等三角形的定义1.1 两个三角形全等的定义全等三角形是指在几何形状上,两个三角形的对应边相等,对应角相等的情况下,两个三角形全等。

1.2 全等三角形的符号表示两个全等三角形可以用符号来表示,常用的表示方法是△ABC ≌ △DEF,其中△ABC 代表一个三角形,△DEF 表示另一个三角形。

二、两边及一角的平分线相等的三角形全等的条件2.1 两个三角形的对应边相等当两个三角形的对应边分别相等时,可以推断这两个三角形全等。

2.2 两边及一角的平分线相等若两个三角形的一个角和它们的两边的切线相等,则这两个三角形全等。

2.3 证明方法要证明两边及一角的平分线相等的三角形全等,可以通过 SSS 全等判据(三边对应相等判据)、SAS 全等判据(两边及夹角对应相等判据)、AAS 全等判据(两角及夹边对应相等判据)进行证明。

三、全等三角形的性质和应用3.1 全等三角形的性质全等三角形具有以下性质:(1)全等三角形的对应边相等(2)全等三角形的对应角相等(3)全等三角形的面积相等3.2 全等三角形的应用全等三角形的性质和条件在几何问题中有着广泛的应用:(1)在证明几何定理时,可以利用全等三角形的性质进行证明。

(2)在计算三角形的面积时,可以利用全等三角形的面积相等性质,简化计算步骤。

(3)在解决实际问题中,可以利用全等三角形的特性,求解未知长度和角度。

四、如何判断两边及一角的平分线相等的三角形全等4.1 观察三角形的给定条件要判断两边及一角的平分线相等的三角形全等,需要观察给定的三角形条件,看是否满足两边及一角的平分线相等的条件。

4.2 应用全等三角形的判定条件根据全等三角形的判定条件,可以利用SSS 全等判据、SAS 全等判据、AAS 全等判据等进行判断。

中考数学复习:专题4-9 全等三角形在生活中的应用

中考数学复习:专题4-9 全等三角形在生活中的应用

专题09 全等三角形在生活中的应用【专题综述】学习了三角形全等的有关知识后,同学们会发现它可以解决许多生活中的实际问题,并且有利于考查同学们识别图形、动手操作的能力,更注重考查大家抽象、转化的思维能力以及运用几何知识解决实际问题的能力。

因此,同学们在学习过程中应该注意观察身边的实际问题,善于用数学的头脑去发现、分析、解决问题。

【方法解读】一、用于产品检验例1 如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD=CF;③量出DE的长a米,FG的长b米.如果a=b,则说明∠B和∠C是相等的,他的这种做法合理吗?为什么?【举一反三】如图,由两根钢丝固定的高压电线杆,按要求当两根钢丝与电线杆的夹角相同时,固定效果最好.现已知钢丝触地点到电线杆的距离相等,那么请你判断图中两根钢丝的固定是否合乎要求,并说明理由.(电线杆的粗细忽略不计)【来源】北师大版七年级数学下4.5 利用三角形全等测距离同步练习二、用于图形复原例2 如图是举世闻名的三星堆考古中挖掘出的一个三角形残缺玉片,工作人员想制作该玉片模型,则测量图中哪些数据,就可制成符合规格的三角形玉片模型?并说明其中的道理.【举一反三】小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块【来源】2014-2015学年江苏省南苑中学八年级上学期第一次单元考试数学试卷(带解析)三、用于测量距离例3 如图3,从小丽家(C处)到学校A和菜市场B的夹角∠C是锐角,又知道从小丽家到学校、菜市场的距离相等,小丽说学校到路段BC的距离AD与菜市场到路段AC的距离BE相等,你认为她说的有道理吗?请说明理由.图3【举一反三】小强为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=36°,测楼顶A视线PA与地面夹角∠APB=54°,量得P到楼底距离PB与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB=36米,小强计算出了楼高,楼高AB是多少米?【来源】北师大版七年级数学下册习题:4.5《利用三角形全等测距离》(详细答案)【强化训练】1.如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,如图所示的这种方法,是利用了三角形全等中的()A. SSSB. ASAC. AASD. SAS【来源】北师大版数学七年级下册第四章4.5利用全等三角形全等测距离课时练习2.山脚下有A、B两点,要测出A、B两点间的距离。

全等三角形在生活中的应用

全等三角形在生活中的应用

全等三角形在生活中的应用作者:刘顿来源:《中学生数理化·八年级数学人教版》2008年第07期现实生活中,存在着许许多多、丰富多彩的三角形,也有不少全等三角形.学习了全等三角形的知识后,我们就可以利用它们来解决很多生活中的实际问题.现举例说明.例1图1所示的是某房间木地板的一个图案,其中AB=BC=CD=DA,AE=EC=CF=FA.图案是由有花纹的全等三角形木块(阴影部分)与无花纹的全等三角形木块(中间部分)拼成.这个图案的面积是0.05 m2.若房间的面积是13 m2,那么最少需要有花纹的三角形木块和无花纹的三角形木块各多少块?解析:因为一个图案由4块全等的有花纹三角形木块与2块全等的无花纹三角形木块拼成,且全等的三角形的面积相等,所以有花纹三角形木块的数目为(13÷0.05)×4=1 040;无花纹三角形木块的数目为(13÷0.05)×2=520.故最少需要有花纹的三角形木块1 040块,无花纹三角形木块520块.例2图2是一个简易的平分角仪器示意图,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角的平分线.试说明理由.解析:因为AB=AD,BC=DC,AC=AC,所以△ABC≌△ADC.所以∠BAC=∠DAC,所以AE是角平分线.例3如图3,两根钢绳一端固定在地面铁桩上,另一端固定在电线杆上.已知两根钢绳的长度相等,则两个铁桩到电线杆底部的距离相等吗?为什么?请说明理由.解析:相等.因为在Rt△ABD与Rt△ACD中,AB=AC,AD=AD,所以Rt△ABD≌Rt△ACD(HL),所以BD=CD.例4如图4所示,要测量河宽AB,可先在岸上作AB的垂线段BC,并在BC上取点D,使BD=CD.然后再作出BC的垂线段CE,使A、D、E三点共线.这时量出线段CE的长就是所求的AB的长,为什么?解析:因为AB⊥BC,CE⊥BC,所以∠B=∠C=90°.在△ABD和△ECD中,∠B=∠C,∠1=∠2(对顶角相等),BD=CD,所以△ABD≌△ECD(ASA).所以AB=CE.例5在一次知识大赛中,小颖同学分别画了三个三角形,不料都被墨迹污染了,如图5所示.她想分别画出与原来完全一样的三个三角形,是否可以做到?试说明理由.解析:可以画出与三角形①、③相同的三角形.理由:在三角形①中保留了完整的两角和一边,可以根据“角边角”画出与①全等的三角形.在三角形③中保留了完整的两边和它们的夹角,故可以根据“边角边”画出与③全等的三角形.在三角形②中只保留了一个角,故不能画出与②全等的三角形.例6如图6,太阳光线AC与A′C′是平行的,两根高度相同的木杆在太阳光照射下的影子一样长吗?为什么?解析:一样长.理由:因为AC∥A′C′,所以∠C=∠C′.又因为AB=A′B′,∠ABC=∠A′B′C′=90°,所以Rt△ABC≌Rt△A′B′C′(AAS).所以BC=B′C′.影子一样长.例7某铁路施工队在建设铁路的过程中需要打通一座小山修建隧道,设计时要测量隧道的长度.在山的前面恰好是一片空地.利用这样的有利地形,测量工人是否可以利用全等三角形的知识测量出隧道的长度?请你画出测量示意图,并说明理由.解析:如图7,在山的两侧分别取A、B两点,在空地上取一点C,连接AC、BC,并延长,使AC=CE,BC=CF.连接EF,那么利用△ACB≌△ECF(SAS),有AB=EF,则E、F之间的距离就是A、B之间的距离,从而可以测量出隧道的长度了.。

全等三角形在生活中的应用

全等三角形在生活中的应用
之间的距 离.
因为 LB =LD,B D, AC =LE D, C =C L B C
所 以 △ C AE D C . 所 以 A =D . B E .
() 1按题 中要求画 图;
( ) 明 加 = 2说 B的理 由, 试着 把说 明 并 的过程写 出来.
例 6 如 图 6 点 C是路段 A , B的 中点 . 两 人从点 c同时 出发 . 以相 同的速度分别 沿两条 直线 行走 , 同时 到达点 、 E两处 , A上 并 点 D A E L , D、 E到路 段 A B, B_ AB 点 点 B的距 离 相
例 3 如图 3 .要测 量池塘边上两点 P Q 、
分析 : 要说 明 B C处 于水平位 置 . B - 即 Cj
D 根 据垂 直 的定 义 并结 合 图形 , A, 只要证 明
A B: A C= 9 。 可 . 即 要 证 明 之间 的距离 , D D 0 即 也 小王在 的垂 线上取两点 A、 , B
等吗?为什 么?
图4
解 析 :1如 图 4 () . () 2 因为在 A B A C和AD C中, E
fA= C C D, 图6

{A = D 。 【 C LC B E C B
=C E.
分析 :因为两人 以相 同的速度 从点 c同
时 出发 , 同 时 到达 点 D、 E, 以 C 且 点 所 D=
D E垂 直 ) 只要调 整 架身使 点 A 恰在 重锤 线 ,
D E上就行 . 这是什么原 因?

图 2
解析 : 若想 配一块 和原来三角形全等 的三 角形 玻璃 , 据三 角形全 等的条件 , 根 图中的 图
图1

[生活]利用全等三角形解决实际问题

[生活]利用全等三角形解决实际问题

巧用全等解决实际问题山东 李其明同学们在学完全等三角形后,就可以利用全等三角形的知识来解决日常生活中遇到的实际问题了,从而体会数学与实际生活的紧密联系,学会用数学知识解决问题,能在解决问题的过程中进行有条理的思考和表达.下面分类介绍其应用.一、说理题例1 工人师傅经常利用角尺平分一个任意角,如图1,∠AOB 是一个任意角,在OA 、OB 边上分别取OD=OE ,移动角尺使角尺两边相同的刻度分别与D 、E 重合,这时过角尺顶点P 的射线OP 就是∠AOB 的平分线,你能说明其中的道理吗? 分析:解决这类问题时,关键是要仔细阅读题目,根据题意,抓住相等的量,先证明三角形全等,在证明三角形全等时,一定要利用好条件, 不能任意造条件和结论. 解:根据题意得OE=OD ,PE=PD ,在△POB 和△POD 中,OD OEOP PO PE PD =⎧⎪=⎨⎪=⎩,∴△POE ≌△POD (SSS ),∴∠AOP=∠BOP ,∴射线OP 就是∠AO B 的平分线.二、操作题例2.如图2,小明为了测量河的宽度,他先站在河边的C 点面向河对岸,压低帽檐使目光正好落在河对岸的岸边A 点,然后他姿态不变原地转了1800,正好看见他所在岸上的一块石头B 点,他度量了BC=30米,你能猜出河有多宽吗?解:河宽30米,理由如下:∵小明姿态不变原地转了1800,∴∠ACD=∠BCD=900,∵帽檐的位置没动,∴帽檐与小明自身的角度不变,即∠ADC=∠BDC ,在△ACD 和△BCD 中,ACD BCDCD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACD ≌△BCD ,∴AC=BC=30m .评析:这个题目关键是设计三角形全等,这一过程正好得到两个△ACD 和△BCD ,且有∠ACD=∠BCD=900,∠ADC=∠BDC (因为小明的视线角度没变),易证△ACD ≌△BCD ,∴AC=BC=30m .三、判断题例3.某校二(4)班学生到野外活动,为测量一池塘两端A 、B 的距离,设计了如下方案:(1)如图3(1)先在平地取一个可以直接到达A 、B 的点C ,可连结AC 、BC ,并延长AC 到D 、BC 到E ,使DC=AC ,EC=BC ,最后测出DE 的距离即为AB 之长.BACD图2图1OA B PD E(2)如图3(2)先过B 点作AB 的垂线BF ,再在BF 上取C 、D 两点,使BC=CD ,接着过点D 作BD 的垂线DE ,交AC 的延长线于E ,测出DE 的长即为A 、B 的距离, 阅读后回答下列问题:(1)方案(1)是否可行? ,理由是 (2)方案(2)是否切实可行? ,理由是(3)方案(2)中作BF ⊥AB ,ED ⊥BF 的目的是 ;若仅满足∠ABD=∠BDE ≠900,方案(2)是否成立? .解:(1)可行,边角边;(2)可行,角边角;(3)使∠ABC=∠EDC ,仍成立评析:本题让我们了解测量两点之间的距离的设计方案不只一种,只要符合三角形全等的条件,方案的操作性很强,需要测量的线段和角度在陆地一侧即可实施.练一练:1.如图7,公园里有一条“Z ”字型道路ABCD ,其中AB ∥CD ,在AB 、BC 、CD 三段路旁各有一只石凳E 、M 、F 恰为BC 的中点,且E 、F 、M 在同一条直线上,在BE 道路上停放着一排小汽车,从而无法直接测量B 、E 之间的距离,你能想出解决的办法吗?试说明其中的道理.D E图3(1图3(2)ABCD·M·E ·F图7。

全等三角形在实际生活中的应用

全等三角形在实际生活中的应用

全等三角形在实际生活中的应用三角形全等在解决实际问题中有广泛的应用,如测量无法直接测量的距离时,可根据三角形全等进行转化.有许多图形分割问题,也蕴含着全等思想.一、测量中的全等三角形例1.图1为人民公园中的荷花池,现要测量此荷花池两旁A 、B 两棵树间的距离(我们不能直接量得).请你根据所学知识,以卷尺和测角仪为测量工具设计一种测量方案.要求:(1)画出你设计的测量平面图;(2)简述测量方法,并写出测量的数据(长度用,,,c b a …表示;角度用,,,γβα…表示);(3)根据你测量的数据,计算A 、B 两棵树间的距离.分析:此题的测量方法很多,这里用全等知识来解决,方案如图2,步骤为:(1)在地上找可以直接到达的一点O ,(2)在OA 的延长线上取一点C ,使OC=OA ;在BO 的延长线上取一点D ,使OD=OB ;(3)测得DC=a ,则AB=a . 点评:本题是一道全开放式的设计方案题,它的解题策略非常多,可以利用三角函数、三角形中位线定理、全等三角形、三角形相似等许多知识,本题来源于课本、来源于生活,可以激发学生“学有用的数学”,更激发学生的学习热情和创新热情以及求知欲望.例2.如图3所示,在一次战役中,我军阵地与敌军碉堡隔河相望,为用炮火实施定点轰炸,需要测量我军阵地与敌军碉堡隔的距离,在不能过河测量又没有任何测量工具的情况下,一个战士想出来一个办法,他面向碉堡方向站好,然后调整帽子,使视线通过帽檐,正好落在碉堡的底部,然后转过一个角度,身体保持刚才的姿势,使视线落在我军一岸的某一点上,接着他用步测法测出自己与那个点的距离,这个距离就是他与碉堡之间的距 B A C D O 图2 A • • • B图1 图3离。

你能解释其中的道理吗?解:这个战士实际上是运用了三角形全等的知识 . 要说明其中的道理,首先要根据实际情景建立数学模型,将情景中示意图抽象为几何图形。

如图4所示,我军阵地与敌军碉堡之间的距离无法测量,即AC不可测量,但线段FD 的长度可以测得,又战士与地面是垂直的,也就是∠BAC =∠EFD =900,另外战士的身高与姿态是不变的,所以BC =EF ,∠ABC =∠FED . 依据“SAS”可知△ABC ≌△DEF ,所以AC =FD . 所以只要测得FD的距离,就可得到AC 的距离 .二、修路中的全等三角形例3.如图5,有一块不规则土地ABCD ,分别被甲、乙二人承包,一条公路GEFH 穿过这块土地,EF 左边是甲,右边是乙,AB ∥CD.为方便通行,决定将这条公路尽量修直,但要求甲、乙二人的土地面积不变.请你设计一种方案,解决这个问题,并说明方案正确的理由.分析:将公路修直并不困难,关键是要保持甲、乙二人的土地面积不变.这里,我们应注意充分利用AB ∥CD 这一条件来构造全等三角形.解:取EF 的中点O ,连接GO 并延长交FH 于点M ,GM 就是修直后的公路.理由是:设GM 分别交AB 、CD 于点P 、Q ,由AB ∥CD ,可得∠PEO =∠QFO ,又因为EO =FO ,∠EOP =∠FOQ ,故△EOP ≌△FOQ ,所以这个方案能保持甲、乙二人的土地面积不变.三、其他问题中的全等三角形例4.如图6,某同学把一块三角形的玻璃打碎成了三块,现在要去玻璃店配一块完全一样的玻璃,请你设计一个最省事的配玻璃方案,并说明理由.解:最省事的配玻璃方案是带着碎玻璃块③去玻璃店.理由是:玻璃块③含有一条完整的边BC 和夹BC 的两个图 5图4图6完整的角,根据ASA,只需将∠B和∠C的不完整的边延长相交即可,得到的三角形与原三角形全等.例5.如图7,点C是路段AB的中点,两人从C同时出发以相同的速度分别沿两条直线行走,并同时到达D,E两地,DA⊥AB,EB⊥AB,D,E与路段AB的距离相等吗?为什么?分析:因为两人是从点C同时出发,且同时到达D,E两点,所以CD=CE.要说明DA与EB是否相等,则只需说明△ADC和△BEC是否全等.解:D,E与路段AB的距离相等.理由:因为点C是AB的中点,所以CA=CB,又CD=CE,DA⊥AB,EB⊥AB,所以Rt△ADC≌Rt△BEC(Hl).所以DA=EB.即D,E与路段AB的距离相等.例6.如图8是用两根拉线固定电线杆的示意图,其中,两根拉线的长AB=AC,BD和DC的长相等吗?为什么?分析:因为电线杆和地面垂直,它和两根拉线分别构成两个直角三角形,所以通过全等三角形的知识解决.解:BD和DC相等.因为AD⊥BC,所以∠ADB=∠ADC=90°,又AB=AC,AD=AD,所以Rt△ABD≌Rt△ACD(HL).所以BD=DC.例7.如图9,海岛上有A,B两个观测点,点B在点A 的正东方,海岛C在观测点A的正北方,海岛D在观测点B 图7图8图9的正北方,从观测点A看海岛C、D的视角∠CAD与从观测点B看海岛C、D 的视角∠CBD相等,那么海岛C、D到观测点A、B所在海岸的距离相等吗?为什么?分析:本题是一道和三角形全等有关的实际问题,要看海岛C、D到海岸AB的距离是否相等,则要看△ABC与△BAD是否全等.解:海岛C、D到观测点A、B所在海岸的距离相等.理由:由已知得∠CAB=∠DBA=90°,又∠CAD=∠CBD,所以∠DAB=∠CBA,在Rt△ABC和Rt△BAD中,∠CAB=∠DBA,AB=BA,∠CBA=∠DAB,所以△ABC≌△BAD(ASA),所以CA=DB,即海岛C、D到观测点A、B所在海岸的距离相等.。

全等三角形实际中的例子

全等三角形实际中的例子

全等三角形实际中的例子全等三角形是指具有相同的三个角和相等的三个边的三角形。

在实际生活中,我们可以找到很多与全等三角形相关的例子。

下面列举了十个例子来说明全等三角形的应用。

一、地图上的全等三角形在地理学中,地图上的三角形可以用来测量地球上的距离和角度。

当我们在地图上绘制三角形时,可以使用全等三角形来测量无法直接测量的距离和角度。

二、建筑物的设计在建筑设计中,全等三角形经常被用来保持建筑物的对称性和比例。

例如,在设计一座大型建筑物时,可以使用全等三角形来确定建筑物的比例和比例关系,从而保持建筑物的整体美观和稳定性。

三、裁剪布料在裁剪布料时,可以使用全等三角形来确保裁剪的布料均匀且正确。

通过使用全等三角形的性质,可以将布料正确地对齐,并确保裁剪的布料具有相同的形状和大小。

四、航海导航在航海导航中,全等三角形可以用来测量船只的位置和航向。

通过测量观测到的角度和距离,可以绘制全等三角形来确定船只的位置和目标位置的距离。

五、地面测量在土地测量中,全等三角形可以用来测量地面的高度和距离。

通过观测到的角度和已知的距离,可以绘制全等三角形来计算地面的高度和距离。

六、照相机的焦距调节在摄影中,照相机的焦距调节可以使用全等三角形来确定。

通过观察到的物体大小和距离,可以绘制全等三角形来计算出焦距的调节量。

七、地图的放大和缩小在地图制作中,全等三角形可以用来放大或缩小地图的比例。

通过观察到的角度和距离,可以绘制全等三角形来确定地图的比例尺。

八、建筑物的测量和绘制在建筑测量和绘制中,全等三角形可以用来测量建筑物的高度和距离。

通过观察到的角度和已知的距离,可以绘制全等三角形来计算建筑物的高度和距离。

九、地质勘探在地质勘探中,全等三角形可以用来确定地下的岩层和地质结构。

通过测量地面上的角度和距离,可以绘制全等三角形来计算地下的岩层和地质结构的位置和形状。

十、航空导航在航空导航中,全等三角形可以用来确定飞机的位置和航向。

通过测量观测到的角度和距离,可以绘制全等三角形来计算飞机的位置和目标位置的距离。

浅谈初中数学中全等三角形

浅谈初中数学中全等三角形

浅谈初中数学中全等三角形【摘要】全等三角形在初中数学中扮演着重要角色,是初中数学中不可或缺的一部分。

本文首先介绍了全等三角形的定义,然后探讨了全等三角形的性质,判定方法以及应用举例。

通过对全等三角形的学习,可以帮助学生更好地理解几何知识,并提高解题的能力。

全等三角形在初中数学中的地位十分重要,掌握了全等三角形的概念和性质,可以为学生更好地学习进阶数学知识奠定基础。

在学习全等三角形时,学生需要采取合适的学习策略,如积极思考、勤加练习等,以提高学习效率和成绩。

通过深入了解全等三角形的知识和应用,可以帮助学生在数学学习中取得更好的成绩和理解。

【关键词】引言、初中数学、全等三角形、重要性、定义、性质、判定方法、应用举例、地位、学习策略1. 引言1.1 初中数学中全等三角形的重要性在初中数学中,全等三角形是一个非常重要的概念。

全等三角形在几何知识中扮演着至关重要的角色,它不仅是几何学习的基础,还在实际生活中有着广泛的应用。

全等三角形是指对应的三条边和对应的三个角相等的三角形,它们形状完全相同,大小也完全相同。

全等三角形的重要性体现在几个方面。

全等三角形是几何学习中的基础内容,通过学习全等三角形,可以帮助我们更深入地理解几何知识,奠定扎实的数学基础。

全等三角形的性质和判定方法为我们解决各种几何问题提供了重要的思路和方法。

掌握全等三角形的相关知识,可以帮助我们更加高效地解决各种几何问题。

全等三角形在现实生活中也有着广泛的应用,比如在建筑设计、地图制作、工程测量等领域都能看到全等三角形的影子。

初中数学中全等三角形的重要性不言而喻。

通过深入学习全等三角形的性质、判定方法和应用,我们可以更好地理解几何知识,提高数学解题能力,为今后的学习和工作打下坚实的基础。

1.2 全等三角形的定义全等三角形是初中数学中十分重要的概念,它在几何学中有着重要的地位。

全等三角形的定义是指两个三角形的所有对应边和对应角都相等,则这两个三角形全等。

边角边判定全等三角形的实际应用

边角边判定全等三角形的实际应用

边角边判定全等三角形的实际应用在生活中,几乎每天都有需要用到数学知识的时刻,虽然很多人一提到数学就感觉要头疼,但今天我们来聊聊一个简单又有趣的话题,那就是“边角边判定全等三角形”。

这个听起来复杂的概念,其实就像是三角形的秘密武器,能帮我们解决许多实际问题。

想象一下,你和朋友们在公园里野餐,突然发现你们的三明治大小不一,想要把它们分得均匀点。

这里就有用了,假如你们把三明治切成三角形,利用边角边判定,能确保每个人的三明治都是相同的。

这听起来是不是挺不错的?只要测量一下三角形的边长和角度,就能判断出它们是否全等。

也就是说,只要两组三角形的两条边和夹着的一个角相等,就能确认这两个三角形一模一样,分的时候也能心里有数,大家都能吃得开开心心。

说到这里,有没有觉得数学也可以这么生活化呢?其实很多时候,数学不仅仅是在课本里的一堆公式,更是在我们的日常生活中不断显现。

比如说,你家里的照片框,如果你想把几幅照片摆放得整齐,那你就需要用到这种三角形的全等关系。

你可以测量照片框的对角线,如果两幅框的对角线和边长都一样,那你就可以放心地把它们放在一起,确保视觉效果非常和谐。

是不是感觉像是让家里变得更加美观的小技巧?再说说建筑设计。

想象一下,建筑师在设计一座大楼,必须确保所有的角度都精准。

如果他们忽略了这个“边角边”的原则,可能会导致建筑不稳,甚至危险。

这种情况下,边角边判定全等三角形就像是建筑师的超级助手,确保每一个细节都做到完美,真是让人佩服!无论是摩天大楼还是小小的鸟屋,都能通过这个原理来保证结构的牢固性。

我们在制作手工艺品的时候,也能用到这个原理。

比如说做一个三角形的纸鹤,只要你确保每个角和边都相等,那你折出来的纸鹤就是一模一样的,真是让人感到成就感满满。

试想一下,一排整齐的纸鹤飞在空中,岂不是美得不得了?这就是数学带给我们的乐趣和美感。

其实边角边判定全等三角形的应用还真不少,无论是在日常生活中还是在一些专业领域,都是一门值得深入研究的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形在生活中的应用
在全等图形中,全等三角形是最基本,应用最广泛的一类图形,利用全等三角形的有关知识,不仅可以帮助我们进行决策,还可以帮助我们制作一些仪器,现举例说明这个问题,供同学们学习时参考.
一、仪器我也会做
例1 如图1是小亮做的一个平分角的仪器,其中AB=AD ,BC=DC ,
将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线
AE ,AE 就是角平分线.你能说明其中的道理吗?
分析:由已知条件易得△ABC 和△ADC 全等,由全等三角形的对应
角相等,可知∠BAC=∠DAC ,即AE 是角平分线.
解:已知AB=AD ,BC=DC ,
又因为AC 是公共边,所以△ABC ≌△ADC ,
所以∠BAC=∠DAC .
所以AE 是角平分线.
评析:利用三角形全等的知识,常常可以说明两个角相等的问题.
二、巧测内口直径
例2 小红家有一个小口瓶(如图2所示),她很想知道它的内径是多
少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了.
她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,
木条可以绕中点转动,这样只要量出AB 的长,就可以知道玻璃瓶的内径是
多少.你知道这是为什么吗?请说明理由.(木条的厚度不计)
分析:只要量出AB 的长,就知道内径是多少?显然只需要说明AB 和CD 相等就行. 解:连结AB ,CD ,
因为AO=DO ,BO=CO , 图 1 图2
又因为∠AOB=∠DOC,
所以△ABO≌△DCO(SAS).
所以AB=CD,也就是AB的长等于内径CD的长.
评析:利用三角形全等的知识,可以说明线段长相等的问题.
三、距离相等的解释
例3 如图3,从小丽家(C处)到学校A和菜市场B的夹角∠C是锐角,又知道从小丽家到学校、菜市场的距离相等,小丽说学校到路段BC的距离AD与菜市场
到路段AC的距离BE相等,你认为她说的有道理吗?请说明理由.
分析:只要能说明AD与BE相等,就说明她说的有道理.
解:小丽说的有道理,理由如下:
图3 已知AC=BC,
因为∠ADC=∠BEC=90°,
又因为∠C是公共角,
所以△ACD≌△BCE,
所以AD=BE.
即学校到路段BC的距离与菜市场到路段AC的距离相等.
你还知道全等三角形有哪些应用,说出来和同学们交流交流!
应把握的两种模型
利用三角形全等测距离,主要有以下两种模型:
一、视线模型
当需要测量距离的两个点中有一个点无法接近时,常采用这种方法. 视线法简便易行,但有一定的误差,一般在仅适应于目测的情况下使用. 如:
例1如图1所示,在一次战役中,我军阵地与敌军碉堡隔河相望,为用炮火实施定点轰炸,需要测量我军阵地与敌军碉堡隔的距离,在不能过河测量又没有任何测量工具的
情况下,一个战士想出来一个办法,他面向碉堡方向站好,然后调整帽子,使视线通过帽檐,正好落在碉堡的底部,然后转过一个角度,身体保持刚才的姿势,使视线落在我军一岸的某一点上,接着他用步测法测出自己与那个点的距离,这个距离就是他与碉堡之间的距离.你能解释其中的道理吗?
解:这个战士实际上是运用了全等三角形的知识. 要说明其中的道理,首先要根据实际情景建立数学模型,将情景中示意图抽象为几何图形.如图2所示,我军阵地与敌军碉堡之间的距离无法测量,即AC不可测量,但线段FD的长度可以测得,又因为战士与地面是垂直的,也就是∠BCA=∠EFD=90°,另外战士的身高与姿态是不变的,所以BC=EF,
∠ABC=∠FED.依据“SAS”可知△ABC≌△DEF,所以AC=FD.所以只要测得FD的距离,就可得到AC的距离.
这就是“视线法”的基本模型与解题原理.
二、构图模型
当需要测量距离的两点均可到达,但两点之间不能通过直接测得距离时,可通过构造两个全等的三角形,进行间接的测量.构图法间接测量的结果比较准确.如:例2如图3所示,A,B两点分别位于一个池塘的两端,小明想用绳子测量这两点之间的距离,但绳子不够长,老师为他出了一个主意:先在地上取一个可以直接到达A,B 两点的点C,连接AC并延长到点D,使DC=AC;连接BC并延长BC到点E,使CE=CB,连接DE并测出它的长度,DE的长度就是A,B之间的距离.你能说明其中的道理吗?
解:池塘两端的A点和B点不好直接测量,取一个可以直接到达A,B两点的点C,连接AC并延长的D,使DC=AC;连接BC并延长BC到点E,使CE=CB,这样在△ABC 与△DEC中,有CA=CD,CB=CE,且∠ACB=∠ECD,则依据“SAS”可得△ABC≌△DEC,从而DE=AB,因为DE是可直接测得的,这样即可得到AB的距离.
这就是“构图法”的基本模型与解题原理.。

相关文档
最新文档