第三章时序逻辑

合集下载

数字电子技术》电子教案

数字电子技术》电子教案

《数字电子技术》电子教案第一章:数字电路基础1.1 数字电路概述数字电路的基本概念数字电路的特点数字电路的应用领域1.2 数字逻辑基础逻辑门逻辑函数逻辑代数1.3 数字电路的表示方法逻辑电路图真值表卡诺图第二章:组合逻辑电路2.1 组合逻辑电路概述组合逻辑电路的定义组合逻辑电路的特点组合逻辑电路的应用2.2 常见的组合逻辑电路编码器译码器多路选择器算术逻辑单元2.3 组合逻辑电路的设计方法最小化方法卡诺图化简法逻辑函数的优化第三章:时序逻辑电路3.1 时序逻辑电路概述时序逻辑电路的定义时序逻辑电路的特点时序逻辑电路的应用3.2 常见的时序逻辑电路触发器计数器寄存器移位寄存器3.3 时序逻辑电路的设计方法时序逻辑电路的建模状态编码的设计时序逻辑电路的仿真第四章:数字电路的设计与仿真4.1 数字电路设计流程需求分析逻辑设计电路实现测试与验证4.2 数字电路仿真技术数字电路仿真原理常用仿真工具仿真举例4.3 数字电路的测试与维护数字电路测试方法故障诊断与定位数字电路的维护与优化第五章:数字系统的应用5.1 数字系统概述数字系统的定义数字系统的特点数字系统的应用领域5.2 数字系统的设计方法数字系统设计流程数字系统模块划分数字系统的设计工具5.3 数字系统的应用实例数字控制系统数字通信系统数字音频处理系统第六章:数字集成电路6.1 数字集成电路概述数字集成电路的分类数字集成电路的优点数字集成电路的应用6.2 集成电路的制造工艺晶圆制造集成电路布局布线集成电路的封装与测试6.3 常见数字集成电路MOSFETCMOS逻辑门集成电路的封装类型第七章:数字信号处理器(DSP)7.1 数字信号处理器概述数字信号处理器的定义数字信号处理器的特点数字信号处理器的应用7.2 数字信号处理器的结构与工作原理中央处理单元(CPU)存储器输入/输出接口7.3 数字信号处理器的编程与开发编程语言开发工具与环境编程举例第八章:数字系统的可靠性8.1 数字系统的可靠性概述数字系统可靠性的重要性影响数字系统可靠性的因素数字系统可靠性评估方法8.2 数字系统的容错技术冗余设计容错算法故障检测与恢复8.3 数字系统的可靠性测试与验证可靠性测试方法可靠性测试指标可靠性验证实例第九章:数字电子技术的创新与应用9.1 数字电子技术的创新新型数字电路技术数字电子技术的研究热点数字电子技术的未来发展趋势9.2 数字电子技术的应用领域物联网生物医学工程9.3 数字电子技术的产业现状与展望数字电子技术产业概述我国数字电子技术产业发展现状数字电子技术的市场前景第十章:综合实践项目10.1 综合实践项目概述项目目的与意义项目内容与要求项目评价与反馈10.2 综合实践项目案例数字频率计的设计与实现数字音调发生器的设计与实现数字控制系统的设计与实现10.3 项目实施与指导项目实施流程项目指导与支持项目成果展示与讨论重点和难点解析1. 数字电路基础:理解数字电路的基本概念、特点及应用领域,掌握逻辑门、逻辑函数和逻辑代数的基础知识,熟悉数字电路的表示方法。

时序逻辑电路PPT课件

时序逻辑电路PPT课件
时序逻辑电路可以分为同步时序 逻辑电路和异步时序逻辑电路, 其中同步时序逻辑电路是最常用 的类型。
工作原理
状态表示
时序逻辑电路中的状态通常由存储元件(如触发器)来存储,根据 输入信号的变化,电路的状态会随之改变。
状态转移
时序逻辑电路中的状态转移是由输入信号和当前状态共同决定的, 根据一定的逻辑关系,电路会从一个状态转移到另一个状态。

02
可编程逻辑控制器(PLC)
在工业控制系统中,时序逻辑电路用于实现可编程逻辑控制器,用于自
动化控制和数据处理。
03
传感器接口
时序逻辑电路用于实现传感器接口电路,将传感器的模拟信号转换为数
字信号,并传输给微控制器或可编程逻辑控制器进行处理。
04
CATALOGUE
时序逻辑电路的优化
优化设计
设计
使用基本的逻辑门电路, 根据需求逐一设计电路。
自动化工具设计
使用EDA(电子设计自动 化)工具进行设计,提高 设计效率。
混合设计
结合手工设计和自动化工 具设计,根据具体情况选 择合适的设计方法。
设计工具
硬件描述语言
使用Verilog或VHDL等硬件描述语言进行设计。
EDA工具
时序逻辑电路
目录
• 时序逻辑电路简介 • 时序逻辑电路设计 • 时序逻辑电路的应用 • 时序逻辑电路的优化 • 时序逻辑电路的发展趋势
01
CATALOGUE
时序逻辑电路简介
定义与分类
定义
时序逻辑电路是一种具有记忆功 能的电路,它能够根据输入信号 的变化,按照一定的逻辑关系, 输出相应的信号。
分类
输出信号
时序逻辑电路的输出信号是根据当前状态和输入信号来确定的,它会 随着状态的变化而变化。

电子技术 数字电路 第3章 组合逻辑电路

电子技术 数字电路 第3章 组合逻辑电路

是F,多数赞成时是“1”, 否则是“0”。
0111 1000 1011
2. 根据题意列出真值表。
1101 1111
(3-13)
真值表
ABCF 0000 0010 0100 0111 1000 1011 1101 1111
3. 画出卡诺图,并用卡 诺图化简:
BC A 00
00
BC 01 11 10
010
3.4.1 编码器
所谓编码就是赋予选定的一系列二进制代码以 固定的含义。
一、二进制编码器
二进制编码器的作用:将一系列信号状态编制成 二进制代码。
n个二进制代码(n位二进制数)有2n种 不同的组合,可以表示2n个信号。
(3-17)
例:用与非门组成三位二进制编码器。 ---八线-三线编码器 设八个输入端为I1I8,八种状态,
全加器SN74LS183的管脚图
14 Ucc 2an 2bn2cn-1 2cn
2sn
SN74LS183
1 1an 1bn 1cn-11cn 1sn GND
(3-39)
例:用一片SN74LS183构成两位串行进位全加器。
D2
C
D1
串行进位
sn
cn
全加器
an bn cn-1
sn
cn
全加器
an bn cn-1
1 0 1 1 1 AB
AC
F AB BC CA
(3-14)
4. 根据逻辑表达式画出逻辑图。 (1) 若用与或门实现
F AB BC CA
A
&
B
C
&
1 F
&
(3-15)
(2) 若用与非门实现

数字电子技术简明教程教案

数字电子技术简明教程教案

数字电子技术简明教程教案第一章:数字电子技术概述1.1 教学目标了解数字电子技术的基本概念、特点和应用领域。

掌握数字电路的基本组成和基本原理。

理解数字电路的逻辑运算和逻辑门电路。

1.2 教学内容数字电子技术的定义和特点数字电路的基本组成数字电路的基本原理逻辑运算和逻辑门电路1.3 教学方法采用讲授和案例分析相结合的方式,介绍数字电子技术的基本概念和原理。

通过图示和实物展示,引导学生理解数字电路的组成和功能。

利用逻辑门电路的例子,讲解逻辑运算和逻辑门电路的原理。

1.4 教学评估课堂讨论和提问,了解学生对数字电子技术的基本概念的理解程度。

布置课后习题,巩固学生对数字电路的基本原理和逻辑门电路的知识。

第二章:逻辑门电路2.1 教学目标掌握逻辑门电路的基本原理和功能。

了解常见的逻辑门电路及其应用。

理解逻辑门电路的输入输出关系和真值表。

2.2 教学内容逻辑门电路的基本原理常见的逻辑门电路及其应用逻辑门电路的输入输出关系和真值表2.3 教学方法通过实物展示和图示,介绍逻辑门电路的基本原理和功能。

分析常见的逻辑门电路及其应用,引导学生理解逻辑门电路的实际用途。

通过逻辑门电路的输入输出关系和真值表的示例,讲解逻辑门电路的运算规律。

2.4 教学评估课堂实验和演示,评估学生对逻辑门电路的理解和操作能力。

布置课后习题,巩固学生对逻辑门电路的知识和应用能力。

第三章:逻辑函数与逻辑门电路3.1 教学目标理解逻辑函数的定义和表示方法。

掌握逻辑函数的化简方法。

了解逻辑门电路的实现方法。

3.2 教学内容逻辑函数的定义和表示方法逻辑函数的化简方法逻辑门电路的实现方法3.3 教学方法通过示例和讲解,介绍逻辑函数的定义和表示方法。

利用逻辑函数的化简方法,引导学生理解逻辑函数的化简过程。

通过逻辑门电路的实现方法,讲解逻辑函数的实际应用。

3.4 教学评估课堂讨论和提问,了解学生对逻辑函数的理解程度。

布置课后习题,巩固学生对逻辑函数的化简方法和逻辑门电路的知识。

数字逻辑课后答案 第三章

数字逻辑课后答案  第三章

第三章 时序逻辑1.写出触发器的次态方程,并根据已给波形画出输出 Q 的波形。

解:2. 说明由RS 触发器组成的防抖动电路的工作原理,画出对应输入输出波形解:3. 已知JK 信号如图,请画出负边沿JK 触发器的输出波形(设触发器的初态为0)1)(1=+++=+c b a Qa cb Q nn4. 写出下图所示个触发器次态方程,指出CP 脉冲到来时,触发器置“1”的条件。

解:(1),若使触发器置“1”,则A 、B 取值相异。

(2),若使触发器置“1”,则A 、B 、C 、D 取值为奇数个1。

5.写出各触发器的次态方程,并按所给的CP 信号,画出各触发器的输出波形(设初态为0)解:6. 设计实现8位数据的串行→并行转换器。

B A B A D +=DC B A K J ⊕⊕⊕==Q AQ B Q D Q C Q E Q F Q7. 分析下图所示同步计数电路解:先写出激励方程,然后求得状态方程状态图如下:该计数器是五进制计数器,可以自启动。

8. 作出状态转移表和状态图,确定其输出序列。

解:求得状态方程如下故输出序列为:000119. 用D 触发器构成按循环码(000→001→011→111→101→100→000)规律工作的六进制同步计数器解:先列出真值表,然后求得激励方程PS NS 输出N0 0 0 0 0 1 00 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1化简得:逻辑电路图如下:n Q 2n Q 1n Q 012+n Q 11+n Q 10+n Q n n n nn n n n n n nnQ Q Q Q Q Q Q Q Q Q Q Q Z 121002*********+==+==+++nnn nnn nnnn QQ Q D QQ Q D QQ Q Q D 121211121122+====+==+++10. 用D 触发器设计3位二进制加法计数器,并画出波形图。

车站信号第三章

车站信号第三章

说明: 1. 4个方向继电器中,同时只能 有1个继电器励磁吸起(1次只能 选1条进路). 2. 4个继电器位于F组合内。
杨扬2010

进路中信号机,设置: 进路选择继电器(JXJ):确定某架信号机是否参与选路。 列车开始继电器(LKJ):出站兼调车处,区分列车进路和 调车进路。 对调车信号机,终端继电器(ZJ):记录调车进路终端。
杨扬2010
5. 变通按钮继电器电路

(了解)
每个专用变通按钮,设置2个按钮继电器:1AJ和2AJ
说明:

对所有按钮继电器自闭电路中,均接有JXJ前接点;进路 选出后JXJ↓,按钮继电器缓慢落下(缓放)。
杨扬2010
6.通过按钮继电器TAJ电路
− 以下行正线通过进路为例。
按下SFLA ↓ SFLAJ↑ 按下XTA ↓ XTAJ↑→XLAJ↑, SILAJ↑, XILAJ↑
杨扬2010
第三节 选岔电路和选信号点电路 一、 选岔电路概述
选岔电路包括道岔操纵继电器—定、反位操纵继电器电路。 继电器的配置
− −
对每个单动道岔,设置2个操纵继电器:DCJ和FCJ 每个双动道岔分别设置2个DCJ和2个FCJ。(岔尖朝左的 编号为1DCJ和1FCJ,岔尖朝右的编号为2DCJ和2FCJ)
杨扬2010
2. 出站兼调车按钮继电器电路
− 原理:与尽头线信号机AJ原理相同。 − 双线圈分开使用:一方面使自保电路能共用,
另一方面共用后能防止产生派生回路。 − 进站信号机内方设有无岔区段和同向调车信号机时,其AJ电路和 出站兼调车情况相同。(如X和D3)
杨扬2010
3. 并置和差置调车按钮继电器电路
杨扬2010
涉及的主要继电器:

时序逻辑电路讲解ppt

时序逻辑电路讲解ppt

Q JQ C KQ
CP
J K AQn AQn ,A与Qn是异或关系
A与Qn相同时, J K 0 Qn1 Qn 具有保持原状态功能
A与Qn不同时,J K 1 Qn1 Qn 具有计数功能
时序逻辑电路
特点:
在数字电路中,凡就是任一时刻得稳定输出不仅决定 于该时刻得输入,而且还与电路原来得状态有关者,都 叫做时序逻辑电路,简称时序电路。
3、动作特点: 在CP=1得全部时间里,输入信号 得变化都对主触发器起控 制作用,所以当CP下降沿到达时从触发器得状态不仅仅由 此时刻输入信号得状态决定,还必须考虑整个CP=1期间输 入信号得变化过程。
三、 主从RS、JK触发器
主从RS触发器 的图形符号
S
1S
Q
CP C1
R
1R
Q
主从JK触发器 的图形符号
4. 根据状态转换情况总结电路功能。
例:时序电路见下图, FF1~FF3为主从JK触发器、下降沿动作。 分析其逻辑功能。输入端悬空时等同逻辑1。
1J
Q1
C1
1K
Q1 &
FF1
1J
Q2
C1
1K
Q2
FF2
& 1J Q3 &
1
Y
C1
1K
Q3
FF3 CP
J1 Q2 • Q3
K1 1
1、驱动方程 J2 Q1
RD
0–t1: RD=0、 SD=1
Q=1、Q=0
SD t1 t2 t3 t4 t5 t
t1–t2: RD= SD=0
保持Q=1、Q=0
t2 –t3: RD=1、 SD=0
Q
t
Q=0、Q=1

电子技术应用《数电》教案

电子技术应用《数电》教案

电子技术应用《数电》教案第一章:数字电路基础1.1 数字电路概述了解数字电路的定义、特点和应用领域熟悉数字电路与模拟电路的区别1.2 数制和码制学习二进制、八进制、十六进制的表示方法掌握不同码制(如ASCII码、BCD码)的转换方法1.3 逻辑门学习与门、或门、非门、异或门等基本逻辑门电路掌握逻辑门的功能和真值表第二章:组合逻辑电路2.1 组合逻辑电路概述了解组合逻辑电路的定义和特点熟悉组合逻辑电路的分类和应用2.2 常用组合逻辑电路学习译码器、编码器、多路选择器、多路分配器等电路掌握组合逻辑电路的设计方法2.3 组合逻辑电路的设计实例设计一个4x1多路选择器设计一个全加器第三章:时序逻辑电路3.1 时序逻辑电路概述了解时序逻辑电路的定义和特点熟悉时序逻辑电路的分类和应用3.2 触发器学习SR触发器、JK触发器、T触发器、CTR触发器等电路掌握触发器的真值表、时序图和功能3.3 时序逻辑电路的设计实例设计一个2位同步计数器设计一个顺序检测器第四章:数字电路仿真4.1 数字电路仿真概述了解数字电路仿真的定义和意义熟悉数字电路仿真工具的使用4.2 常用数字电路仿真工具学习Multisim、Proteus等仿真工具的基本操作掌握仿真工具中元器件的选型和连接方法4.3 数字电路仿真实例利用仿真工具验证组合逻辑电路的功能利用仿真工具验证时序逻辑电路的功能第五章:数字电路实验5.1 数字电路实验概述了解数字电路实验的目的和意义熟悉数字电路实验步骤和注意事项5.2 数字电路实验器材和仪器学习数字电路实验所需的器材和仪器使用方法掌握实验器材和仪器的连接和调试方法5.3 数字电路实验实例完成一个组合逻辑电路的实验完成一个时序逻辑电路的实验第六章:数字电路测试与维护6.1 数字电路测试概述理解数字电路测试的目的和方法熟悉测试用例的设计和测试过程6.2 数字电路测试方法学习静态测试和动态测试两种方法掌握测试电路的搭建和测试结果的分析6.3 数字电路维护与故障排除了解数字电路维护的基本原则学习故障排除的步骤和方法第七章:数字系统设计流程7.1 数字系统设计概述理解数字系统设计的基本流程熟悉各个设计阶段的任务和目标7.2 需求分析与规格说明学习如何进行需求分析掌握编写数字系统规格说明书的方法7.3 数字系统设计实现学习数字系统设计的具体步骤掌握硬件描述语言(如Verilog)的使用第八章:数字信号处理器(DSP)8.1 DSP概述理解DSP的定义、特点和应用熟悉DSP与其他处理器的比较8.2 DSP的结构与工作原理学习DSP的内部结构和工作流程掌握DSP的指令集和编程方法8.3 DSP应用实例学习DSP在音频处理、图像处理等领域的应用设计一个简单的DSP应用系统第九章:数字电路与系统的安全与保护9.1 数字电路与系统的安全了解数字电路与系统的安全问题学习加密算法和数字签名技术9.2 硬件安全措施学习物理不可克隆功能(PUF)和硬件安全模块(HSM)掌握安全启动和安全存储的实现方法9.3 系统保护与版权保护了解系统保护的重要性学习数字版权管理(DRM)和软件保护的方法第十章:未来数字电路技术的发展趋势10.1 新兴数字电路技术了解量子计算、神经形态计算等新兴技术学习这些技术对传统数字电路的影响10.2 数字电路设计的未来趋势分析数字电路设计的发展方向探讨可持续发展和环保在数字电路设计中的作用10.3 教育与培训强调终身学习在数字电路技术发展中的重要性探讨在线教育和虚拟实验室在数字电路教学中的应用重点和难点解析一、数字电路基础:理解不同数制和码制之间的转换,以及逻辑门的功能和真值表。

数字逻辑(科学出版社 第五版)课后习题答案

数字逻辑(科学出版社 第五版)课后习题答案
10.用卡诺图化简下列各式
(1)
化简得F=
(2)
化简得F=
(3)F(A,B,C,D)=∑m(0,1,2,5,6,7,8,9,13,14)
化简得F=
(4) F(A,B,C,D)=∑m(0,13,14,15)+∑ (1,2,3,9,10,11)
化简得F=
11.利用与非门实现下列函数,并画出逻辑图。
(1)F= =
12.用适当门电路,设计16位串行加法器,要求进位琏速度最快,计算一次加法时间。
解:全加器真值表如下
Ai
Bi
Ci-1
Si
Ci+1
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0

1
0
1
1
0
0
1
0
1
0
1
0
1
1
1
0
0
1
1
1
1
1
1
可以写出以下表达式
要使进位琏速度最快,应使用“与或非”门。具体连接图如下。
若“与或非”门延迟时间为t1,“非门”延迟时间为t2,则完成一次16位加法运算所需时间为:
G的卡诺图
化简得:
第三章时序逻辑
1.写出触发器的次态方程,并根据已给波形画出输出Q的波形。
解:
2.说明由RS触发器组成的防抖动电路的工作原理,画出对应输入输出波形
解:
3.已知JK信号如图,请画出负边沿JK触发器的输出波形(设触发器的初态为0)
4.写出下图所示个触发器次态方程,指出CP脉冲到来时,触发器置“1”的条件。

数字设计:原理与实践第五版习题答案

数字设计:原理与实践第五版习题答案

数字设计:原理与实践第五版习题答案第一章:数字系统基础1. 哪些数学符号代表布尔逻辑运算?分别代表哪些逻辑操作?布尔逻辑运算包括与(AND)、或(OR)、非(NOT)、异或(XOR)等运算。

它们的对应数学符号表示如下:•与(AND):$\\cdot$ 或 $\\land$•或(OR):+或 $\\lor$•非(NOT):$\\overline{A}$ 或eee•异或(XOR):$\\oplus$2. 简述数字系统的信号表示和信号处理单元。

数字系统的信号表示使用离散量来表示连续或离散的信号,其中离散量指代具有离散数值的量。

信号处理单元是指对输入信号进行处理和操作的硬件模块,用于实现特定的功能或执行特定的任务。

3. 什么是布尔函数?它可以用哪些方法表示?布尔函数是指以布尔逻辑运算为基础,将一个或多个布尔变量映射为单一布尔值的函数。

布尔函数可以用真值表、逻辑表达式和逻辑图等方法表示。

4. 简述数字系统的设计方法。

数字系统的设计方法包括以下几个步骤:1.确定问题的需求和约束条件。

2.将问题抽象为逻辑功能的实现。

3.设计逻辑电路并进行仿真验证。

4.实现电路设计并进行实验验证。

5.优化电路设计并进行性能评估。

6.完成设计文档和报告。

第二章:组合逻辑电路设计1. 什么是组合逻辑电路?简述其基本特征。

组合逻辑电路是指将组合逻辑块进行组合形成的电路,其输出仅依赖于当前的输入。

它的基本特征包括:•输入输出之间无时序关系。

•只有组合逻辑块,没有存储元件。

•输出仅取决于当前输入。

2. 简述逻辑门的功能和特点。

逻辑门是实现布尔逻辑运算的基本构件,其功能和特点如下:•与门(AND):多个输入信号全部为高时,输出高;否则输出低。

•或门(OR):多个输入信号有一个为高时,输出高;否则输出低。

•非门(NOT):输入信号为高时,输出低;否则输出高。

•异或门(XOR):多个输入信号中奇数个为高时,输出高;否则输出低。

3. 什么是选择器和解码器?选择器是一种组合逻辑电路,根据选择信号将一组输入信号中的某一个作为输出。

第三章 主机遥控系统的逻辑与控制回路

第三章 主机遥控系统的逻辑与控制回路

第三章主机遥控系统的逻辑与控制回路主机遥控是指离开机旁在驾驶台(BR)或集中控制室(ECR)对主机进行远距离操纵的一种控制方式。

我们把用于完成主机的这种遥控操作的控制系统称为主机遥控系统。

它是由组合逻辑回路、时序逻辑回路、反馈控制回路和各种安全保护回路组成的复杂系统。

主机遥控系统不仅大大地减轻了机舱工作人员的劳动强度,而且可以减少误操作,改善船舶的操纵性能,提高主机运转的可靠性和经济性,乃至船舶航行的安全性。

主机遥控系统是机舱自动化的重要组成部分,也是实现无人机舱的必备条件之一。

在设有主机遥控系统的船上,操纵主机的位置通常有三个,即机旁、集控室和驾驶台。

其中,机旁操纵是最基本的操纵方式,它确保当遥控系统出现故障时仍可以在机旁进行临时的应急操作,以保证航行的安全。

因此,在机旁总是设有“机旁(手动,应急)——遥控(自动)”转换阀。

在正常情况下,该阀应处于“遥控(自动)”位置,这时就可在集控室或驾驶台对主机进行遥控操作了。

主机的遥控操作分为集控室遥控和驾驶台遥控,其操作部位的切换由设在集控室操纵台上的“集控——驾控”转换装置实现。

船舶柴油主机的基本操纵,例如起动,换向,停油和制动等都是借助空气动力来进行的。

要实现主机的这些基本操纵,就必须为主机均配备各种气动伺服机构和相应的逻辑阀件及气路系统,称为气动操纵系统......。

对于目前常见的主机遥控系统,其机旁操纵和集控室遥控均是通过气动操纵系统实现的。

此时,驾驶员通过传令车钟将车令发到机舱,轮机员根据车令对主机进行手动操纵,逐渐使主机达到车令所要求的状态。

因此,集控室遥控实际上只是手动..遥控..。

驾驶台遥控一般是在气动操纵系统的基础上增加必要的组合逻辑和时序逻辑模块,使这些逻辑模块能直接接收驾驶台发出的车令,并按照主机的正确操纵规程发出各种控制命令,通过接口电磁阀与气路接口,进而对主机进行自动遥控....。

而这些逻辑模块的实现可以是气动的,也可以是电动的,而电动的又可以是有触电式,无触电式和微机控制的。

《数字电子技术》电子教案

《数字电子技术》电子教案

《数字电子技术》电子教案第一章:数字电路基础1.1 数字电路概述介绍数字电路的基本概念、特点和分类解释数字信号与模拟信号的区别1.2 数字逻辑基础介绍逻辑代数的基本运算和规则解释逻辑门电路的原理和应用1.3 逻辑函数与逻辑门电路介绍逻辑函数的定义和表示方法解释逻辑门电路的种类和功能第二章:组合逻辑电路2.1 组合逻辑电路概述介绍组合逻辑电路的定义和特点解释组合逻辑电路的分类和应用2.2 常用的组合逻辑电路介绍编码器、译码器、多路选择器和算术逻辑单元等电路的原理和应用2.3 组合逻辑电路的设计方法介绍组合逻辑电路的设计原则和方法解释组合逻辑电路的优化和简化第三章:时序逻辑电路3.1 时序逻辑电路概述介绍时序逻辑电路的定义和特点解释时序逻辑电路的分类和应用3.2 触发器介绍触发器的概念、种类和功能解释触发器的时序要求和真值表3.3 时序逻辑电路的设计方法介绍时序逻辑电路的设计原则和方法解释时序逻辑电路的优化和简化第四章:数字电路仿真与实验4.1 数字电路仿真概述介绍数字电路仿真的概念和作用解释数字电路仿真软件的使用方法4.2 组合逻辑电路的仿真与实验利用仿真软件对组合逻辑电路进行仿真和实验分析实验结果和性能评估4.3 时序逻辑电路的仿真与实验利用仿真软件对时序逻辑电路进行仿真和实验分析实验结果和性能评估第五章:数字电路的应用5.1 数字电路在通信系统中的应用介绍数字电路在通信系统中的应用实例和原理解释数字调制和解调的电路设计方法5.2 数字电路在计算机系统中的应用介绍数字电路在计算机系统中的应用实例和原理解释微处理器、存储器和总线的电路设计方法5.3 数字电路在其他领域中的应用介绍数字电路在其他领域中的应用实例和原理解释数字电路在控制系统、数字信号处理等方面的应用方法第六章:数字电路设计工具与方法6.1 数字电路设计工具介绍电子设计自动化(EDA)工具的概念和作用解释电路设计软件(如Multisim、Proteus)的使用方法6.2 数字电路设计流程阐述数字电路设计的整个流程,包括需求分析、逻辑设计、物理设计等解释各个阶段的关键技术和注意事项6.3 数字电路设计实例通过具体实例展示数字电路设计的全过程分析设计过程中的难点和解决方案第七章:数字集成电路7.1 数字集成电路概述介绍数字集成电路的类型和特点解释集成电路的制造工艺和分类7.2 常见数字集成电路介绍TTL、CMOS等常见数字集成电路的原理和应用解释集成电路封装和接口技术7.3 数字集成电路的应用与选择阐述数字集成电路在电路设计中的应用方法介绍如何根据电路需求选择合适的集成电路第八章:数字系统的测试与维护8.1 数字系统测试概述介绍数字系统测试的目的和重要性解释数字测试信号的和应用8.2 数字故障诊断与测试方法介绍故障诊断的方法,如静态测试、动态测试和在线测试解释故障模型和测试向量的8.3 数字系统的维护与优化阐述数字系统运行过程中的维护和优化措施介绍故障排除和系统性能提升的方法第九章:数字电路在嵌入式系统中的应用9.1 嵌入式系统概述介绍嵌入式系统的概念、特点和分类解释嵌入式系统在现代科技领域的重要性9.2 嵌入式数字电路设计阐述嵌入式数字电路的设计方法和流程介绍嵌入式处理器、外围电路和接口技术9.3 嵌入式系统的应用实例通过具体实例展示嵌入式数字电路在实际应用中的作用和效果第十章:数字电路技术的未来发展10.1 数字电路技术发展趋势分析当前数字电路技术的发展趋势,如低功耗、高速度、高集成度等介绍新型数字电路技术的研究方向和应用前景10.2 数字电路技术的挑战与机遇阐述数字电路技术在发展过程中面临的挑战,如信号完整性、可靠性等探讨数字电路技术发展的机遇和应对策略10.3 数字电路技术的创新应用介绍数字电路技术在新型领域的创新应用,如物联网、等分析这些应用对数字电路技术发展的影响和推动作用第十一章:数字电路在模拟信号处理中的应用11.1 概述数字模拟信号处理介绍数字电路在模拟信号处理中的重要性解释数字模拟信号处理的基本概念和原理11.2 模拟信号的数字化处理阐述模拟信号数字化处理的方法和技术介绍ADC(模数转换器)和DAC(数模转换器)的工作原理和应用11.3 数字滤波器与信号处理解释数字滤波器的作用和分类介绍数字滤波器的设计方法和应用实例第十二章:数字电路在信号传输中的应用12.1 数字信号传输概述介绍数字信号传输的基本概念和特点解释数字信号传输与模拟信号传输的区别12.2 数字调制与解调技术介绍数字调制与解调的基本原理和方法解释调制解调器(modem)的工作原理和应用12.3 数字信号传输的线路和设备介绍数字信号传输中所用的线路和设备,如同轴电缆、光纤等解释数字信号传输中的信号衰减和抗干扰措施第十三章:数字电路在计算机系统中的应用13.1 计算机系统概述介绍计算机系统的基本组成和工作原理解释计算机系统在现代社会中的重要性13.2 中央处理器(CPU)介绍CPU的结构和工作原理解释控制单元、运算单元和寄存器的作用和功能13.3 存储器和总线系统介绍存储器的类型和作用解释总线系统的组成和功能,如数据总线、地址总线、控制总线等第十四章:数字电路在控制系统中的应用14.1 控制系统概述介绍控制系统的概念、类型和特点解释数字电路在控制系统中的应用重要性14.2 数字控制器的设计与实现阐述数字控制器的设计方法和流程介绍控制器算法实现和硬件设计的技术14.3 数字控制系统实例通过具体实例展示数字电路在控制系统中的应用和效果第十五章:数字电路技术的综合应用案例15.1 数字电路技术在通信领域的应用介绍数字电路技术在通信领域的典型应用实例解释数字电路技术在提高通信系统性能方面的作用15.2 数字电路技术在工业自动化领域的应用阐述数字电路技术在工业自动化领域的应用实例和优势介绍数字电路技术在提高工业生产效率和质量方面的作用15.3 数字电路技术在其他领域的应用展望探讨数字电路技术在其他领域的应用前景和发展趋势分析数字电路技术对人类社会发展的影响和推动作用重点和难点解析本文主要介绍了《数字电子技术》电子教案,内容涵盖了数字电路的基础知识、组合逻辑电路、时序逻辑电路、数字电路仿真与实验、数字电路的应用、数字集成电路、数字系统的测试与维护、数字电路在嵌入式系统中的应用、数字电路技术的未来发展等十五个章节。

时序逻辑电路基础知识讲解

时序逻辑电路基础知识讲解

同步时序电路的时钟 方程可省去不写。

输出方程: Y Q1nQ2n
输出仅与电路现态有关,为 穆尔型时序电路。
方 程 式
驱动方程:
J
2
J1
Q1n Q0n
K2 Q1n K1 Q0n
J
0
Q2n
K0 Q2n
2 求状态方程
JK触发器的特性方程:
Qn1 JQ n KQn
将各触发器的驱动方程代入,即得电路的状态方程:
由状态图可以看出,在时钟脉冲CP的作用下,电路的8个状 态按递减规律循环变化,即:
000→111→110→101→100→011→010→001→000→… 电路具有递减计数功能,是一个3位二进制异步减法计数器。
6.3 计数器
计数器——用以统计输入脉冲CP个数的电路。
计数器的分类: (1)按计数进制可分为二进制计数器和非二进 制计数器。 非二进制计数器中最典型的是十进制计数器。
FF0
例 CP 1D C1
2
FF1
FF2
Q0 1D
Q1 1D
Q2
C1
C1
Q0
Q1
Q2
异步时序电路,时钟方程: 1

CP2 Q1,CP1 Q0,CP0 CP
方 电路没有单独的输出,为穆尔型时序电路。
程 驱动方程:

D2 Q2n,D1 Q1n,D0 Q0n
2 求状态方程
D触发器的特性方程:
000 001
010
QQ1212nnnn1111
1001不,不不变变10变,,QQ11 1010不不变变10,,QQ00
0 1
1 0
1 0
Q00nn11 10 10,,CCPP

第3章第4节 常用时序逻辑电路模块(1)

第3章第4节 常用时序逻辑电路模块(1)

Q7
2011/11/9 Qinwenhu
3
2.移位寄存器(Shift Register)
定义:
所存放的数据能移动位置的寄存器
分析下图
Q3
Q2
Q1
Q0
X
1D
C1 CP
2011/11/9 Qinwenhu
1D C1
1D
1D
C1
Q
C1
Q
4
上图状态方程:
Q0n+1= Q1n ; Q1n+1= Q2n Q2n+1= Q3n; Q3n+1=Xn
Q1 Q2 Q3 Q4 0000
1000 0001
1100
0011
1110
0111
1111
23
问题:如何构成5分频器?
画出逻辑图、波形图、状态图
2011/11/9 Qinwenhu
24
(4)构成顺序存取存储器
& 1 B00 B01 01 …
D0

& 1
据 输
D1

& 1
D2 读出
写入2011/11/9 Qinwenhu
0001
0010
1111
1110
1101
1100
1011
2011/11/9 Qinwenhu
1010
Q3 Q2 Q1 Q0
0011
0100
1001
0101
0110
0111 1000
41
反馈置数实现模6图
Q0 Q1 Q2 Q3 Co
EN
LD
CI CP
CR
D0 D1 D2 D3

时序逻辑和组合逻辑的详解

时序逻辑和组合逻辑的详解

时序逻辑和组合逻辑的详解时序逻辑和组合逻辑是数字电路设计的两种基本逻辑设计方法,它们在数字系统中起着至关重要的作用。

时序逻辑是一种依赖于时钟信号的逻辑设计方法,通过定义在时钟信号上升沿或下降沿发生的动作,来确保逻辑电路的正确性和稳定性。

而组合逻辑则是一种不依赖时钟信号的逻辑设计方法,其输出只取决于当前的输入状态,不受到时钟信号的控制。

本文将分别对时序逻辑和组合逻辑进行详细的阐释,并比较它们在数字电路设计中的应用和特点。

时序逻辑首先来看时序逻辑,它是一种将输入、输出和状态信息随时间推移而改变的逻辑系统。

时序逻辑的设计需要考虑到时钟信号的作用,时钟信号的传输速率影响了时序逻辑电路的稳定性和响应速度。

时钟信号的频率越高,电路的工作速度越快,但同时也会增加功耗和故障率。

因此,在设计时序逻辑电路时,需要充分考虑时钟频率的选择,以及如何合理地控制时钟信号的传输和同步。

时序逻辑电路通常由触发器、寄存器、计数器等组件构成,这些组件在特定的时钟信号下按照预定的顺序工作,将输入信号转换成输出信号。

时序逻辑电路的设计需要满足一定的时序约束,确保信号在特定时间内的传输和处理。

时序约束包括激发时序、保持时序和时序延迟等,这些约束在设计时序逻辑电路时至关重要,一旦违反可能导致电路不能正常工作或产生故障。

时序逻辑的一个重要应用是时序控制电路,它在数字系统中起着至关重要的作用。

时序控制电路通过时序逻辑实现对数据传输、状态转换和时序控制的精确控制,保证系统的正确性和稳定性。

时序控制电路常用于时序逻辑电路的设计中,例如状态机、序列检测器、数据通路等,它们在计算机、通信、工控等领域都有广泛的应用。

时序逻辑还常用于时序信号的生成和同步,如时钟信号、复位信号、使能信号等。

时序信号的生成需要考虑电路的稳定性和同步性,确保各个部件在时钟信号的控制下协调工作。

时序信号的同步则是保证各个时序逻辑电路之间的数据传输和处理是同步的,避免数据冲突和错误。

时序逻辑

时序逻辑

1.四位异步二进制计数器
异步计数器翻转时间:
从时钟有效沿开始到该级触发器翻转结束,有一个翻转时间tp。 n级触发器组成的异步计数器则有ntp
异步计数器分析方法:
异步计数器的分析方法基本上与同步计数器相同,但是要把时钟信号作 为输入信号来处理。为此要注意三点: ⑴将时钟信号引入触发器的状态方程 若是JK触发器,状态方程修改为
3.1.1 锁存器的基本特性
时序逻辑电路在结构上一定包含锁存器或触发器,锁存器具有两个稳 定的物理状态,能记忆1位二进制数。 (1)有两个互补的输出端Q和Q(互锁的)。 (2)有两个稳定状态。 “1”状态:(Q=1 ,Q=0) “ 0 ”状态 (Q=0 ,Q=1) (3)在输入信号的作用下,锁存器可以从一个稳定状态转换到另一个稳 定状态。 X表示输入信号的集 合,则有 Qn+1=f(Qn,X) 此函数表达式叫触发器 的特征方程,也叫次态 方程,状态方程。
第三章:时序逻辑
锁存器 触发器 寄存器和移位寄存器 计数器 定时脉冲产生器 同步时序逻辑分析 同步时序逻辑设计

时序逻辑电路的特点
包含锁存器或触发器
它的输出往往反馈到输入端,与输入变量一起
决定电路的输出状态。 任意时刻输出不仅取决于该时刻输入变量的状 态,而且还与原来的状态有关,即历史状态相关性 时序逻辑电路具有记忆功能
同步计数器的设计
同步计数器的设计方法:
• 根据电路的逻辑功能作出状态图,由状态图列出状态 转换表。 由状态转换表并根据触发器特性方程写出激励方程和 输出方程。 画出电路图。


[例]:由D触发器设计按循环码规律工作的六进
制同步计数器,其编码为:
根据电路的逻辑功能作出状态图

第三章组合逻辑电路 (1)

第三章组合逻辑电路 (1)

第三章组合逻辑电路一、概述1、概念逻辑电路分为两大类:组合逻辑电路和时序逻辑电路数字逻辑电路中,当其任意时刻稳定输出仅取决于该时刻的输入变量的取值,而与过去的输出状态无关,则称该电路为组合逻辑电路,简称组合电路2、组合逻辑电路的方框图和特点(1)方框图和输出函数表达式P63输出变量只与当前输入变量有关,无输出端到输入端的信号反馈网络,即组合电路无记忆性,上一次输出不对下一次输出造成影响3、组合逻辑电路逻辑功能表示方法有输出函数表达式、逻辑电路图、真值表、卡诺图4、组合逻辑电路的分类(1)按功能分类常用的有加法器、比较器、编码器、译码器等(2)按门电路类型分类有TTL、CMOS(3)按集成度分类小、中、大、超大规模集成电路二、组合逻辑电路的分析方法 由电路图---电路功能 1、分析步骤(1)分析输入输出变量、写出逻辑表达式 (2)化简逻辑表达式 (3)列出真值表(4)根据真值表说明逻辑电路的功能 例:分析下图逻辑功能第一步:Y=A ⊕B ⊕C ⊕D 第二步: 第三步:A B C D Y 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 10 0 0 1=1=1=1CDY1 0 0 1 01 0 1 0 01 0 1 1 11 1 0 0 01 1 0 1 11 1 1 0 11 1 1 1 0第四步:即0和1出现的个数不为偶则输出1,奇偶个数的检验器三、组合逻辑电路的设计方法1、概念根据要求,最终画出组合逻辑电路图,称为设计2、步骤(1)确定输入输出变量个数(2)输入输出变量的状态与逻辑0或1对应(3)列真值表(4)根据真值表写出输出变量的逻辑表达式(5)对逻辑表达式化简,写出最简逻辑表达式(6)根据逻辑表达式,画出逻辑电路图例:三部雷达A、B、C, 雷达A、B的功率相等,雷达C是它们的两倍,发电机X最大输出功率等于A的功率,发电机Y输出功率等于A与C的功率之和,设计一个组合逻辑电路,根据雷达启停信号以最省电的方式开关发电机第一步:输入变量3个,输出变量2个第二步:雷达启动为1、发电机发电状态为1第三步:A B C X Y0 0 0 0 00 0 1 0 10 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1第四步:卡诺图化简第五步:写逻辑表达式第六步:画逻辑电路图四、常用中规模标准组合模块电路一些常用的组合逻辑电路,如编码器、译码器、加法器等制成中规模电路,称为中规模标准组合模块电路1、半加器进行两个1位二进制数相加的加法电路称为半加器,如图3-11所示真值表如下:A B S C0 0 0 00 1 1 01 0 1 01 1 0 1根据真值表,写出逻辑表达式如下:S=AB+AB=A⊕BC=AB2、全加器即带低位上产生的进位的加法器真值表如下:A iB iC i-1S i C i0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1根据真值表,卡诺图化简后写出逻辑表达式如下:S i=A i⊕B i⊕C i-1C i=A i B i+C i-1(A i⊕B i)(为便于实现)根据逻辑表达式,画出电路图如图3-13所示3、加法器可以实现多位二进制数加法的电路(1)串行进位加法器低位全加器的进位输出端连到高位全加器的进位输入端,如图3-3所示(2)超前进位加法器C i=A i B i+C i-1(A i⊕B i)= A i B i+C i-1(A i B i+ A i B i)= A i B i C i-1+A i B i C i-1 +A i B i C i-1+ A i B i C i-1=A i B i+ B i C i-1+ A i C i-1= A i B i+C i-1(A i+B i)令P i=A i+B i,称P i为第i位的进位传输项,令G i=A i B i,称G i 为第i位的进位产生项,则第0位的进位为C0=G0+P0C-1,第1位的进位为C1=G1+P1 C0, C0带入C1,消去C0,得C1=G1+P1(G0+P0 C-1),同理,得C2= G2+P2(G1+ P1(G0+P0 C-1)),,C3= G3+ P3(G2+ P2(G1+P1(G0+P0 C-1))),即知道相加的二进制数的各位和最低位进位就可以超前确定进位,提高了速度,如图3-4所示4、乘法器完成两个二进制乘法运算的电路(1)乘法器P85(2)并行乘法器P855、数值比较器比较二进制数大小,输入信号是要比较的数,输出为比较结果(1)1位数值比较器A B M G L0 0 0 1 00 1 1 0 01 0 0 0 11 1 0 1 0M=ABG=AB+AB= AB+AB(便于逻辑实现)L=AB逻辑电路图如图3-5所示(2)4位数值比较器多位二进制数比较大小,先看最高位情况,如相等再看次高位情况,以此类推4位比较器为例,8个输入端(A3A2A1A0,B3B2B1B0),三个输出端(L,G,M)A>B,则A3>B3,或A3=B3且A2>B2,或A3=B3,A2=B2,A1>B1,或A3=B3,A2=B2,A1=B1,A0>B0设定AB的第i位比较结果为L i=A i B i,G i=A i B i+A i B i,M i=A i B i,则L=L3+G3L2+G3G2L1+G3G2G1L0同理, A=B 时,G=G3G2G1G0,A<B时,M=M3+G3M2+G3G2M1+G3G2G1M0,因A不大于也不等于B时即小于B,故M=LG=L+G(便于逻辑实现)逻辑电路图如P87图3-18所示(3)集成数值比较器4位数值比较器封装在芯片中,构成4位集成数值比较器,74ls85真值表如图3-6所示考虑到级联,增加了级联输入端(更低位的比较结果),级联时,如构成8位数值比较器,低四位比较结果为高四位数值比较器的级联输入端,而低四位的级联输入端应结为相等的情况(010),74ls85级联如图3-7所示cc14585真值表如图3-8所示,cc14585级联如图3-9所示6、编码器将输入信号用二进制编码形式输出的器件,若有N个输入信号,假设最少输出编码位数为m位,则2m-1<N<2m(1)二进制编码器以2位输出编码为例输入输出I0I1I2I3Y1Y01 0 0 0 0 00 1 0 0 0 10 0 1 0 1 00 0 0 1 1 1故Y1=I2+I3,Y0=I1+I3逻辑电路图如P89图3-22所示但当不止一个输入端有编码要求时该电路不能解决问题(2)二进制优先编码器3位二进制优先编码器为例8个输入端为I0~I7,输出端为Y2~Y1,假设I7的编码优先级最高,则对应真值表为:输入输出I0I1I2I3I4I5I6I7Y2Y1Y0×××××××0 0 0 0 ××××××0 1 0 0 1 ×××××0 110 1 0 ××××0 1110 1 1 ×××0 1111 1 0 0 ××0 11111 1 0 1 ×0 111111 1 1 0 0 1111111 1 1 1 “×”为任意值根据真值表,列出逻辑表达式如P90所示,逻辑图过于麻烦,略以上为低电平有效的情况,高电平有效真值表如图3-10所示,得A2=I4+I5+I6+I7,A1=I2+I3+I6+I7,A0=I1+I3+I5+I7, 逻辑图便于实现(3)8线-3线编码器74ls148编码器图形符号如图3-11所示,真值表如图3-12所示74ls148编码器级联,注意控制信号线的连接,级联图如图3-13所示选通信号有效,当高位芯片输入不全为1时,选通输出端为1,低位芯片不工作且二进制反码输出端为1,与门受高位芯片二进制反码输出端影响,扩展输出端为0,作为A3,根据输入情况不同,得编码0000~0111;选通信号有效,当高位芯片输入全为1时,高位芯片不工作,选通输出信号为0,低位芯片工作,高位芯片扩展输出端为1,作为A3,高位芯片二进制反码输出端全1,与门受低位芯片二进制反码输出端影响,根据输入情况不同,得编码1000~1111,即实现16线-4线编码器功能(4)9线-4线编码器74ls147编码器图形符号、真值表如图3-14所示注意,其输出对应十进制数的8421BCD码的反码(5)码组变换器将输入的一种编码转换为另一种编码的电路参见P92例3-5原理:加0011和加1011的原因7、译码器译码是编码的逆过程,将二进制代码转换成相应十进制数输出的电路(1)3线-8线译码器真值表如图3-15所示逻辑表达式如下:Y0=CBA、Y1=CBA……Y6=CBA、Y7=CBA(2)集成3线-8线译码器74LS138译码器符号如图3-16所示,真值表如图3-17所示注意三个选通信号,在级联时的作用,级联如图3-18所示74LS138译码器典型应用如图3-19所示(3)集成4线-10线译码器74LS42符号如图3-20所示,真值表如图3-21所示逻辑表达式如图3-22所示(4)显示译码器是用来驱动显示器件的译码器(A)LED数码管电能---光能(发光二极管构成)具有共阴极和共阳极两种接法,如图3-23所示,注意非公共端连接高电平或低电平时要串接限流电阻(B)显示译码器74LS47(驱动LED为共阳极接法的电路,驱动共阴极要用74LS48)引脚图如图3-24所示,真值表如图3-25所示要具有一定的带灌电流负载能力才能驱动LED相应段发光,显示效果如P99图3-35所示附加控制端用于扩展电路功能:灯测试输入LT:全亮灭零输入RBI:将不需要的“0”不显示以使得要显示的数据更醒目灭灯输入\灭零输入BI\RBO:作为输入使用,一旦为0则灯灭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T=1时刻,Xi=1,Xf=0.1, Xd=0.9,Xo1=9; ......
第一个控制系统:1788年,瓦特设计离心式调速器,用于控制蒸汽机速度。利用了负反馈的原理
离心式调速器中有二颗重球,其旋转速度和蒸汽机相 同。 (1)蒸汽机的速度提高时,重球因离心力移到调速器的 外侧,因此会带动机构,关闭蒸汽机进气阀门,降低蒸 汽机速度。
状态
JK=1×


0
1
×0
×1
CP
波 形
图J K Q Q
【例6】图所示为芯片74HC112负沿JK触发器的输入波形,请画出输出端的波形图。
课堂练习3.7
1.触发器具有记忆作用是因为它的结构上有

2.一个触发器可以存储
位二进制数据。
3. 若将D触发器的D端连在 端上,经100个脉冲作用后,它的次态Q(t+100)=0, 则现态Q(t)应为 。 A. Q(t) =0 B. Q(t) =1 C. 与现态Q(t)无关
9. 若用JK触发器来实现特性方程为
,则JK端的方程为 A.J=AB,K=

AB
B.J=AB,K=
AB
C.J=
A B ,K=AB
A B D.J= ,K=AB
Qn1AQnAB
典型触发器的符号:
3.2.4 触发器的应用和时间参数 1.触发器的应用
2.触发器的时间参数
(1)为保证数据写入的正确性的时间参数: ts:数据建立时间(D在CP有效边沿之前的提前时
Q n 1 D D (Q n Q n ) D Q n D nQ
与JK触发器的特性方程比较,得:
J D K D
电路图
D
1J
Q
1
C1
1K
Q
CP
D触发器→JK触发器? 写出JK触发器的特性方程,使之形式与D触发器的特性方程一致:
Qn1JQnKQn
与D触发器的特性方程比较,得:
DJQnKQn
电路图
Q n +1 Qn
功能
Q n1 Q n 保 持
0
Q n1 Q n 保 持
1
0 Q n1 0 置 0
0
1 Q n1 1 置 1
1
1
Q n1 Q n 翻 转
0
JK=00时不变 JK=01时置0 JK=10时置1 JK=11时翻转
特征方程
Qn1JQnKQn
CP=1期间有效
课堂作业3.6
• 根据表3.6,画出卡诺图,推出JK触发器的特征方程。 • 根据表3.6,画出JK触发器的状态转换图。
若 R=S 10,触发器就会翻转成为1状态。 ②当触发器处在1状态,即Qn=1时,若输入信号 =10或11,触发器仍为1状态;RS 若 R=S 01,触发器就会翻转成为0状态。
课堂作业3.3
• 默写:基本SR锁存器的状态方程。 • 画:基本SR锁存器的状态图。
S和 R同时 0 为 Q,Q同1为
真值表
0 1
1 0
如果“输入S=0, R=0,输出Q=1”是原状态,新状态是“输入S=1, R=1”,此时输出Q=?
0 1
1 0
此时输出Q=0或Q=1都是可能的,因此是不
可控制的。
1
称“输入S=0, R=0”为“不稳”,禁止它出
?
现。
1
?
课堂作业3.2 • 重复刚才的分析过程,写出基本SR锁存器的变化情况。即分析输入和输出的对应情况。
3.3 寄存器和移位寄存器
3.3.1 寄存器
由若干个正沿D触发器构成的一次能存储多位二进制代码的时序逻辑电路,叫寄存器。输出采用三 态门控制,因而适合于挂接在数据总线上。D锁存器也可构成寄存器,常用的寄存器大多由D触发器 构成。
两者区别: D触发器构成的寄存器:时钟信号采用边沿方式工 作,更可靠。 D锁存器构成的寄:时钟信号采用电位方式工作, 易受干扰。
3.3.2 移位寄存器
在时钟信号控制下,将所寄存的数据向左或向右移位的寄存器称为移位寄存器。分类:按方向、 串并行左、右、是否循环、串行、并行的7类组合。
右移寄存器逻辑图
具有右移、左移并行置数功能的寄存器叫做通用移位寄存器。通用移位寄存器功能:并行 置数、保持、左移、右移四种功能。
通用移位寄存器用途十分广泛,累加寄存器、缓冲寄存器、乘除部件中寄存器。四种工作 方式:串入--串出、串入--并出、并入--串出、并入--并出。
3.2 触发器 flip-flop
• 3.2.1 SR触发器 • 3.2.2 D触发器 • 3.2.3 JK触发器 • 3.2.4 触发器的应用和时间参数
3.2 触发器
锁存器虽然能记忆一位二进制数,但接受的输入数据是在允许使能信号EN控制下进行。存在当 EN受干扰(开关变化),保存数据生变的问题。
S和R不会同时为高,避免了SR触发器不稳定问题。
【例5】图3.14(a)所示为D触发器的数据输入波形,画出输出的波形图。
实际上不用把CK变成“窄脉冲”,也能做出边沿触发器。方法如下: 把2个电平型的D触发器连起来,构成“主-从”边沿触发器
3.2.3 JK触发器 JK触发器功能同SR触发器类似,也是双输入,JK触发器主要改进:解决SR触发器不稳定问题。 正沿JK触发器
工作原理: 数据在时钟有效边沿之前的提前到达,当有效边沿之后,完成相应操作。 JK都为1时的情况:窄脉冲使JK触发器状态反转。当J=1,K=1时,对每一个连续的时钟 脉冲,触发器可改变成相反状态或计数状态,称为交替操作。
0 0
1 1
CP=0时,状态不变。
1
1
0
0
0
1
1
CP=1时, J=K=0,状态不变。
真值表
R
S
0
1
1
0
0
0
1
1
Q
0 1
Q
1 0
不稳(Ф)
保持
R:置零或复位端(低电平置零,逻辑符号上用小圆圈表示) S:置1或置位端(低电平置1) Q:触发器原端或1端
Q :触发器非端或0端
功能真值表及特征方程 状态转换真值表:输入信号与原态、次态之间的关系
Qn+1的卡诺图
Qn :原状态或现态(输入) Qn+1:新状态或次态(输出)
Q
4. JK触发器的特征方程是

5. JK触发器,若Qn = 1,则当 时 Qn+1 = 1。 A. J=K=1 B. J=K=0 C. J=1, K=0 D. J=0, K=1
6.SR触发器,若Qn=1,则当 时Qn+1 =1。 A. S=R=1 B. S=R=0 C. S=1, R=0 D. S=0, R=1
继续改进: 解决SR锁存器存在“不稳”态的问题。 这就是D锁存器。
状态方程:Qn+1=D
SR锁存器的S和R的取值受到约束,即不能同时为1。 这里D锁存器解决了这个问题。 但奇怪的是:D触发器好像什么都没做? 图3.8。
课堂作业3.5
• 默写:D锁存器的状态方程。 • 看图3.8,说明D触发器“做“了什么。(输出Q和输入D是完全一样的吗?为什么不一样)
当蒸汽机速度过低时,重球会移到调速器的内侧,会再 开启蒸汽机进气阀门,增加蒸汽机速度。
1788年:博尔顿&瓦特引 擎
• 3.1.1 锁存器的基本特性 • 3.1.2 基本SR锁存器 • 3.1.3 门控SR锁存器 • 3.1.4 门控D锁存器
3.1 锁存器
电路图与逻辑符号 R,S :输入;
负反馈 negative feedback
X i +
X d
基本放大
X o


X f
电路A
反馈 电路F
课堂作业3.1: Xon+1 = A (Xi - FXon) 如果A=10,Xi=1,F=0.01,请画出Xo的变化曲线,并指出Xo最后稳定在什么值。 例如:T=0时刻,Xi=1,Xf=0, Xd=1,Xo0=10;
现输出Q=0。 因此“状态保持不变”。
0 1
0 1
1 1
1
0
(2)原状态S=1, R=0,输出Q=0; 新状态S=1, R=1,输出Q=0。 如果考虑原状态到新状态的连续变化,那么“输入S=1, R=1,输出Q=0”的情况是确定的。不可能出
现输出Q=1。 因此“状态保持不变”。
1 0
1 0
1 0
1
为了提高锁存器工作的可靠性,推出了边沿方式工作的触发器。触发器是一种同步双稳态器件。 同步是指触发器的记忆状态按时钟脉冲(CLK)规定的起动指示点(脉冲边沿)来改变。触发器可 以在时钟脉冲的正沿(上升沿)改变状态,也可以在时钟脉冲的负沿(下降沿)改变状态。
三种形式的触发器逻辑符号, 时钟端C处:
不带小圆圈:表示时钟信号为 正脉冲;
正沿SR触发器操作原理图
存在问题:与门控锁存器一样,当S和R同时为高时,如果时钟脉冲出现,会使触 发器输出现不稳定情况。 SR触发器:S=1,R=1不允许。
【例4】 SR触发器的输入波形如图所示,画出Q和Q的工作波形(假 定触发器现态为0)。
3.2.2 D触发器 D触发器以SR触发器为基础,区别在于:增加了一个非门,变为单输入端D。
1 1
0
1 0
0 1
1
0
CP=1时, J=1,K=0,置1态。
0
1
1
0 1
1 0
0
CP=1时,
1 J=0,K=1,置0态。
1
0
1
1 0
0
0
1
1
1
0
CP=1时, J=K=1,翻转。
01
01 1
1
1
真值表
CP J K Qn 0 ×××
相关文档
最新文档