2018年上海市奉贤区高三二模数学卷(含标准答案)
2018学年上海高三数学二模分类汇编——三角
1(2018金山二模). 函数3sin(2)3y x π=+的最小正周期T =3(2018虹口二模). 已知(0,)απ∈,3cos 5α=-,则tan()4πα+=3(2018青浦二模). 若1sin 3α=,则cos()2πα-= 4(2018黄浦二模). 已知ABC ∆的三内角A B C 、、所对的边长分别为a b c 、、,若2222sin a b c bc A =+-,则内角A 的大小是4(2018宝山二模). 函数()2sin 4cos4f x x x =的最小正周期为 5(2018奉贤二模). 已知△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 所对的边. 若222b c a +-=,则A ∠=5(2018普陀二模). 在锐角三角形ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若222()tan b c a A bc +-=,则角A 的大小为7(2018静安二模). 方程cos2x =的解集为 7(2018黄浦二模). 已知函数2sin cos 2()1cos x x f x x-=,则函数()f x 的单调递增区间是7(2018徐汇二模). 函数2(sin cos )1()11x x f x +-=的最小正周期是8(2018浦东二模). 函数2()cos 2f x x x =,x ∈R 的单调递增区间为 9(2018杨浦二模). 若3sin()cos cos()sin 5x y x x y x ---=,则tan2y 的值为11(2018杨浦二模). 在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,2a =,2sin sin A C =. 若B 为钝角,1cos24C =-,则ABC ∆的面积为12(2018虹口二模). 函数()sin f x x =,对于123n x x x x <<<⋅⋅⋅<且12,,,[0,8]n x x x π⋅⋅⋅∈(10n ≥),记1223341|()()||()()||()()||()n M f x f x f x f x f x f x f x -=-+-+-+⋅⋅⋅+()|n f x -,则M 的最大值等于12(2018奉贤二模). 已知函数()5sin(2)f x x θ=-,(0,]2πθ∈,[0,5]x π∈,若函数()()3F x f x =-的所有零点依次记为123,,,,n x x x x ,且1231n n x x x x x -<<<<<,n ∈*N , 若123218322222n n n x x x x x x π--++++++=,则θ=12(2018金山二模). 若2018100922sin (2cos )(3cos cos )(1cos cos )αββαβα--≥---+,则sin()2βα+=13(2018杨浦二模). 已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为( )A.4π B. 2π C. 2π- D. 3π-15(2018静安二模). 函数()sin()f x A x ωϕ=+(0,0)A ω>>的部分图像如图所示,则()3f π的值为( )A.B.C. D. 015(2018崇明二模). 将函数sin(2)3y x π=-图像上的点(,)4P t π向左平移s (0s >)个单位长度得到点P ',若P '位于函数sin 2y x =的图像上,则( )A. 12t =,s 的最小值为6πB. 2t =,s 的最小值为6πC. 12t =,s 的最小值为3πD. 2t =,s 的最小值为3π16(2018奉贤二模). 设a ∈R ,函数()cos cos f x x ax =+,下列三个命题: ① 函数()cos cos f x x ax =+是偶函数;② 存在无数个有理数a ,函数()f x 的最大值为2; ③ 当a 为无理数时,函数()cos cos f x x ax =+是周期函数. 以上命题正确的个数为( )A. 3B. 2C. 1D. 017(2018静安二模). 某峡谷中一种昆虫的密度是时间t 的连续函数(即函数图像不间断). 昆虫密度C 是指每平方米的昆虫数量,已知函数21000(cos(4)2)990,816()2,081624t t C t m t t ππ⎧-+-≤≤⎪=⎨⎪≤<<≤⎩或,这里的t 是从午夜开始的小时数,m 是实常数,(8)m C =.(1)求m 的值;(2)求出昆虫密度的最小值并指出出现最小值的时刻. 17(2018长嘉二模). 已知函数2()2sin sin(2)6f x x x π=++.(1)求函数()f x 的最小正周期和值域;(2)设A 、B 、C 为ABC ∆的三个内角,若1cos 3B =,()2f A =,求sin C 的值. 18(2018松江二模).已知函数()cos f x x x ωω=+. (1)当()03f π-=,且||1ω<,求ω的值;(2)在ABC ∆中,a 、b 、c 分别是角A 、B 、C的对边,a =3b c +=,当2ω=,()1f A =时,求bc 的值.18(2018普陀二模). 已知函数2()sin cos sin f x x x x =-,x ∈R . (1)若函数()f x 在区间[,]16a π上递增,求实数a 的取值范围;(2)若函数()f x 的图像关于点11(,)Q x y 对称,且1[,]44x ππ∈-,求点Q 的坐标.18(2018虹口二模). 已知ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,cos sin z A i A =+⋅(i 是虚数单位)是方程210z z -+=的根,3a =.(1)若4B π=,求边长c 的值; (2)求ABC ∆面积的最大值.18(2018浦东二模). 在ABC ∆中,边a 、b 、c 分别为角A 、B 、C 所对应的边.(1)若2(2)sin 0(2)sin 1sin (2)sin c a b Ab a BC a b A-=-+-,求角C 的大小; (2)若4sin 5A =,23C π=,c =ABC ∆的面积.18(2018青浦二模). 已知向量(cos ,1)2x m =-u r,2,cos )22x xn =r ,设函数()1f x m n =⋅+u r r.(1)若[0,]2x π∈,11()10f x =,求x 的值;(2)在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c且满足2cos 2b A c ≤-,求()f B的取值范围.18(2018青浦二模). 如图,某快递小哥从A 地出发,沿小路AB →BC 以平均时速20公里/小时,送快件到C 处,已知10BD =公里,45DCB ︒∠=,30CDB ︒∠=,△ABD 是等腰三角形,120ABD ︒∠=.(1)试问,快递小哥能否在50分钟内将快件送到C 处?(2)快递小哥出发15分钟后,快递公司发现快件有重大问题,由于通讯不畅,公司只能派车沿大路AD →DC 追赶,若汽车平均时速60公里/小时,问,汽车能否先到达C 处?19(2018奉贤二模). 某旅游区每年各个月份接待游客的人数近似地满足周期性规律,因而第n 个月从事旅游服务工作的人数()f n 可近似地用函数()cos()f n A wn k θ=++来刻画,其中正整数n 表示月份且[1,12]n ∈,例如1n =表示1月份,A 和k 是正整数,0w >,(0,)θπ∈. 统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律:① 每年相同的月份,该地区从事旅游服务工作的人数基本相同;② 该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差400人; ③ 2月份该地区从事旅游服务工作的人数为100人,随后逐月递增直到8月份达到最多. (1)试根据已知信息,求()f n 的表达式;(2)一般地,当该地区从事旅游服务工作的人数在400或400以上时,该地区也进入了一年中的旅游“旺季”,那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.19(2018崇明二模). 如图,某公园有三条观光大道AB 、BC 、AC 围成直角三角形,其中直角边200BC m =,斜边400AB m =,现有甲、乙、丙三位小朋友分别在AB 、BC 、AC 大道上嬉戏,所在位置分别记为点D 、E 、F .(1)若甲乙都以每分钟100m 的速度从点B 出发在各自的大道上奔走,到大道的另一端时 即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲乙两人之间的距离; (2)设CEF θ∠=,乙丙之间的距离是甲乙之间距离的2倍,且3DEF π∠=,请将甲乙之间的距离y 表示为θ的函数,并求甲乙之间的最小距离.。
奉贤区高三数学二模参考答案
奉贤区2018学年第二学期区调研测试高三数学二模卷考试时间120分钟,满分150分一、填空题(第1题到第6题每题4分,第7题到第12题每题5分,满分54分)1.计算行列式2cossin 32sin3cosππππ=_____________. 2.在62⎪⎭⎫⎝⎛+x x 的展开式中常数项为_____________. 3.设函数()c x f y x+==2log 的图像经过点()5,2,则()x f y =的反函数()x f 1-=_______.4.参数方程⎩⎨⎧=+=θθsin cos 2y x [)()πθθ2,0,∈为参数表示的普通方程为________.5.若关于y x ,的二元一次线性方程组的增广矩阵是⎪⎪⎭⎫ ⎝⎛26011a ,该方程组的解为⎪⎪⎭⎫⎝⎛2c ,则=+c a _____________.6.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-2620y x y x y x ,则y x 3+的最小值为_________.7.设等比数列{}n a 中,首项01<a ,若{}n a 是递增数列,则公比q 的取值范围是 . 8.双曲线的右焦点恰好是x y 42=的焦点,它的两条渐近线的夹角为2π,则双曲线的标准方程为_________.9.已知函数()x f y =是定义在R 上的奇函数,且在[)+∞,0单调递减,当2019=+y x 时,恒有()()()y f f x f >+2019成立,则x 的取值范围是_________.10.随机选取集合{5}地,,莘南铁号线BRT 线的非空子集A 和B 且∅≠B A I 的概率 是_________. 11.实系数一元二次方程012=++bx ax ()0≠ab 的两个虚根21,z z ,1z 的实部()0e 1<z R ,则2120202920202120z z mm m --+的模等于1,则实数=m ________. 12.设点P 在以A 为圆心,半径为1的圆弧上运动(包含B 、C 两个端点),π32=∠BAC ,且AC y AB x AP +=,xy y x ++的取值范围为_________.二、选择题(单项选择题,每题5分,满分20分)13.在等差数列{}n a 中,设*,,,N r p l k ∈,则r p l k +>+是r p l k a a a a +>+的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分非必要条件.14.如左下图的后母戊鼎(原称司母戊鼎)是迄今为止世界上出土最大、最重的青铜礼器,有“镇国之宝”的美誉.后母戊鼎双耳立,折沿宽缘,直壁,深腹,平底,下承中空“柱足”,造型厚重端庄,气势恢宏,是中国青铜时代辉煌文明的见证.上右图为鼎足近似模型的三视图(单位:cm ).经该鼎青铜密度为a (单位:kg /cm 3),则根据三视图信息可得一个“柱足”的重量约为(重量=体积×密度,单位:kg )( ) A .πa 1250 B .πa 5000 C .πa 3750 D .πa 15000. 15. 已知ABC ∆的周长为12,()()2,0,2,0C B -,则顶点A 的轨迹方程为( )A .()01161222≠=+x y x B .()01161222≠=+y y x C .()01121622≠=+x y x D .()01121622≠=+y y x .16.设有000C B A ∆,作它的内切圆,得到的三个切点确定一个新的三角形111C B A ∆,再作111C B A ∆的内切圆,得到的三个切点又确定一个新的三角形222C B A ∆,以此类推,一次一次不停地作下去可以得到一个三角形序列()Λ,3,2,1=∆n C B A n n n ,它们的尺寸越来越小,则最终这些三角形的极限情形是( )A .等边三角形B .直角三角形C .与原三角形相似D .以上均不对.三、解答题(14+14+14+16+18=76分)17.已知θαθcos ,sin ,sin 成等差数列,θβθcos ,sin ,sin 成等比数列,(1)若6πα=,求θ;(2)求βα2cos 212cos -的值.18.如图,在四棱锥ABCD P -中,PD PA ⊥,PDPA =,AD 的中点是E,ABCD PE 面⊥,AD AB ⊥,5,2,1====CD AC AD AB , (1)求异面直线PC 与AB 所成角的大小;(2)求面PDC 与平面PAB 所成二面角的大小.19.国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准.新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下图,该函数近似模型如下:()⎪⎩⎪⎨⎧≥+<≤+⎪⎭⎫⎝⎛-=-2,18.1027.5420,42.47233.02x ex x a x f x. 又已知刚好过1小时时测得酒精含量值为44.42毫克/百毫升.根据上述条件,解答以下问题:(1)试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少? (2)试计算喝1瓶啤酒后多少小时后才可以驾车?(时间以整分钟计算)20.已知两点()()0,2,0,221F F -,动点P 在y 轴上的射影是H ,且22121PF PF =⋅,(1)求动点P 的轨迹方程;(2)设直线21,PF PF 的两个斜率存在,分别记为21,k k ,若121=k k ,求点P 的坐标; (3)若经过点()0,1-N 的直线l 与动点P 的轨迹有两个交点为T 、Q ,74=时,求直线l 的方程.21.统计学中将()*,2N n n n ∈≥个数n x x x ,,,21Λ的和记作∑=ni ix1(1)设133-=n b n ()*Nn ∈,求∑=101i i b ;(2)是否存在互不相等的非负整数n a a a a ,,,,321Λ,n a a a a <<<≤Λ3210,使得201921=∑=ni a i成立,若存在,请写出推理的过程;若不存在请证明;(3)设n x x x x ,,,,321Λ()3≥n 是不同的正实数,a x =1,对任意的()3*≥∈n N n ,都有2122212111221x x x x x x x x x n n i i i n --=∑-=+,判断n x x x x ,,,,321Λ是否为一个等比数列,请说明理由.奉贤区高三数学二模参考答案 2019年4月一、填空题(1-6,每个4分,7-12每个5分,合计54分)1、02、160(必须要化简)3、R x x ∈-,24(可以不写定义域) 4、22(2)1x y -+=或03422=++-y x x5、5a c +=6、2-7、(0,1) 8、2211122x y -=(标准方程是唯一的表达形式),9、0∞(-,)或0<x 或{}0<x x 1011、2 12、[1,3] 二、选择题(每个5分,合计20分)13、D 14、C 15、A 16、A三、解答题(14+14+14+16+18=76分)17、(1)因为θαθcos ,sin ,sin成等差数列,所以2sin sin cos αθθ=+··········2分又6πα=,所以sin cos 1θθ+=,即sin()42πθ+=所以2k θπ=或22k πθπ=+,k Z ∈·····················2分解出⎩⎨⎧==0cos 1sin θθ或⎩⎨⎧==1cos 0sin θθ····················1分因为θβθcos ,sin ,sin 成等比数列,所以θ的解集是空集···················1分 方法二:θαθcos ,sin ,sin 成等差数列,所以2sin sin cos αθθ=+··········2分 又6πα=,所以sin cos 1θθ+=,1cos sin22=+θθ,解出⎩⎨⎧==0cos 1sin θθ或⎩⎨⎧==1cos 0sin θθ····················3分因为θβθcos ,sin ,sin 成等比数列,所以θ的解集是空集···················1分(2)因为θαθcos ,sin ,sin 成等差数列,所以2sin sin cos αθθ=+因为θβθcos ,sin ,sin 成等比数列,所以2sin sin cos βθθ=⋅···················2分 所以2211cos 2cos 212sin (12sin )22αβαβ-=---·················2分 2sin cos 112()(12sin cos )22θθθθ+=---⋅·················2分 111sin cos sin cos 22θθθθ=--⋅-+⋅0=·················2分 18、(1)方法一:E CD CA ,=是中点,所以AD CE ⊥ 2分AD AB ⊥,所以CE 平行AB ,PCE ∠或其补角是异面直线所成的角 2分 计算可得12==PE CE ,,所求异面直线角为21arctan 3分方法二:建立空间直角坐标系,但必须证明AD CE ⊥,AD PE ⊥,CE PE ⊥ 若不写证明,直接写如图所示,以E 点为坐标原点,建立空间直角坐标系直接扣2分E PD PA ,=是中点,所以AD PE ⊥ABCD PE 面⊥,所以CE PE ⊥如图所示,以E 点为坐标原点,建立空间直角坐标系,0,-1,0(0,10),(1,10),(2,00),(0,01)D A B C P (), ,,,,··········2分 (201),(100)PC AB =-=u u u r u u u r ,,,, ···········2分异面直线PC 与AB 所成角为θ225cos ||||5||||211PC AB PC AB θ⋅===⋅+⋅u u u r u u u ru u u r u u u r 异面直线PC 与AB 所成角为25arccos5···········2分 (2)设面PDC 的一个法向量为1(,,)n u v w =r11,n DP n DC ∴⊥⊥u r u u u r u r u u u r,又(011),(21,0)DP DC ==u u u r u u u r ,,, 即11=00u+1v+1w=02u+1v+0w=0=0n DP n DC ⎧⋅⋅⋅⋅⎧⎪⇒⎨⎨⋅⋅⋅⋅⎩⎪⎩u r u u u r u r u u u r 不妨令2v =, 则2,1w u =-=-,即面PDC 的一个法向量为1(1,2,2)n =--r,···········2分同理可得面PAB 的一个法向量为2(0,1,1)n =r···········2分令1n u r 和2n u u r 所成角为ϕ,则1212cos 0||||n n n n ϕ⋅===⋅u r u u r u r u u r ···········2分 所以2πϕ=,即面PDC 与平面PAB 所成二面角的大小为2π.···········1分19、(1)由题意得:当1x =时,23(1)()47.4244.422f a x =-+=,即12a =-····2分 所以当02x ≤<时,23()12()47.422f x x =--+, 在32x =时取到最大值47.42 ·········2分 又当2≥x 时,0.3()54.2710.18xf x e -=+是单调递减函数,在2x =时取到最大值96.39 ·········2分39.9647.42<,所以喝1瓶啤酒1.5小时血液中的酒精含量达到最大值47.42·····1分(2)当02x ≤<时,23()12()47.422f x x =--+,此时血液中酒精含量范围是(20.42,47.42],不可以驾车;·········3分 当2≥x 时,0.3()54.2710.18xf x e-=+单调递减函数所以令0.3()54.2710.1820xf x e -=+< 即982ln5427 5.6990.3x >≈-小时,·········2分所以喝1瓶啤酒后342分钟后才可以驾车。
2018届奉贤区高考数学二模(附答案)电子教案
2017学年第二学期奉贤区调研测试 高三数学试卷 (2018.4)(考试时间:120分钟,满分150分)一、填空题(本大题满分54分)本大题共有12题,考生应在答题纸相应编号的空格内直接写正确的结果,1-6每个空格填对得4分,7-12每个空格填对得5分,否则一律得零分. 1、集合⎭⎬⎫⎩⎨⎧<-=02x xxA ,{|}B x x Z =∈,则A B ⋂等于 .2、已知半径为2R 和R 的两个球,则大球和小球的体积比为 .3、抛物线2y x =的焦点坐标是 .4、已知实数,x y 满足20102x y x y -≤⎧⎪-≤⎨⎪+≥⎩,则目标函数2u x y =+的最大值是 .5、已知在ABC ∆中,a ,b ,c 分别为A B ∠∠,,C ∠所对的边.若222b c a +-=,则A ∠= .6、三阶行列式13124765x -中元素5-的代数余子式为()x f ,则方程()0f x =的解为____.7、设z 是复数,()a z 表示满足1nz =时的最小正整数n ,i 是虚数单位,则⎪⎭⎫⎝⎛-+i i a 11=______.8、无穷等比数列{}n a 的通项公式()nn x a sin =,前n 项的和为n S ,若lim 1n n S →∞=,()π,0∈x则x = .9、给出下列函数:①1y x x=+;②x x y +=2;③2x y =;④23y x =;⑤x y tan =;⑥()sin arccos y x =;⑦(lg lg 2y x =-.从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是 . 10、代数式2521(2)(1)x x+-的展开式的常数项是 .(用数字作答) 11、角α的始边是x 轴正半轴,顶点是曲线2522=+y x 的中心,角α的终边与曲线2522=+y x 的交点A 的横坐标是3-,角α2的终边与曲线2522=+y x 的交点是B ,则过B 点的曲线2522=+y x 的切线方程是 .(用一般式表示) 12、已知函数()()θ-=x x f 2sin 5,⎥⎦⎤⎝⎛∈2,0πθ,[]π5,0∈x ,若函数()()3-=x f x F 的所有零点依次记为n x x x x ,,,,321Λ,且n n x x x x x <<<<<-1321Λ,*N n ∈ 若π283222212321=++++++--n n n x x x x x x Λ,则=θ . 二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在 答题纸的相应编号上,将代表正确答案的小方格涂黑,选对得5分,否则一律得零分.13、已知曲线的参数方程为)50(12322≤≤⎪⎩⎪⎨⎧-=+=t t y t x ,则曲线为 ( ). A .线段 B .双曲线的一支 C .圆弧 D .射线14、设直线l 的一个方向向量()3,2,6=d ,平面α的一个法向量()0,3,1-=n ,则直线l 与平面α的位置关系是 ( ). A .垂直 B .平行C .直线l 在平面α内D .直线l 在平面α内或平行 15、已知正数数列{}n a 是公比不等于1的等比数列,且0lg lg 20191=+a a ,若()212x x f +=,则()()()=+++201921a f a f a f Λ ( ).A .2018B .4036C .2019D .403816、设R a ∈,函数()ax x x f cos cos +=,下列三个命题:①函数()ax x x f cos cos +=是偶函数.②存在无数个有理数a ,函数()x f 的最大值为2.③当a 为无理数时,函数()ax x x f cos cos +=是周期函数.以上命题正确的个数为 ( ). A .3 B .2 C .1 D .0三、解答题(本大题共有5题,满分76分)解答下列各题必须写出必要的步骤.17、已知几何体BCED A -的三视图如图所示,其中左视图和俯视图都是腰长为4的等腰直角三角形,主视图为直角梯形. (1)求几何体BCED A -的体积;(2)求直线CE 与平面AED 所成角的大小.18、已知函数()1212-+=x x k x f ,0≠k ,R k ∈. (1)讨论函数()x f 的奇偶性,并说明理由;(2)已知()x f 在(]0,∞-上单调递减,求实数k 的取值范围.19、某旅游区每年各个月份接待游客的人数近似地满足周期性规律,因而第n 个月从事旅游服务工作的人数()f n 可近似地用函数()()k wn A n f ++=θcos 来刻画,其中正整数n 表示月份且[]1,12n ∈,例如1n =表示1月份,A 和k 是正整数,0w >,()πθ,0∈.统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律: ①每年相同的月份,该地区从事旅游服务工作的人数基本相同;②该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差400人;③2月份该地区从事旅游服务工作的人数为100人,随后逐月递增直到8月份达到最多. (1)试根据已知信息,求()f n 的表达式;(2)一般地,当该地区从事旅游服务工作的人数在400或400以上时,该地区也进入了一年中的旅游“旺季”,那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.20、设复平面上点Z 对应的复数yi x z +=()R y R x ∈∈,(i 为虚数单位)满足622=-++z z ,点Z 的轨迹方程为曲线1C .双曲线2C :122=-ny x 与曲线1C 有共同焦点,倾斜角为4π的直线l 与双曲线2C 的两条渐近线的交点是A 、B ,2=⋅OB OA ,O 为坐标原点.(1)求点Z 的轨迹方程1C ; (2)求直线l 的方程;(3)设PQR ∆的三个顶点在曲线1C 上,求证:当O 是PQR ∆的重心时,PQR ∆的面积是定值.21、对于任意*n N ∈,若数列{}n x 满足11n n x x +->,则称这个数列为“K 数列”. (1)已知数列:1,1+m ,2m 是“K 数列”,求实数m 的取值范围;(2)设等差数列{}n a 的前n 项和为n S ,当首项1a 与公差d 满足什么条件时,数列{}n S 是“K 数列”?(3)设数列{}n a 的前n 项和为n S ,11=a ,且11232n n S S a +-=,*n N ∈.设()11+-+=n nn n a a c λ,是否存在实数λ,使得数列{}n c 为“K 数列”.若存在,求实数λ的取值范围;若不存在,请说明理由.2018年奉贤区高三数学二模参考答案一、填空题(1-6,每个4分,7-12每个5分,合计54分)1、{}1或{}1=x x 2、8或1:8 3、(0,14) 4、4 5、4π或045 6、2log 3x = 7、4 8、6π或56π9、3710、311、7241250x y ±+= 12、9π阅卷评分标准说明:第1题必须集合形式,两种形式都可以;第2题1:8也可以;第5题也可以写045; 第8题必须两解,而且必须弧度制,漏解或角度制均不给分; 第9题答案必须最简结果,唯一表达形式;第11题直线方程必须一般式;第12题必须弧度制,角度制均不给分;; 请严格执行此标准阅卷二、选择题(每个5分,合计20分)13、A 14、D 15、C 16、B三、解答题(14+14+14+16+18=76分)17、(1)AC S V BCED ⋅⋅=31……………………………………………………………3分 340=…………………………………………………………………………3分踩分点,两个步骤环节,每一个3分(2)分别以CA 、CB 、CE 方向为z y x 、、轴建立空间直角坐标系,则:()0,0,0C 、()4,0,0E 、()0,0,4A 、()1,4,0D , …………………………………2分所以()4,0,0=CE ,()4,0,4-=AE ,()3,4,0-=ED 设平面AED 的法向量为()z y x ,,=⎪⎩⎪⎨⎧=⋅=⋅00⇒⎪⎩⎪⎨⎧==43z y z x ,……………………………………………………………… 2分 于是可以取()4,3,4=n .……………………………………………………………………1分 设CE 与平面AED 所成的角为θ,则:41414sin ==θ,………………………………………………………………2分 所以CE 与平面AED 所成的角为41414arcsin.…………………………………………1分 建系设点2分,列方程组2分,求出法向量1分,套用公式1分,求出角2分18、(1)函数定义域为R ……………………………………………………………………1分 01)0(≠=kf Θ ()x f ∴不是奇函数……………………………………………………………………2分()1221-+⋅=-xxk x f ,令()()()02211=-⎪⎭⎫ ⎝⎛-⇒=--x x k x f x f 恒成立, 所以当1=k 时,函数()x f 为偶函数;……………………………………………4分 当1≠k 时,函数()x f 是非奇非偶函数。
2018年奉贤区高三数学二模参考答案
2018年奉贤区高三数学二模参考答案一、填空题(1-6,每个4分,7-12每个5分,合计54分)1、{}1或{}1=x x 2、8或1:8 3、(0,14) 4、4 5、4π或045 6、2log 3x = 7、4 8、6π或56π9、3710、311、7241250x y ±+= 12、9π阅卷评分标准说明:第1题必须集合形式,两种形式都可以;第2题1:8也可以;第5题也可以写045; 第8题必须两解,而且必须弧度制,漏解或角度制均不给分; 第9题答案必须最简结果,唯一表达形式;第11题直线方程必须一般式;第12题必须弧度制,角度制均不给分;; 请严格执行此标准阅卷二、选择题(每个5分,合计20分)13、A 14、D 15、C 16、B三、解答题(14+14+14+16+18=76分)17、(1)AC S V BCED ⋅⋅=31……………………………………………………………3分 340=…………………………………………………………………………3分踩分点,两个步骤环节,每一个3分(2)分别以CA 、CB 、CE 方向为z y x 、、轴建立空间直角坐标系,则:()0,0,0C 、()4,0,0E 、()0,0,4A 、()1,4,0D , …………………………………2分所以()4,0,0=,()4,0,4-=,()3,4,0-= 设平面AED 的法向量为()z y x ,,=⎪⎩⎪⎨⎧=⋅=⋅00AE n ⇒⎪⎩⎪⎨⎧==43z y z x ,……………………………………………………………… 2分 于是可以取()4,3,4=.……………………………………………………………………1分 设CE 与平面AED 所成的角为θ,则:41414sin ==θ,………………………………………………………………2分 所以CE 与平面AED 所成的角为41414arcsin.…………………………………………1分 建系设点2分,列方程组2分,求出法向量1分,套用公式1分,求出角2分18、(1)函数定义域为R ……………………………………………………………………1分 01)0(≠=kf ()x f ∴不是奇函数……………………………………………………………………2分()1221-+⋅=-x xk x f ,令()()()02211=-⎪⎭⎫ ⎝⎛-⇒=--xx k x f x f 恒成立, 所以当1=k 时,函数()x f 为偶函数;……………………………………………4分 当1≠k 时,函数()x f 是非奇非偶函数。
2018届上海市高三(二模模拟)检测理科数学试题及答案
2018届上海市高三年级检测试卷(二模模拟)数学(理)一、填空题(本题满分56分)本大题共有14题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若2sin 2cos 2θθ+=-,则cos θ=2.若bi ia-=-11,其中b a ,都是实数,i 是虚数单位,则bi a += 3.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为4.抛物线22y x =的焦点为F ,点00(,)M x y 在此抛物线上,且52MF =,则0x =______5.某市连续5天测得空气中PM2.5(直径小于或等于2.5微米的颗粒物)的数据(单位:3/g m m )分别为115,125,132,128,125,则该组数据的方差为6.平行四边形ABCD 中,AB =(1,0),AC =(2,2),则AD BD ⋅ 等于7.已知关于x 的二项式n xa x )(3+展开式的二项式系数之和为32,常数项为80,则a 的值为8.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2a =,3c =,60B =︒,则b =9.用半径为210cm ,面积为π2100cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是10.已知椭圆12222=+by a x (0>>b a1-,短轴长为椭圆方程为 11.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++若“对于任意[)+∞∈,0x ,()1f x a <+”是假ss ,则a 的取值范围为12.已知,66⎛⎫∈- ⎪⎝⎭p p q ,等比数列{}n a 中,11a =,343a =q ,数列{}n a 的前2018项的和为0,则q 的值为 13.][x 表示不超过x 的最大整数,若函数a xx x f -=][)(,当0>x 时,)(x f 有且仅有3个零点,则a 的取值范围为 .14.在平面直角坐标系xOy 中,已知圆O :2216x y +=,点(1,2)P ,M ,N 为圆O 上不同的两点,且满足0PM PN ⋅= .若PQ PM PN =+ ,则PQ的最小值为二. 选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得 5分,否则一律得零分.15.如图,在复平面内,点A 表示复数z ,则图中表示z 点是A .A B.BC .C 16.“lim,lim n n n n a A b B →∞→∞==”是“lim nn na b →∞存在”的A.充分不必要条件B.必要不充分条件.C.充分条件.D.既不充分也不必要条件. 17.已知函数()sin 2x f x x =∈R ,,将函数()y f x =图象上所有点的横坐标缩短为原来的12倍(纵坐不变),得到函数()g x 的图象,则关于()()f x g x ⋅有下列ss ,其中真ss 的个数是 ①函数()()y f x g x =⋅是奇函数; ②函数()()y f x g x =⋅不是周期函数;③函数()()y f x g x =⋅的图像关于点(π,0)中心对称; ④函数()()y f x g x =⋅A.1B.2C.3D.418.如图,E 、F 分别为棱长为1的正方体的棱11A B 、11B C 的中点,点G 、H 分别为面对角线AC 和棱1DD 上的动点(包括端点),则下列关于四面体E FGH -的体积正确的是A 此四面体体积既存在最大值,也存在最小值;B 此四面体的体积为定值;C 此四面体体积只存在最小值;D 此四面体体积只存在最大值。
最新-2018年高三理科数学高考模拟考试试卷及答案【上
2018年上海市奉贤区高考模拟考试数学试卷(理科卷)2018.03一、填空题:(共55分,每小题5分)1、方程233log (10)1log x x -=+的解是 。
2、不等式1223x->的解集为 。
3、已知复数z =-i 为纯虚数,则实数a= 。
4、在极坐标系中,O 是极点,设点)6,4(πA ,)65,2(πB ,则三角形OAB 的面积为 5、若51x a ⎛⎫- ⎪⎝⎭的二项展开式中含3x 项的系数是80,则实数a 的值为 .6、在1,2,3,4,5这五个数字中任取不重复的3个数字组成一个三位数,则组成的三位数是奇数的概率是 。
(用分数表示)7、关于函数()x x x f 2arcsin =有下列命题:①()x f 的定义域是R ;②()x f 是偶函数;③()x f 在定义域内是增函数;④()x f 的最大值是4π,最小值是0。
其中正确的命题是 。
(写出你所认为正确的所有命题序号) 8、已知直角三角形的两直角边长分别为3cm 和4cm ,则以斜边为轴旋转一周所得几何体的表面积为 。
9、已知各项均为正数的等比数列}{n a 的首项11=a ,公比为q ,前n 项和为n S ,若1lim 1=+∞→nn n S S ,则公比为q 的取值范围是 。
10、设实数y x ,满足1)1(22=-+y x ,若对满足条件y x ,,不等式0≥++c y x 恒成立,则c 的取值范围是 。
11、现有31行67列表格一个,每个小格都只填1个数,从左上角开始,第一行依次为1,2,…67;第二行依次为68,69…134;…依次把表格填满。
现将此表格的数按另一方式填写,从左上角开始,第一列从上到下依次为1,2…,31;第二列从上到下依次为32,33,…,62;…依次把表格填满。
对于上述两种填法,在同一小格里两次填写的数相同,这样的小格在表格中共有_________个。
二、选择题:(共20分,每小题5分)12、条件p :不等式1)1(log 2<-x 的解;条件q :不等式0322<--x x 的解。
奉贤区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
奉贤区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 集合{}1,2,3的真子集共有( )A .个B .个C .个D .个 2. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )A .60°B .45°C .90°D .120°3. 对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为某一三角形的三边长,则称f (x )为“可构造三角形函数”,已知函数f (x )=是“可构造三角形函数”,则实数t 的取值范围是( )A . C . D.4. 已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D.5. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88% 6. 函数2(44)xy a a a =-+是指数函数,则的值是( ) A .4 B .1或3 C .3 D .17. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是()A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④8. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cm B. C. D .26cm班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )A.B.C.D.10.设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C. (1,3) D .(3,)+∞ 11.△ABC 的内角A ,B ,C所对的边分别为,,,已知a =b =6A π∠=,则B ∠=( )111]A .4π B .4π或34π C .3π或23π D .3π12.与圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0都相切的直线有( )A .1条B .2条C .3条D .4条二、填空题13.抛物线y=4x 2的焦点坐标是 .14.已知关于 的不等式在上恒成立,则实数的取值范围是__________ 15.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④sin sin sin a b cA B C+=+.其中恒成立的等式序号为_________. 16.椭圆+=1上的点到直线l :x ﹣2y ﹣12=0的最大距离为 .17.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题. 18.对于|q|<1(q 为公比)的无穷等比数列{a n }(即项数是无穷项),我们定义S n (其中S n 是数列{a n }的前n 项的和)为它的各项的和,记为S ,即S=S n=,则循环小数0.的分数形式是 .三、解答题19.已知数列{a n}满足a1=,a n+1=a n+(n∈N*).证明:对一切n∈N*,有(Ⅰ)<;(Ⅱ)0<a n<1.20.已知:函数f(x)=log2,g(x)=2ax+1﹣a,又h(x)=f(x)+g(x).(1)当a=1时,求证:h(x)在x∈(1,+∞)上单调递增,并证明函数h(x)有两个零点;(2)若关于x的方程f(x)=log2g(x)有两个不相等实数根,求a的取值范围.21.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:(1)求出频率分布表中①、②、③、④、⑤的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S22.(本题满分12分)已知数列}{n a 的前n 项和为n S ,233-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:27<n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.23.已知函数f (x )=和直线l :y=m (x ﹣1).(1)当曲线y=f (x )在点(1,f (1))处的切线与直线l 垂直时,求原点O 到直线l 的距离; (2)若对于任意的x ∈[1,+∞),f (x )≤m (x ﹣1)恒成立,求m 的取值范围;(3)求证:ln<(n∈N+)24.某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房.第一年建新住房am2,第二年到第四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少am2;已知旧住房总面积为32am2,每年拆除的数量相同.(Ⅰ)若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m2?(Ⅱ),求前n(1≤n≤10且n∈N)年新建住房总面积S n奉贤区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】考点:真子集的概念.2.【答案】A【解析】解:如图所示,设AB=2,则A(2,0,0),B(2,2,0),B1(2,2,2),C1(0,2,2),E(2,1,0),F(2,2,1).∴=(﹣2,0,2),=(0,1,1),∴===,∴=60°.∴异面直线EF和BC1所成的角是60°.故选:A.【点评】本题考查了利用向量的夹角公式求异面直线所成的夹角,考查了推理能力与计算能力,属于中档题.3.【答案】D【解析】解:由题意可得f(a)+f(b)>f(c)对于∀a,b,c∈R都恒成立,由于f(x)==1+,①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满足条件.②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,同理1<f(b)<t,1<f(c)<t,由f(a)+f(b)>f(c),可得2≥t,解得1<t≤2.③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,同理t<f(b)<1,t<f(c)<1,由f(a)+f(b)>f(c),可得2t≥1,解得1>t≥.综上可得,≤t≤2,故实数t的取值范围是[,2],故选D.【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题.4.【答案】C【解析】解:∵a>b>0,∴﹣a<﹣b<0,∴(﹣a)2>(﹣b)2,故选C.【点评】本题主要考查不等式的基本性质的应用,属于基础题.5.【答案】B【解析】6.【答案】C【解析】考点:指数函数的概念.7.【答案】D【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f(x);图象②④恒在x轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h(x)和Φ(x),又图象②过定点(0,1),其对应函数只能是h(x),那图象④对应Φ(x),图象③对应函数g(x).故选:D.【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题.8.【答案】D【解析】考点:多面体的表面上最短距离问题.【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题.9.【答案】D【解析】解:∵函数f(x)=(x﹣3)e x,∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,令f′(x)>0,即(x﹣2)e x>0,∴x﹣2>0,解得x>2,∴函数f(x)的单调递增区间是(2,+∞).故选:D.【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.10.【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为zm,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨⎧==+00001m x y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m的范围. 11.【答案】B 【解析】试题分析:由正弦定理可得()sin 0,,4sin6B B B ππ=∴=∈∴= 或34π,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数. 12.【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数.【解答】解:∵圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0的方程可化为,;; ∴圆C 1,C 2的圆心分别为(3,﹣2),(7,1);半径为r 1=1,r 2=6.∴两圆的圆心距=r 2﹣r 1; ∴两个圆外切,∴它们只有1条内公切线,2条外公切线. 故选C .二、填空题13.【答案】 .【解析】解:由题意可知∴p=∴焦点坐标为故答案为【点评】本题主要考查抛物线的性质.属基础题.14.【答案】【解析】因为在上恒成立,所以,解得答案:15.【答案】②④ 【解析】试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由正弦定理以及合分比定理可知sin sin sin a b cA B C+=+是正确,故选选②④.1 考点:正弦定理;三角恒等变换.16.【答案】 4 .【解析】解:由题意,设P (4cos θ,2sin θ)则P 到直线的距离为d==,当sin (θ﹣)=1时,d 取得最大值为4,故答案为:4.17.【答案】222x y +=【解析】由题意,圆的半径等于原点到直线2x y +=的距离,所以r d ===,故圆的方程为222x y +=.18.【答案】 .【解析】解:0. = ++…+==,故答案为:.【点评】本题考查数列的极限,考查学生的计算能力,比较基础.三、解答题19.【答案】【解析】证明:(Ⅰ)∵数列{a n }满足a 1=,a n+1=a n +(n ∈N *),∴a n >0,a n+1=a n +>0(n ∈N *),a n+1﹣a n =>0,∴,∴对一切n ∈N *,<.(Ⅱ)由(Ⅰ)知,对一切k ∈N *,<,∴,∴当n ≥2时,=>3﹣[1+]=3﹣[1+]=3﹣(1+1﹣)=,∴a n<1,又,∴对一切n∈N*,0<a n<1.【点评】本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用.20.【答案】【解析】解:(1)证明:h(x)=f(x)+g(x)=log2+2x,=log2(1﹣)+2x;∵y=1﹣在(1,+∞)上是增函数,故y=log2(1﹣)在(1,+∞)上是增函数;又∵y=2x在(1,+∞)上是增函数;∴h(x)在x∈(1,+∞)上单调递增;同理可证,h(x)在(﹣∞,﹣1)上单调递增;而h(1.1)=﹣log221+2.2<0,h(2)=﹣log23+4>0;故h(x)在(1,+∞)上有且仅有一个零点,同理可证h(x)在(﹣∞,﹣1)上有且仅有一个零点,故函数h(x)有两个零点;(2)由题意,关于x的方程f(x)=log2g(x)有两个不相等实数根可化为1﹣=2ax+1﹣a在(﹣∞,﹣1)∪(1,+∞)上有两个不相等实数根;故a=;结合函数a=的图象可得,<a<0;即﹣1<a<0.【点评】本题考查了复合函数的单调性的证明与函数零点的判断,属于中档题.21.【答案】【解析】解:(1)由分布表可得频数为50,故①的数值为50×0.1=5,②中的值为=0.40,③中的值为50×0.2=10,④中的值为50﹣(5+20+10)=15,⑤中的值为=0.30;(2)不低于85的概率P=×0.20+0.30=0.40,∴获奖的人数大约为800×0.40=320;(3)该程序的功能是求平均数,S=65×0.10+75×0.40+85×0.20+95×0.30=82,∴800名学生的平均分为82分22.【答案】【解析】23.【答案】【解析】(Ⅰ)解:由f(x)=,得,∴,于是m=﹣2,直线l的方程为2x+y﹣2=0.原点O到直线l的距离为;(Ⅱ)解:对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,即,也就是,设,即∀x∈[1,+∞),g(x)≤0成立..①若m≤0,∃x使g′(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾;②若m>0,方程﹣mx2+x﹣m=0的判别式△=1﹣4m2,当△≤0,即m时,g′(x)≤0,∴g(x)在(1,+∞)上单调递减,∴g(x)≤g(1)=0,即不等式成立.当0<m<时,方程﹣mx2+x﹣m=0的两根为x1,x2(x1<x2),,,当x∈(x1,x2)时,g′(x)>0,g(x)单调递增,g(x)>g(1)=0与题设矛盾.综上所述,m;(Ⅲ)证明:由(Ⅱ)知,当x>1,m=时,成立.不妨令,∴ln,(k∈N*).∴..….累加可得:,(n∈N*).即ln<(n∈N*).【点评】本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,训练了利用导数证明函数表达式,对于(Ⅲ)的证明,引入不等式是关键,要求考生具有较强的逻辑思维能力和灵活变形能力,是压轴题.24.【答案】【解析】解:(I)10年后新建住房总面积为a+2a+4a+8a+7a+6a+5a+4a+3a+2a=42a.设每年拆除的旧住房为xm2,则42a+(32a﹣10x)=2×32a,解得x=a,即每年拆除的旧住房面积是am2(Ⅱ)设第n年新建住房面积为a,则a n=所以当1≤n≤4时,S n=(2n﹣1)a;当5≤n≤10时,S n=a+2a+4a+8a+7a+6a+(12﹣n)a=故【点评】本小题主要考查函数模型的选择与应用,属于基础题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.。
奉贤区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
18.给出下列命题: (1)命题 p:;菱形的对角线互相垂直平分,命题 q:菱形的对角线相等;则 p∨q 是假命题 (2)命题“若 x2﹣4x+3=0,则 x=3”的逆否命题为真命题 (3)“1<x<3”是“x2﹣4x+3<0”的必要不充分条件 (4)若命题 p:∀x∈R,x2+4x+5≠0,则¬p: 其中叙述正确的是 .(填上所有正确命题的序号) .
+x)=
=
= +
【点评】本题主要考查同角三角函数的基本关系,半角公式的应用,属于基础题. 7. 【答案】D 【解析】当 x 3 时, y 是整数;当 x 3 时, y 是整数;依次类推可知当 x 3 ( n N *) 时, y 是整数,则
2
n
由 x 3 1000 ,得 n 7 ,所以输出的所有 x 的值为 3,9,27,81,243,729,其和为 1092,故选 D.
1. 【答案】A 【解析】解:由题意可设所求的直线方程为 x﹣2y+c=0 ∵过点(﹣1,3) 代入可得﹣1﹣6+c=0 则 c=7 ∴x﹣2y+7=0 故选 A. 【点评】 本题主要考查了直线方程的求解, 解决本题的关键根据直线平行的条件设出所求的直线方程 x﹣2y+c=0 . 2. 【答案】A 【解析】∵ 2
由指数函数的单调性可知:x<﹣lg2 故选:D
二、填空题
13.【答案】 ( , 1] U , 2 2 【解析】
3 3
1
试题分析:因为 f ( x1 ) f ( x2 ) 0 ,故得不等式 x1 x2 1 a x1 x2 a x1 x2 0 ,即
15.已知等比数列{an}是递增数列,Sn 是{an}的前 n 项和.若 a1,a3 是方程 x2﹣5x+4=0 的两个根,则 S6= . 16.一质点从正四面体 A﹣BCD 的顶点 A 出发沿正四面体的棱运动,每经过一条棱称为一次运动.第 1 次运动 经过棱 AB 由 A 到 B,第 2 次运动经过棱 BC 由 B 到 C,第 3 次运动经过棱 CA 由 C 到 A,第 4 次经过棱 AD 由 A 到 D,…对于 N∈n*, 第 3n 次运动回到点 A, 第 3n+1 次运动经过的棱与 3n﹣1 次运动经过的棱异面, 第 3n+2 次运动经过的棱与第 3n 次运动经过的棱异面. 按此运动规律, 质点经过 2015 次运动到达的点为 . 17.曲线 在点(3,3)处的切线与轴 x 的交点的坐标为 .
上海市奉贤区高三二模数学试题(解析版)
上海市奉贤区高三二模数学试题一、单项选择题1.如图,PA ⊥面ABCD ,ABCD 为矩形,连接AC 、BD 、PB 、PC 、PD ,下面各组向量中,数量积不一定为零的是〔 〕A .PC 与BDB .PB 与DAC .PD 与AB D .PA 与CD【答案】A【分析】根据矩形的性质,利用线面垂直的性质及判定,易证PB DA ⊥、AB PD ⊥、PA CD ⊥,而BD 不一定与PC 垂直,再由向量数量积的垂直表示即可确定选项.【详解】由PA ⊥面ABCD ,ABCD 为矩形,A :AD ⊂面ABCD ,那么PA AD ⊥,而AC 与AD 不一定垂直,不一定有BD ⊥面PAC ,故BD 不一定与PC 垂直,所以PC 与BD 数量积不一定为0,符合题意;B :由A 知PA AD ⊥,又DA AB ⊥且AB PA A ⋂=,那么DA ⊥面PAB ,又PB ⊂面PAB ,所以PB DA ⊥,即PB 与DA 数量积为0,不合题意;C :由上易知PA AB ⊥,又DA AB ⊥ 且DAPA A =,那么AB ⊥面PAD ,又PD ⊂面PAB ,所以AB PD ⊥,即PD 与AB 数量积为0,不合题意;D :由上知PA AB ⊥,而//AB CD ,所以PA CD ⊥,即PA 与CD 数量积为0,不合题意; 应选:A.2.以下选项中,y 可表示为x 的函数是〔 〕 A .230yx -=B .23x y = C .()sin arcsin sin x y = D .2ln y x =【答案】D【分析】根据函数的概念判断即可.【详解】选项A ,当3x =时,2y =±,故不正确; 选项B ,当4x =时,8y =±,故不正确; 选项C ,当12x =时,26y k ππ=+等等,故不正确;选项D ,由2ln y x =,可得2x y e =,为指数型函数,所以正确. 应选:D.3.1x 、2x 、1y 、2y 都是非零实数,()()()2222212121122x x y y x y xy +=++成立的充要条件是〔 〕A .212110100110x x y y = B .1122101000y x y x =- C .1122101000y x x y -= D .211210100110x x y y =- 【答案】C【分析】将条件()()()222221212112212120x x y y x y xy x y y x +=++⇔-=,然后对四个选项逐个验证即可得出结果.【详解】因为1212,,,x x y y 都是非零实数,所以,()()()()()()()()()222221212112222222212121212121212122x x y y x y x y x x x x y y y y x x x y y x y y +=++⇔++=+++()()()22121212122121212122000x y x y y x y x x y y x x y y x ⇔-⋅+=⇔-=⇔-=对于选项A :11221211221212112211221121010010101001111011000x x x x x x x y y y y y y y y x y x y x y x y y y =⨯-⨯+⨯=+=+⇔=⇔+=故A 错误; 对于选项B :1111121222221221010010101000xy x y x x y y y x y x x y x =⨯-⨯+⨯=-=---,故B 错误;对于选项C :1111121222221221010010101000xy x y x y y x x y x y x x y ---=⨯-⨯+⨯=-=,故C 正确;对于选项D :11221212112121211221122121010010101001111011000x x x x x x x y y y y y y y y x y x y x y x y y y =⨯-⨯+⨯=+=---+⇔=⇔+=故D 错误. 应选:C4.设点A 的坐标为(),a b ,O 是坐标原点,向量OA 绕着O 点顺时针旋转θ后得到OA ',那么A '的坐标为〔 〕A .()cos sin sin cos a b a b θθθθ-+,B .()cos sin cos sin a b b a θθθθ+-,C .()sin cos cos sin a b a b θθθθ+-,D .()cos sin sin cos b a b a θθθθ-+,【答案】B【分析】由题意利用任意角的三角函数的定义、两角和差的三角公式,求得A '的坐标. 【详解】根据题意,设||OA r =,向量OA 与x 轴正方向的夹角为α,又由点A 的坐标为(,)a b ,那么cos a r α=,sin b r α=,向量OA 绕着O 点顺时针旋转θ后得到OA ',那么(cos()A r αθ'-,sin())r αθ-. 而()cos cos cos sin sin cos sin r r r a b αθαθαθθθ-=+=+, sin()sin cos cos sin cos sin r r r b a αθαθαθθθ-=-=-,故A '的坐标为(cos sin ,cos sin )a b b a θθθθ+-, 应选:B【点睛】关键点点点睛:注意旋转前与旋转后角的变化,利用模不变,两角差的正余弦公式求解即可,属于中档题.二、填空题5.经过点()2,4的抛物线2y ax =焦点坐标是__________. 【答案】10,4⎛⎫ ⎪⎝⎭【分析】把点(2, 4)代入抛物线方程可得a ,进而求出抛物线的标准方程,结合抛物线的性质,进而得到焦点坐标. 【详解】抛物线2y ax =经过点()2,4,1a ,∴抛物线标准方程为2x y =, ∴抛物线焦点坐标为1(0,)4故答案为: 1(0,)46.把一个外表积为16π平方厘米实心铁球铸成一个底面半径与球的半径一样的圆锥(假设没有任何损耗),那么圆锥的高是__________厘米. 【答案】8【分析】由球体的变面积公式求球的半径,再根据实心铁球铸成圆锥前后体积不变,求圆锥的高即可.【详解】假设实心铁球的半径为r ,那么2416r π=π,可得2r ,∴其体积为343233V r ππ==,将其铸成一个底面半径与球的半径一样的圆锥, ∴假设设圆锥的高是h ,且底面积24S r ππ==,由前后体积不变知:3233Sh π=,故答案为:8. 7.11izi(i 是虚数)是方程210x ax -+=()a R ∈的一个根,那么z a -=__________.【答案】1【分析】先利用复数的除法运算求出z ,然后代入方程求出a ,利用共轭复数和模的定义求解即可. 【详解】(1)(1)2(1)(1)211i i ii i i z i i ---===-+--=+, 210i ai ∴++=,解得 0a =,1z a z i ∴-===,故答案为:18.正项等差数列{}n a 的前n 项和为n S ,25760a a a +-=,那么11S =________.【答案】22【分析】根据等差数列的性质可得62a =,再根据求和公式即可求出. 【详解】正项等差数列{}n a 的前n 项和为n S .由25760a a a +-=得26620a a -=,所以62a =,60a =〔舍〕611111211112222a a a S +=⨯=⨯= 故答案为:22【点睛】此题考查了等差数列的求和公式和等差数列的性质,考查了运算能力,属于根底题.9.某社区的家庭年收入的频率分布如下表所示,可以估计该社区内家庭的平均年收入为__________万元.【分析】将表格中各区间家庭收入的中间值乘以频率,然后加总即可. 【详解】由表格数据知:家庭的平均年收入(4.5 5.5 6.5)0.27.50.26(8.59.5)0.07 6.51++⨯+⨯++⨯=万元.故答案为:6.51.10.某参考辅导书上有这样的一个题:△ABC 中,tan A 与tan B 方程2310x x --=的两个根,那么tan C 的值为〔 〕 A .32-B .32C .12-D .12你对这个题目的评价是_______________________________________.(用简短语句答复) 【答案】无正确选项,条件与结论有矛盾,是错题,无解【分析】由根与系数关系得tan tan 3A B +=,tan tan 1A B =-,结合两角和正切公式求tan C ,根据三角形内角和性质即可判断条件与结论有矛盾.【详解】由题设知:tan tan 3A B +=,tan tan 1A B =-,而()C A B π=-+,∴tan tan 3tan tan()1tan tan 2A B C A B A B +=-+=-=--,又A B C π++=,由上知:A 、B 必有一个角大于90°,同时C 也大于90°,显然不符合三角形的内角和为180°. ∴无正确选项,条件与结论有矛盾.故答案为:无正确选项,条件与结论有矛盾,是错题,无解.11.用0,1两个数字编码,码长为4〔即为二进制四位数,首位可以是0〕,从所有码中任选一码,那么码中至少有两个1的概率是_______.【答案】1116【分析】由中用0,1两个数字编码,码长为4,我们可以计算出编码的所有种数,由于所有码中任选一码,那么码中至少有两个1情况复杂,我们可以先计算其对立事件:从四位编码中任选一码,那么码中至多有一个1的概率,进而根据对立事件概率减法公式进行求解.【详解】设从四位编码中任选一码,那么码中至少有两个1为事件A ; 那么它与从四位编码中任选一码,那么码中至多有一个1互为对立事件; 由于用0,1两个数字编码,码长为4时不同的编码共有4216=种;其中码中至多有一个1包括两种情况:一是不含1,共有1种情况,另一种是只含一个1,共有4种情况 故它与从四位编码中任选一码,那么码中至多有一个1的概率()516P A =, 那么从四位编码中任选一码,那么码中至少有两个1的概率511()1()11616P A P A =-=-=, 故答案为1116. 【点睛】此题主要考查的知识点是对立事件的概率以及古典概型概率公式,属于难题. 在解古典概型概率题时,首先求出样本空间中根本领件的总数n ,其次求出概率事件中含有多少个根本领件m ,然后根据公式mP n=求得概率. 12.设n S 为正数列{}n a 的前n 项和,11n n S qS S +=+,1q >,对任意的1n ≥,n N ∈均有+14n n S a ≤,那么q 的取值为__________. 【答案】2【分析】由递推式,结合n a 与n S 的关系及等比数列的定义,可判断{}n a 是公比为q 的正项等比数列,写出n a 、1n S +,根据题设不等式恒成立可得12(2)1n q q --≤恒成立,即可求q 值.【详解】由题设知:当1n =时,221111(1)S a a qS S q a =+=+=+,即21a qa =, 当2n ≥时,111()n n n n n n a S S q S S qa ++-=-=-=, 综上知:{}n a 是公比为q 的正项等比数列,即11n n a a q-=,而()11111(0)1n n a q S aq++-=>-,∴由题设知:对任意的1n ≥,n N ∈有11141n n q q q+--≤-成立,又1q >, ∴1114()n n n q q q +--≤-,整理得:12(2)1n q q --≤恒成立,而n →+∞时1n q -→+∞, ∴2q.故答案为:2.【点睛】关键点点睛:由n a 与n S 的关系及等比数列的定义求n a 、1n S +,根据数列不等式恒成立求q 值即可.13.函数331xxay =++在0,内单调递增,那么实数a 的取值范围是__________.【答案】(],4-∞【分析】讨论0a <、0a =、0a >:显然根据解析式知0a <、0a =,函数在0,内单调递增;0a >,利用根本不等式(注意等号成立的条件),结合对勾函数的性质判断函数的单调增区间,即可求a 的范围. 【详解】当0a <时,在0,上,()3x f x =单调递增,()31xag x =+单调递增,即331x x ay =++单调递增,符合题意; 当0a =时,3x y =在0,内单调递增,符合题意;当0a >时,3111131x x a y =++-≥=+,∴11≤,04a <≤时,等号不成立,此时y 在0,内单调递增,符合题意;11>,4a >时,假设当且仅当3log 1)x =时等号成立,此时y 在()3og ),l 1∞+内单调递增,不符合题意.综上,有(],4a ∈-∞时,函数331xxay =++在0,内单调递增.故答案为:(],4-∞.【点睛】关键点点睛:应用分类讨论,当0a <、0a =时,根据函数解析式直接判断单调性,当0a >时,综合应用根本不等式、对勾函数的性质判断函数的单调区间,进而求出参数范围.14.假设1n x x ⎛⎫- ⎪⎝⎭的二项展开式中3x 项的系数是84-,那么1nx x ⎛⎫- ⎪⎝⎭二项展开式中系数最小的项是__________. 【答案】126x-【分析】由二项展开式通项,结合指定项系数求n ,利用二项式的对称性确定系数最小的项的r 值,即可求系数最小的项. 【详解】由二项式知:211()(1)r n rr r r n r r n n T C xC x x--+=-=-,而3x 项的系数是84-,∴23n r -=时,有2384rr C +=且r 为奇数(0)r >,又由399!98 (1)=843!(93)!(321)(6...1)C ⨯⨯⨯==-⨯⨯⨯⨯⨯,∴可得3239r n r =⎧⎨=+=⎩.∴9219(1)r r rr T C x -+=-,要使系数最小,r 为奇数,由对称性知:=5r ,∴55169126(1)T C x x-=-=-. 故答案为:126x-. 【点睛】关键点点睛:根据指定项系数求二项式的指数,利用二项式的对称性确定系数最小项的参数r ,即可求项. 15.函数()2cos()xf x nπ=(x ∈Z )的值域有6个实数组成,那么非零整数n 的值是_________.【答案】10±,11±【分析】由题设可得()f x 最小正周期为||T n =,又x ∈Z 且()f x 值域有6个实数组成,即||[0,]2n 上一定存在6个整数点,讨论n 为奇数或偶数,求n 值即可. 【详解】由题设知:()f x 的最小正周期为2||2||T n nππ==,又x ∈Z , ∴n 为非零整数,在||[0,]2n 上()f x 的值域有6个实数组成,即()f x 的图象在以上区间内为6个离散点,且各点横坐标为整数, ∴当n 为偶数,有||52n =,即10n =±; 当n 为奇数,有||562n <<,即11n =±; 故答案为:10±,11±【点睛】关键点点睛:根据余弦函数的性质可求()f x 最小正周期为||T n =,结合有||[0,]2n 内有6个整数点,讨论n 的奇偶性求值. 16.如图,P 是半径为2圆心角为3π的一段圆弧AB 上的一点,假设2AB BC =,那么PC PA ⋅的值域是__________.【答案】5213,0⎡⎤-⎣⎦【分析】建立平面直角坐标系,将向量的数量积求最值转换成求三角函数的最值即可. 【详解】以圆心为原点,平行AB 的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系,那么(3)A -,3)C ,设(2cos ,2sin )P θθ,233ππθ, 那么(22cos PC PA θ⋅=-,32sin )(12cos θθ⋅--,32sin )52cos 43sin θθθ=--5213sin()θα=-+,且330tan α<=<,06πα∴<<,∴536ππθα<+<, sin()y θα=+在(3π,]2π上递增,在[2π,5)6π上递减,∴当2πθα=-时,PC PA ⋅的最小值为5213-当23πθ=时,PC PA ⋅的最大值为2252cos 43sin 033ππ--=,那么[5213PC PA ⋅∈-,0], 故答案为:[5213-,0].【点睛】关键点点睛:建立坐标系,利用向量的坐标运算,数量积的坐标运算,将问题转化为三角函数求值域问题,是解题的关键,属于中档题.三、解答题17.M 、N 是正四棱柱1111ABCD A BC D -的棱11B C 、11C D的中点,异面直线MN 与1AB 所成角的大小为10arccos 10〔1〕求证:M 、N 、B 、D 在同一平面上; 〔2〕求二面角1C MN C --的大小. 【答案】〔1〕证明见解析;〔2〕arctan 42.【分析】〔1〕根据MN //DB 可知四点共线,即可求证;〔2〕先证明1COC ∠是二面角1C MN C --的平面角,解三角形求解即可. 【详解】〔1〕连接MN 、DB 、11D B ,取MN 的中点O ,连接1,CO C O ,如图,M 是棱11B C 的中点.N 是棱的11C D 的中点,那么MN //11D B ,DB //11D B 所以MN //DB ,所以M 、N 、B 、D 确定一个平面, 即M 、N 、B 、D 在同一平面上.〔2〕由〔1〕可知11AB D ∠(或其补角)是异面直线MN 与1AB 所成的角设底面ABCD 的边长为a ,正四棱柱高h1AB =1AD =11B D =,2222211cos AB D ∠==2h a = 取MN 的中点O ,因为CM CN =,11C M C N =,那么CO MN ⊥,1C O MN ⊥,1COC ∠是二面角1C MN C --的平面角14C O a =,1Rt COC中,111tan 4CC COC OC ∠===二面角1C MN C --的大小为arctan 【点睛】关键点点睛:根据二面角的定义,作出或证明二面角,利用直角三角形求解即可,属于中档题.18.设函数()()()lg 1cos2cos f x x x θ=-++,0,2πθ⎡⎫∈⎪⎢⎣⎭〔1〕讨论函数()y f x =的奇偶性,并说明理由; 〔2〕设0θ>,解关于x 的不等式3044f x f x ππ⎛⎫⎛⎫+--<⎪ ⎪⎝⎭⎝⎭. 【答案】〔1〕答案见解析;〔2〕3352,22,24444k k k k ππππππππ⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭,k Z ∈. 【分析】〔1〕应用分析法:假设()f x 为偶函数有()()fx f x -=,易得2sin sin 0x θ=恒成立;假设()f x 为奇函数有()()000f x f x +-=0θ=恒成立;再根据θ的取值范围即可确定()f x 分别为奇、偶函数是否能成立. 〔2〕由函数不等式,将自变量代入化简得2cos cos 04x πθ⎛⎫+< ⎪⎝⎭,结合题设及余弦函数的性质即可求解集.【详解】〔1〕由对数的性质,得1cos 20x ->,∴cos 21x ≠,即()x k k Z π≠∈,故定义域关于原点对称, 1、偶函数,那么有()()f x f x -=,即()()()()lg 1cos 2cos log 1cos 2cos x x x x θθ--+-+=-++⎡⎤⎣⎦,可得()()cos cos x x θθ-+=+,∴整理得:要使2sin sin 0x θ=对一切()x k k Z π≠∈恒成立,在0,2πθ⎡⎫∈⎪⎢⎣⎭中有0θ=.2、奇函数,那么定义域内,任意0x 有()()000f x f x +-=,如04x π=,∴044f f ππ⎛⎫⎛⎫+-=⎪ ⎪⎝⎭⎝⎭,而lg 1cos()cos cos 4244f ππππθθ⎛⎫⎛⎫⎛⎫⎛⎫-=--+-+=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,lg 1cos cos =cos 4244f ππππθθ⎛⎫⎛⎫⎛⎫⎛⎫=-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,0θ=,显然在[0,)2πθ∈上不成立,综上,当0θ=时为偶函数;当0,2πθ⎛⎫∈ ⎪⎝⎭时既不是奇函数又不是偶函数.〔2〕由3044f x f x ππ⎛⎫⎛⎫+--<⎪ ⎪⎝⎭⎝⎭,代入得33lg 1cos 2cos lg 1cos 2cos 04444x x x x ππππθθ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-++++-----+< ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,∴()()3lg 1sin 2cos lg 1sin 2cos 044x x x x ππθθ⎛⎫⎛⎫++++-+--+<⎪ ⎪⎝⎭⎝⎭,化简为cos cos 044x x ππθθ⎛⎫⎛⎫+-+++< ⎪ ⎪⎝⎭⎝⎭,展开整理得:2cos cos 04x πθ⎛⎫+< ⎪⎝⎭,∵0,2πθ⎛⎫∈ ⎪⎝⎭,即cos 0θ>, ∴可得1122cos 04,,434x x k k Z k Z x k πππππ⎧⎛⎫+< ⎪⎪⎝⎭⎪⎪+≠∈∈⎨⎪⎪-≠⎪⎩∴解集为3352,22,24444k k k k ππππππππ⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭,k Z ∈. 【点睛】关键点点睛:〔1〕利用分析法,假设()f x 为奇或偶函数,将问题转化为说明在θ的范围中是否有使2sin sin 0x θ=、2cos 0θ=成立的区间即可.〔2〕将自变量代入函数式,结合三角恒等变换化简,根据余弦函数的性质求解集. 19.假设在一个以米为的空间直角坐标系O xyz -中,平面xOy 内有一跟踪和控制飞行机器人T 的控制台A ,A 的位置为()170,200,0.上午10时07分测得飞行机器人T 在()150,80,120P 处,并对飞行机器人T 发出指令:以速度113v =米/秒沿向量131********d ⎛⎫=- ⎪⎝⎭,,作匀速直线飞行(飞行中无障碍物),10秒后到达Q 点,再发出指令让机器人在Q 点原地盘旋2秒,在原地盘旋过程中逐步减速并降速到8米/秒,然后保持8米/秒,再沿向量2121222d ⎛⎫=-- ⎪ ⎪⎝⎭,,作匀速直线飞行(飞行中无障碍物),当飞行机器人T 最终落在平面xOy T 近似看成一个点.〔1〕求从P 点开始出发20秒后飞行机器人T 的位置;〔2〕求在整个飞行过程中飞行机器人T 与控制台A 的最近距离(精确到米). 【答案】〔1〕()212,200322,48-;〔2〕73米. 【分析】(1)利用向量的坐标运算性质即可求解;(2) 当Q 点与4点处于同一垂直线上时,与控制台4的距离最近,然后求出两点 间的距离即可求解.【详解】〔1〕设飞行时间为t 秒,T 的位置()x y z ,, 当010t ≤≤时,113v =111,13PT d t λλ==,()3124150,80,12013,,131313x y z t ⎛⎫---=- ⎪⎝⎭当010t ≤≤时,所以150380121204x t y t z t =+⎧⎪=+⎨⎪=-⎩10t =得()180200,80Q ,当1012t <≤时()180200,80Q ,当1232t <≤时22QT d λ=,()2812t λ=-,()()11180,200,80812,22x y z t ⎛⎫---=-- ⎪ ⎪⎝⎭所以())()180412132420012200804121284x t ty t z t t ⎧=+-=+⎪=--=+⎨⎪=--=-⎩20t =秒后飞行机器人T的位置()212,200-〔2〕当010t ≤≤时(150AT =169AT =定义域内单调递减∴10t =,min 81AT AQ ==≈ 当1012t <≤时min 81AT AQ ==≈当1232t <≤时()1324200,1284T t t ++-, (132AT =(4AT =64AT =64AT =∴16.375t =,min 73AT ≈答:在整个行驶过程中飞行机器人T 与控制台A 的最近距离73米.20.曲线2211x y a -=与曲线22149x y a+=()0a >在第一象限的交点为A .曲线C 是2211x y a -=(1A x x ≤≤)和22149x y a+=(A x x ≥C 与x 轴的左交点为M 、右交点为N .〔1〕设曲线2211x y a -=与曲线22149x y a+=()0a >具有相同的一个焦点F ,求线段AF 的方程;〔2〕在〔1〕的条件下,曲线C 上存在多少个点S ,使得NS NF =,请说明理由. 〔3〕设过原点O 的直线l 与以(),0D t ()0t >为圆心的圆相切,其中圆的半径小于1,切点为T .直线l 与曲线C 在第一象限的两个交点为P .Q .当22211+=OT OPOQ对任意直线l 恒成立,求t 的值. 【答案】〔1〕()375545y x x ⎛⎫=+- ⎪⎝⎭≤≤;〔2〕一共2个,理由见解析;〔3〕答案见解析.【详解】〔1〕线段AF 的方程42075335y x x ⎛⎫=-+ ⎪⎝⎭≤≤ 724,55A ⎛⎫ ⎪⎝⎭,()5,0F -,线段AF 的方程()375545y x x ⎛⎫=+- ⎪⎝⎭≤≤〔2〕方法一:()7,0N ,2NF =假设点S 在曲线221124x y -=上()()()2222277724125145015SN x y x x x x x ⎫=-+-+-=-+⎪⎭≤≤单调递增 ∴6SN ≥所以点S 不可能在曲线221124x y -=上所以点S 只可能在曲线2214924x y +=上,根据NF NS =得()22227414924x y x y⎧-+=⎪⎨+=⎪⎩可以得到16148,2525S ⎛⎫± ⎪⎝⎭ 当F 左焦点,12NF =,同样这样的S 使得NF NS =不存在 所以这样的点S 一共2个〔3〕设直线方程y kx =,圆方程为()()22201x t y r r -+=<<r =2222221t OT OT OD DT k ==-=+ 22221P y kxa x y a k x a =⎧⎪⇒=⎨--=⎪⎩,()()222221111P a k k x k a OP -==++ 22224949149Q y kx a x x y a k a =⎧⎪⇒=⎨++=⎪⎩,()()2222211491491Q a k k x k a OQ +==++ ()()22222211491491a k a k k a k a OP OQ -++=+++()()222214950491491a k a k a a k k ⎛⎫-+=+= ⎪++⎝⎭根据22211+=OTOPOQ得到25049t t =∴= 补充说明:由于直线的曲线有两个交点,受参数a 的影响,蕴含着如下关系,∵r ==0k << 当2212001117649ar a <+≤,存在T ,否那么不存在T 这里可以不需讨论,因为题目前假定直线与曲线C 有两个交点的大前提,当共焦点时()0,0,135r ⎛∈⊂ ⎝⎭存在t=135r ⎡⎫∈⎪⎢⎪⎣⎭不存在 21.设数列{}n a 满足,()()111sin cos n n n n n nn n n a k a a a a a k a a a -+-⎧+>⎪=⎨+<⎪⎩,1+≠n n a a ,设1a a =,2a b =.〔1〕设5=6b π,k π=-,假设数列的前四项1a 、2a 、3a 、4a 满足1423a a a a =,求a ; 〔2〕0k >,4n ≥,n N ∈,当02a π⎛⎫∈ ⎪⎝⎭,,02b π⎛⎫∈ ⎪⎝⎭,,a b <时,判断数列{}n a 是否能成等差数列,请说明理由;〔3〕设4a =,=7b ,1k =,求证:对一切的1n ≥,n N ∈,均有72n a π<. 【答案】〔1〕53a π=-;〔2〕数列不可能成等差数列,理由见解析;〔3〕证明见解析. 【分析】〔1〕分a b <和a b >讨论,求出3a ,4a ,根据条件1423a a a a =求得a ; 〔2〕用反证法证明:假设数列{}n a 成等差数列,推得()d l m ππ=-≥与102n n d a a π+⎛⎫=-∈ ⎪⎝⎭,矛盾,即可得到结论;〔3〕先求出3a 、4a ,利用反证法证明,假设数列{}n a 中有不小于72π的项,设k a 是第一个不小于72π的项,(4k ≥,k ∈N ),经过推理得到73,2k a ππ⎛⎫∈ ⎪⎝⎭产生矛盾即可证明.【详解】〔1〕当a b <时,3225sin 623a a a ππππ=-=-=,433cos 326a a a ππππ=-=-=-根据条件得1423a a a a =∴53a π=- 当ab >时,(32255cos 66a a a πππ+=-=+=,43sin 0a a π-=->⎝⎭所以43a a >,∴341a a < 根据条件得1423a a a a =,∴3224a a a a a =⋅<与a b >不符合,舍去所以53a π=-〔2〕假设数列{}n a 成等差数列,设公差为d因为a b <,所以2102d a a b a π⎛⎫=-=-∈ ⎪⎝⎭,,那么{}n a 是单调递增的正数列因此1sin n n n d a a k a +=-=,211sin n n n d a a k a +++=-= 所以1sin sin n n a a +=得到12n n a a m π+=+0m ≥,m Z ∈(舍去)或者12n n a a m ππ++=+,0m ≥,m Z ∈ 从而122n n a a l ππ+++=+,0l ≥,l Z ∈,l m >推得()2=22n n a a l m d π+--=,∴()d l m ππ=-≥与102n n d a a π+⎛⎫=-∈ ⎪⎝⎭,矛盾所以数列不可能成等差数列. 〔3〕设4a =,=7b ,1k = 得到37=7+sin7<82a π<得到()4337=+sin =7+sin7+sin 7+sin792a a a π<< 假设数列{}n a 中有不小于72π的项,设k a 是第一个不小于72π的项,(4k ≥,k ∈N ), 即172k k a a π-<≤. 根据运算性质可以得()()111sin cos n n n n n n n n a a a a a a a a -+-⎧>⎪-=⎨<⎪⎩,即数列中的任何相邻两项的差都不大于1,因此1773122k a πππ-<-<≤,即173,2k a ππ-⎛⎫∈ ⎪⎝⎭, 而在这个区间中11sin 0,cos 0k k a a --<<,从而()()1121112sin 0cos k k k k k k k k a a a a a a a a -------⎧>⎪-=<⎨<⎪⎩,得到173,2k k a a ππ-⎛⎫<∈ ⎪⎝⎭产生矛盾所以对一切的n N ∈,均有72na π<. 【点睛】〔1〕等差〔比〕数列问题解决的根本方法:根本量代换和灵活运用性质;。
2018届奉贤区高考数学二模(附答案)
2017学年第二学期奉贤区调研测试 高三数学试卷 (2018.4)(考试时间:120分钟,满分150分)一、填空题(本大题满分54分)本大题共有12题,考生应在答题纸相应编号的空格内直接写正确的结果,1-6每个空格填对得4分,7-12每个空格填对得5分,否则一律得零分. 1、集合⎭⎬⎫⎩⎨⎧<-=02x xxA ,{|}B x x Z =∈,则A B ⋂等于 .2、已知半径为2R 和R 的两个球,则大球和小球的体积比为 .3、抛物线2y x =的焦点坐标是 .4、已知实数,x y 满足20102x y x y -≤⎧⎪-≤⎨⎪+≥⎩,则目标函数2u x y =+的最大值是 .5、已知在ABC ∆中,a ,b ,c 分别为A B ∠∠,,C ∠所对的边.若222b c a +-=,则A ∠= .6、三阶行列式13124765x-中元素5-的代数余子式为()x f ,则方程()0f x =的解为____. 7、设z 是复数,()a z 表示满足1nz =时的最小正整数n ,i 是虚数单位,则⎪⎭⎫⎝⎛-+i i a 11=______.8、无穷等比数列{}n a 的通项公式()nn x a sin =,前n 项的和为n S ,若lim 1n n S →∞=,()π,0∈x则x = .9、给出下列函数:①1y x x=+;②x x y +=2;③2x y =;④23y x =;⑤x y tan =;⑥()sin arccos y x =;⑦(lg lg 2y x =-.从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是 .10、代数式2521(2)(1)x x +-的展开式的常数项是 .(用数字作答) 11、角α的始边是x 轴正半轴,顶点是曲线2522=+y x 的中心,角α的终边与曲线2522=+y x 的交点A 的横坐标是3-,角α2的终边与曲线2522=+y x 的交点是B ,则过B 点的曲线2522=+y x 的切线方程是 .(用一般式表示) 12、已知函数()()θ-=x x f 2sin 5,⎥⎦⎤⎝⎛∈2,0πθ,[]π5,0∈x ,若函数()()3-=x f x F 的所有零点依次记为n x x x x ,,,,321 ,且n n x x x x x <<<<<-1321 ,*N n ∈ 若π283222212321=++++++--n n n x x x x x x ,则=θ . 二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在 答题纸的相应编号上,将代表正确答案的小方格涂黑,选对得5分,否则一律得零分.13、已知曲线的参数方程为)50(12322≤≤⎪⎩⎪⎨⎧-=+=t t y t x ,则曲线为 ( ). A .线段 B .双曲线的一支 C .圆弧 D .射线14、设直线l 的一个方向向量()3,2,6=d ,平面α的一个法向量()0,3,1-=n ,则直线l 与平面α的位置关系是 ( ). A .垂直 B .平行C .直线l 在平面α内D .直线l 在平面α内或平行 15、已知正数数列{}n a 是公比不等于1的等比数列,且0lg lg 20191=+a a ,若()212x x f +=,则()()()=+++201921a f a f a f ( ).A .2018B .4036C .2019D .403816、设R a ∈,函数()ax x x f cos cos +=,下列三个命题:①函数()ax x x f cos cos +=是偶函数.②存在无数个有理数a ,函数()x f 的最大值为2.③当a 为无理数时,函数()ax x x f cos cos +=是周期函数.以上命题正确的个数为 ( ). A .3 B .2 C .1 D .0三、解答题(本大题共有5题,满分76分)解答下列各题必须写出必要的步骤.17、已知几何体BCED A -的三视图如图所示,其中左视图和俯视图都是腰长为4的等腰直角三角形,主视图为直角梯形. (1)求几何体BCED A -的体积;(2)求直线CE 与平面AED 所成角的大小.18、已知函数()1212-+=x x k x f ,0≠k ,R k ∈. (1)讨论函数()x f 的奇偶性,并说明理由;(2)已知()x f 在(]0,∞-上单调递减,求实数k 的取值范围.19、某旅游区每年各个月份接待游客的人数近似地满足周期性规律,因而第n 个月从事旅游服务工作的人数()f n 可近似地用函数()()k wn A n f ++=θcos 来刻画,其中正整数n 表示月份且[]1,12n ∈,例如1n =表示1月份,A 和k 是正整数,0w >,()πθ,0∈.统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律: ①每年相同的月份,该地区从事旅游服务工作的人数基本相同;②该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差400人;③2月份该地区从事旅游服务工作的人数为100人,随后逐月递增直到8月份达到最多. (1)试根据已知信息,求()f n 的表达式;(2)一般地,当该地区从事旅游服务工作的人数在400或400以上时,该地区也进入了一年中的旅游“旺季”,那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.20、设复平面上点Z 对应的复数yi x z +=()R y R x ∈∈,(i 为虚数单位)满足622=-++z z ,点Z 的轨迹方程为曲线1C .双曲线2C :122=-ny x 与曲线1C 有共同焦点,倾斜角为4π的直线l 与双曲线2C 的两条渐近线的交点是A 、B ,2=⋅,O 为坐标原点.(1)求点Z 的轨迹方程1C ; (2)求直线l 的方程;(3)设PQR ∆的三个顶点在曲线1C 上,求证:当O 是PQR ∆的重心时,PQR ∆的面积是定值.21、对于任意*n N ∈,若数列{}n x 满足11n n x x +->,则称这个数列为“K 数列”. (1)已知数列:1,1+m ,2m 是“K 数列”,求实数m 的取值范围;(2)设等差数列{}n a 的前n 项和为n S ,当首项1a 与公差d 满足什么条件时,数列{}n S 是“K 数列”?(3)设数列{}n a 的前n 项和为n S ,11=a ,且11232n n S S a +-=,*n N ∈.设()11+-+=n nn n a a c λ,是否存在实数λ,使得数列{}n c 为“K 数列”.若存在,求实数λ的取值范围;若不存在,请说明理由.2018年奉贤区高三数学二模参考答案一、填空题(1-6,每个4分,7-12每个5分,合计54分)1、{}1或{}1=x x 2、8或1:8 3、(0,14) 4、4 5、4π或045 6、2log 3x = 7、4 8、6π或56π9、3710、311、7241250x y ±+= 12、9π阅卷评分标准说明:第1题必须集合形式,两种形式都可以;第2题1:8也可以;第5题也可以写045; 第8题必须两解,而且必须弧度制,漏解或角度制均不给分; 第9题答案必须最简结果,唯一表达形式;第11题直线方程必须一般式;第12题必须弧度制,角度制均不给分;; 请严格执行此标准阅卷二、选择题(每个5分,合计20分)13、A 14、D 15、C 16、B三、解答题(14+14+14+16+18=76分)17、(1)AC S V BCED ⋅⋅=31……………………………………………………………3分 340=…………………………………………………………………………3分踩分点,两个步骤环节,每一个3分(2)分别以CA 、CB 、CE 方向为z y x 、、轴建立空间直角坐标系,则:()0,0,0C 、()4,0,0E 、()0,0,4A 、()1,4,0D , …………………………………2分所以()4,0,0=CE ,()4,0,4-=AE ,()3,4,0-=ED 设平面AED 的法向量为()z y x ,,=⎪⎩⎪⎨⎧=⋅=⋅00⇒⎪⎩⎪⎨⎧==43z y z x ,……………………………………………………………… 2分 于是可以取()4,3,4=n .……………………………………………………………………1分 设CE 与平面AED 所成的角为θ,则:41414sin ==θ,………………………………………………………………2分 所以CE 与平面AED 所成的角为41414arcsin.…………………………………………1分 建系设点2分,列方程组2分,求出法向量1分,套用公式1分,求出角2分18、(1)函数定义域为R ……………………………………………………………………1分 01)0(≠=kf ()x f ∴不是奇函数……………………………………………………………………2分()1221-+⋅=-x x k x f ,令()()()02211=-⎪⎭⎫ ⎝⎛-⇒=--xx k x f x f 恒成立, 所以当1=k 时,函数()x f 为偶函数;……………………………………………4分 当1≠k 时,函数()x f 是非奇非偶函数。
奉贤二模高三数学试卷答案
一、选择题(每题5分,共50分)1. 答案:A解析:根据题意,函数f(x) = |x - 1| + |x + 1|,当x < -1时,f(x) = -2x;当-1 ≤ x ≤ 1时,f(x) = 2;当x > 1时,f(x) = 2x。
所以f(x)的最小值为2。
2. 答案:B解析:由题意得,a > 0,b < 0,c > 0,所以a + b + c > 0,故选B。
3. 答案:C解析:设复数z = x + yi,根据复数乘法得z^2 = (x + yi)^2 = x^2 - y^2 +2xyi。
由于z^2 = 1 + 2i,所以x^2 - y^2 = 1,2xy = 2,解得x = 1,y = 1。
故选C。
4. 答案:D解析:由题意得,a^2 + b^2 + c^2 = 2,所以(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc = 2 + 2(ab + ac + bc)。
因为a + b + c = 0,所以ab + ac + bc = -1/2,代入得(a + b + c)^2 = 2 - 1 = 1,所以a + b + c = ±1。
故选D。
5. 答案:B解析:由题意得,sinα = 1/2,cosα = √3/2,所以sin(2α) = 2sinαcosα= 1。
故选B。
二、填空题(每题10分,共40分)6. 答案:2解析:由题意得,a^2 + b^2 + c^2 = 2,所以(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc = 2 + 2(ab + ac + bc)。
因为a + b + c = 0,所以ab + ac + bc = -1/2,代入得(a + b + c)^2 = 2 - 1 = 1,所以a + b + c = ±1。
7. 答案:-2解析:由题意得,x^2 - 2x + 1 = 0,解得x = 1。
精品解析:【全国区级联考】上海市奉贤区2018届高三下学期调研测试(二模)数学试题(解析版)
上海市奉贤区2018届高三二模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 集合,,则________【答案】【解析】∵集合∴集合∵集合∴故答案为.2. 已知半径为2R和R的两个球,则大球和小球的体积比为________【答案】8【解析】∵球的体积公式为(为球的半径)∴半径为2R和R的两个球,则大球和小球的体积比为故答案为8.3. 抛物线的焦点坐标是________【答案】【解析】试题分析:即,所以抛物线的焦点坐标是(0,)。
考点:本题主要考查抛物线的标准方程及其几何性质。
点评:简单题,首先应将抛物线方程化为标准方程。
4. 已知实数满足,则目标函数的最大值是_______【答案】4【解析】作出不等式组对应的平面区域如图所示:由得,平移直线,由图象可知当直线经过点时,直线的截距最大,此时最大,.故答案为4.点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.5. 已知△ABC中,a、b、c分别为∠A、∠B、∠C所对的边. 若,则________【答案】【解析】∵∴根据余弦定理可得∵∴故答案为.6. 三阶行列式中元素的代数余子式为,则方程的解为________【答案】【解析】由题意知.∵∴,即.故答案为.7. 设是复数,表示满足时的最小正整数,是虚数单位,则________【答案】4【解析】∵∴∵表示满足的最小正整数∴当时满足第一次成立∴故答案为.8. 无穷等比数列的通项公式,前项的和为,若,则________【答案】或【解析】∵∴∵数列为无穷等比数列∴,∵∴,即∴,即.∴∴或故答案为或.9. 给出下列函数:①;②;③;④;⑤;⑥;⑦. 从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是________【答案】【解析】对于①,定义域为,且,故为奇函数;对于②,定义域为,且,,故既不是奇函数也不是偶函数;对于③,定义域为,且,故是偶函数;对于④,定义域为,且,故是偶函数;对于⑤,是正切函数,故是奇函数;对于⑥,定义域为,且,故是偶函数;对于⑦,定义域为,且,故是奇函数.∴共有3个奇函数,3个偶函数∴从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是.故答案为.10. 代数式的展开式的常数项是________(用数字作答)【答案】3【解析】的通项公式为.令,得;令,得.∴常数项为故答案为.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.11. 角的始边是x轴正半轴,顶点是曲线的中心,角的终边与曲线的交点A的横坐标是,角的终边与曲线的交点是B,则过B点的曲线的切线方程是________(用一般式表示)【答案】【解析】由题意可得:角的终边与曲线的交点的纵坐标是或,设曲线的中心为.①当点的坐标是时,,.∴,∵角的终边与曲线的交点是∴∴∴过点的曲线的切线方程是,即.②当点的坐标是时,,.∴,∵角的终边与曲线的交点是∴∴∴过点的曲线的切线方程是,即.综上,过点的曲线的切线方程是.故答案为.点睛:本题主要考查三角函数的二倍角的运用及圆的切线方程的求解,对于这类题目,首先利用已知条件得到切点的坐标,进而可得到切线的斜率,利用点斜式方程即可得到圆的切线的一般方程,因此正确求出切点的坐标是解题的关键.学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...【答案】【解析】由题意,令,解得.∵函数的最小正周期为,,∴当时,可得第一个对称轴,当时,可得.∴函数在上有条对称轴根据正弦函数的图象与性质可知:函数与的交点有9个点,即关于对称,关于对称,…,即,,…,.∵∴∴故答案为.点睛:本题考查了三角函数的零点问题,三角函数的考查重点是性质的考查,比如周期性,单调性,对称性等,处理抽象的性质最好的方法结合函数的图象,本题解答的关键是根据对称性找到与的数量关系,本题有一个易错点是,会算错定义域内的交点的个数,这就需结合对称轴和数列的相关知识,防止出错.二. 选择题(本大题共4题,每题5分,共20分)13. 已知曲线的参数方程为,则曲线为()A. 线段B. 双曲线的一支C. 圆弧D. 射线【答案】A【解析】由代入消去参数t 得又所以表示线段。
届奉贤区高考数学二模(附答案)
2017学年第二学期奉贤区调研测试 高三数学试卷 (2018.4)(考试时间:120分钟,满分150分)一、填空题(本大题满分54分)本大题共有12题,考生应在答题纸相应编号的空格内直接写正确的结果,1-6每个空格填对得4分,7-12每个空格填对得5分,否则一律得零分. 1、集合⎭⎬⎫⎩⎨⎧<-=02x xxA ,{|}B x x Z =∈,则A B ⋂等于 .2、已知半径为2R和R 的两个球,则大球和小球的体积比为 . 3、抛物线2y x =的焦点坐标是 .4、已知实数,x y 满足20102x y x y -≤⎧⎪-≤⎨⎪+≥⎩,则目标函数2u x y =+的最大值是 .5、已知在ABC ∆中,a ,b ,c 分别为AB ∠∠,,C ∠所对的边.若222b c a +-=,则A ∠= .6、三阶行列式13124765x -中元素5-的代数余子式为()x f ,则方程()0f x =的解为____.7、设z 是复数,()a z 表示满足1nz =时的最小正整数n ,i 是虚数单位,则⎪⎭⎫⎝⎛-+i i a 11=______.8、无穷等比数列{}n a 的通项公式()nn x a sin =,前n 项的和为n S ,若lim 1n n S →∞=,()π,0∈x则x = .9、给出下列函数:①1y x x=+;②x x y +=2;③2x y =;④23y x =;⑤x y tan =;⑥()sin arccos y x =;⑦(lg lg 2y x =+-.从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是 . 10、代数式2521(2)(1)x x+-的展开式的常数项是 .(用数字作答) 11、角α的始边是x 轴正半轴,顶点是曲线2522=+y x 的中心,角α的终边与曲线2522=+y x 的交点A 的横坐标是3-,角α2的终边与曲线2522=+y x 的交点是B ,则过B 点的曲线2522=+y x 的切线方程是 .(用一般式表示) 12、已知函数()()θ-=x x f 2sin 5,⎥⎦⎤⎝⎛∈2,0πθ,[]π5,0∈x ,若函数()()3-=x f x F 的所有零点依次记为n x x x x ,,,,321 ,且n n x x x x x <<<<<-1321 ,*N n ∈ 若π283222212321=++++++--n n n x x x x x x ,则=θ . 二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在 答题纸的相应编号上,将代表正确答案的小方格涂黑,选对得5分,否则一律得零分.13、已知曲线的参数方程为)50(12322≤≤⎪⎩⎪⎨⎧-=+=t t y t x ,则曲线为 ( ).A .线段 B.双曲线的一支 C .圆弧 D .射线 14、设直线l的一个方向向量()3,2,6=d ,平面α的一个法向量()0,3,1-=n ,则直线l 与平面α的位置关系是( ).A.垂直 B .平行C.直线l 在平面α内 D .直线l 在平面α内或平行 15、已知正数数列{}n a 是公比不等于1的等比数列,且0lg lg 20191=+a a ,若()212xx f +=,则()()()=+++201921a f a f a f ( ).A.2018B.4036C.2019 D.4038 16、设R a ∈,函数()ax x x f cos cos +=,下列三个命题:①函数()ax x x f cos cos +=是偶函数.②存在无数个有理数a ,函数()x f 的最大值为2. ③当a 为无理数时,函数()ax x x f cos cos +=是周期函数.以上命题正确的个数为 ( ).A .3 B.2 C .1 D.0三、解答题(本大题共有5题,满分76分)解答下列各题必须写出必要的步骤.17、已知几何体BCED A -的三视图如图所示,其中左视图和俯视图都是腰长为4的等腰直角三角形,主视图为直角梯形. (1)求几何体BCED A -的体积;(2)求直线CE 与平面AED 所成角的大小.18、已知函数()1212-+=x x k x f ,0≠k ,R k ∈. (1)讨论函数()x f 的奇偶性,并说明理由;(2)已知()x f 在(]0,∞-上单调递减,求实数k 的取值范围.19、某旅游区每年各个月份接待游客的人数近似地满足周期性规律,因而第n 个月从事旅游服务工作的人数()f n 可近似地用函数()()k wn A n f ++=θcos 来刻画,其中正整数n 表示月份且[]1,12n ∈,例如1n =表示1月份,A 和k 是正整数,0w >,()πθ,0∈.统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律: ①每年相同的月份,该地区从事旅游服务工作的人数基本相同;②该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差400人;③2月份该地区从事旅游服务工作的人数为100人,随后逐月递增直到8月份达到最多. (1)试根据已知信息,求()f n 的表达式;(2)一般地,当该地区从事旅游服务工作的人数在400或400以上时,该地区也进入了一年中的旅游“旺季”,那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.20、设复平面上点Z 对应的复数yi x z +=()R y R x ∈∈,(i 为虚数单位)满足622=-++z z ,点Z 的轨迹方程为曲线1C .双曲线2C :122=-ny x 与曲线1C 有共同焦点,倾斜角为4π的直线l 与双曲线2C 的两条渐近线的交点是A 、B ,2=⋅OB OA ,O 为坐标原点.(1)求点Z 的轨迹方程1C ; (2)求直线l 的方程;(3)设PQR ∆的三个顶点在曲线1C 上,求证:当O 是PQR ∆的重心时,PQR ∆的面积是定值.21、对于任意*n N ∈,若数列{}n x 满足11n n x x +->,则称这个数列为“K数列”. (1)已知数列:1,1+m ,2m 是“K 数列”,求实数m 的取值范围;(2)设等差数列{}n a 的前n 项和为n S ,当首项1a 与公差d 满足什么条件时,数列{}n S 是“K 数列”?(3)设数列{}n a 的前n 项和为n S ,11=a ,且11232n n S S a +-=,*n N ∈.设()11+-+=n nn n a a c λ,是否存在实数λ,使得数列{}n c 为“K 数列”.若存在,求实数λ的取值范围;若不存在,请说明理由.2018年奉贤区高三数学二模参考答案一、填空题(1-6,每个4分,7-12每个5分,合计54分)1、{}1或{}1=x x 2、8或1:8 3、(0,14) 4、4 5、4π或045 6、2log 3x = 7、4 8、6π或56π9、3710、311、7241250x y ±+= 12、9π阅卷评分标准说明:第1题必须集合形式,两种形式都可以;第2题1:8也可以;第5题也可以写045; 第8题必须两解,而且必须弧度制,漏解或角度制均不给分; 第9题答案必须最简结果,唯一表达形式;第11题直线方程必须一般式;第12题必须弧度制,角度制均不给分;; 请严格执行此标准阅卷二、选择题(每个5分,合计20分)13、A 14、D 15、C 16、B三、解答题(14+14+14+16+18=76分)17、(1)AC S V BCED ⋅⋅=31……………………………………………………………3分 340=…………………………………………………………………………3分踩分点,两个步骤环节,每一个3分(2)分别以CA 、CB 、CE 方向为z y x 、、轴建立空间直角坐标系,则:()0,0,0C 、()4,0,0E 、()0,0,4A 、()1,4,0D , …………………………………2分所以()4,0,0=,()4,0,4-=,()3,4,0-= 设平面AED 的法向量为()z y x ,,=⎪⎩⎪⎨⎧=⋅=⋅00AE n ⇒⎪⎩⎪⎨⎧==43z y z x ,……………………………………………………………… 2分 于是可以取()4,3,4=.……………………………………………………………………1分 设CE 与平面AED 所成的角为θ,则:41414sin ==θ,………………………………………………………………2分 所以CE 与平面AED 所成的角为41414arcsin.…………………………………………1分 建系设点2分,列方程组2分,求出法向量1分,套用公式1分,求出角2分18、(1)函数定义域为R ……………………………………………………………………1分 01)0(≠=kf ()x f ∴不是奇函数……………………………………………………………………2分()1221-+⋅=-xxk x f ,令()()()02211=-⎪⎭⎫ ⎝⎛-⇒=--x x k x f x f 恒成立, 所以当1=k 时,函数()x f 为偶函数;……………………………………………4分 当1≠k 时,函数()x f 是非奇非偶函数。
奉贤区第二中学2018-2019学年高三上学期11月月考数学试卷含答案
(1)求 f(x)的对称轴方程和单调递增区间; (2)求 f(x)的最大值、最小值,并指出 f(x)取得最大值、最小值时所对应的 x 的集合.
23.(本小题满分 12 分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位 得到的数据: 赞同 男 女 合计 50 30 80 反对 150 170 320 合计 200 200 400
形 OCAB 是边长为 2 的菱形, 所以 在 方向上的投影为 ACcos30°=2× = ;
故选 C.
【点评】本题考查了向量的投影;解得本题的关键是由题意,画出图形,明确四边形 OBAC 的形状,利用向 量解答.
第 7 页,共 16 页
6. 【答案】B 【解析】解:由题意可得抛物线的轴为 x 轴,F(2,0), ∴MP 所在的直线方程为 y=4 在抛物线方程 y2=8x 中, 令 y=4 可得 x=2,即 P(2,4) 从而可得 Q(2,﹣4),N(6,﹣4) ∵经抛物线反射后射向直线 l:x﹣y﹣10=0 上的点 N,经直线反射后又回到点 M, ∴直线 MN 的方程为 x=6 故选:B. 【点评】本题主要考查了抛物线的性质的应用,解决问题的关键是要熟练掌握相关的性质并能灵活应用. 7. 【答案】A 【解析】解:∵60.5>60=1, 0<0.56<0.50=1, log0.56<log0.51=0. ∴log0.56<0.56<60.5. 故选:A 【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借 助于 0 和 1 为媒介,能起到事半功倍的效果,是基础题. 8. 【答案】B
奉贤区第二中学 2018-2019 学年高三上学期 11 月月考数学试卷含答案 一、选择题
1. 设 P 是椭圆 A.22 班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________ + =1 上一点,F1、F2 是椭圆的焦点,若|PF1|等于 4,则|PF2|等于( B.21 C.20 ) D.13 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017学年第二学期奉贤区调研测试
高三数学试卷 (2018.4)
(考试时间:120分钟,满分150分)
一、填空题(本大题满分54分)本大题共有12题,考生应在答题纸相应编号的空格内直接写正确的结果,1-6每个空格填对得4分,7-12每个空格填对得5分,否则一律得零分.
1、集合⎭
⎬⎫⎩⎨⎧<-=02x x x A ,{|}B x x Z =∈,则A B ⋂等于 . 2、已知半径为2R 和R的两个球,则大球和小球的体积比为 . 3、抛物线2y x =的焦点坐标是 .
4、已知实数,x y 满足20102x y x y -≤⎧⎪-≤⎨⎪+≥⎩
,则目标函数2u x y =+的最大值是 .
5、已知在ABC ∆中,a ,b ,c 分别为A
B ∠∠,,
C ∠所对的边.
若222b c a +-=,则A
∠= . 6、三阶行列式1
30124765
x
-中元素5-的代数余子式为()x f ,则方程()0f x =的解为____. 7、设z 是复数,()a z 表示满足1n z =时的最小正整数n ,i 是虚数单位,则⎪⎭
⎫
⎝⎛-+i i a 11=______. 8、无穷等比数列{}n a 的通项公式()n n x a sin =,前n 项的和为n S ,若lim 1n n S →∞=,()π,0∈x 则
x = .
9、给出下列函数:①1y x x =+;②x x y +=2;③2x y =;④2
3y x =;⑤x y tan =;⑥()sin arccos y x =
;⑦(lg lg 2y x =-.从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是 .
10、代数式2521(2)(1)x x
+-的展开式的常数项是 .(用数字作答) 11、角α的始边是x 轴正半轴,顶点是曲线2522=+y x 的中心,角α的终边与曲线2522=+y x 的交
点A 的横坐标是3-,角α2的终边与曲线2522=+y x 的交点是B ,则过B 点的曲线252
2=+y x 的切线方程是 .(用一般式表示)
12、已知函数()()θ-=x x f 2sin 5,⎥⎦
⎤ ⎝⎛
∈2,0πθ,[]π5,0∈x ,若函数()()3-=x f x F 的所有零点依次记为n x x x x ,,,,321 ,且n n x x x x x <<<<<-1321 ,*N n ∈ 若π2
83222212321=++++++--n n n x x x x x x ,则=θ . 二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在
答题纸的相应编号上,将代表正确答案的小方格涂黑,选对得5分,否则一律得零分.
13、已知曲线的参数方程为)50(1
2322≤≤⎪⎩⎪⎨⎧-=+=t t y t x ,则曲线为 ( ). A.线段 B.双曲线的一支 C.圆弧 D .射线
14、设直线l 的一个方向向量()3,2,6=,平面α的一个法向量()0,3,1-=,则直线l 与平面α的位置关
系是 ( ).
A.垂直 B.平行
C .直线l在平面α内
D .直线l在平面α内或平行
15、已知正数数列{}n a 是公比不等于1的等比数列,且0lg lg 20191=+a a ,若()212x
x f +=,则()()()=+++201921a f a f a f ( ).
A.2018 B.4036
C.2019
D.4038
16、设R a ∈,函数()ax x x f cos cos +=,下列三个命题:
①函数()ax x x f cos cos +=是偶函数.
②存在无数个有理数a ,函数()x f 的最大值为2.
③当a 为无理数时,函数()ax x x f cos cos +=是周期函数.
以上命题正确的个数为 ( ).
A .3 B.2 C.1 D.0
三、解答题(本大题共有5题,满分76分)解答下列各题必须写出必要的步骤.
17、已知几何体BCED A -的三视图如图所示,其中左视图和俯视图都是腰长为4的等腰直角三角形,主
视图为直角梯形.
(1)求几何体BCED A -的体积;
(2)求直线CE 与平面AED 所成角的大小.。