2018上海高三数学二模---函数汇编

合集下载

2018学年上海高三数学二模分类汇编——三角

2018学年上海高三数学二模分类汇编——三角

1(2018金山二模). 函数3sin(2)3y x π=+的最小正周期T =3(2018虹口二模). 已知(0,)απ∈,3cos 5α=-,则tan()4πα+=3(2018青浦二模). 若1sin 3α=,则cos()2πα-= 4(2018黄浦二模). 已知ABC ∆的三内角A B C 、、所对的边长分别为a b c 、、,若2222sin a b c bc A =+-,则内角A 的大小是4(2018宝山二模). 函数()2sin 4cos4f x x x =的最小正周期为 5(2018奉贤二模). 已知△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 所对的边. 若222b c a +-=,则A ∠=5(2018普陀二模). 在锐角三角形ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若222()tan b c a A bc +-=,则角A 的大小为7(2018静安二模). 方程cos2x =的解集为 7(2018黄浦二模). 已知函数2sin cos 2()1cos x x f x x-=,则函数()f x 的单调递增区间是7(2018徐汇二模). 函数2(sin cos )1()11x x f x +-=的最小正周期是8(2018浦东二模). 函数2()cos 2f x x x =,x ∈R 的单调递增区间为 9(2018杨浦二模). 若3sin()cos cos()sin 5x y x x y x ---=,则tan2y 的值为11(2018杨浦二模). 在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,2a =,2sin sin A C =. 若B 为钝角,1cos24C =-,则ABC ∆的面积为12(2018虹口二模). 函数()sin f x x =,对于123n x x x x <<<⋅⋅⋅<且12,,,[0,8]n x x x π⋅⋅⋅∈(10n ≥),记1223341|()()||()()||()()||()n M f x f x f x f x f x f x f x -=-+-+-+⋅⋅⋅+()|n f x -,则M 的最大值等于12(2018奉贤二模). 已知函数()5sin(2)f x x θ=-,(0,]2πθ∈,[0,5]x π∈,若函数()()3F x f x =-的所有零点依次记为123,,,,n x x x x ,且1231n n x x x x x -<<<<<,n ∈*N , 若123218322222n n n x x x x x x π--++++++=,则θ=12(2018金山二模). 若2018100922sin (2cos )(3cos cos )(1cos cos )αββαβα--≥---+,则sin()2βα+=13(2018杨浦二模). 已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为( )A.4π B. 2π C. 2π- D. 3π-15(2018静安二模). 函数()sin()f x A x ωϕ=+(0,0)A ω>>的部分图像如图所示,则()3f π的值为( )A.B.C. D. 015(2018崇明二模). 将函数sin(2)3y x π=-图像上的点(,)4P t π向左平移s (0s >)个单位长度得到点P ',若P '位于函数sin 2y x =的图像上,则( )A. 12t =,s 的最小值为6πB. 2t =,s 的最小值为6πC. 12t =,s 的最小值为3πD. 2t =,s 的最小值为3π16(2018奉贤二模). 设a ∈R ,函数()cos cos f x x ax =+,下列三个命题: ① 函数()cos cos f x x ax =+是偶函数;② 存在无数个有理数a ,函数()f x 的最大值为2; ③ 当a 为无理数时,函数()cos cos f x x ax =+是周期函数. 以上命题正确的个数为( )A. 3B. 2C. 1D. 017(2018静安二模). 某峡谷中一种昆虫的密度是时间t 的连续函数(即函数图像不间断). 昆虫密度C 是指每平方米的昆虫数量,已知函数21000(cos(4)2)990,816()2,081624t t C t m t t ππ⎧-+-≤≤⎪=⎨⎪≤<<≤⎩或,这里的t 是从午夜开始的小时数,m 是实常数,(8)m C =.(1)求m 的值;(2)求出昆虫密度的最小值并指出出现最小值的时刻. 17(2018长嘉二模). 已知函数2()2sin sin(2)6f x x x π=++.(1)求函数()f x 的最小正周期和值域;(2)设A 、B 、C 为ABC ∆的三个内角,若1cos 3B =,()2f A =,求sin C 的值. 18(2018松江二模).已知函数()cos f x x x ωω=+. (1)当()03f π-=,且||1ω<,求ω的值;(2)在ABC ∆中,a 、b 、c 分别是角A 、B 、C的对边,a =3b c +=,当2ω=,()1f A =时,求bc 的值.18(2018普陀二模). 已知函数2()sin cos sin f x x x x =-,x ∈R . (1)若函数()f x 在区间[,]16a π上递增,求实数a 的取值范围;(2)若函数()f x 的图像关于点11(,)Q x y 对称,且1[,]44x ππ∈-,求点Q 的坐标.18(2018虹口二模). 已知ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,cos sin z A i A =+⋅(i 是虚数单位)是方程210z z -+=的根,3a =.(1)若4B π=,求边长c 的值; (2)求ABC ∆面积的最大值.18(2018浦东二模). 在ABC ∆中,边a 、b 、c 分别为角A 、B 、C 所对应的边.(1)若2(2)sin 0(2)sin 1sin (2)sin c a b Ab a BC a b A-=-+-,求角C 的大小; (2)若4sin 5A =,23C π=,c =ABC ∆的面积.18(2018青浦二模). 已知向量(cos ,1)2x m =-u r,2,cos )22x xn =r ,设函数()1f x m n =⋅+u r r.(1)若[0,]2x π∈,11()10f x =,求x 的值;(2)在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c且满足2cos 2b A c ≤-,求()f B的取值范围.18(2018青浦二模). 如图,某快递小哥从A 地出发,沿小路AB →BC 以平均时速20公里/小时,送快件到C 处,已知10BD =公里,45DCB ︒∠=,30CDB ︒∠=,△ABD 是等腰三角形,120ABD ︒∠=.(1)试问,快递小哥能否在50分钟内将快件送到C 处?(2)快递小哥出发15分钟后,快递公司发现快件有重大问题,由于通讯不畅,公司只能派车沿大路AD →DC 追赶,若汽车平均时速60公里/小时,问,汽车能否先到达C 处?19(2018奉贤二模). 某旅游区每年各个月份接待游客的人数近似地满足周期性规律,因而第n 个月从事旅游服务工作的人数()f n 可近似地用函数()cos()f n A wn k θ=++来刻画,其中正整数n 表示月份且[1,12]n ∈,例如1n =表示1月份,A 和k 是正整数,0w >,(0,)θπ∈. 统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律:① 每年相同的月份,该地区从事旅游服务工作的人数基本相同;② 该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差400人; ③ 2月份该地区从事旅游服务工作的人数为100人,随后逐月递增直到8月份达到最多. (1)试根据已知信息,求()f n 的表达式;(2)一般地,当该地区从事旅游服务工作的人数在400或400以上时,该地区也进入了一年中的旅游“旺季”,那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.19(2018崇明二模). 如图,某公园有三条观光大道AB 、BC 、AC 围成直角三角形,其中直角边200BC m =,斜边400AB m =,现有甲、乙、丙三位小朋友分别在AB 、BC 、AC 大道上嬉戏,所在位置分别记为点D 、E 、F .(1)若甲乙都以每分钟100m 的速度从点B 出发在各自的大道上奔走,到大道的另一端时 即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲乙两人之间的距离; (2)设CEF θ∠=,乙丙之间的距离是甲乙之间距离的2倍,且3DEF π∠=,请将甲乙之间的距离y 表示为θ的函数,并求甲乙之间的最小距离.。

(word完整版)2018年上海高三数学二模分类汇编(2),推荐文档

(word完整版)2018年上海高三数学二模分类汇编(2),推荐文档

2018届上海市高三数学二模分类汇编一、填空题1.集合1.设全集R U =,若集合{}2,1,0=A ,{}21|<<-=x x B ,()B C A U ⋂= .【答案】{}2【来源】18届宝山二模1【难度】集合、基础题2.集合⎭⎬⎫⎩⎨⎧<-=02x x x A ,{|}B x x Z =∈,则A B ⋂等于 . 【答案】{}1或{}1=x x 【来源】18届奉贤二模1【难度】集合、基础题3. 已知(,]A a =-∞,[1,2]B =,且A B ≠∅I ,则实数a 的范围是【答案】1a ≥【来源】18届虹口二模1【难度】集合、基础题4.已知集合{}{}1,2,31,A B m ==,,若3m A -∈,则非零实数m 的数值是 .【答案】2【来源】18届黄浦二模1【难度】集合、基础题5.已知集合},2,1{m A =,}4,2{=B ,若}4,3,2,1{=B A Y ,则实数=m _______.【答案】3【来源】18届长嘉二模1【难度】集合、基础题6. 设集合1|,2x M y y x R ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,()()()1|1112,121N y y x m x x m ⎧⎫⎛⎫==+-+--≤≤⎨⎬ ⎪-⎝⎭⎩⎭,若N M ⊆,则实数m 的取值范围是 .【答案】(1,0)-【来源】18届普陀二模11【难度】集合、中档题7.已知全集R U =,集合{}0322>--=x x x A ,则=A C U .【答案】]3,1[-【来源】18届徐汇二模1【难度】集合、基础题8. 已知集合{|(1)(3)0}P x x x =+-<,{|||2}Q x x =>,则P Q =I【答案】(2,3)【来源】18届金山二模3【难度】集合、基础题9.已知集合{1,0,1,2,3}U =-,{1,0,2}A =-,则U C A =【答案】{1,3}【来源】18届崇明二模1【难度】集合、基础题2.命题、不等式1.不等式|1|1x ->的解集是 .【答案】(,0)(2,)-∞+∞U【来源】18届黄浦二模2【难度】不等式、基础题2.已知函数2()(02)f x ax bx c a b =++<<对任意R x ∈恒有()0f x ≥成立,则代数式(1)(0)(1)f f f --的最小值是 . 【答案】3【来源】18届黄浦二模2【难度】不等式、压轴题3.不等式|3|2x -<的解集为__________________. 【答案】{}15x x <<或()1,5【来源】18届青浦二模1【难度】不等式、基础题4.若为等比数列,0n a >,且2018a =,则2017201912a a +的最小值为 . {}n a【答案】4【来源】18届杨浦二模10【难度】不等式、中档题5. 函数9y x x=+,(0,)x ∈+∞的最小值是 【答案】6【来源】18届金山二模4【难度】不等式、基础题3.函数1.给出下列函数:①1y x x=+;②x x y +=2;③2x y =;④23y x =;⑤x y tan =;⑥()sin arccos y x =;⑦(lg lg 2y x =-.从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是 . 【答案】37【来源】18届奉贤二模9【难度】函数、中档题2.已知函数()()θ-=x x f 2sin 5,⎥⎦⎤⎝⎛∈2,0πθ,[]π5,0∈x ,若函数()()3-=x f x F 的所有零点依次记为n x x x x ,,,,321Λ,且n n x x x x x <<<<<-1321Λ,*N n ∈若π283222212321=++++++--n n n x x x x x x Λ,则=θ . 【答案】9π【来源】18届奉贤二模12【难度】函数、压轴题3.已知函数20()210x x x f x x -⎧-≥=⎨-<⎩,则11[(9)]f f ---= 【答案】-2【来源】18届虹口二模5【难度】函数、基础题4.若函数()f x =是偶函数,则该函数的定义域是 .【答案】[2,2]-【来源】18届黄浦二模3【难度】函数、基础题5.已知函数)1lg()(2ax x x f ++=的定义域为R ,则实数a 的取值范围是_________.【答案】]1,1[-【来源】18届长嘉二模10【难度】函数、中档题6.若函数1()21f x x m =-+是奇函数,则实数m =________.【答案】12【来源】18届普陀二模2【难度】函数、基础题7.若函数()f x =()g x ,则函数()g x 的零点为________.【答案】x =【来源】18届普陀二模3【难度】函数、基础题8.已知()f x 是定义在[2,2]-上的奇函数,当(0,2]x ∈时,()21x f x =-,函数 2()2g x x x m =-+. 如果对于任意的1[2,2]x ∈-,总存在2[2,2]x ∈-,使得12()()f x g x ≤,则实数m 的取值范围是 .【答案】5m ≥-【来源】18届青浦二模10【难度】函数、中档题9.若函数222(1)sin ()1x x f x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 1g x M m x M m x =+++-⎡⎤⎣⎦图像的一个对称中心是 . 【答案】114⎛⎫⎪⎝⎭, 【来源】18届徐汇二模11【难度】函数、中档题10.设()f x 是定义在R 上以2为周期的偶函数,当[0,1]x ∈时,2()log (1)f x x =+,则函数()f x 在[1,2]上的解析式是【答案】2()log (3)f x x =-【来源】18届崇明二模9【难度】函数、中档题4.指数函数、对数函数1.方程33log (325)log (41)0x x ⋅+-+=的解x = .【答案】2【来源】18届黄浦二模6【难度】对数函数、基础题2.[]x 是不超过x 的最大整数,则方程271(2)[2]044x x -⋅-=满足1x <的所有实数解是 【答案】12x =或1x =- 【来源】18届虹口二模11【难度】指数函数、中档题3.若实数x 、y 满足112244+++=+y x y x ,则y x S 22+=的取值范围是____________.【答案】]4,2(【来源】18届长嘉二模12【难度】指数函数、压轴题4.函数()lg(32)x xf x =-的定义域为_____________.【答案】(0,)+∞【来源】18届徐汇二模3【难度】对数函数、基础题5.定义在R 上的函数()21x f x =-的反函数为1()y f x -=,则1(3)f -= 【答案】2【来源】18届松江二模4【难度】指数函数、基础题6.若函数2()log (1)a f x x ax =-+(0a >且1a ≠)没有最小值,则a 的取值范围【答案】()[)0,12,+∞U【来源】18届松江二模10【难度】指数函数、中档题7.函数lg 1y x =-的零点是 .【答案】10x =【来源】18届杨浦二模1【难度】对数函数、基础题8.函数lg y x =的反函数是【答案】1()10x f x -=【来源】18届金山二模2【难度】对数函数、基础题5. 三角函数1.已知在ABC ∆中,a ,b ,c 分别为AB ∠∠,,C ∠所对的边.若222b c a +-=,则A ∠= . 【答案】4π或045 【来源】18届奉贤二模5【难度】三角函数、基础题2.已知ABC ∆的三内角A B C 、、所对的边长分别为a b c 、、,若2222sin a b c bc A =+-,则内角A 的大小是 . 【答案】4π【来源】18届黄浦二模4【难度】三角函数、基础题3.若1sin 3α=,则cos 2πα⎛⎫-= ⎪⎝⎭_______________. 【答案】13【来源】18届青浦二模3【难度】三角函数、基础题4.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若222()tan b c a A bc +-=,则角A 的大小为________.【答案】6π 【来源】18届普陀二模5【难度】三角函数、基础题5..函数()x x x f 4cos 4sin 2=的最小正周期为 . 【答案】4π 【来源】18届宝山二模4【难度】三角函数、基础题6.已知22s 1(,,0)cos 1a a in M a a a a θθθ-+=∈≠-+R ,则M 的取值范围是 .【答案】⎣⎦ 【来源】18届青浦二模12【难度】三角函数、压轴题7. 函数3sin(2)3y x π=+的最小正周期T = 【答案】π【来源】18届金山二模1【难度】三角函数、基础题8.若53sin )cos(cos )sin(=---x y x x y x ,则y 2tan 的值为 【答案】2424.77-或 【来源】18届杨浦二模9【难度】三角函数、中档题9.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,2a =,2sin sin A C =. 若B 为钝角,412cos -=C ,则ABC ∆的面积为 .【来源】18届杨浦二模11【难度】三角函数、中档题10. 若2018100922sin (2cos )(3cos cos )(1cos cos )αββαβα--≥---+,则sin()2βα+= 【答案】-1或1【来源】18届金山二模12【难度】三角函数、压轴题题6. 数列1.已知数列{}n a 是公比为q 的等比数列,且2a 、4a 、3a 成等差数列,则q =【答案】1或12- 【来源】18届虹口二模7【难度】数列、基础题2.已知数列{}n a 是共有k 个项的有限数列,且满足11(2,,1)n n nn a a n k a +-=-=-L ,若1224,51,0k a a a ===,则k = .【答案】50【来源】18届黄浦二模11【难度】数列、中档题3.设函数()log m f x x =(0m >且1m ≠),若m 是等比数列{}n a (*N n ∈)的公比,且2462018()7f a a a a =L ,则22221232018()()()()f a f a f a f a ++++L 的值为_________. 【答案】1990-【来源】18届普陀二模9【难度】数列、中档题4.在等比数列{}n a 中,公比2q =,前n 项和为n S ,若51S =,则10S = .【答案】33【来源】18届青浦二模5【难度】数列、基础题7. 向量1.如图,已知O 为矩形4321P P P P 内的一点,满足7,543131===P P OP OP ,,则24OP OP ⋅u u u r u u u r 的值为 .【答案】-4【来源】18届宝山二模11【难度】向量、中档题2.已知向量a r 在向量b r 方向上的投影为2-,且3b =r ,则a b ⋅r r = .(结果用数值表示)【答案】-6【来源】18届黄浦二模5【难度】向量、基础题3.在△ABC 中,M 是BC 的中点,︒=∠120A ,21-=⋅,则线段AM 长的最小值为____________. 【答案】21 【来源】18届长嘉二模114.已知曲线C y =:2l y =:,若对于点(0,)A m ,存在C 上的点P 和l 上的点Q ,使得0AP AQ +=u u u r ,则m 取值范围是 .11、 【答案】1,12⎡⎤-⎢⎥⎣⎦【来源】18届青浦二模11【难度】向量、中档题5.已知向量a r 、b r 的夹角为60°,||1a =r ,||2b =r ,若(2)()a b xa b +⊥-r r r r ,则实数x 的值为【答案】3【来源】18届松江二模7【难度】向量、基础题6.点1F ,2F 分别是椭圆22:12x C y +=的左、右两焦点,点N 为椭圆C 的上顶点,若动点M 满足:2122MN MF MF =⋅u u u u r u u u u r u u u u r ,则122MF MF +u u u u r u u u u r 的最大值为__________.【答案】6【来源】18届普陀二模12【难度】向量、压轴题7.已知两个不同向量(1,)OA m =u u u r ,(1,2)OB m =-u u u r ,若OA AB ⊥u u u r u u u r ,则实数m =____________.【答案】1【来源】18届青浦二模48.已知非零向量OP uuu r 、OQ uuu r 不共线,设111m OM OP OQ m m =+++u u u u r u u u r u u u r ,定义点集{|}||||FP FM FQ FM A F FP FQ ⋅⋅==u u u r u u u u r u u u r u u u u r u u u r u u u r . 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ 上时,不等式12||||F F k PQ ≤u u u u r u u u r 恒成立,则实数k 的最小值为 . 【答案】34【来源】18届杨浦二模12【难度】向量、压轴题9.已知向量,a b r r的夹角为锐角,且满足||a =r、||b =r ,若对任意的{}(,)(,)||1,0x y x y xa yb xy ∈+=>r r ,都有||1x y +≤成立,则a b ⋅r r 的最小值为 . 【答案】815【来源】18届徐汇二模12【难度】向量、压轴题10. 在平面四边形ABCD 中,已知1AB =,4BC =,2CD =,3DA =,则AC BD ⋅u u u r u u u r的值为【答案】10【来源】18届崇明二模12【难度】向量、压轴题8. 解析几何1.设抛物线的焦点坐标为()01,,则此抛物线的标准方程为 .【答案】24y x =【来源】18届宝山二模2【难度】解析几何、基础题2.抛物线2y x =的焦点坐标是 . 【答案】(0,14) 【来源】18届奉贤二模3【难度】解析几何、基础题3.椭圆的长轴长等于m ,短轴长等于n ,则此椭圆的内接矩形的面积的最大值为 【答案】2mn 【来源】18届虹口二模10【难度】解析几何、中档题4.角的始边是x 轴正半轴,顶点是曲线2522=+y x 的中心,角的终边与曲线2522=+y x 的交点A 的横坐标是3-,角的终边与曲线2522=+y x 的交点是B ,则过B 点的曲线2522=+y x 的切线方程是 .(用一般式表示)11、【答案】7241250x y ±+=【来源】18届奉贤二模11【难度】解析几何、压轴题5.直线(1)10ax a y +-+=与直线420x ay +-=互相平行,则实数a =【答案】2【来源】18届虹口二模2【难度】解析几何、基础题 ααα26.已知平面直角坐标系xOy 中动点),(y x P 到定点)0,1(的距离等于P 到定直线1-=x 的距离,则点P 的轨迹方程为______________.【答案】x y 42=【来源】18届长嘉二模4【难度】解析几何、基础题7. 抛物线212x y =的准线方程为_______.【答案】3y =-【来源】18届普陀二模1【难度】解析几何、基础题8.双曲线22219x y a -=(0a >)的渐近线方程为320x y ±=,则a = 【答案】2a =【来源】18届松江二模1【难度】解析几何、基础题9.已知直线12:0,:20l mx y l x my m -=+--=.当m 在实数范围内变化时,1l 与2l 的交点P 恒在一个定圆上,则定圆方程是 .【答案】2220x y x y +--=【来源】18届徐汇二模10【难度】解析几何、中档题10.已知抛物线2x ay =的准线方程是14y =-,则a = . 【答案】1【来源】18届徐汇二模4【难度】解析几何、基础题11.若双曲线222161(0)3x y p p -=>的左焦点在抛物线22y px =的准线上,则p = .【答案】4【来源】18届杨浦二模8【难度】解析几何、中档题12.平面上三条直线210x y -+=,10x -=,0x ky +=,如果这三条直线将平面化分为六个部分,则实数k 的取值组成的集合A =【答案】{2,1,0}--【来源】18届金山二模10【难度】解析几何、中档题13.已知双曲线22:198x y C -=,左、右焦点分别为1F 、2F ,过点2F 作一直线与双曲线C 的右半支交于P 、Q 两点,使得190F PQ ∠=︒,则1F PQ ∆的内切圆的半径r =【答案】2【来源】18届金山二模11【难度】解析几何、中档题14.已知圆锥的母线长为5,侧面积为15π,则此圆锥的体积为 (结果保留π)【答案】12π【来源】18届崇明二模6【难度】解析几何、基础题15. 已知椭圆2221x y a+=(0a >)的焦点1F 、2F ,抛物线22y x =的焦点为F ,若 123F F FF =u u u r u u u u r ,则a =【来源】18届崇明二模8【难度】解析几何、中档题9. 复数1.设z 是复数,()a z 表示满足1n z =时的最小正整数n ,i 是虚数单位,则⎪⎭⎫⎝⎛-+i i a 11=______.【答案】4【来源】18届奉贤二模7【难度】复数、基础题2.已知α是实系数一元二次方程22(21)10x m x m --++=的一个虚数根,且||2α≤,则实数m 的取值范围是 .【答案】3(4-【来源】18届黄浦二模8【难度】复数、中档题3.已知复数z 满足i 342+=z (i 为虚数单位),则=||z ____________. 【答案】5【来源】18届长嘉二模3【难度】复数、基础题4.若复数z 满足2315i z -=+(i 是虚数单位),则=z _____________. 【答案】512i - 【来源】18届青浦二模2【难度】复数、基础题5.设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m =【答案】-1【来源】18届松江二模3【难度】复数、基础题6.若复数z 满足1z =,则z i -的最大值是 .【答案】2【来源】18届杨浦二模6【难度】复数、中档题7.i 是虚数单位,若复数(12)()i a i -+是纯虚数,则实数a 的值为【答案】-2【来源】18届崇明二模3【难度】复数、基础题10. 立体几何1.已知球的俯视图面积为π,则该球的表面积为 .【答案】4π【来源】18届宝山 二模5【难度】立体几何、基础题2.已知半径为2R 和R 的两个球,则大球和小球的体积比为 .【答案】8或1:8【来源】18届奉贤 二模2【难度】立体几何、基础题3.长方体的对角线与过同一个顶点的三个表面所成的角分别为α、β、γ,则222cos cos cos αβγ++=4.2【答案】2【来源】18届虹口 二模4【难度】立体几何、中档题4.如图,长方体1111ABCD A B C D -的边长11AB AA ==,AD =O ,则A 、1A 这两点的球面距离等于 【答案】3π 【来源】18届虹口 二模9【难度】立体几何、中档题5.将圆心角为32π,面积为π3的扇形围成一个圆锥的侧面,则此圆锥的体积为___________.【答案】π322【来源】18届长嘉二模7【难度】立体几何、中档题6.三棱锥ABCP-及其三视图中的主视图和左视图如下图所示,则棱PB的长为________.【答案】24【来源】18届长嘉二模8【难度】立体几何、中档题7.如图所示,一个圆柱的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个圆柱的体积为__________.【答案】4π【来源】18届青浦二模7【难度】立体几何、中档题8.若一个球的体积为323π,则该球的表面积为_________.【答案】16π【来源】18届徐汇二模5【难度】立体几何、基础题9.若一圆锥的底面半径为3,体积是12π,则该圆锥的侧面积等于 .【答案】15π【来源】18届徐汇二模8【难度】立体几何、中档题10.若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为【答案】16π【来源】18届松江二模8【难度】立体几何、中档题11.若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形, 则该圆锥的体积是 .【来源】18届杨浦二模7【难度】立体几何、中档题12.记球1O 和2O 的半径、体积分别为1r 、1V 和2r 、2V ,若12827V V =,则12r r = 【答案】23【来源】18届金山二模6【难度】立体几何、中档题11. 排列组合、概率统计、二项式定理1.某次体检,8位同学的身高(单位:米)分别为68.1,71.1,73.1,63.1,81.1,74.1,66.1,78.1,则这组数据的中位数是 (米).【答案】1.72【来源】18届宝山二模3【难度】统计、基础题2.若B A 、满足()()()525421===AB P B P A P ,,,则()()P AB P AB -= . 【答案】310【来源】18届宝山二模9【难度】概率、中档题3.在报名的8名男生和5名女生中,选取6人参加志愿者活动,要求男、女都有,则不同的选取方式的种数为 (结果用数值表示)【答案】1688【来源】18届宝山二模7【难度】排列组合、中档题4.从集合{1,1,2,3}-随机取一个为m ,从集合{2,1,1,2}--随机取一个为n ,则方程221x y m n+=表示双曲线的概率为 【答案】12【来源】18届虹口二模6【难度】概率、中档题5.若将函数6()f x x =表示成23601236()(1)(1)(1)(1)f x a a x a x a x a x =+-+-+-+⋅⋅⋅+-,则3a 的值等于【答案】20【来源】18届虹口二模8【难度】二项式、中档题6.已知某市A社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是人.【答案】140【来源】18届黄浦二模9【难度】概率统计、中档题7.将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是.(结果用数值表示) 10.【答案】5 16【来源】18届黄浦二模10 【难度】概率统计、中档题8.nxx⎪⎭⎫⎝⎛+1的展开式中的第3项为常数项,则正整数=n___________.【答案】4【来源】18届长嘉二模2【难度】二项式、基础题9.某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0、1、2、3的四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球编号相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.则顾客抽奖中三等奖的概率为____________.9.【答案】167【难度】概率统计、中档题10.代数式2521(2)(1)x x+-的展开式的常数项是 .(用数字作答) 【答案】3【来源】18届奉贤二模10【难度】二项式、中档题11.书架上有上、中、下三册的《白话史记》和上、下两册的《古诗文鉴赏辞典》,现将这五本书从左到右摆放在一起,则中间位置摆放中册《白话史记》的不同摆放种数为_______(结果用数值表示).【答案】24【来源】18届普陀二模4【难度】二项式、基础题12.若321()n x x-的展开式中含有非零常数项,则正整数n 的最小值为_________.5 【答案】5【来源】18届普陀二模6【难度】二项式、基础题13.某单位年初有两辆车参加某种事故保险,对在当年内发生此种事故的每辆车,单位均可获赔(假设每辆车最多只获一次赔偿).设这两辆车在一年内发生此种事故的概率分别为120和121,且各车是否发生事故相互独立,则一年内该单位在此种保险中获赔的概率为_________(结果用最简分数表示).【答案】221【难度】概率统计、中档题14.设1234,,,{1,0,2}x x x x ∈-,那么满足12342||||||||4x x x x ≤+++≤的所有有序数对 1234(,,,)x x x x 的组数为【答案】45【来源】18届松江二模11【难度】排列组合、压轴题15.设*n N ∈,n a 为(4)(1)n n x x +-+的展开式的各项系数之和,324c t =-,t ∈R1222[][][]555n n n na a a b =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t b c -++的最小值为 【答案】25【来源】18届松江二模12【难度】二项式、压轴题16.在61x x ⎛⎫+ ⎪⎝⎭的二项展开式中,常数项是 .【答案】20【来源】18届徐汇二模2【难度】二项式、基础题17.621(1)(1)x x++展开式中2x 的系数为______________.8、30【答案】30【来源】18届青浦二模8【难度】二项式、中档题18.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A +的概率分别为78、34、512,这三门科目考试成绩的结果互不影响,则这位考生至少得2个A +的概率是 . 【答案】151192【来源】18届青浦二模9【难度】概率统计、中档题19.将两颗质地均匀的骰子抛掷一次,记第一颗骰子出现的点数是m ,记第二颗骰子出现的点数是n ,向量()2,2a m n =--r ,向量()1,1b =r ,则向量a b ⊥r r 的概率..是 . 【答案】16【来源】18届徐汇二模9【难度】概率统计、中档题20.若的二项展开式中项的系数是,则n = .【答案】4【来源】18届杨浦二模3【难度】概率统计、基础题21.掷一颗均匀的骰子,出现奇数点的概率为 . ()13nx +2x 542【来源】18届杨浦二模4【难度】概率统计、基础题22.若一个布袋中有大小、质地相同的三个黑球和两个白球,从中任取两个球,则取出的两球中恰是一个白球和一个黑球的概率是 【答案】11322535C C C ⋅= 【来源】18届金山二模8【难度】概率统计、中档题23.(12)n x +的二项展开式中,含3x 项的系数等于含x 项的系数的8倍,则正整数n =【答案】5【来源】18届金山二模9【难度】二项式、中档题24.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 石(精确到小数点后一位数字)【答案】169.1【来源】18届崇明二模5【难度】统计、基础题25. 若二项式7(2)a x x+的展开式中一次项的系数是70-,则23lim()n n a a a a →∞+++⋅⋅⋅+=3【来源】18届崇明二模7【难度】二项式、基础题26.某办公楼前有7个连成一排的车位,现有三辆不同型号的车辆停放,恰有两辆车停放在 相邻车位的概率是 【答案】47【来源】18届崇明二模10【难度】概率、中档题12. 行列式、矩阵、程序框图1.若某线性方程组对应的增广矩阵是421m m m ⎛⎫⎪⎝⎭,且此方程组有唯一一组解,则实数m 的取值范围是【答案】0D ≠,即2m ≠±【来源】18届金山二模7【难度】矩阵、中档题2.三阶行列式130124765x-中元素5-的代数余子式为()x f ,则方程()0f x =的解为____. 【答案】2log 3x =【来源】18届奉贤二模6【难度】矩阵、中档题3.若二元一次方程组的增广矩阵是121234c c ⎛⎫ ⎪⎝⎭,其解为100x y =⎧⎨=⎩,则12c c += 【答案】 40【来源】18届松江二模2【难度】矩阵、基础题4.函数()2sin cos 1()11x x f x +-=的最小正周期是___________.【答案】π【来源】18届徐汇二模7【难度】矩阵、基础题5.若线性方程组的增广矩阵为⎪⎪⎭⎫ ⎝⎛210221c c 的解为⎩⎨⎧==31y x ,则=+21c c . 【答案】9【来源】18届宝山二模6【难度】矩阵、基础题6.已知函数2sin cos 2()1cos x x f x x -=,则函数()f x 的单调递增区间 是 . 【答案】3[,],Z 88k k k ππππ-+∈【来源】18届黄浦二模7【难度】矩阵、基础题7.已知一个关于x 、y 的二元一次方程组的增广矩阵是111012-⎛⎫⎪⎝⎭,则x y += 【答案】5【来源】18届崇明二模2【难度】矩阵、基础题8.若2log 1042x -=-,则x =【答案】4【来源】18届崇明二模4 【难度】行列式、基础题13. 数学归纳法、极限1.已知数列{}n a ,其通项公式为31n a n =+,*n N ∈,{}n a 的前n 项和为n S ,则limnn nS n a →∞=⋅【答案】12【来源】18届松江二模6 【难度】极限、基础题2.计算:=+∞→142limn nn .【答案】12【来源】18届杨浦二模2 【难度】极限、基础题14. 参数方程、线性规划1.已知实数,x y 满足20102x y x y -≤⎧⎪-≤⎨⎪+≥⎩,则目标函数2u x y =+的最大值是 .【答案】4 【来源】18届奉贤二模4 【难度】线性规划、中档题2.设变量x 、y 满足条件⎪⎩⎪⎨⎧≤+-≤-+≥,043,04,1y x y x x 则目标函数y x z -=3的最大值为_________.【答案】4 【来源】18届长嘉二模6 【难度】线性规划、基础题3.在平面直角坐标系xOy 中,直线l的参数方程为24x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C的参数方程为cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩(θ为参数),则直线l 与椭圆C 的公共点坐标为__________.【答案】(24-【来源】18届普陀二模8 【难度】参数方程、中档题4.设变量x 、y 满足条件0220x y x y y x y m-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,若该条件表示的平面区域是三角形,则实数m 的取值范围是__________. 【答案】4(0,1][,)3+∞U 【来源】18届普陀二模10 【难度】参数方程、中档题5.若,x y 满足2,10,20,x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩则2z x y =-的最小值为____________.【答案】12-【来源】18届青浦二模6 【难度】参数方程、中档题6.已知实数x y ,满足001x y x y ≥⎧⎪≥⎨⎪+≤⎩,,. 则目标函数z x y =-的最小值为___________.【答案】-1【来源】18届徐汇二模6 【难度】线性规划、基础题7.若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为 .【答案】3【来源】18届杨浦二模5 【难度】线性规划、基础题8.直线l 的参数方程为112x ty t =+⎧⎨=-+⎩(t 为参数),则l 的一个法向量为【答案】()2,1- 【来源】18届松江二模5 【难度】线性规划、基础题9.若平面区域的点(,)x y 满足不等式||||14x y k +≤(0k >),且z x y =+的最小值为5-,则常数k = 【答案】5k =【来源】18届松江二模9 【难度】线性规划、中档题10.已知,x y ∈R,且满足00y y y +≤-≥≥⎪⎩,若存在θ∈R 使得cos sin 10x y θθ++=成立,则点(,)P x y 构成的区域面积为【答案】6π【来源】18届崇明二模11 【难度】线性规划、中档题15.其它1.函数()sin f x x =,对于123n x x x x <<<⋅⋅⋅<且12,,,[0,8]n x x x π⋅⋅⋅∈(10n ≥),记1223341|()()||()()||()()||()()|n n M f x f x f x f x f x f x f x f x -=-+-+-+⋅⋅⋅+-,则M的最大值等于 【答案】16【来源】18届虹口二模12 【难度】其它、压轴题 二、选择题1.命题、不等式)(C 充要条件. )(D 既不充分也不必要条件.【答案】 B 【来源】18届宝山二模13 【难度】命题与条件、基础题2.在给出的下列命题中,是ggg假命题的是 答( ).(A )设O A B C 、、、是同一平面上的四个不同的点,若(1)(R)OA m OB m OC m =⋅+-⋅∈u u u r u u u r u u u r,则点A B C 、、必共线(B )若向量a b r r 和是平面α上的两个不平行的向量,则平面α上的任一向量c r都可以表示为(R)c a b λμμλ=+∈r r r、,且表示方法是唯一的(C )已知平面向量OA OB OC u u u r u u u r u u u r、、满足||||(0)OA OB OC r r ==>u u u r u u u r u u u r |=|,且0OA OB OC ++=u u u r u u u r u u u r r , 则ABC ∆是等边三角形(D )在平面α上的所有向量中,不存在这样的四个互不相等的非零向量a b c d r r r u r、、、,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直【答案】D【来源】18届黄浦二模16 【难度】命题与条件、压轴题3.唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。

上海市普陀区2018届高三下学期质量调研(二模)数学试题(答案简略)

上海市普陀区2018届高三下学期质量调研(二模)数学试题(答案简略)

上海市普陀区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 抛物线212x y =的准线方程为 2. 若函数1()21f x x m =-+是奇函数,则实数m =3.若函数()f x =的反函数为()g x ,则函数()g x 的零点为4. 书架上有上、中、下三册的《白话史记》和上、下两册的《古诗文鉴赏辞典》,现将这 五本书从左到右摆放在一起,则中间位置摆放中册《白话史记》的不同摆放种数为 (结果用数值表示)5. 在锐角三角形ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若222()tan b c a A bc +-=, 则角A 的大小为6. 若321()nx x -的展开式中含有非零常数项,则正整数n 的最小值为 7. 某单位有两辆车参加某种事故保险,对在当年内发生此种事故的每辆车,单位均可获赔 (每辆车最多只获一次赔偿),设这两辆车在一年内发生此种事故的概率分别为120和121, 且各车是否发生事故相互独立,则一年内该单位在此种保险中获赔的概率为 (结果用最简分数表示)8. 在平面直角坐标系xOy 中,直线l的参数方程为x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C 的 参数方程为cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩(θ为参数),则直线l 与椭圆C 的公共点坐标为 9. 设函数()log m f x x =(0m >且1m ≠),若m 是等比数列{}n a (*n N ∈)的公比,且2462018()7f a a a a ⋅⋅⋅=,则22221232018()()()()f a f a f a f a +++⋅⋅⋅+的值为10. 设变量x 、y 满足条件0220x y x y y x y m-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,若该条件表示的平面区域是三角形,则实数m 的取值范围是11. 设1{|(),2xM y y x ==∈R },1{|(1)(1)(||1)(2),12}1N y y x m x x m ==+-+--≤≤-, 若N M ⊆,则实数m 的取值范围是12. 点1F 、2F 分别是椭圆22:12x C y +=的左、右焦点,点N 为椭圆C 的上顶点,若动点 M满足:212||2MN MF MF =⋅ ,则12|2|MF MF +的最大值为二. 选择题(本大题共4题,每题5分,共20分)13. 已知i 为虚数单位,若复数2()a i i +为正实数,则实数a 的值为( ) A. 2B. 1C. 0D. 1-14. 如图所示的几何体,其表面积为(5π,下部圆柱的底面主视图的面积为( ) A. 4B. 6C. 8D. 1015. 设n S 是无穷等差数列{}n a 前n 项和(*n N ∈),则“lim n n S →∞存在”是“该数列公差0d =”的( )条件A. 充分非必要B. 必要非充分C. 充分必要D. 既非充分也非必要16. 已知*k N ∈,,,R x y z +∈,若222()5()k xy yz zx x y z ++>++,则对此不等式描述正确的是( )A. 若5k =,则至少存在一个以x 、y 、z 为边长的等边三角形B. 若6k =,则对任意满足不等式的x 、y 、z ,都存在以x 、y 、z 为边长的三角形C. 若7k =,则对任意满足不等式的x 、y 、z ,都存在以x 、y 、z 为边长的三角形D. 若8k =,则对满足不等式的x 、y 、z ,不存在以x 、y 、z 为边长的直角三角形三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图所示的正四棱柱1111ABCD A B C D -的底面边长为1,侧棱12AA =,点E 在棱1CC上,且1CE CC λ=(0λ>).(1)当12λ=时,求三棱锥1D EBC -的体积; (2)当异面直线BE 与1D C 所成角的大小为2arccos 3时,求λ的值.18. 已知函数2()sin cos sin f x x x x =-,x ∈R . (1)若函数()f x 在区间[,]16a π上递增,求实数a 的取值范围;(2)若函数()f x 的图像关于点11(,)Q x y 对称,且1[,]44x ππ∈-,求点Q 的坐标.19. 某市为改善市民出行,大力发展轨道交通建设,规划中的轨道交通s 号线线路示意图 如图所示,已知M 、N 是东西方向主干道边两个景点,P 、Q 是南北方向主干道边两个景点,四个景点距离城市中心O 均为,线路AB 段上的任意一点到景点N 的距离 比到景点M 的距离都多10km ,线路BC 段上的任意一点到O 的距离都相等,线路CD 段上的任意一点到景点Q 的距离比到景点P 的距离都多10km ,以O 为原点建立平面直 角坐标系xOy .(1)求轨道交通s 号线线路示意图所在曲线的方程; (2)规划中的线路AB 段上需建一站点G 到景点Q 的距离最近,问如何设置站点G 的位置?20. 定义在R 上的函数()f x 满足:对任意的实数x ,存在非零常数t ,都有()()f x t tf x +=-成立. (1)若函数()3f x kx =+,求实数k 和t 的值;(2)当2t =时,若[0,2]x ∈,()(2)f x x x =-,求函数()f x 在闭区间[2,6]-上的值域; (3)设函数()f x 的值域为[,]a a -,证明:函数()f x 为周期函数.21. 若数列{}n a 同时满足条件:① 存在互异的,p q ∈*N 使得p q a a c ==(c 为常数); ② 当n p ≠且n q ≠时,对任意n ∈*N 都有n a c >,则称数列{}n a 为双底数列. (1)判断以下数列{}n a 是否为双底数列(只需写出结论不必证明): ①6n a n n=+; ②sin 2n n a π=; ③|(3)(5)|n a n n =--;(2)设501012150250n n n n a m n --≤≤⎧=⎨+>⎩,若数列{}n a 是双底数列,求实数m 的值以及数列{}n a 的前n 项和n S ; (3)设9(3)()10nn a kn =+,是否存在整数k ,使得数列{}n a 为双底数列?若存在,求出所有的k 的值,若不存在,请说明理由.上海市普陀区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 抛物线212x y =的准线方程为 【解析】3y =- 2. 若函数1()21f x x m =-+是奇函数,则实数m =【解析】12m =3.若函数()f x =的反函数为()g x ,则函数()g x 的零点为【解析】(0)f =()g x的零点为x =4. 书架上有上、中、下三册的《白话史记》和上、下两册的《古诗文鉴赏辞典》,现将这 五本书从左到右摆放在一起,则中间位置摆放中册《白话史记》的不同摆放种数为 (结果用数值表示)【解析】4424P =5. 在锐角三角形ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若222()tan b c a A bc +-=, 则角A 的大小为 【解析】1sin 2A =,6A π= 6. 若321()nx x-的展开式中含有非零常数项,则正整数n 的最小值为 【解析】235+=,最小值为57. 某单位有两辆车参加某种事故保险,对在当年内发生此种事故的每辆车,单位均可获赔 (每辆车最多只获一次赔偿),设这两辆车在一年内发生此种事故的概率分别为120和121, 且各车是否发生事故相互独立,则一年内该单位在此种保险中获赔的概率为 (结果用最简分数表示) 【解析】192021202121-⋅= 8. 在平面直角坐标系xOy 中,直线l的参数方程为x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C 的参数方程为cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩(θ为参数),则直线l 与椭圆C 的公共点坐标为【解析】2x y =2241x y +=,公共点坐标为( 9. 设函数()log m f x x =(0m >且1m ≠),若m 是等比数列{}n a (*n N ∈)的公比,且2462018()7f a a a a ⋅⋅⋅=,则22221232018()()()()f a f a f a f a +++⋅⋅⋅+的值为【解析】22221232018132017242018()()()()2log ()2log ()m m f a f a f a f a a a a a a a +++⋅⋅⋅+=⋅⋅⋅+⋅⋅⋅24201810092log 142(71009)141990ma a a m ⋅⋅⋅=+=-+=-10. 设变量x 、y 满足条件0220x y x y y x y m -≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,若该条件表示的平面区域是三角形,则实数m 的取值范围是【解析】数形结合,4(0,1][,)3+∞11. 设1{|(),2xM y y x ==∈R },1{|(1)(1)(||1)(2),12}1N y y x m x x m ==+-+--≤≤-, 若N M ⊆,则实数m 的取值范围是【解析】(1)0N f >,(2)0N f >,∴取值范围为(1,0)-12. 点1F 、2F 分别是椭圆22:12x C y +=的左、右焦点,点N 为椭圆C 的上顶点,若动点 M 满足:212||2MN MF MF =⋅ ,则12|2|MF MF +的最大值为【解析】6二. 选择题(本大题共4题,每题5分,共20分)13. 已知i 为虚数单位,若复数2()a i i +为正实数,则实数a 的值为( ) A. 2B. 1C. 0D. 1-【解析】D14.如图所示的几何体,其表面积为(5π,下部圆柱的底面主视图的面积为( ) A. 4B. 6C. 8D. 10【解析】224(51r r r r πππ+=⇒=,选B15. 设n S 是无穷等差数列{}n a 前n 项和(*n N ∈),则“lim n n S →∞存在”是“该数列公差0d =”的( )条件A. 充分非必要B. 必要非充分C. 充分必要D. 既非充分也非必要 【解析】A16. 已知*k N ∈,,,R x y z +∈,若222()5()k xy yz zx x y z ++>++,则对此不等式描述正确的是( )A. 若5k =,则至少存在一个以x 、y 、z 为边长的等边三角形B. 若6k =,则对任意满足不等式的x 、y 、z ,都存在以x 、y 、z 为边长的三角形C. 若7k =,则对任意满足不等式的x 、y 、z ,都存在以x 、y 、z 为边长的三角形D. 若8k =,则对满足不等式的x 、y 、z ,不存在以x 、y 、z 为边长的直角三角形 【解析】B三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图所示的正四棱柱1111ABCD A B C D -的底面边长为1,侧棱12AA =,点E 在棱1CC上,且1CE CC λ=(0λ>).(1)当12λ=时,求三棱锥1D EBC -的体积; (2)当异面直线BE 与1D C 所成角的大小为2arccos3时,求λ的值.【解析】(1)1111326V =⋅⋅=;(2)建系,λ=18. 已知函数2()sin cos sin f x x x x =-,x ∈R . (1)若函数()f x 在区间[,]16a π上递增,求实数a 的取值范围;(2)若函数()f x 的图像关于点11(,)Q x y 对称,且1[,]44x ππ∈-,求点Q 的坐标.【解析】(1)1())42f x x π=+-,结合图像,3[,)816a ππ∈-;(2)1(,)82Q π--19. 某市为改善市民出行,大力发展轨道交通建设,规划中的轨道交通s 号线线路示意图 如图所示,已知M 、N 是东西方向主干道边两个景点,P 、Q 是南北方向主干道边两个景点,四个景点距离城市中心O 均为,线路AB 段上的任意一点到景点N 的距离 比到景点M 的距离都多10km ,线路BC 段上的任意一点到O 的距离都相等,线路CD段上的任意一点到景点Q 的距离比到景点P 的距离都多10km ,以O 为原点建立平面直 角坐标系xOy .(1)求轨道交通s 号线线路示意图所在曲线的方程;(2)规划中的线路AB 段上需建一站点G 到景点Q 的距离最近,问如何设置站点G 的位置?【解析】(1)线路AB :2212525x y -=; 线路BC :2225x y +=;线路CD :2212525y x -=(2)2222(275d x y y =+-=-+,2y =时,距离最近,代入双曲线,x =,∴(2G20. 定义在R 上的函数()f x 满足:对任意的实数x ,存在非零常数t ,都有()()f x t tf x +=-成立. (1)若函数()3f x kx =+,求实数k 和t 的值;(2)当2t =时,若[0,2]x ∈,()(2)f x x x =-,求函数()f x 在闭区间[2,6]-上的值域; (3)设函数()f x 的值域为[,]a a -,证明:函数()f x 为周期函数.【解析】(1)()3(3)k x t t kx ++=-+,∴0kt k +=,330kt t ++=,解得0k =,1t =- (2)(2)2()f x f x +=-,分析函数图像可知(3)2f =-最小,(5)4f =最大,值域[2,4]- (3)略21. 若数列{}n a 同时满足条件:① 存在互异的,p q ∈*N 使得p q a a c ==(c 为常数); ② 当n p ≠且n q ≠时,对任意n ∈*N 都有n a c >,则称数列{}n a 为双底数列. (1)判断以下数列{}n a 是否为双底数列(只需写出结论不必证明):①6n a n n=+; ②sin 2n n a π=; ③|(3)(5)|n a n n =--;(2)设501012150250n n n n a m n --≤≤⎧=⎨+>⎩,若数列{}n a 是双底数列,求实数m 的值以及数列{}n a的前n 项和n S ;(3)设9(3)()10nn a kn =+,是否存在整数k ,使得数列{}n a 为双底数列?若存在,求出所 有的k 的值,若不存在,请说明理由. 【解析】(1)① 是,② 不是,③ 是;(2)50511a a m =⇒=-,当150n ≤≤,2100n S n n =-;当51n ≥,4922548n n S n -=-+(3)根据题意,0k <,139n n a a n k+=⇒=-,∴1k =-或3k =-。

2018年上海市普陀区高考数学二模试卷

2018年上海市普陀区高考数学二模试卷

2018年上海市普陀区高考数学二模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(★)抛物线x 2=12y的准线方程为2.(★)若函数f(x)= 是奇函数,则实数m=3.(★)若函数f(x)= 的反函数为g(x),则函数g(x)的零点为4.(★)书架上有上、中、下三册的《白话史记》和上、下两册的《古诗文鉴赏辞典》,现将这五本书从左到右摆放在一起,则中间位置摆放中册《白话史记》的不同摆放种数为(结果用数值表示)5.(★★)在锐角三角形△ABC中,角A、B、C的对边分别为a、b、c,若(b 2+c 2-a 2)tanA=bc,则角A的大小为6.(★★)若(x 3- )n的展开式中含有非零常数项,则正整数n的最小值为7.(★★)某单位有两辆车参加某种事故保险,对在当年内发生此种事故的每辆车,单位均可获赔(每辆车最多只获一次赔偿),设这两辆车在一年内发生此种事故的概率分别为和,且各车是否发生事故相互独立,则一年内该单位在此种保险中获赔的概率为(结果用最简分数表示)8.(★★★)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),则直线l与椭圆C的公共点坐标为9.(★★★)设函数f(x)=log m x(m>0且m≠1),若m是等比数列{a n}(n∈N*)的公比,且f(a 2a 4a 6..a 2018)=7,则f()+f()+f()+…f()的值为10.(★★★)设变量x、y满足条件,若该条件表示的平面区域是三角形,则实数m的取值范围是11.(★★)设M={y|y=()x,x∈R},N={y|y=(+1)(x-1)+(|m|-1)(x-2),1≤x≤2},若N⊆M,则实数m的取值范围是12.(★★★)点F 1、F 2分别是椭圆C:的左、右焦点,点N为椭圆C的上顶点,若动点M满足:| | 2=2 ,则| |的最大值为二.选择题(本大题共4题,每题5分,共20分)13.(★★)已知i为虚数单位,若复数(a+i)2i为正实数,则实数a的值为()A.2B.1C.0D.-114.(★★★)如图所示的几何体,其表面积为(5+ )π,下部圆柱的底面直径与该圆柱的高相等,上部圆锥的母线长为,则该几何体的主视图的面积为()A.4B.6C.8D.1015.(★★)设S n是无穷等差数列{a n}前n项和(n∈N*),则“S n存在”是“该数列公差d=0”的()条件A.充分非必要B.必要非充分C.充分必要D.既非充分也非必要16.(★★)已知k∈N*,x,y,z∈R +,若k(xy+yz+zx)>5(x 2+y 2+z 2),则对此不等式描述正确的是()A.若k=5,则至少存在一个以x、y、z为边长的等边三角形B.若k=6,则对任意满足不等式的x、y、z,都存在以x、y、z为边长的三角形C.若k=7,则对任意满足不等式的x、y、z,都存在以x、y、z为边长的三角形D.若k=8,则对满足不等式的x、y、z,不存在以x、y、z为边长的直角三角形三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(★★★★)如图所示的正四棱柱ABCD-A 1B 1C 1D 1的底面边长为1,侧棱AA 1=2,点E 在棱CC 1上,且= (λ>0).(1)当时,求三棱锥D 1=EBC的体积;(2)当异面直线BE与D 1C所成角的大小为arccos 时,求λ的值.18.(★★★)已知函数f(x)=sinxcosx+sin 2x,x∈R.(1)若函数f(x)在区间[a,]上递增,求实数a的取值范围;(2)若函数f(x)的图象关于点Q(x 1,y 1)对称,且x 1∈[- ],求点Q的坐标.19.(★★★)某市为改善市民出行,大力发展轨道交通建设,规划中的轨道交通s号线线路示意图如图所示,已知M、N是东西方向主干道边两个景点,P、Q是南北方向主干道边两个景点,四个景点距离城市中心O均为5 ,线路AB段上的任意一点到景点N的距离比到景点M的距离都多10km,线路BC段上的任意一点到O的距离都相等,线路CD段上的任意一点到景点Q的距离比到景点P的距离都多10km,以O为原点建立平面直角坐标系xOy.(1)求轨道交通s号线线路示意图所在曲线的方程;(2)规划中的线路AB段上需建一站点G到景点Q的距离最近,问如何设置站点G的位置?20.(★★★★)定义在R上的函数f(x)满足:对任意的实数x,存在非零常数t,都有f (x+t)=-tf(x)成立.(1)若函数f(x)=kx+3,求实数k和t的值;(2)当t=2时,若x∈[0,2],f(x)=x(2-x),求函数f(x)在闭区间[-2,6]上的值域;(3)设函数f(x)的值域为[-a,a],证明:函数f(x)为周期函数.21.(★★★★)若数列{a n}同时满足条件:①存在互异的p,q∈N*使得a p=a q=c(c为常数);②当n≠p且n≠q时,对任意n∈N*都有a n>c,则称数列{a n}为双底数列.(1)判断以下数列{a n}是否为双底数列(只需写出结论不必证明):①a n=n ;②a n=sin ;③a n=|(n-3)(n-5)|;(2)设a n= ,若数列{a n}是双底数列,求实数m的值以及数列{a n}的前n项和S n;(3)设a n=(kn+3)()n,是否存在整数k,使得数列{a n}为双底数列?若存在,求出所有的k的值,若不存在,请说明理由.。

2018高三二模汇编(精)(带参考答案)

2018高三二模汇编(精)(带参考答案)

2018届高三数学二模典题库一、填空题1.集合1.设全集R U =,若集合{}2,1,0=A ,{}21|<<-=x x B ,()B C A U ⋂= . 【答案】{}2 【来源】18届宝山二模1 【难度】集合、基础题2.集合⎭⎬⎫⎩⎨⎧<-=02x xxA ,{|}B x x Z =∈,则A B ⋂等于 .【答案】{}1或{}1=x x 【来源】18届奉贤二模1 【难度】集合、基础题3. 已知(,]A a =-∞,[1,2]B =,且A B ≠∅,则实数a 的范围是【答案】1a ≥ 【来源】18届虹口二模1 【难度】集合、基础题4.已知集合{}{}1,2,31,A B m ==,,若3m A -∈,则非零实数m 的数值是 .【答案】2 【来源】18届黄浦二模1 【难度】集合、基础题5.已知集合},2,1{m A =,}4,2{=B ,若}4,3,2,1{=B A ,则实数=m _______. 【答案】3【来源】18届长嘉二模1 【难度】集合、基础题6. 设集合1|,2xM y y x R ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,()()()1|1112,121N y y x m x x m ⎧⎫⎛⎫==+-+--≤≤⎨⎬ ⎪-⎝⎭⎩⎭,若N M ⊆,则实数m 的取值范围是 .【答案】(1,0)- 【来源】18届普陀二模11 【难度】集合、中档题7.已知全集R U =,集合{}0322>--=x x x A ,则=A C U . 【答案】]3,1[- 【来源】18届徐汇二模1 【难度】集合、基础题8. 已知集合{|(1)(3)0}P x x x =+-<,{|||2}Q x x =>,则P Q =【答案】(2,3) 【来源】18届金山二模3 【难度】集合、基础题9.已知集合{1,0,1,2,3}U =-,{1,0,2}A =-,则U C A =【答案】{1,3} 【来源】18届崇明二模1 【难度】集合、基础题2.命题、不等式1.不等式|1|1x ->的解集是 .【答案】(,0)(2,)-∞+∞【来源】18届黄浦二模2 【难度】不等式、基础题2.已知函数2()(02)f x ax bx c a b =++<<对任意R x ∈恒有()0f x ≥成立,则代数式(1)(0)(1)f f f --的最小值是 .【答案】3【来源】18届黄浦二模2 【难度】不等式、压轴题3.不等式|3|2x -<的解集为__________________. 【答案】{}15x x <<或()1,5 【来源】18届青浦二模1 【难度】不等式、基础题4.若为等比数列,0n a >,且2018a =,则2017201912a a +的最小值为 .{}n a【答案】4【来源】18届杨浦二模10 【难度】不等式、中档题5. 函数9y x x=+,(0,)x ∈+∞的最小值是 【答案】6 【来源】18届金山二模4 【难度】不等式、基础题3.函数1.给出下列函数:①1y x x=+;②x x y +=2;③2x y =;④23y x =;⑤x y tan =;⑥()sin arccos y x =;⑦(lg lg 2y x =-.从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是 . 【答案】37【来源】18届奉贤二模9 【难度】函数、中档题2.已知函数()()θ-=x x f 2sin 5,⎥⎦⎤⎝⎛∈2,0πθ,[]π5,0∈x ,若函数()()3-=x f x F 的所有零点依次记为n x x x x ,,,,321 ,且n n x x x x x <<<<<-1321 ,*N n ∈若π283222212321=++++++--n n n x x x x x x ,则=θ . 【答案】9π【来源】18届奉贤二模12 【难度】函数、压轴题3.已知函数20()210x x x f x x -⎧-≥=⎨-<⎩,则11[(9)]f f ---=【答案】-2【来源】18届虹口二模5 【难度】函数、基础题4.若函数()f x =是偶函数,则该函数的定义域是 . 【答案】[2,2]- 【来源】18届黄浦二模3 【难度】函数、基础题5.已知函数)1lg()(2ax x x f ++=的定义域为R ,则实数a 的取值范围是_________.【答案】]1,1[-【来源】18届长嘉二模10 【难度】函数、中档题6.若函数1()21f x x m =-+是奇函数,则实数m =________.【答案】12【来源】18届普陀二模2 【难度】函数、基础题7.若函数()f x =()g x ,则函数()g x 的零点为________.【答案】x =【来源】18届普陀二模3 【难度】函数、基础题8.已知()f x 是定义在[2,2]-上的奇函数,当(0,2]x ∈时,()21xf x =-,函数 2()2g x x x m =-+. 如果对于任意的1[2,2]x ∈-,总存在2[2,2]x ∈-,使得12()()f xg x ≤,则实数m 的取值范围是 .【答案】5m ≥- 【来源】18届青浦二模10 【难度】函数、中档题9.若函数222(1)sin ()1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 1g x M m x M m x =+++-⎡⎤⎣⎦图像的一个对称中心是 .【答案】114⎛⎫⎪⎝⎭,【来源】18届徐汇二模11 【难度】函数、中档题10.设()f x 是定义在R 上以2为周期的偶函数,当[0,1]x ∈时,2()log (1)f x x =+,则函数()f x 在[1,2]上的解析式是 【答案】2()log (3)f x x =- 【来源】18届崇明二模9 【难度】函数、中档题4.指数函数、对数函数1.方程33log (325)log (41)0x x ⋅+-+=的解x = . 【答案】2【来源】18届黄浦二模6 【难度】对数函数、基础题2.[]x 是不超过x 的最大整数,则方程271(2)[2]044x x -⋅-=满足1x <的所有实数解是【答案】12x =或1x =- 【来源】18届虹口二模11 【难度】指数函数、中档题3.若实数x 、y 满足112244+++=+y x yx,则y x S 22+=的取值范围是____________.【答案】]4,2(【来源】18届长嘉二模12 【难度】指数函数、压轴题4.函数()lg(32)x xf x =-的定义域为_____________. 【答案】(0,)+∞ 【来源】18届徐汇二模3 【难度】对数函数、基础题5.定义在R 上的函数()21x f x =-的反函数为1()y f x -=,则1(3)f -=【答案】2【来源】18届松江二模4 【难度】指数函数、基础题6.若函数2()log (1)a f x x ax =-+(0a >且1a ≠)没有最小值,则a 的取值范围 【答案】()[)0,12,+∞【来源】18届松江二模10 【难度】指数函数、中档题7.函数lg 1y x =-的零点是 . 【答案】10x = 【来源】18届杨浦二模1 【难度】对数函数、基础题8.函数lg y x =的反函数是【答案】1()10xf x -=【来源】18届金山二模2 【难度】对数函数、基础题5. 三角函数1.已知在ABC ∆中,a ,b ,c 分别为AB ∠∠,,C ∠所对的边.若222b c a +-=,则A ∠= .【答案】4π或045 【来源】18届奉贤二模5 【难度】三角函数、基础题2.已知ABC ∆的三内角A B C 、、所对的边长分别为a b c 、、,若2222sin a b c bc A =+-,则内角A 的大小是 . 【答案】4π【来源】18届黄浦二模4 【难度】三角函数、基础题3.若1sin 3α=,则cos 2πα⎛⎫-= ⎪⎝⎭_______________.【答案】13【来源】18届青浦二模3 【难度】三角函数、基础题4.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若222()tan b c a A bc +-=,则角A 的大小为________.【答案】6π 【来源】18届普陀二模5 【难度】三角函数、基础题5..函数()x x x f 4cos 4sin 2=的最小正周期为 . 【答案】4π 【来源】18届宝山二模4 【难度】三角函数、基础题6.已知22s 1(,,0)cos 1a a in M a a a a θθθ-+=∈≠-+R ,则M 的取值范围是 .【答案】⎣⎦【来源】18届青浦二模12 【难度】三角函数、压轴题7. 函数3sin(2)3y x π=+的最小正周期T =【答案】π【来源】18届金山二模1 【难度】三角函数、基础题8.若53sin )cos(cos )sin(=---x y x x y x ,则y 2tan 的值为 【答案】2424.77-或 【来源】18届杨浦二模9 【难度】三角函数、中档题9.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,2a =,2sin sin A C =. 若B 为钝角,412cos -=C ,则ABC ∆的面积为 .【来源】18届杨浦二模11 【难度】三角函数、中档题 10. 若2018100922sin(2cos )(3cos cos )(1cos cos )αββαβα--≥---+,则sin()2βα+=【答案】-1或1【来源】18届金山二模12 【难度】三角函数、压轴题题6. 数列1.已知数列{}n a 是公比为q 的等比数列,且2a 、4a 、3a 成等差数列,则q = 【答案】1或12-【来源】18届虹口二模7 【难度】数列、基础题2.已知数列{}n a 是共有k 个项的有限数列,且满足11(2,,1)n n nna a n k a +-=-=-,若1224,51,0k a a a ===,则k = .【答案】50【来源】18届黄浦二模11 【难度】数列、中档题3.设函数()log m f x x =(0m >且1m ≠),若m 是等比数列{}n a (*N n ∈)的公比,且2462018()7f a a a a =,则22221232018()()()()f a f a f a f a ++++的值为_________.【答案】1990-【来源】18届普陀二模9 【难度】数列、中档题4.在等比数列{}n a 中,公比2q =,前n 项和为n S ,若51S =,则10S = . 【答案】33【来源】18届青浦二模5 【难度】数列、基础题7. 向量1.如图,已知O 为矩形4321P P P P 内的一点,满足7,543131===P P OP OP ,,则24OP OP ⋅的值为 .【答案】-4 【来源】18届宝山二模11 【难度】向量、中档题2.已知向量a 在向量b 方向上的投影为2-,且3b =,则a b ⋅= .(结果用数值表示) 【答案】-6 【来源】18届黄浦二模5 【难度】向量、基础题3.在△ABC 中,M 是BC 的中点,︒=∠120A ,21-=⋅AC AB ,则线段AM 长的最小值为____________. 【答案】21 【来源】18届长嘉二模114.已知曲线29C y x =--:,直线2l y =:,若对于点(0,)A m ,存在C 上的点P 和l 上的点Q ,使得0AP AQ +=,则m 取值范围是 .11、 【答案】1,12⎡⎤-⎢⎥⎣⎦【来源】18届青浦二模11 【难度】向量、中档题5.已知向量a 、b 的夹角为60°,||1a =,||2b =,若(2)()a b xa b +⊥-,则实数x 的值为 【答案】3【来源】18届松江二模7 【难度】向量、基础题6.点1F ,2F 分别是椭圆22:12x C y +=的左、右两焦点,点N 为椭圆C 的上顶点,若动点M 满足:2122MNMF MF =⋅,则122MF MF +的最大值为__________.【答案】6【来源】18届普陀二模12 【难度】向量、压轴题7.已知两个不同向量(1,)OA m =,(1,2)OB m =-,若OA AB ⊥,则实数m =____________. 【答案】1【来源】18届青浦二模48.已知非零向量OP 、OQ 不共线,设111m OM OP OQ m m =+++,定义点集{|}||||FP FM FQ FMA F FP FQ ⋅⋅==. 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ 上时,不等式12||||F F k PQ ≤恒成立,则实数k 的最小值为 . 【答案】34【来源】18届杨浦二模12 【难度】向量、压轴题9.已知向量,a b 的夹角为锐角,且满足||a =、||b =,若对任意的{}(,)(,)||1,0x y x y xa yb xy ∈+=>,都有||1x y +≤成立,则a b ⋅的最小值为 . 【答案】815【来源】18届徐汇二模12 【难度】向量、压轴题10. 在平面四边形ABCD 中,已知1AB =,4BC =,2CD =,3DA =,则AC BD ⋅的值为 【答案】10【来源】18届崇明二模12 【难度】向量、压轴题8. 解析几何1.设抛物线的焦点坐标为()01,,则此抛物线的标准方程为 . 【答案】24y x = 【来源】18届宝山二模2【难度】解析几何、基础题2.抛物线2y x =的焦点坐标是 .【答案】(0,14) 【来源】18届奉贤二模3 【难度】解析几何、基础题3.椭圆的长轴长等于m ,短轴长等于n ,则此椭圆的内接矩形的面积的最大值为【答案】2mn【来源】18届虹口二模10 【难度】解析几何、中档题4.角的始边是x 轴正半轴,顶点是曲线2522=+y x 的中心,角的终边与曲线2522=+y x 的交点A 的横坐标是3-,角的终边与曲线2522=+y x 的交点是B ,则过B 点的曲线2522=+y x 的切线方程是 .(用一般式表示)11、 【答案】7241250x y ±+= 【来源】18届奉贤二模11 【难度】解析几何、压轴题5.直线(1)10ax a y +-+=与直线420x ay +-=互相平行,则实数a = 【答案】2 【来源】18届虹口二模2 【难度】解析几何、基础题ααα26.已知平面直角坐标系xOy 中动点),(y x P 到定点)0,1(的距离等于P 到定直线1-=x 的距离,则点P 的轨迹方程为______________. 【答案】x y 42= 【来源】18届长嘉二模4 【难度】解析几何、基础题7. 抛物线212x y =的准线方程为_______. 【答案】3y =- 【来源】18届普陀二模1 【难度】解析几何、基础题8.双曲线22219x y a -=(0a >)的渐近线方程为320x y ±=,则a =【答案】2a = 【来源】18届松江二模1 【难度】解析几何、基础题9.已知直线12:0,:20l mx y l x my m -=+--=.当m 在实数范围内变化时,1l 与2l 的交点P 恒在一个定圆上,则定圆方程是 . 【答案】2220x y x y +--= 【来源】18届徐汇二模10 【难度】解析几何、中档题10.已知抛物线2x ay =的准线方程是14y =-,则a = . 【答案】1【来源】18届徐汇二模4 【难度】解析几何、基础题11.若双曲线222161(0)3x y p p-=>的左焦点在抛物线22y px =的准线上,则p = .【答案】4【来源】18届杨浦二模8 【难度】解析几何、中档题12.平面上三条直线210x y -+=,10x -=,0x ky +=,如果这三条直线将平面化分为六个部分,则实数k 的取值组成的集合A = 【答案】{2,1,0}-- 【来源】18届金山二模10 【难度】解析几何、中档题13.已知双曲线22:198x y C -=,左、右焦点分别为1F 、2F ,过点2F 作一直线与双曲线C 的右半支交于P 、Q 两点,使得190F PQ ∠=︒,则1F PQ ∆的内切圆的半径r = 【答案】2【来源】18届金山二模11 【难度】解析几何、中档题14.已知圆锥的母线长为5,侧面积为15π,则此圆锥的体积为 (结果保留π) 【答案】12π【来源】18届崇明二模6 【难度】解析几何、基础题15. 已知椭圆2221x y a +=(0a >)的焦点1F 、2F ,抛物线22y x =的焦点为F ,若123F F FF =,则a =【来源】18届崇明二模8 【难度】解析几何、中档题9. 复数1.设z 是复数,()a z 表示满足1nz =时的最小正整数n ,i 是虚数单位,则⎪⎭⎫⎝⎛-+i i a 11=______. 【答案】4【来源】18届奉贤二模7 【难度】复数、基础题2.已知α是实系数一元二次方程22(21)10x m x m --++=的一个虚数根,且||2α≤,则实数m 的取值范围是 .【答案】3(4- 【来源】18届黄浦二模8 【难度】复数、中档题3.已知复数z 满足i 342+=z (i 为虚数单位),则=||z ____________. 【答案】5【来源】18届长嘉二模3 【难度】复数、基础题4.若复数z 满足2315i z -=+(i 是虚数单位),则=z _____________. 【答案】512i -【来源】18届青浦二模2 【难度】复数、基础题5.设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m = 【答案】-1【来源】18届松江二模3 【难度】复数、基础题6.若复数z 满足1z =,则z i -的最大值是 . 【答案】2【来源】18届杨浦二模6 【难度】复数、中档题7.i 是虚数单位,若复数(12)()i a i -+是纯虚数,则实数a 的值为 【答案】-2【来源】18届崇明二模3 【难度】复数、基础题10. 立体几何1.已知球的俯视图面积为π,则该球的表面积为 . 【答案】4π 【来源】18届宝山 二模5 【难度】立体几何、基础题2.已知半径为2R 和R 的两个球,则大球和小球的体积比为 .【答案】8或1:8 【来源】18届奉贤 二模2 【难度】立体几何、基础题3.长方体的对角线与过同一个顶点的三个表面所成的角分别为α、β、γ,则222cos cos cos αβγ++= 4.2【答案】2【来源】18届虹口 二模4 【难度】立体几何、中档题4.如图,长方体1111ABCD A B C D -的边长11AB AA ==,AD =O ,则A 、1A 这两点的球面距离等于【答案】3π 【来源】18届虹口 二模9 【难度】立体几何、中档题5.将圆心角为32π,面积为π3的扇形围成一个圆锥的侧面,则此圆锥的体积为___________.【答案】π322【来源】18届长嘉二模7【难度】立体几何、中档题6.三棱锥ABCP-及其三视图中的主视图和左视图如下图所示,则棱PB的长为________.【答案】24【来源】18届长嘉二模8【难度】立体几何、中档题7.如图所示,一个圆柱的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个圆柱的体积为__________.【答案】4π【来源】18届青浦二模7【难度】立体几何、中档题8.若一个球的体积为323π,则该球的表面积为_________.【答案】16π【来源】18届徐汇二模5【难度】立体几何、基础题9.若一圆锥的底面半径为3,体积是12π,则该圆锥的侧面积等于 .【答案】15π【来源】18届徐汇二模8【难度】立体几何、中档题10.若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为【答案】16π【来源】18届松江二模8 【难度】立体几何、中档题11.若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形, 则该圆锥的体积是 .【来源】18届杨浦二模7 【难度】立体几何、中档题12.记球1O 和2O 的半径、体积分别为1r 、1V 和2r 、2V ,若12827V V =,则12r r = 【答案】23【来源】18届金山二模6 【难度】立体几何、中档题11. 排列组合、概率统计、二项式定理1.某次体检,8位同学的身高(单位:米)分别为68.1,71.1,73.1,63.1,81.1,74.1,66.1,78.1,则这组数据的中位数是 (米).【答案】1.72 【来源】18届宝山二模3 【难度】统计、基础题2.若B A 、满足()()()525421===AB P B P A P ,,,则()()P AB P AB -= . 【答案】310【来源】18届宝山二模9 【难度】概率、中档题3.在报名的8名男生和5名女生中,选取6人参加志愿者活动,要求男、女都有,则不同的选取方式的种数为 (结果用数值表示) 【答案】1688 【来源】18届宝山二模7 【难度】排列组合、中档题4.从集合{1,1,2,3}-随机取一个为m ,从集合{2,1,1,2}--随机取一个为n ,则方程221x y m n+=表示双曲线的概率为 【答案】12【来源】18届虹口二模6 【难度】概率、中档题5.若将函数6()f x x =表示成23601236()(1)(1)(1)(1)f x a a x a x a x a x =+-+-+-+⋅⋅⋅+-,则3a 的值等于 【答案】20 【来源】18届虹口二模8 【难度】二项式、中档题6.已知某市A社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是人.【答案】140【来源】18届黄浦二模9【难度】概率统计、中档题7.将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是.(结果用数值表示) 10.【答案】5 16【来源】18届黄浦二模10 【难度】概率统计、中档题8.nxx⎪⎭⎫⎝⎛+1的展开式中的第3项为常数项,则正整数=n___________.【答案】4【来源】18届长嘉二模2【难度】二项式、基础题9.某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0、1、2、3的四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球编号相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.则顾客抽奖中三等奖的概率为____________.9.【答案】167【难度】概率统计、中档题10.代数式2521(2)(1)x x+-的展开式的常数项是 .(用数字作答) 【答案】3【来源】18届奉贤二模10 【难度】二项式、中档题11.书架上有上、中、下三册的《白话史记》和上、下两册的《古诗文鉴赏辞典》,现将这五本书从左到右摆放在一起,则中间位置摆放中册《白话史记》的不同摆放种数为_______(结果用数值表示). 【答案】24【来源】18届普陀二模4 【难度】二项式、基础题12.若321()nx x-的展开式中含有非零常数项,则正整数n 的最小值为_________.5 【答案】5【来源】18届普陀二模6 【难度】二项式、基础题13.某单位年初有两辆车参加某种事故保险,对在当年内发生此种事故的每辆车,单位均可获赔(假设每辆车最多只获一次赔偿).设这两辆车在一年内发生此种事故的概率分别为120和121,且各车是否发生事故相互独立,则一年内该单位在此种保险中获赔的概率为_________(结果用最简分数表示).【答案】221【难度】概率统计、中档题14.设1234,,,{1,0,2}x x x x ∈-,那么满足12342||||||||4x x x x ≤+++≤的所有有序数对1234(,,,)x x x x 的组数为【答案】45【来源】18届松江二模11 【难度】排列组合、压轴题15.设*n N ∈,n a 为(4)(1)n nx x +-+的展开式的各项系数之和,324c t =-,t ∈R1222[][][]555n n n na a ab =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t b c -++的最小值为【答案】25【来源】18届松江二模12 【难度】二项式、压轴题16.在61x x ⎛⎫+ ⎪⎝⎭的二项展开式中,常数项是 .【答案】20【来源】18届徐汇二模2 【难度】二项式、基础题 17.621(1)(1)x x++展开式中2x 的系数为______________.8、30【答案】30【来源】18届青浦二模8 【难度】二项式、中档题18.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A +的概率分别为78、34、512,这三门科目考试成绩的结果互不影响,则这位考生至少得2个A +的概率是 .【答案】151192【来源】18届青浦二模9 【难度】概率统计、中档题19.将两颗质地均匀的骰子抛掷一次,记第一颗骰子出现的点数是m ,记第二颗骰子出现的点数是n ,向量()2,2a m n =--,向量()1,1b =,则向量a b ⊥的概率..是 . 【答案】16【来源】18届徐汇二模9 【难度】概率统计、中档题20.若的二项展开式中项的系数是,则n = . 【答案】4【来源】18届杨浦二模3 【难度】概率统计、基础题21.掷一颗均匀的骰子,出现奇数点的概率为 .()13nx +2x 542【来源】18届杨浦二模4 【难度】概率统计、基础题22.若一个布袋中有大小、质地相同的三个黑球和两个白球,从中任取两个球,则取出的两球中恰是一个白球和一个黑球的概率是【答案】11322535C C C ⋅=【来源】18届金山二模8 【难度】概率统计、中档题23.(12)nx +的二项展开式中,含3x 项的系数等于含x 项的系数的8倍, 则正整数n = 【答案】5【来源】18届金山二模9 【难度】二项式、中档题24.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 石(精确到小数点后一位数字) 【答案】169.1【来源】18届崇明二模5 【难度】统计、基础题25. 若二项式7(2)ax x+的展开式中一次项的系数是70-,则23lim()n n a a a a →∞+++⋅⋅⋅+=3【来源】18届崇明二模7 【难度】二项式、基础题26.某办公楼前有7个连成一排的车位,现有三辆不同型号的车辆停放,恰有两辆车停放在 相邻车位的概率是【答案】47【来源】18届崇明二模10 【难度】概率、中档题12. 行列式、矩阵、程序框图1.若某线性方程组对应的增广矩阵是421m m m ⎛⎫⎪⎝⎭,且此方程组有唯一一组解,则实数m的取值范围是 【答案】0D ≠,即2m ≠±【来源】18届金山二模7 【难度】矩阵、中档题2.三阶行列式13124765x -中元素5-的代数余子式为()x f ,则方程()0f x =的解为____. 【答案】2log 3x = 【来源】18届奉贤二模6 【难度】矩阵、中档题3.若二元一次方程组的增广矩阵是121234c c ⎛⎫ ⎪⎝⎭,其解为100x y =⎧⎨=⎩,则12c c += 【答案】 40【来源】18届松江二模2 【难度】矩阵、基础题4.函数()2sin cos 1()11x x f x +-=的最小正周期是___________.【答案】π【来源】18届徐汇二模7 【难度】矩阵、基础题5.若线性方程组的增广矩阵为⎪⎪⎭⎫ ⎝⎛210221c c 的解为⎩⎨⎧==31y x ,则=+21c c . 【答案】9【来源】18届宝山二模6 【难度】矩阵、基础题6.已知函数2sin cos 2()1cos x x f x x-=,则函数()f x 的单调递增区间是 . 【答案】3[,],Z 88k k k ππππ-+∈【来源】18届黄浦二模7 【难度】矩阵、基础题7.已知一个关于x 、y 的二元一次方程组的增广矩阵是111012-⎛⎫⎪⎝⎭,则x y +=【答案】5【来源】18届崇明二模2【难度】矩阵、基础题8.若2log 1042x -=-,则x =【答案】4【来源】18届崇明二模4 【难度】行列式、基础题13. 数学归纳法、极限1.已知数列{}n a ,其通项公式为31n a n =+,*n N ∈,{}n a 的前n 项和为n S ,则limnn nS n a →∞=⋅【答案】12【来源】18届松江二模6 【难度】极限、基础题2.计算:=+∞→142limn nn .【答案】12【来源】18届杨浦二模2 【难度】极限、基础题14. 参数方程、线性规划1.已知实数,x y 满足20102x y x y -≤⎧⎪-≤⎨⎪+≥⎩,则目标函数2u x y =+的最大值是 .【答案】4 【来源】18届奉贤二模4 【难度】线性规划、中档题2.设变量x 、y 满足条件⎪⎩⎪⎨⎧≤+-≤-+≥,043,04,1y x y x x 则目标函数y x z -=3的最大值为_________.【答案】4 【来源】18届长嘉二模6 【难度】线性规划、基础题3.在平面直角坐标系xOy 中,直线l的参数方程为24x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C的参数方程为cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩(θ为参数),则直线l 与椭圆C 的公共点坐标为__________.【答案】(24-【来源】18届普陀二模8 【难度】参数方程、中档题4.设变量x 、y 满足条件0220x y x y y x y m-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,若该条件表示的平面区域是三角形,则实数m 的取值范围是__________. 【答案】4(0,1][,)3+∞ 【来源】18届普陀二模10 【难度】参数方程、中档题5.若,x y 满足2,10,20,x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩则2z x y =-的最小值为____________.【答案】12-【来源】18届青浦二模6 【难度】参数方程、中档题6.已知实数x y ,满足001x y x y ≥⎧⎪≥⎨⎪+≤⎩,,. 则目标函数z x y =-的最小值为___________.【答案】-1【来源】18届徐汇二模6 【难度】线性规划、基础题7.若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为 .【答案】3【来源】18届杨浦二模5 【难度】线性规划、基础题8.直线l 的参数方程为112x ty t =+⎧⎨=-+⎩(t 为参数),则l 的一个法向量为【答案】()2,1- 【来源】18届松江二模5 【难度】线性规划、基础题9.若平面区域的点(,)x y 满足不等式||||14x y k +≤(0k >),且z x y =+的最小值为5-,则常数k = 【答案】5k =【来源】18届松江二模9 【难度】线性规划、中档题10.已知,x y ∈R,且满足00y y y +≤-≥≥⎪⎩,若存在θ∈R 使得cos sin 10x y θθ++=成立,则点(,)P x y 构成的区域面积为【答案】6π【来源】18届崇明二模11 【难度】线性规划、中档题15.其它1.函数()sin f x x =,对于123n x x x x <<<⋅⋅⋅<且12,,,[0,8]n x x x π⋅⋅⋅∈(10n ≥),记1223341|()()||()()||()()||()()|n n M f x f x f x f x f x f x f x f x -=-+-+-+⋅⋅⋅+-,则M的最大值等于 【答案】16【来源】18届虹口二模12 【难度】其它、压轴题 二、选择题1.命题、不等式)(C 充要条件. )(D 既不充分也不必要条件.【答案】 B 【来源】18届宝山二模13 【难度】命题与条件、基础题2.在给出的下列命题中,是假命题的是 答( ). (A )设O A B C 、、、是同一平面上的四个不同的点,若(1)(R)OA m OB m OC m =⋅+-⋅∈, 则点A B C 、、必共线(B )若向量a b 和是平面α上的两个不平行的向量,则平面α上的任一向量c 都可以表示为(R)c a b λμμλ=+∈、,且表示方法是唯一的(C )已知平面向量OA OB OC 、、满足||||(0)OA OB OC r r ==>|=|,且0OA OB OC ++=, 则ABC ∆是等边三角形(D )在平面α上的所有向量中,不存在这样的四个互不相等的非零向量a b c d 、、、,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直【答案】D【来源】18届黄浦二模16 【难度】命题与条件、压轴题3.唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。

上海市普陀区2018届高考二模数学试题含答案

上海市普陀区2018届高考二模数学试题含答案

x y 0 2 x y 2 y 0 x y m 10. 设变量 x 、 y 满足条件 ,若该条件表示的平面区域是三角形,则实数 m 的
取值范围是__________.
x 1 M y | y , x R 2 , 设集合
2
1.
f ( x)
2. 若函数 若函数 f ( x)
1 x 2m 1 是奇函数,则实数 m ________.
2 x 3 的反函数为 g ( x) ,则函数 g ( x) 的零点为________.
3. 4.
书架上有上、中、下三册的《白话史记》和上、下两册的《古诗文鉴赏辞典》,现将这
五本书从左到右摆放在一起,则中间位置摆放中册《白话史记》的不同摆放种数为 _______(结果用数值表示). 5. 在锐角三角形 ABC 中,角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,若
(b 2 c 2 a 2 ) tan A bc ,则角 A 的大小为________.
_________(结果用最简分数表示).
8.
2 t 2 x 2 y 2 t 4 在平面直角坐标系 xOy 中,直线 l 的参数方程为 ( t 为参数),椭圆
x cos 1 y sin C 的参数方程为 2 ( 为参数),则直线 l 与椭圆 C 的公共点坐标为__________.
( x3
6. 7. 若
1 n ) x 2 的展开式中含有非零常数项,则正整数 n 的最小值为_________.
某单位年初有两辆车参加某种事故保险,对在当年内发生此种事故的每辆车,单位均可
获赔(假设每辆车最多只获一次赔偿).设这两辆车在一年内发生此种事故的概率分别为

2018年上海高三二模真题汇编——数列专题(教师版)

2018年上海高三二模真题汇编——数列专题(教师版)

2018年一模汇编——数列专题一、知识梳理【知识点1】等差、等比数列的相关公式的应用通项n a前n 项和n S等差()11n a a n d =+- 1n a dn a d =+-()12n n n a a S +=;2122n d d S n a n ⎛⎫=+- ⎪⎝⎭ 等比()110n n a a q q -=≠⎪⎩⎪⎨⎧≠--==1,1)1(111q q q a q na S n n【例1】设正项数列{}n a 的前n 项和是n S ,若{}n a 和{n S }都是等差数列,且公差相等,则=+d a 1 . 【答案】43. 【解析】由于等差数列的前n 项和是n S 是关于n 一元二次表达式,且等差数列都是关于n 的一元一次表达式,那么n S 也是关于n 的一元一次表达式,所以n S 必然是个完全平方式。

根据以上分析,我们可以得到等式()111100241022d a a a d d d d ⎧⎧-==⎪⎪=⎧⎪⎪⇒⎨⎨⎨=⎩⎪⎪==⎪⎪⎩⎩或舍,所以134a d +=. 【点评】对于等差、等比数列来说,只需要求出首项1a 与公差d 或者公比q 就可以直接根据公式求出通项n a 和前n 项和n S .【例2】公差为d ,各项均为正整数的等差数列{}n a 中,若11,65n a a ==,则n d +的最小值等于 . 【答案】17.【解析】()()111165n a a n d n d =+-=+-=,所以()164n d -=,由基本不等式22x y xy +⎛⎫≤ ⎪⎝⎭可知,()2112n d n d -+⎛⎫-≤ ⎪⎝⎭,即182n d -+≥,所以17n d +≥. 【点评】等差数列、等比数列的“基本元”是首项、公差或公比,当觉得不知如何用性质求解时,可以把问题转化成“基本元”解决..【知识点2】等差、等比数列的证明定义法等差、等比中项通项与求和的性质等差1n n a a --为定值 112n n n a a a +-+=n a 为一元一次 n S 为没有常数的一元二次 等比 1nn a a -为定值 211n n na a a +-⋅= n a 为指数函数类似形式【例1】数列}{n a 满足:)(22,111N n a a a a n nn ∈+==+. (1)求证:数列}1{na 是等差数列; (2)求}{n a 的通项公式.【答案】(1)证明见解析;(2)12+=n a n . 【解析】注意是到证明数列}1{n a 是等差数列,则要证明n n a a 111-+是常数.而nn n a a a 2211+=+,所以21111=-+n n a a .即数列}1{n a 是等差数列.又111=a ,则21)1(2111+=-+=n n a n ,所以12+=n a n . 【点评】对于数列的证明题,尤其是证明一个新的数列为等差或者等比,一般采用定义法,偶尔采用等差中项或者等比中项.【知识点3】等差、等比数列的基本性质以及两者间的类比推理等差数列等比数列性质一:),,,(N q p n m q p n m ∈+=+ q p n m a a a a +=+ q p n m a a a a ⋅=⋅ 性质二:每n 项捆绑(等差为前n 项和,等比为前n 项积)n S 、2n n S S -、32n n S S -成等差n T 、2n n T T 、32nnT T 成等比 性质三:等差(比)前n 项和n S (积n T )的最值1100()00n n n n a a a a ++≥≤⎧⎧⎨⎨≥≤⎩⎩ )11(1111⎩⎨⎧>≤⎩⎨⎧<≥++n n n n a a a a【例1】设等差数列{}n a 满足:22223535317cos cos sin sin cos2sin()a a a a a a a --=+,42k a π≠,k Z ∈且公差(1,0)d ∈-,若当且仅当8n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( )A. 错误!未找到引用源。

高三二模数学卷—三角函数

高三二模数学卷—三角函数

上海2018届高三二模数学卷——三角函数汇编1.(2018宝山二模4)函数()x x x f 4cos 4sin 2=()x x x f 4cos 4sin 2=的最小正周期为.2.(2018宝山二模12)将实数z y x 、、中的最小值记为{}z y x ,,min ,在锐角︒=∆60POQ ,1=PQ ,点T 在POQ ∆的边上或内部运动,且=TO {}TQ TO TP ,,min ,由T 所组成的图形为M .设M POQ 、∆的面积为M POQ S S 、∆,若()2:1-=∆M POQ M S S S :,则=M S .3.(2018虹口二模3)已知(0,)απ∈,3cos 5α=-,则tan(4πα+=4.(2018虹口二模12)函数()sin f x x =,对于123n x x x x <<<⋅⋅⋅<且12,,,[0,8]n x x x π⋅⋅⋅∈(10n ≥),记1223341|()()||()()||()()||()()|n n M f x f x f x f x f x f x f x f x -=-+-+-+⋅⋅⋅+-,则M的最大值等于5.(2018虹口二模)已知ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,cos sin z A i A =+⋅(i 是虚数单位)是方程210z z -+=的根,3a =.(1)若4B π=,求边长c 的值;(2)求ABC ∆面积的最大值.6.(2018杨浦二模9)若53sin )cos(cos )sin(=---x y x x y x ,则y 2tan 的值为.7.(2018杨浦二模13)已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为())(A 4π)(B 2π)(C 2π-)(D 3π-8.(2018静安二模15)函数()sin()(0,0)f x A x A ωθω=+>>的部分图像如图所示,则)3(πf 的值为().A.22B.32C.26D.09.(2018闵行二模18)已知函数()3sin cos f x x x ωω=+.(1)当()03f π-=,且||1ω<,求ω的值;(2)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,3a =3b c +=,当2ω=,()1f A =时,求bc 的值.10.(2018青浦二模18)(本题满分14分,第1小题满分6分,第2小题满分8分)已知向量(cos ,1)2x m =- ,23,cos 22x x n = ,设函数()1f x m n =⋅+ .(1)若[0,2x π∈,11()10f x =,求x 的值;(2)在△ABC 中,角A ,B ,C 的对边分别是c b a ,,且满足2cos 23,b A c a ≤求()f B 的取值范围.11.(2018金山二模12)若sin 2018α–(2–cosβ)1009≥(3–cosβ–cos 2α)(1–cosβ+cos 2α),则sin(α+2β)=__________.12.(2018浦东二模8).函数23()cos 2,R f x x x x =∈的单调递增区间为____________.13.(2018普陀二模5)在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若222()tan b c a A bc +-=,则角A 的大小为________.14.(2018普陀二模18)(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分已知函数2(=sin cos sin f x x x x -),R x ∈.(1)若函数()f x 在区间[,]16a π上递增,求实数a 的取值范围;(2)若函数()f x 的图像关于点11(,)Q x y 对称,且1[,]44x ππ∈-,求点Q 的坐标.15.(2018徐汇二模7)函数()2sin cos 1()11x x f x +-=的最小正周期是___________.16.(2018徐汇二模18)(本题满分14分,第1小题满分6分,第2小题满分8分)如图:某快递小哥从A 地出发,沿小路AB BC →以平均时速20公里/小时,送快件到C 处,已知10BD =(公里),045,30DCB CDB ∠=∠=,ABD ∆是等腰三角形,0120ABD ∠=.(1)试问,快递小哥能否在50分钟内将快件送到C 处?(2)快递小哥出发15分钟后,快递公司发现快件有重大问题,由于通讯不畅,公司只能派车沿大路AD DC →追赶,若汽车平均时速60公里/小时,问,汽车能否先到达C 处?1、4π2、3123、4tan 3α=-,∴1tan(47πα+=-4、在[0,8]π有4个周期,最大值为4416⨯=5、(1)解为122±,∴3A π=,由正弦定理b =,2c +=;(2)画出△ABC 的外接圆可知,3AB AC ==时,面积最大,为934.6、2424.77-或7、C 8、CAB CD9、(1)()2sin()6f x x πω=+,(0336f k πωπππ-=⇒-+=,||1ω<,∴12ω=(2)()1f A =⇒3A π=,由余弦定理,2bc =10、解:(1)21cos ()cos cos 1sin 122222x x x x f x x +=-+=-+3111sin cos sin()22262x x x π=-+=-+∵113() sin(; [0,]10652f x x x ππ=∴-=∈ 又∴33arcsin arcsin 6565x x ππ-=⇒=+(2)由AC A B a c A b sin 3sin 2cos sin 232cos 2-≤-≤得2sin cos 2sin()B A A B A⇒≤+-2sin cos 2[sin cos cos sin )B A A B A B A ⇒≤+-32sin cos cos (0,]26A B A B B π⇒≥⇒≥∈∴111sin((,0],()sin()()(0,62622B f B B f B ππ-∈-=-+⇒∈即11、答案:±112、,,36Zk k k ππππ⎡⎤-+∈⎢⎣⎦13、6π14、(1)21cos 21(=sin cos sin sin 222x f x x x x x --=+),…………………………2分1sin(2)242x π=+-,…………………………4分当16x π=时,则322416482x πππππ+=⨯+=<,又函数()f x 在[,16a π上递增,则242a ππ+≥-,即38a π≥-,………………………7分则实数a 的取值范围为3[,816a ππ∈-.…………………………………………………8分(2)若函数()f x 的图像关于点11(,)Q x y 对称,则1sin(204x π+=,………………2分即124x k ππ+=(Z k ∈),则128k x ππ=-[,]44ππ∈-,………………………………4分由Z k ∈得0k =,则点Q 的坐标为1(,)82π--.…………………………………………6分15、π16、(1)10AB =(公里),BCD ∆中,由00sin 45sin 30BD BC=,得BC =(公里)-------------------2分于是,由10526051.215020+⨯≈>知,快递小哥不能在50分钟内将快件送到C 处.---------------------------------------6分(2)在ABD ∆中,由22211010210103002AD ⎛⎫=+-⋅⋅⋅-= ⎪⎝⎭,得AD =(公里),------------------------------------------------------------8分在BCD ∆中,0105CBD ∠=,由00sin105sin 30CD =,得(51CD =+(公里),-----------------------------------------------------10分由(5160152045.9851.2160++⨯+=+<(分钟)知,汽车能先到达C 处.-----------------------------------------------------------14分。

2018届闵行区高三二模数学考试(含解答)

2018届闵行区高三二模数学考试(含解答)

市闵行区2018届高三二模数学试卷一.填空题(本大题共12题,1・6每题4分,7・12每题5分,共54分)2 21.双曲线二一二=1(6/>0)的渐近线方程为3x±2y = 0,则。

= ______________9(\ ? c\fr = 1()2•若二元一次方程组的增广矩阵是1,其解为「二,则q+q=3.设meR,若复数z = (l +〃4)(1 +。

在复平而对应的点位于实轴上,则〃?=4.定义在R上的函数/(幻=2'-1的反函数为y = /7(x),则尸⑶=5.直线/的参数方程为《一.八(/为参数),则/的一个法向量为y = -\ + 2tC6.已知数列{〃〃},其通项公式为q=3〃 + 1, 〃£“,{/}的前〃项和为S”,则lim—」一二J—〃. a7.已知向量a、/;的夹角为60。

,1/7 1=2,若(〃 + 2/;),(刈一/;),则实数x的值为8.若球的表面积为100%,平而。

与球心的距离为3,则平而。

截球所得的圆面面积为一9.若平而区域的点(.y)满足不等式巴+ 1](1 (攵>0),且z = x+y的最小值为一5, k 4则常数%=10.若函数/(x) = logaCT—ax + l)(4>0且aH1)没有最小值,则。

的取值围是11.设为/2,0xw{T,°,2},那么满足29% 1 + 1勺1 + 1勺+ MK4的所有有序数对(% ,七,刍,A4)的组数为312.设〃wN ,。

“为(x + 4)〃—(x + l)〃的展开式的各项系数之和,c =」/ —2, feR, 4(bl表示不超过实数X的最大整数),则(〃一尸+(2+。

尸=1凯争H…的最小值为二.选择题(本大题共4题,每题5分,共20分)13. “冷,=0” 是“x = 0且),=0” 成立的( )A.充分非必要条件B.必要非充分条件C.充要条件D,既非充分也非必要条件14.如图,点A、B、。

2018金山高三二模数学

2018金山高三二模数学

2018⾦⼭⾼三⼆模数学上海市⾦⼭区2018届⾼三⼆模数学试卷2018.04⼀. 填空题(本⼤题共12题,1-6每题4分,7-12每题5分,共54分) 1. 函数3sin(2)3y x π=+的最⼩正周期T =2. 函数lg y x =的反函数是3. 已知集合{|(1)(3)0}P x x x =+-<,{|||2}Q x x =>,则PQ =4. 函数9y x x=+,(0,)x ∈+∞的最⼩值是 5. 计算:1111lim[()]2482n n →∞++++=6. 记球1O 和2O 的半径、体积分别为1r 、1V 和2r 、2V ,若12827V V =,则12r r = 7. 若某线性⽅程组对应的增⼴矩阵是421m m m ??,且此⽅程组有唯⼀⼀组解,则实数m的取值范围是8. 若⼀个布袋中有⼤⼩、质地相同的三个⿊球和两个⽩球,从中任取两个球,则取出的两球中恰是⼀个⽩球和⼀个⿊球的概率是9. (12)n x +的⼆项展开式中,含3x 项的系数等于含x 项的系数的8倍,则正整数n = 10. 平⾯上三条直线210x y -+=,10x -=,0x ky +=,如果这三条直线将平⾯化分为六个部分,则实数k 的取值组成的集合A =11. 已知双曲线22:198x y C -=,左、右焦点分别为1F 、2F ,过点2F 作⼀直线与双曲线C 的右半⽀交于P 、Q 两点,使得190F PQ ∠=?,则1F PQ 的内切圆的半径r =12. 若2018100922sin (2cos )(3cos cos )(1cos cos )αββαβα--≥---+,则sin()2βα+=⼆. 选择题(本⼤题共4题,每题5分,共20分)13. 若向量(2,0)a =,(1,1)b =,则下列结论中正确的是()A. 1a b ?=C. ()a b b -⊥D. a ∥b14. 椭圆的参数⽅程为5cos 3sin x y θθ=??=?(θ为参数),则它的两个焦点坐标是()A. (4,0)±B. (0,4)±C. (5,0)±D. (0,3)±15. 如图⼏何体是由五个相同正⽅体叠成的,其三视图中的左视图序号是()A. (1)B. (2)C. (3)D. (4)16. 若对任意1(,1)2x ∈-,都有2012212n n xa a x a x a x x x=++++++-,则23a a +的值等于()A. 3B. 2C. 1D. 1-三. 解答题(本⼤题共5题,共14+14+14+16+18=76分)17. 四棱锥P ABCD -中,底⾯ABCD 是边长为6的正⽅形,PD ⊥平⾯ABCD ,8PD =. (1)求PB 与平⾯ABCD 所成⾓的⼤⼩;(2)求异⾯直线PB 与DC 所成⾓的⼤⼩.18. 复数21()22z =-是⼀元⼆次⽅程210mx nx ++=(,m n ∈R )的⼀个根. (1)求m 和n 的值;(2)若()m ni u u z ++=(u C ∈),求u .19. 已知椭圆22x y Γ+=的右焦点为F ,过点F 且斜率为k 的直线与椭圆Γ交于11(,)A x y 、22(,)B x y 两点(点A 在x 轴上⽅),点A 关于坐标原点的对称点为P ,直线PA 、PB 分别交直线:4l x =于M 、N 两点,记M 、N 两点的纵坐标分别为M y 、N y .(1)求直线PB 的斜率(⽤k 表⽰);(2)求点M 、N 的纵坐标M y 、N y (⽤1x 、1y 表⽰),并判断M N y y ?是否为定值?若是,请求出该定值,若不是,请说明理由.20. 已知数列{}n a 满⾜:12a =,1122n n a a +=+. (1)证明:数列{4}n a -是等⽐数列;(2)求使不等式123n n a m a m +-<-成⽴的所有正整数m 、n 的值;(3)如果常数03t <<,对于任意的正整数k ,都有12k k a ta t+-<-成⽴,求t 的取值范围.21. 若函数()y f x =对定义域内的每⼀个值1x ,在其定义域内都存在唯⼀的2x ,使12()()1f x f x =成⽴,则称该函数为“依赖函数”.(1)判断函数()2x g x =是否为“依赖函数”,并说明理由;(2)若函数2()(1)f x x =-在定义域[,]m n (1m >)上为“依赖函数”,求实数m 、n 乘积mn 的取值范围;(3)已知函数2()()f x x a =-(43a <)在定义域4[,4]3上为“依赖函数”,若存在实数 4[,4]3x ∈,使得对任意的t ∈R ,有不等式2()()4f x t s t x ≥-+-+都成⽴,求实数s 的最⼤值.上海市⾦⼭区2018届⾼三⼆模数学试卷2018.04⼀. 填空题(本⼤题共12题,1-6每题4分,7-12每题5分,共54分) 1. 函数3sin(2)3y x π=+的最⼩正周期T =【解析】π2. 函数lg y x =的反函数是【解析】1()10x f x -=3. 已知集合{|(1)(3)0}P x x x =+-<,{|||2}Q x x =>,则P Q =【解析】(2,3) 4. 函数9=+,(0,)x ∈+∞的最⼩值是【解析】6 5. 计算:1111lim[()]2482n n →∞++++= 【解析】16. 记球1O 和2O 的半径、体积分别为1r 、1V 和2r 、2V ,若12827V V =,则12r r = 【解析】237. 若某线性⽅程组对应的增⼴矩阵是421m m m ??,且此⽅程组有唯⼀⼀组解,则实数m的取值范围是【解析】0D ≠,即2m ≠±8. 若⼀个布袋中有⼤⼩、质地相同的三个⿊球和两个⽩球,从中任取两个球,则取出的两球中恰是⼀个⽩球和⼀个⿊球的概率是【解析】11322535C C C ?= 9. (12)n x +的⼆项展开式中,含3x 项的系数等于含x 项的系数的8倍,则正整数n =【解析】3312825n n C C n ?==10. 平⾯上三条直线210x y -+=,10x -=,0x ky +=,如果这三条直线将平⾯化分为六个部分,则实数k 的取值组成的集合A =【解析】两种情况,与已知线平⾏,或者经过两已知线的交点,集合为{2,1,0}--11. 已知双曲线22:198x y C -=,左、右焦点分别为1F 、2F ,过点2F 作⼀直线与双曲线C 的右半⽀交于P 、Q 两点,使得190F PQ ∠=?,则1F PQ ?的内切圆的半径r =【解析】在△12F PF 中⽤勾股定理,222(6)2r r r ++=?=12. 若2018100922sin (2cos )(3cos cos )(1cos cos )αββαβα--≥---+,则sin()2βα+=【解析】21009100922(sin )(2cos )(2cos sin )(2cos sin )αββαβα--≥-+--210092210092(sin )(sin )(2cos )(2cos )ααββ+≥-+-,∴2sin 2cos αβ≥-,απ=+,2n βπ=,∴sin()12βα+=±⼆. 选择题(本⼤题共4题,每题5分,共20分)13. 若向量(2,0)a =,(1,1)b =,则下列结论中正确的是()A. 1a b ?=B. ||||a b =C. ()a b b -⊥D. a ∥b【解析】C14. 椭圆的参数⽅程为5cos 3sin x y θθ=??=?(θ为参数),则它的两个焦点坐标是()A. (4,0)±B. (0,4)±C. (5,0)±D. (0,3)±【解析】椭圆为221259x y +=,选A15. 如图⼏何体是由五个相同正⽅体叠成的,其三视图中的左视图序号是()A. (1)B. (2)C. (3)D. (4)【解析】A16. 若对任意1(,1)2x ∈-,都有2012212n n xa a x a x a x x x=++++++-,则23a a +的值等于()A. 3C. 1D. 1-【解析】当0x =,00a =,∴21121(12)()n n x x a a x a x -=+-++++,右边展开后,∴常数项11a =,⼀次项系数12201a a a +=?=-,⼆次项系数1233203a a a a -++=?= ∴232a a +=,选B三. 解答题(本⼤题共5题,共14+14+14+16+18=76分)17. 四棱锥P ABCD -中,底⾯ABCD 是边长为6的正⽅形,PD ⊥平⾯ABCD ,8PD =. (1)求PB 与平⾯ABCD 所成⾓的⼤⼩;(2)求异⾯直线PB 与DC 所成⾓的⼤⼩. 【解析】(1)连BD ,因为PD ⊥平⾯ABCD ,则∠PBD 就是PB 与平⾯ABCD 所成的⾓,…3分tan ∠PBD =322,∠ PBD =arctan 322, …6分 PB 与平⾯ABCD 所成的⾓的⼤⼩为arctan 322;………7分(2)因为AB ∥DC ,所以∠PBA 就是异⾯直线PB 与DC 所成的⾓,……………10分因为PD ⊥平⾯ABCD ,所以AB ⊥PD ,⼜AB ⊥AD ,所以AB ⊥P A ,在Rt △P AB 中,P A=10,AB=6,tan ∠PBA =35,∠PBA=arctan 35,……………13分异⾯直线PB 与DC 所成⾓的⼤⼩为arctan 35.…………………………………14分18.复数21()2z =是⼀元⼆次⽅程210mx nx ++=(,m n ∈R )的⼀个根. (1)求m 和n 的值;(2)若()m ni u u z ++=(u C ∈),求u . 【解析】(1)因为z=2)i 2321(-=i 2321--,所以12z =-+,……………3分由题意知:z 、z 是⼀元⼆次⽅程mx 2+nx+1=0(m 、n ∈R )的两个根,由11((22111(i)(2222n m m-=-+-+=---+,……5分解得:11m n =??=?,………7分(2)设u=c+d i(c,d ∈R ),则(1+i)(c –d i)+(c+d i)=i 2321--,2c +d +c i=i 2321--…11分-=-=+23212c d c ,+-=-=32123d c ,…………………………………………………13分所以u =i )213(23-+-.…………………………………………………………14分19. 已知椭圆22:143x y Γ+=的右焦点为F ,过点F 且斜率为k 的直线与椭圆Γ交于11(,)A x y 、22(,)B x y 两点(点A 在x 轴上⽅),点A 关于坐标原点的对称点为P ,直线PA 、PB 分别交直线:4l x =于M 、N 两点,记M 、N 两点的纵坐标分别为M y 、N y .(1)求直线PB 的斜率(⽤k 表⽰);(2)求点M 、N 的纵坐标M y 、N y (⽤1x 、1y 表⽰),并判断M N y y ?是否为定值?若是,请求出该定值,若不是,请说明理由.【解析】(1)设直线AB 为(1)y k x =-,……1分联⽴椭圆得2222(43)84120k x k x k +-+-=,……2分因为11(,)A x y 、22(,)B x y ,且2122212284341243k x x k k x x k ?+=??+?-?=?+?,………………………………4分⼜11(,)P x y --,所以k PB =12121212(1)(1)34y y k x k x x x x x k+-+-==-++, ……………6分(2)⼜直线PA 的⽅程为11y y x x =,则114M yy x =,…………………………………8分由题意可知,111y k x =-,直线PB 的⽅程为y+y 1=113(1)4x y --(x+x 1),…………10分3(1)(4)4N x x y y y -+=--,……………………………………………………11分2211143x y +=,y M ?y N =2111113(1)(4)4x x y x x -+--=22111134912x y x x ++--=–9,综上,乘积y M ?y N 为定值–9.………………………………………………………14分20. 已知数列{}n a 满⾜:12a =,1122n n a a +=+. (1)证明:数列{4}n a -是等⽐数列;(2)求使不等式123n n a m a m +-<-成⽴的所有正整数m 、n 的值;(3)如果常数03t <<,对于任意的正整数k ,都有12k k a ta t+-<-成⽴,求t 的取值范围. 【解析】(1)由a n +1=21a n +2,所以a n +1–4 =21( a n –4 ),……………………2分且a 1–4=–2,故数列{a n –4}是以–2为⾸项,21为公⽐的等⽐数列;………………4分(2)由(1)问,得a n –4=–21)21(-n ,得2142n n a -??=- ?,……………………6分于是2114223142n n m m --??--11421142n n mm --??-- >??--,⽆解,………7分因此,满⾜题意的解为11m n =??=?或21m n =??=?或32m n =??=?;…………………………9分(3)①当k =1时,由322tt-<-,解得01423n n a -??=- ?≥?,故分母0n a t ->恒成⽴,从⽽,只需a k +1–t <2(a k –t )对k ≥2,k ∈N *恒成⽴,即t <2a k –a k +1对k ≥2,k ∈N *恒成⽴,故t <(2a k –a k +1)min ,…………………13分⼜1112432k k k a a -+??-=- ?,故当2k =时,1min 5(2)2k k a a +-=,所以52t <,综上所述,t 的取值范围是(0,1)∪(2,25).………………………………………16分21. 若函数()y f x =对定义域内的每⼀个值1x ,在其定义域内都存在唯⼀的2x ,使12()()1f x f x =成⽴,则称该函数为“依赖函数”.(1)判断函数()2x g x =是否为“依赖函数”,并说明理由;(2)若函数2()(1)f x x =-在定义域[,]m n (1m >)上为“依赖函数”,求实数m 、n 乘积mn 的取值范围;(3)已知函数2()()f x x a =-(43a <)在定义域4[,4]3上为“依赖函数”,若存在实数 4[,4]3x ∈,使得对任意的t ∈R ,有不等式2()()4f x t s t x ≥-+-+都成⽴,求实数s 的最⼤值.【解析】(1)对于函数g (x )=2x 的定义域R 内任意的x 1,取x 2= –x 1,则g (x 1)g (x 2)=1,且由g (x )=2x 在R 上单调递增,可知x 2的取值唯⼀,故g (x )=2x 是“依赖函数”;……………………………………………………………4分 (2) 因为m >1,f (x )=(x –1)2在[m ,n ]递增,故f (m )f (n )=1,即(m –1)2(n –1)2=1,………5分由n >m >1,得(m –1) (n –1) =1,故1mn m =-,…………………………………………6分由n >m >1,得11211m mn m m m ==-++--在(1,2)m ∈上单调递减,故(4,)mn ∈+∞,…9分 (3) 因43a <,故2()()f x x a =-在4[,4]3上单调递增,从⽽4()(4)13f f ?=,即224()(4)13a a --=,进⽽4()(4)13a a --=,解得1a =或133a =(舍),………………………………………………………………13分从⽽,存在4[,4]3x ∈,使得对任意的t ∈R ,有不等式22)41)((t t x s x ≥-+-+-都成⽴,即22(302)t xt x s x ++-+≥-恒成⽴,由22(4[]02)3x s x x -+-?=-≤,……15分得24(2)312x x s ≤-+,由4[,4]3x ∈,可得4(2)123x s x ≤-+,⼜123y x x =-在4[,4]3x ∈单调递增,故当4x =时,max1239x x ?-= ,从⽽4()92s +≤,解得14s ≤,故实数s 的最⼤值为14.…………………………18分。

2018年上海高三二模真题汇编——函数专题(教师版)

2018年上海高三二模真题汇编——函数专题(教师版)

2018年二模汇编——函数专题一、知识梳理【知识点1】函数的概念与函数三要素【例1】若函数()f x 的定义域是[]1,4,求函数()2f x +的定义域 .【答案】[]12,-.【解析】124x ≤+≤,12x -≤≤.【点评】考察抽象函数的定义域.【例2】对于函数bx ax x f +=2)(,其中0>b ,若)(x f 的定义域与值域相同,则非零实数a 的值为_____________.【答案】4-. 【解析】由题意可求定义域为0b ,a ⎡⎤-⎢⎥⎣⎦,所以值域也是0b ,a ⎡⎤-⎢⎥⎣⎦,即2y ax bx =+在0b ,a ⎡⎤-⎢⎥⎣⎦上的值域为0b ,a ⎡⎤-⎢⎥⎣⎦,所以2224b b a a -=,解得4a =-. 【点评】考察函数三要素.【知识点2】函数的奇偶性【例1】已知椭圆191622=+y x 及以下3个函数:①x x f =)(;②x x f sin )(=;③x x x f sin )(=,其中函数图像能等分该椭圆面积的函数个数有 ( ).A .0个.B 1个 C .2个 D .3个【答案】C . 【点评】考察函数的奇偶性.【例2】已知函数[)22sin(),0(),0,23cos(),0x x x f x x x x παπα⎧++>⎪=∈⎨⎪-++<⎩是奇函数,则α= . 【答案】76π.【解析】当0x >时,0x -<,此时()()2f x x cos x α-=-+-+,因为函数是奇函数,所以可得,()223x cos x x sin x πα⎛⎫-+-+=--+ ⎪⎝⎭,由诱导公式易得,76πα=. 【点评】函数的奇偶性,已知函数为奇函数求参数的值.【知识点3】函数的单调性【例1】已知函数())2017201720172x x f x log x -=+-+,则关于x 的不等式()()314f x f x ++>的解集为 . 【答案】14,⎛⎫-+∞ ⎪⎝⎭. 【解析】由题意可得函数为R 上的单调递增函数且()()4f x f x +-=,可得()()31f x f x +>-,即31x x +>-,14x >-. 【点评】根据函数单调性解不等式.【例2】若函数3 (0),() 1 (0)x x a x f x a x -+<⎧=⎨+≥⎩(a >0,且a ≠1)是R 上的减函数,则a 的取值范围是 . 【答案】2[ 1)3,.【解析】由0132a a <<⎧⎨≥⎩解得213a ≤<. 【点评】考察函数单调性的定义.【知识点4】函数的最值与恒成立有解问题【例1】 设0>a ,若对于任意的0>x ,都有x xa 211≤-,则a 的取值范围是________. 【答案】⎪⎪⎭⎫ ⎝⎛+∞,42. 【解析】112x a x <+,即112min x a x ⎛⎫<+ ⎪⎝⎭,所以1a<,a >. 【点评】不等式恒成立问题.【例2】设0<a ,若不等式01cos )1(sin 22≥-+-+a x a x 对于任意的R ∈x 恒成立,则a 的取值范围 是 .【答案】2-≤a .【解析】令[]11cos x t,t ,=∈-,可得()2210t a t a ---≤,即()221y t a t a =---在[]11,-上的最大值小于等于0,对称轴为102a t -=<,所以()211max y a a =---,即()2110a a ---≤,2-≤a . 【点评】二次函数的最值问题.【知识点5】函数的零点【例1】函数21()(2)1x x f x x x ⎧≤⎪=⎨->⎪⎩,如果方程()f x b =有四个不同的实数解1x 、2x 、3x 、4x ,则1234x x x x +++= .【答案】4.【解析】由函数的图像特征可得:120x x +=,344x x +=,所以12344x x x x +++=.【点评】从图像角度解决零点问题.【例2】若函数()2()1xf x x a =+-在区间[]0,1上有零点,则实数a 的取值范围是 . 【答案】1,12⎡⎤-⎢⎥⎣⎦. 【解析】令()0f x =,可得12x x a =+,函数有零点即两个函数图像有交点,从图上即可得出112a -≤≤. 【点评】考察函数零点的存在性问题.【知识点6】函数的对称性和周期性【例1】若函数)(x f 是定义在R 上的奇函数,且满足()()2f x f x +=-,则=)2016(f .【答案】0.【解析】由()()2f x f x +=-可得函数周期为4,所以()()20160f f =.【点评】考察周期对函数值的影响.【例2】已知定义在R 上的函数()f x 满足:①()()20f x f x +-=;②()()20f x f x ---=;③在[]1,1-上的表达式为()[](]1,01,0,1x f x x x ∈-=-∈⎪⎩,则函数()f x 与函数()122,0log ,0x x g x x x ⎧≤⎪=⎨>⎪⎩的图像在区间[]3,3-上的交点的个数为____________.【答案】6.【解析】由()()20f x f x +-=可得,函数图像关于()10,;由()()20f x f x ---=可得,函数图像关于直线1x =-对称,根据函数在[]11,-上的图像可将函数图像补充完整,从图像的交点个数得出答案.【点评】考察函数的对称性对图像的影响.【知识点7】反函数【例1】若函数1()42x x f x +=+的图像与函数()y g x =的图像关于直线y x =对称,则(3)g = .【答案】0.【解析】令()3f x =,可得21x =,0x =,即()30g =.【点评】考察求函数的反函数.【例2】已知函数()f x 是定义在R 上的偶函数,且对任意x R ∈,都有(4)()f x f x +=,当[]4,6x ∈的时候,()21x f x =+,()f x 在区间[]2,0-上的反函数为1()f x -,则1(19)f -= . 【答案】28log 9.【解析】当[]02x ,∈时,()()4421x f x f x +=+=+;当[]20x ,∈-时,根据偶函数的性质,()()421x f x f x -+=-=+;根据反函数相关性质,即42119x -++=,解得2323x log =-,所以()1219323f log -=-.【点评】考察反函数与原函数的关系.【知识点8】幂指对方程【例1】方程()3log 212x +=的解是 .【答案】4x =.【解析】219x +=,4x =.【点评】考察解指对数方程.【例2】方程22log (97)2log (31)x x +=++的解为 .【答案】{}0,1.【解析】()()4497434x x log log +=⨯+,97434x x +=⨯+,解得31x =或33x =,即0x =或1x =.【点评】考察解指对数方程.【知识点9】新定义【例1】设R ∈x ,用][x 表示不超过x 的最大整数(如2]32.2[=,5]76.4[-=-),对于给定的*N ∈n ,定义)1][()1()1][()1(+--+--=x x x x x n n n C x n ,其中),1[∞+∈x ,则当⎪⎭⎫⎢⎣⎡∈3,23x 时,函数x C x f 10)(=的值域是____________________. 【答案】(]45,15320,5 ⎥⎦⎤ ⎝⎛. 【解析】看到取整函数可分段讨论: 1当⎪⎭⎫⎢⎣⎡∈2,23x 时,[]1=x ,故()xx f 10=在定义域内单调递减,故值域为⎥⎦⎤ ⎝⎛320,5,; 2当[)3,2∈x 时,[]2=x ,故()()1910-⨯=x x x f 在定义域内单调递减,故值域为(]45,15。

2018年上海市虹口区高考数学二模试卷含详解

2018年上海市虹口区高考数学二模试卷含详解

2018年上海市虹口区高考数学二模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)已知A=(﹣∞,a],B=[1,2],且A∩B=∅,则实数a的范围是2.(4分)直线ax+(a﹣1)y+1=0与直线4x+ay﹣2=0互相平行,则实数a= 3.(4分)已知α∈(0,π),cosα=﹣,则tan(α+)=.4.(4分)长方体的对角线与过同一个顶点的三个表面所成的角分别为α、β、γ,则cos2α+cos2β+cos2γ=5.(4分)已知函数f(x)=,则f﹣1[f﹣1(﹣9)]=6.(4分)从集合{﹣1,1,2,3}随机取一个为m,从集合{﹣2,﹣1,1,2}随机取一个为n,则方程表示双曲线的概率为7.(5分)已知{a n}是公比为q的等比数列,且a2,a4,a3成等差数列,则q=.8.(5分)若将函数f(x)=x6表示成f(x)=a0+a1(x﹣1)+a2(x﹣1)2+a3(x ﹣1)3+…+a6(x﹣1)6,则a3的值等于9.(5分)如图,长方体ABCD﹣A1B1C1D1的边长AB=AA1=1,AD=,它的外接球是球O,则A、A1这两点的球面距离等于.10.(5分)椭圆的长轴长等于m,短轴长等于n,则此椭圆的内接矩形的面积的最大值为11.(5分)[x]是不超过x的最大整数,则方程(2x)2•[2x]满足x<1的所有实数解是12.(5分)函数f(x)=sinx,对于x1<x2<x3<…<x n且x1,x2,…x n∈[0,8π](n≥10),记M=|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+|f(x3)﹣f(x4)|+…+|f (x n)﹣f(x n)|,则M的最大值等于﹣1二.选择题(本大题共4题,每题5分,共20分)13.(5分)下列函数是奇函数的是()A.f(x)=x+1B.f(x)=sinx•cosxC.f(x)=arccosx D.f(x)=14.(5分)在Rt△ABC中,AB=AC,点M、N是线段AC的三等分点,点P在线段BC上运动且满足=k,当取得最小值时,实数k的值为()A.B.C.D.15.(5分)直线l:kx﹣y+k+1=0与圆x2+y2=8交于A、B两点,且|AB|=4,过点A、B分别作l的垂线与y轴交于点M、N,则|MN|等于()A.2B.4C.4D.816.(5分)已知数列{a n}的首项a1=a,且0<a≤4,a n+1=,S n是此数列的前n项和,则以下结论正确的是()A.不存在a和n使得S n=2015B.不存在a和n使得S n=2016C.不存在a和n使得S n=2017D.不存在a和n使得S n=2018三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,直三棱柱的底面是等腰直角三角形,AB=AC=1,,高等于3,点M1、M2、N1、N2为所在线段的三等分点.(1)求此三棱柱的体积和三棱锥A1﹣AM1N2的体积;(2)求异面直线A1N2、AM1所成的角的大小.18.(14分)已知△ABC中,角A、B、C所对应的边分别为a、b、c,z=cosA+i•sinA (i是虚数单位)是方程z2﹣z+1=0的根,a=3.(1)若B=,求边长c的值;(2)求△ABC面积的最大值.19.(14分)平面内的“向量列”{},如果对于任意的正整数n,均有=,则称此“向量列”为“等差向量列”,称为“公差向量”,平面内的“向量列”{},如果对于任意的正整数n,均有=q(q≠0),则称此“向量列”为“等比向量列”,常数q称为“公比”.(1)如果“向量列”{}是“等差向量列”,用和“公差向量”表示;(2)已知{}是“等差向量列”,“公差向量”=(3,0),=(1,1),=(a n,y n),{}是“等比向量列”,“公比”q=2,=(1,3),=(m n,k n),求.20.(16分)如果直线与椭圆只有一个交点,称该直线为椭圆的“切线”,已知椭圆C:,点M(m,n)是椭圆C上的任意一点,直线l过点M且是椭圆C的“切线”.(1)证明:过椭圆C上的点M(m,n)的“切线”方程是;(2)设A、B是椭圆C长轴上的两个端点,点M(m,n)不在坐标轴上,直线MA、MB分别交y轴于点P、Q,过M的椭圆C的“切线”l交y轴于点D,证明:点D是线段PQ的中点;(3)点M(m,n)不在x轴上,记椭圆C的两个焦点分别为F1和F2,判断过M的椭圆C的“切线”l与直线MF1、MF2所成夹角是否相等?并说明理由.21.(18分)已知函数f(x)=ax3+x﹣a(a∈R,xR),g(x)=(x∈R).(1)如果x=是关于x的不等式f(x)≤0的解,求实数a的取值范围;(2)判断g(x)在(]和[)的单调性,并说明理由;(3)证明:函数f(x)存在零点q,使得a=q+q4+q7+…+q3n﹣2+…成立的充要条件是a.2018年上海市虹口区高考数学二模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)已知A=(﹣∞,a],B=[1,2],且A∩B=∅,则实数a的范围是(﹣∞,1)【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;49:综合法;5J:集合.【分析】由集合A,B,以及A∩B即可得出a<1.【解答】解:∵A∩B=∅;∴a<1;∴实数a的范围为(﹣∞,1).故答案为:(﹣∞,1).【点评】考查区间表示集合的概念,交集的概念及运算.2.(4分)直线ax+(a﹣1)y+1=0与直线4x+ay﹣2=0互相平行,则实数a=2【考点】II:直线的一般式方程与直线的平行关系.【专题】34:方程思想;4O:定义法;5B:直线与圆.【分析】根据两直线平行的条件列出方程求得a的值.【解答】解:直线ax+(a﹣1)y+1=0与直线4x+ay﹣2=0互相平行,则a2﹣4(a﹣1)=0,解得a=2.故答案为:2.【点评】本题考查了直线方程平行条件的应用问题,是基础题.3.(4分)已知α∈(0,π),cosα=﹣,则tan(α+)=.【考点】GF:三角函数的恒等变换及化简求值.【专题】11:计算题;56:三角函数的求值.【分析】利用同角三角函数关系式求解sinα,可得tanα,结合正切的和与差公式即可求解tan(α+)的值.【解答】解:由α∈(0,π),cosα=﹣,α在第二象限.∴sinα==.则tanα=.则tan(α+)===.故答案为:.【点评】本题主要考察了同角三角函数关系式,正切的和与差公式的应用,属于基本知识的考查.4.(4分)长方体的对角线与过同一个顶点的三个表面所成的角分别为α、β、γ,则cos2α+cos2β+cos2γ=2【考点】L2:棱柱的结构特征.【专题】35:转化思想;49:综合法;5F:空间位置关系与距离.【分析】跟据题意知,分别找出对角线AC1与面AB1所成的角为∠C1AB1=α,与面AD1所成的角为∠C1AD1=β;与面AC所成的角为∠C1AC=γ;,并且求出它们的余弦值,可求cos2α+cos2β+cos2γ的值.【解答】解:设长方体ABCD﹣A1B1C1D1中三边为a、b、c,如图对角线AC1与过A点的三个面ABCD,AA1B1B、AA1D1D所成的角分别为α,β,γ,∴cosα=,cosβ=,cosγ=,=2∴则cos2α+cos2β+cos2γ=2,故答案为:2.【点评】考查直线和平面所成的角,关键是找到斜线在平面内的射影,把空间角转化为平面角求解,属中档题.5.(4分)已知函数f(x)=,则f﹣1[f﹣1(﹣9)]=﹣2【考点】4R:反函数.【专题】11:计算题;34:方程思想;49:综合法;51:函数的性质及应用.【分析】推导出,从而f﹣1(﹣9)=3,进而f﹣1[f﹣1(﹣9)]=f﹣1(3),由此能求出结果.【解答】解:∵函数f(x)=,∴x≥0时,y=﹣x2,x=,x,y互换,得,x≤0,x<0时,y=2﹣x﹣1,x=﹣log2(y+1),x,y互换得f﹣1(x)=﹣log2(x+1),x>0,∴,∴f﹣1(﹣9)=3,f﹣1[f﹣1(﹣9)]=f﹣1(3)=﹣2.故答案为:﹣2.【点评】本题考查函数值的求法,考查函数性质、反函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6.(4分)从集合{﹣1,1,2,3}随机取一个为m,从集合{﹣2,﹣1,1,2}随机取一个为n,则方程表示双曲线的概率为【考点】CB:古典概型及其概率计算公式.【专题】11:计算题;34:方程思想;4O:定义法;5I:概率与统计.【分析】基本事件总数N=4×4=16,由方程表示双曲线,得mn<0,从而方程表示双曲线包含的基本事件个数M=3×2+1×2=8,由此能求出方程表示双曲线的概率.【解答】解:∵从集合{﹣1,1,2,3}随机取一个为m,从集合{﹣2,﹣1,1,2}随机取一个为n,∴基本事件总数N=4×4=16,∵方程表示双曲线,∴mn<0,∴方程表示双曲线包含的基本事件个数M=3×2+1×2=8,∴方程表示双曲线的概率为p==.故答案为:.【点评】本题考查概率的求法,考查双曲线、古典概率等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)已知{a n}是公比为q的等比数列,且a2,a4,a3成等差数列,则q=或1.【考点】83:等差数列的性质;87:等比数列的性质.【专题】11:计算题.【分析】先利用等比数列的性质分别用a2和q表示出a3和a4,进而代入2a4=a2+a3中求得q.【解答】解:a3=qa2,a4=q2•a2∵a2,a4,a3成等差数列∴2a4=a2+a3即2a2•q2=a2+q•a2解得,q=1或﹣故答案为1或﹣【点评】本题主要考查了等差数列和等比数列的性质.属基础题.8.(5分)若将函数f(x)=x6表示成f(x)=a0+a1(x﹣1)+a2(x﹣1)2+a3(x ﹣1)3+…+a6(x﹣1)6,则a3的值等于20【考点】DA:二项式定理.【专题】11:计算题;38:对应思想;4A:数学模型法;5P:二项式定理.【分析】由f(x)=x6=[(x﹣1)+1]6,展开即可求得a3的值.【解答】解:∵f(x)=x6=[(x﹣1)+1]6,∴a3(x﹣1)3=,则.故答案为:20.【点评】本题考查二项式系数的性质,考查数学转化思想方法,是基础题.9.(5分)如图,长方体ABCD﹣A1B1C1D1的边长AB=AA1=1,AD=,它的外接球是球O,则A、A1这两点的球面距离等于.【考点】L*:球面距离及相关计算.【专题】31:数形结合;44:数形结合法;5Q:立体几何.【分析】求出球的半径和∠AOA1,根据弧长公式得出答案.【解答】解:A1C==2,∴外接球半径为OA1=A1C=1,∴△OAA1为等边三角形,∴∠AOA1=,∴球A、A1这两点的球面距离为=.故答案为:.【点评】本题考查了球面距离的计算,属于基础题.10.(5分)椭圆的长轴长等于m,短轴长等于n,则此椭圆的内接矩形的面积的最大值为【考点】K4:椭圆的性质.【专题】11:计算题;34:方程思想;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】根据题意,分析可得椭圆中a=,b=,则椭圆的方程为+=1,进而设x=cosθ,y=sinθ,则有椭圆的内接矩形的面积S=|2x||2y|=4|xy|=|sin2θ|,结合正弦函数的性质分析可得答案.【解答】解:根据题意,椭圆的长轴长等于m,短轴长等于n,即2a=m,2b=n,则有a=,b=,则椭圆的方程为+=1,设x=cosθ,y=sinθ,则椭圆的内接矩形的面积S=|2x||2y|=4|xy|=|sin2θ|,又由|sin2θ|≤1,则S≤,当θ=时等号成立;即此椭圆的内接矩形的面积的最大值为,故答案为:.【点评】本题考查椭圆的几何性质,注意椭圆的参数方程的应用.11.(5分)[x]是不超过x的最大整数,则方程(2x)2•[2x]满足x<1的所有实数解是x=或x=﹣1【考点】53:函数的零点与方程根的关系.【专题】35:转化思想;4C:分类法;51:函数的性质及应用.【分析】分0≤x<1,x<0,分别求解符合条件的x.【解答】解:当0≤x<1,[2x]=1,∴(2x)2=2⇒x=符合题意;当x<0,[2x]=0,∴(2x)2=⇒x=﹣1符合题意,∴满足条件的所有实数解为x=或x=﹣1.故答案为:或﹣1【点评】本题考查了新定义问题,分类思想,属于中档题.12.(5分)函数f(x)=sinx,对于x1<x2<x3<…<x n且x1,x2,…x n∈[0,8π](n≥10),记M=|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+|f(x3)﹣f(x4)|+…+|f )﹣f(x n)|,则M的最大值等于16(x n﹣1【考点】H2:正弦函数的图象.【专题】35:转化思想;57:三角函数的图像与性质.【分析】根据正弦函数的图象及性质x1,x2,…x n∈[0,8π](n≥10),在[0,8π]有4个周期,要使M的最大值,则|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+|f (x3)﹣f(x4)|+…+|f(x n﹣1)﹣f(x n)|最大.则x1,x2,…x n都是顶点的横坐标.可得结论.【解答】解:根据正弦函数的图象及性质x1,x2,…x n∈[0,8π](n≥10),在[0,8π]有4个周期,要使M的最大值,则|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+|f(x3)﹣f(x4)|+…+|f(x n﹣1)﹣f (x n)|最大.则x1,x2,…x n都是顶点的横坐标.故得M最大值为4×4=16.故答案为:16【点评】本题考查正弦型三角函数的图象性质的应用.属于基础题.二.选择题(本大题共4题,每题5分,共20分)13.(5分)下列函数是奇函数的是()A.f(x)=x+1B.f(x)=s inx•cosxC.f(x)=arccosx D.f(x)=【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题;34:方程思想;51:函数的性质及应用.【分析】根据题意,依次分析选项中函数的奇偶性,综合即可得答案.【解答】解:根据题意,依次分析选项:对于A,f(x)=x+1,则f(﹣x)=﹣x+1,则f(﹣x)≠﹣f(x)且f(﹣x)≠f (x),则函数f(x)既不是奇函数又不是偶函数,不符合题意;对于B,f(x)=sinxcosx,则f(﹣x)=sin(﹣x)cos(﹣x)=﹣sinxcosx=﹣f(x),函数f(x)为奇函数,符合题意;对于C,f(x)=arccosx,为反三角函数,则函数f(x)既不是奇函数又不是偶函数,不符合题意;对于D,f(x)=,有f(﹣x)=f(x),函数f(x)为偶函数,不符合题意;故选:B.【点评】本题考查函数奇偶性的判定,注意函数奇偶性的判定方法.14.(5分)在Rt△ABC中,AB=AC,点M、N是线段AC的三等分点,点P在线段BC上运动且满足=k,当取得最小值时,实数k的值为()A.B.C.D.【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;4O:定义法;5A:平面向量及应用.【分析】根据题意建立平面直角坐标系,利用坐标表示向量,求出平面向量数量积的最小值与对应点P的坐标,即可求出k的值.【解答】解:建立平面直角坐标系,如图所示;设AB=AC=3,点P(x,3﹣x),M(1,0),N(2,0),则•=2x2﹣9x+11,其中x∈[0,3],∴当x=时•取到最小值,此时P(,),∴k==.故选:C.【点评】本题考查了平面向量的数量积与应用问题,是中档题.15.(5分)直线l:kx﹣y+k+1=0与圆x2+y2=8交于A、B两点,且|AB|=4,过点A、B分别作l的垂线与y轴交于点M、N,则|MN|等于()A.2B.4C.4D.8【考点】J9:直线与圆的位置关系.【专题】35:转化思想;48:分析法;5B:直线与圆.【分析】由|AB|=4等于圆的直径,可得直线l:kx﹣y+k+1=0经过原点,从而求出k=﹣1,则|MN|可求.【解答】解:∵|AB|=4等于圆的直径,∴直线l:kx﹣y+k+1=0经过原点,∴k=﹣1,∴|MN|=AB=8.故选:D.【点评】本题考查了直线与圆的位置关系,属于基础题.16.(5分)已知数列{a n}的首项a1=a,且0<a≤4,a n+1=,S n是此数列的前n项和,则以下结论正确的是()A.不存在a和n使得S n=2015B.不存在a和n使得S n=2016C.不存在a和n使得S n=2017D.不存在a和n使得S n=2018【考点】8E:数列的求和.【专题】15:综合题;35:转化思想;4R:转化法;54:等差数列与等比数列.【分析】令a1=1,则所有奇数项都为1,偶数项都为5,排除B、C;令a1=2,则所有奇数项都为2,偶数项都为4,排除D,问题得以解决.【解答】解:令a1=1,则所有奇数项都为1,偶数项都为5,排除B、C;令a1=2,则所有奇数项都为2,偶数项都为4,排除D,故选:A.【点评】本题考查了数列的递推公式,关键是利用特值法,属于中档题.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,直三棱柱的底面是等腰直角三角形,AB=AC=1,,高等于3,点M1、M2、N1、N2为所在线段的三等分点.(1)求此三棱柱的体积和三棱锥A1﹣AM1N2的体积;(2)求异面直线A1N2、AM1所成的角的大小.【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;41:向量法;5F:空间位置关系与距离;5G:空间角.×AA1;三棱锥A1﹣AM1N2的体积【分析】(1)三棱柱的体积V=S△BAC=.(2)以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1N2、AM1所成的角.【解答】解:(1)∵直三棱柱的底面是等腰直角三角形,AB=AC=1,,高等于3,∴此三棱柱的体积V=S×AA1==.△BAC∵点M1、M2、N1、N2为所在线段的三等分点.M1到平面AA1N2的距离d=AB=1,∴三棱锥A1﹣AM1N2的体积:==×d==.(2)以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,A1(0,0,3),N2(0,1,2),A(0,0,0),M1(1,0,1),=(0,1,﹣1),=(1,0,1),设异面直线A1N2、AM1所成的角为θ,则cosθ===,∴θ=,∴异面直线A1N2、AM1所成的角为.【点评】本题考查几何体的体积的求法,考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)已知△ABC中,角A、B、C所对应的边分别为a、b、c,z=cosA+i•sinA(i是虚数单位)是方程z2﹣z+1=0的根,a=3.(1)若B=,求边长c的值;(2)求△ABC面积的最大值.【考点】HT:三角形中的几何计算.【专题】11:计算题;34:方程思想;4R:转化法;58:解三角形.【分析】(1)方程z2﹣z+1=0的解为i,从而A=再由B=,a=3,利用正弦定理能求出边长c的值.(2)由a=3,A=,得△ABC的面积S=,由此能求出△△ABCABC面积取最大值.【解答】解:(1)∵△ABC中,角A、B、C所对应的边分别为a、b、c,z=cosA+i•sinA (i是虚数单位)是方程z2﹣z+1=0的根,a=3.方程z2﹣z+1=0的解为i,∴A=,∵B=,∴由正弦定理得:,即==,解得b=,c=.==,(2)∵a=3,A=,∴△ABC的面积S△ABC当AB=AC=BC=a=3时,△ABC面积取最大值为S==.【点评】本题考查三角形的边长的求法,考查三角形面积的最大值求法,考查三角函数性质、三角函数恒等式、余弦定理、三角形面积公式等基础知识,考查运用求解能力,考查函数与方程思想,是中档题.19.(14分)平面内的“向量列”{},如果对于任意的正整数n,均有=,则称此“向量列”为“等差向量列”,称为“公差向量”,平面内的“向量列”{},如果对于任意的正整数n,均有=q(q≠0),则称此“向量列”为“等比向量列”,常数q称为“公比”.(1)如果“向量列”{}是“等差向量列”,用和“公差向量”表示;(2)已知{}是“等差向量列”,“公差向量”=(3,0),=(1,1),=(a n,y n),{}是“等比向量列”,“公比”q=2,=(1,3),=(m n,k n),求.【考点】8L:数列与向量的综合.【专题】34:方程思想;4H:作差法;54:等差数列与等比数列;5A:平面向量及应用.【分析】(1)运用等差数列的求和公式和向量的加减运算,即可得到所求和;(2)求得•=(3n﹣2,1)•(2n﹣1,3•2n﹣1)=(3n﹣2)•2n﹣1+3•2n﹣1=(3n+1)•2n﹣1,运用数列的求和方法:错位相减法,结合等比数列的求和公式,计算可得所求和.【解答】解:(1)如果“向量列”{}是“等差向量列”,由和“公差向量”,=n+(1+2+…+n﹣1)=n+;(2)•=(3n﹣2,1)•(2n﹣1,3•2n﹣1)=(3n﹣2)•2n﹣1+3•2n﹣1=(3n+1)•2n﹣1,S n==4•20+7•21+…+(3n+1)•2n﹣1,2S n=4•2+7•22+…+(3n+1)•2n,相减可得﹣S n=4+3(2+22+…+2n﹣1)﹣(3n+1)•2n=4+3•﹣(3n+1)•2n,化简可得=(3n﹣2)•2n+2.【点评】本题考查新定义的理解和运用,考查等差数列、等比数列的通项公式和求和公式的运用,以及数列的求和方法:错位相减法,考查运算能力,属于中档题.20.(16分)如果直线与椭圆只有一个交点,称该直线为椭圆的“切线”,已知椭圆C:,点M(m,n)是椭圆C上的任意一点,直线l过点M且是椭圆C的“切线”.(1)证明:过椭圆C上的点M(m,n)的“切线”方程是;(2)设A、B是椭圆C长轴上的两个端点,点M(m,n)不在坐标轴上,直线MA、MB分别交y轴于点P、Q,过M的椭圆C的“切线”l交y轴于点D,证明:点D是线段PQ的中点;(3)点M(m,n)不在x轴上,记椭圆C的两个焦点分别为F1和F2,判断过M的椭圆C的“切线”l与直线MF1、MF2所成夹角是否相等?并说明理由.【考点】K4:椭圆的性质.【专题】35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】(1)方法一:设切线方程,代入椭圆方程,由M在椭圆方程,利用△=0,即可求得k的值,求得“切线”方程是;方法二:将直线方程代入椭圆方程,由△=0,则直线与椭圆只有一个交点,故直线与椭圆相切;(2)求得直线MA,MB的方程,令x=0,即可求得P和Q点坐标,令x=0,求得D点坐标,由y P+y Q=2y D,即可求得点D是线段PQ的中点;(3)求得交点坐标,即可求得MF1及MF2斜率,根据直线的夹角公式,求得tanθ1=tanθ1,过M的椭圆C的“切线”l与直线MF1、MF2所成夹角是否相等【解答】解:(1)方法一:当n=0时,m=±,则切线方程x=±,满足,当m≠0时,设直线y=k(x﹣m)+n,联立,整理得:(1+2k2)x2﹣4k(km﹣n)x+2(km﹣2)2﹣2=0,由△=16k2(km﹣n)2﹣4×(1+2k2)[2(km﹣2)2﹣2]=0,整理得:(2﹣m2)k2+2mnk+1﹣n2=0,由M(m,n)在椭圆上,则,2﹣m2=2n2,1﹣n2=,∴2n2k2+2mnk+=0,则(nk+)2=0,解得:k=﹣,∴切线方程y=﹣(x﹣m)+n,整理得:;综上可知:过椭圆C上的点M(m,n)的“切线”方程是;方法二:由直线,整理得:mx+2ny=2,,整理得:(2n2+m2)y2﹣4ny+2﹣m2=0,由M(m,n)在椭圆上,则,2﹣m2=2n2,2n2+m2=2,则y2﹣2ny+n2=0,则△=0,∴过椭圆C上的点M(m,n)的“切线”方程是;(2)由椭圆的左顶点A(﹣,0),右顶点B(,0),由直线MA的方程:y=(x+),令x=0,则y P=,同理y Q=,切线方程,令x=0,则y D=y P+y Q===2y D,∴点D是线段PQ的中点;(3)相等,由椭圆的焦点F1(﹣1,0),F2(1,0),过椭圆C上的点M(m,n)的“切线”方程是,则直线MF1的斜率=,直线MF2的斜率=,则切线的斜率k=,由夹角公式tanθ1=||=,tanθ1=||=,所以所成夹角相等.【点评】本题考查椭圆的标准方程的性质,直线的切线方程的应用,直线与椭圆的位置关系,考查直线夹角公式的应用,中点坐标公式,考查转化思想,属于中档题.21.(18分)已知函数f(x)=ax3+x﹣a(a∈R,xR),g(x)=(x∈R).(1)如果x=是关于x的不等式f(x)≤0的解,求实数a的取值范围;(2)判断g(x)在(]和[)的单调性,并说明理由;(3)证明:函数f(x)存在零点q,使得a=q+q4+q7+…+q3n﹣2+…成立的充要条件是a.【考点】29:充分条件、必要条件、充要条件.【专题】51:函数的性质及应用;53:导数的综合应用;59:不等式的解法及应用.【分析】(1)x=是关于x的不等式f(x)≤0的解,可得≤0,解出即可得出.(2)g′(x)==,利用导数研究其单调性即可得出.(3)函数f(x)存在零点q,使得a=q+q4+q7+…+q3n﹣2+…成立的充要条件是a.a=成立,根据无穷等比数列相关性质,q∈(﹣1,1),q≠0,结合第(2)问,a=在(]上单调递减,在[)上单调递增.可得a≥=.【解答】解:(1)x=是关于x的不等式f(x)≤0的解,∴=a﹣﹣a≤0,解得:a≥﹣.∴实数a的取值范围是.(2)g′(x)==,∴函数g(x)在(]上单调递减,在[)上单调递增.(3)证明:函数f(x)存在零点q,使得a=q+q4+q7+…+q3n﹣2+…成立的充要条件是a.∴a=成立,根据无穷等比数列相关性质,q∈(﹣1,1),q≠0,结合第(2)问,a=在(]上单调递减,在[)上单调递增.∴a≥==﹣.反之亦然.【点评】本题考查了函数的单调性、利用导数研究函数的单调性极值、不等式的解法、简易逻辑的判定方法、分类讨论方法,考查了推理能力与计算能力,属于难题.。

2018年上海市闵行区高考数学二模试卷(解析版)

2018年上海市闵行区高考数学二模试卷(解析版)

2018年上海市闵行区高考数学二模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)双曲线(a>0)的渐近线方程为3x±2y=0,则a=2.(4分)若二元一次方程组的增广矩阵是,其解为,则c1+c2=3.(4分)设m∈R,若复数z=(1+mi)(1+i)在复平面内对应的点位于实轴上,则m=4.(4分)定义在R上的函数f(x)=2x﹣1的反函数为y=f﹣1(x),则f﹣1(3)=5.(4分)直线l的参数方程为(t为参数),则l的一个法向量为6.(4分)已知数列{a n},其通项公式为a n═3n+1,n∈N*,{a n}的前n项和为S n,则=7.(5分)已知向量、的夹角为60°,||=1,||=2,若()⊥(x),则实数x的值为8.(5分)若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为9.(5分)若平面区域的点(x,y)满足不等式(k>0),且z=x+y的最小值为﹣5,则常数k=10.(5分)若函数f(x)=log a(x2﹣ax+1)(a>0且a≠1)没有最小值,则a的取值范围是11.(5分)设x1,x2,x3,x4∈{﹣1,0,2},那么满足2≤|x1|+|x2|+|x3|+|x4|≤4的所有有序数对(x1,x2,x3,x4)的组数为12.(5分)设n∈N*,a n为(x+4)n﹣(x+1)n的展开式的各项系数之和,c=,t∈R,b n=[]+[]+…+[]([x]表示不超过实数x的最大整数),则(n﹣t)2+(b n+c)2的最小值为二.选择题(本大题共4题,每题5分,共20分)13.(5分)“xy=0”是“x=0且y=0”成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.(5分)如图,点A、B、C分别在空间直角坐标系O﹣xyz的三条坐标轴上,=(0,0,2),平面ABC的法向量为=(2,1,2),设二面角C﹣AB﹣O的大小为θ,则cosθ=()A.B.C.D.15.(5分)已知等比数列{a n}的前n项和为S n,则下列判断一定正确的是()A.若S3>0,则a2018>0B.若S3<0,则a2018<0C.若a2>a1,则2019>a2018D.若,则a2019<a201816.(5分)给出下列三个命题:命题1:存在奇函数f(x)(x∈D1)和偶函数g(x)(x∈D2),使得函数f(x)g(x)(x∈D1∩D2))是偶函数;命题2:存在函数f(x)、g(x)及区间D,使得f(x)、g(x)在D上均是增函数,但f(x)g(x)在D上是减函数;命题3:存在函数f(x)、g(x)(定义域均为D),使得f(x)、g(x)在x=x0(x o∈D)处均取到最大值,但f(x)g(x)在x=x0处取到最小值;那么真命题的个数是()A.0B.1C.2D.3三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,E、F分别是AB、CC1的中点.(1)求三棱锥E﹣DFC的体积;(2)求异面直线A1E与D1F所成的角的大小.18.(14分)已知函数f(x)=sinωx+cosωx.(1)当f(﹣)=0,且|ω|<1,求ω的值;(2)在△ABC中,a、b、c分别是角A、B、C的对边,a=,b+c=3,当ω=2,f(A)=1时,求bc的值.19.(14分)某公司利用APP线上、实体店线下销售产品A,产品A在上市20天内全部售完,据统计,线上日销售量f(t)、线下日销售量g(t)(单位:件)与上市时间t(t∈N*)天的关系满足:f(t)=,g(t)=﹣t2+20t(1≤t≤20),产品A每件的销售利润为h(t)=(单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A的日销售利润为F(t),写出F(t)的函数解析式;(2)产品A上市的哪几天给该公司带来的日销售利润不低于5000元?20.(16分)已知椭圆Γ:(a>b>0),其左、右焦点分别为F1、F2,上顶点为B,O为坐标原点,过F2的直线l交椭圆Γ于P、Q两点,sin.(1)若直线l垂直于x轴,求的值;(2)若b=,直线l的斜率为,则椭圆Γ上是否存在一点E,使得F1、E关于直线l 成轴对称?如果存在,求出点E的坐标,如果不存在,请说明理由;(3)设直线l1:y=上总存在点M满足=2,当b的取值最小时,求直线l的倾斜角α.21.(18分)无穷数列{a n}(n∈N*),若存在正整数t,使得该数列由t个互不相同的实数组成,且对于任意的正整数n,a n+1,a n+2,…a n+t中至少有一个等于a n,则称数列{a n} 具有性质T,集合P={p|p=a n,n∈N*}.(1)若a n=(﹣1)n,n∈N*,判断数列{a n} 是否具有性质T;(2)数列{a n} 具有性质T,且a11,a4=3,a8=2,P={1,2,3},求a20的值;(3)数列{a n} 具有性质T,对于P中的任意元素p i,为第k个满足=p i的项,记b k=i k+1﹣i k(k∈N*),证明:“数列{b k}具有性质T”的充要条件为“数列{a n} 是周期为t的周期数列,且每个周期均包含t个不同实数”.2018年上海市闵行区高考数学二模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)双曲线(a>0)的渐近线方程为3x±2y=0,则a=2【解答】解:根据题意,双曲线的焦点在x轴上,其渐近线方程y=±x,若双曲线的渐近线方程为3x±2y=0,即y=±x则有=,则a=2;故答案为:2.2.(4分)若二元一次方程组的增广矩阵是,其解为,则c1+c2=40【解答】解:∵二元一次方程组的增广矩阵是,其解为,∴,∴c1+c2=10+30=40.故答案为:40.3.(4分)设m∈R,若复数z=(1+mi)(1+i)在复平面内对应的点位于实轴上,则m=﹣1【解答】解:∵复数z=(1+mi)(1+i)=1﹣m+(1+m)i在复平面内对应的点位于实轴上,∴1+m=0,即m=﹣1.故答案为:﹣1.4.(4分)定义在R上的函数f(x)=2x﹣1的反函数为y=f﹣1(x),则f﹣1(3)=2【解答】解:∵f(x)=2x﹣1,∴y=f﹣1(x)=log2(x+1),∴f﹣1(3)=2.故答案为:2.5.(4分)直线l的参数方程为(t为参数),则l的一个法向量为(2,﹣1)【解答】解:根据题意,直线l的参数方程为,则直线的普通方程2x﹣y﹣3=0,其一个方向向量为(1,2),则其一个法向量为(2,﹣1);故答案为:(2,﹣1).6.(4分)已知数列{a n},其通项公式为a n═3n+1,n∈N*,{a n}的前n项和为S n,则=【解答】解:数列{a n},其通项公式为a n═3n+1,n∈N*,{a n}的前n项和为S n,可得S n=n(4+3n+1)=,则====,故答案为:.7.(5分)已知向量、的夹角为60°,||=1,||=2,若()⊥(x),则实数x的值为3【解答】解:根据题意,向量、的夹角为60°,||=1,||=2,则•=1×2×=1,若()⊥(x),则()•(x)=x2﹣•+2x•﹣22=x+(2x﹣1)﹣8=0,解可得x=3;故答案为:3.8.(5分)若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为16π【解答】解:设球的半径为R,球心到平面α的距离为d,平面α截球所得圆面的半径为r,则d=3,由于球的表面积为100π,即4πR2=100π,则R=5,由勾股定理可得,因此,平面α截球所得圆面的面积为πr2=π×42=16π,故答案为:16π.9.(5分)若平面区域的点(x,y)满足不等式(k>0),且z=x+y的最小值为﹣5,则常数k=5【解答】解:平面区域的点(x,y)满足不等式(k>0),可行域如图:可知图象(k>0),经过点(﹣5,0),目标函数取得最小值,∴k=5故答案为:5.10.(5分)若函数f(x)=log a(x2﹣ax+1)(a>0且a≠1)没有最小值,则a的取值范围是(0,1)∪[2,+∞)【解答】解:函数f(x)=log a(x2﹣ax+1)(a>0且a≠1)没有最小值,当0<a<1时,没有最小值,当a>1时,即x2﹣ax+1≤0有解,∴△=a2﹣4≥0,解得a≥2,综上,a的取值范围是(0,1)∪[2,+∞).故答案为:(0,1)∪[2,+∞).11.(5分)设x1,x2,x3,x4∈{﹣1,0,2},那么满足2≤|x1|+|x2|+|x3|+|x4|≤4的所有有序数对(x1,x2,x3,x4)的组数为45【解答】解:①|x1|+|x2|+|x3|+|x4|=2,0+0+0+2=2,有4种,1+0+1+0=2,有6种,故有10组;②:|x1|+|x2|+|x3|+|x4|=3,0+1+1+1=3,有4种,0+1+2+0=3,有C41C31=12种,故有16组;③:|x1|+|x2|+|x3|+|x4|=4,1+1+1+1=4,有1种,0+1+1+2=4,有C41C31=12种,0+0+2+2=4,有C41C31=6种,故有19组;综上,共45组,故答案为:45.12.(5分)设n∈N*,a n为(x+4)n﹣(x+1)n的展开式的各项系数之和,c=,t∈R,b n=[]+[]+…+[]([x]表示不超过实数x的最大整数),则(n﹣t)2+(b n+c)2的最小值为【解答】解:令x=1可得,,[]=,b n═[]+[]+…+[]=1+2+…+(n﹣1)=,则(n﹣t)2+(b n+c)2的几何意义为点(n,)(n∈N*)到点(t,)的距离的平方,最小值即(2,1)到的距离d的平方,∵d=,∴(n﹣t)2+(b n+c)2的最小值为.故答案为:.二.选择题(本大题共4题,每题5分,共20分)13.(5分)“xy=0”是“x=0且y=0”成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【解答】解:由xy=0得x=0或y=0,即当x=0,y≠0时,也成立,但x=0且y=0不成立,若x=0且y=0,则xy=0成立,即“xy=0”是“x=0且y=0”成立的必要不充分条件,故选:B.14.(5分)如图,点A、B、C分别在空间直角坐标系O﹣xyz的三条坐标轴上,=(0,0,2),平面ABC的法向量为=(2,1,2),设二面角C﹣AB﹣O的大小为θ,则cosθ=()A.B.C.D.【解答】解:∵点A、B、C分别在空间直角坐标系O﹣xyz的三条坐标轴上,=(0,0,2),平面ABC的法向量为=(2,1,2),二面角C﹣AB﹣O的大小为θ,∴cosθ===.故选:C.15.(5分)已知等比数列{a n}的前n项和为S n,则下列判断一定正确的是()A.若S3>0,则a2018>0B.若S3<0,则a2018<0C.若a2>a1,则2019>a2018D.若,则a2019<a2018【解答】解:A.反例,a1=1,a2=﹣2,a3=4,则a2008<0;B.反例,a1=﹣4,a2=2,a3=﹣1,则a2008>0;C.反例同B反例,a2019<0<a2018;故选:D.16.(5分)给出下列三个命题:命题1:存在奇函数f(x)(x∈D1)和偶函数g(x)(x∈D2),使得函数f(x)g(x)(x∈D1∩D2))是偶函数;命题2:存在函数f(x)、g(x)及区间D,使得f(x)、g(x)在D上均是增函数,但f(x)g(x)在D上是减函数;命题3:存在函数f(x)、g(x)(定义域均为D),使得f(x)、g(x)在x=x0(x o∈D)处均取到最大值,但f(x)g(x)在x=x0处取到最小值;那么真命题的个数是()A.0B.1C.2D.3【解答】解:对于命题1,当f(x)=g(x)=0,x∈R时;满足f(x)是奇函数,g(x)是偶函数,且f(x)g(x)是偶函数;对于命题2,当f(x)=g(x)=x,x∈(﹣∞,0)时,满足f(x)、g(x)在D上均是增函数,但f(x)g(x)在D上是减函数;对于命题3:当f(x)=g(x)=﹣x2,x∈R时,f(x)、g(x)在x=0处均取到最大值,但f(x)g(x)在x=0处取到最小值;综上,命题1,2,3均为真命题.故选:D.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,E、F分别是AB、CC1的中点.(1)求三棱锥E﹣DFC的体积;(2)求异面直线A1E与D1F所成的角的大小.【解答】解:(1)∵在棱长为2的正方体ABCD﹣A1B1C1D1中,E、F分别是AB、CC1的中点.∴点E到平面DFC的距离d=AD=2S△DFC==1,∴三棱锥E﹣DFC的体积V==.(2)取BB1的中点G,连结A1G,EG,则A1G∥D1F,∴∠EA1G是异面直线A1E与D1F所成的角(或所成角的补角),∵A1G===,A1E=A1G=,EG===,∴cos∠EA1G===,∴∠EA1G=arccos,∴异面直线A1E与D1F所成角为arccos.18.(14分)已知函数f(x)=sinωx+cosωx.(1)当f(﹣)=0,且|ω|<1,求ω的值;(2)在△ABC中,a、b、c分别是角A、B、C的对边,a=,b+c=3,当ω=2,f(A)=1时,求bc的值.【解答】解:(1)函数f(x)=sinωx+cosωx=2sin(ωx).∵f(﹣)=0,即=kπ,k∈Z且|ω|<1,∴.(2)由ω=2,f(A)=1,即2sin(2A)=1∵0<A<π∴A=由余弦定理,cos A=即bc=(b+c)2﹣bc﹣a2解得:bc=2.19.(14分)某公司利用APP线上、实体店线下销售产品A,产品A在上市20天内全部售完,据统计,线上日销售量f(t)、线下日销售量g(t)(单位:件)与上市时间t(t∈N*)天的关系满足:f(t)=,g(t)=﹣t2+20t(1≤t≤20),产品A每件的销售利润为h(t)=(单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A的日销售利润为F(t),写出F(t)的函数解析式;(2)产品A上市的哪几天给该公司带来的日销售利润不低于5000元?【解答】解:(1)F(t)=.(2)令F(t)≥5000,①当1≤t≤10时,40(﹣t2+30t)≥5000,解得5≤t≤25,∴5≤t≤10.②当10<t≤15时,40(﹣t2+10t+200)≥5000,解得﹣5≤t≤15,∴10<t≤15.③当15<t≤20时,20(﹣t2+10t+200)≥5000,方程无解.综上,5≤t≤15.∴产品上市的第5天到第15天给公司带来的日销售利润不低于5000元.20.(16分)已知椭圆Γ:(a>b>0),其左、右焦点分别为F1、F2,上顶点为B,O为坐标原点,过F2的直线l交椭圆Γ于P、Q两点,sin.(1)若直线l垂直于x轴,求的值;(2)若b=,直线l的斜率为,则椭圆Γ上是否存在一点E,使得F1、E关于直线l 成轴对称?如果存在,求出点E的坐标,如果不存在,请说明理由;(3)设直线l1:y=上总存在点M满足=2,当b的取值最小时,求直线l的倾斜角α.【解答】解:(1)∵sin,∴=,∴c==b,∴直线l的方程为:x=b.把x=b代入椭圆方程可得:+=1,解得y P=b,∴|PF2|=b,∴|PF1|==b,∴=5.(2)b=时,椭圆的标准方程为:+=1.c=2.F2(2,0),直线l的方程为:y=(x﹣2),设点关于l对称点E(m,n),则=,×=﹣1,解得m=﹣,n=﹣,即E(﹣,﹣).代入椭圆方程:+≠1,因此点E不在椭圆上.(3)设l:y=k(x﹣b),(k<0)代入椭圆的方程可得:+=1,化为:(1+3k2)x2﹣6k2bx+6k2b2﹣3b2=0,∴x1+x2=,∵直线l1:y=上总存在点M满足=2,∴点M是线段PQ的中点.∴x M=,y M=k(﹣b)=,解得:b=,∴x M=﹣3k,可得M,∴b==﹣﹣3k≥6,当且仅当k=﹣时,b取得最小值6.直线l的倾斜角α满足:tanα=,α=.21.(18分)无穷数列{a n}(n∈N*),若存在正整数t,使得该数列由t个互不相同的实数组成,且对于任意的正整数n,a n+1,a n+2,…a n+t中至少有一个等于a n,则称数列{a n} 具有性质T,集合P={p|p=a n,n∈N*}.(1)若a n=(﹣1)n,n∈N*,判断数列{a n} 是否具有性质T;(2)数列{a n} 具有性质T,且a11,a4=3,a8=2,P={1,2,3},求a20的值;(3)数列{a n} 具有性质T,对于P中的任意元素p i,为第k个满足=p i的项,记b k=i k+1﹣i k(k∈N*),证明:“数列{b k}具有性质T”的充要条件为“数列{a n} 是周期为t的周期数列,且每个周期均包含t个不同实数”.【解答】(1)解:∵a n=(﹣1)n,∴{a n}是由2个不同元素组成的无穷数列,且是周期为2的周期数列,故t=2,{a n}是周期为2的周期数列,对任意的正整数n,有a n+2=a n,满足性质T的条件,故数列{a n} 具有性质T;(2)解:由a1=1,a4=3,a8=2,P={1,2,3},可知t=3,考虑a8后面连续三项a9,a10,a11,若a11≠2,由a8=2及T性质知,a9,a10中必有一个数为2,于是,a8,a9,a10中有两项为2,故必有1或3不在其中,不妨设为i(i=1或3),考虑a1,a2,…,a7中,最后一个等于i的项,则该项的后三项均不等于i,故不满足性质T中的条件,矛盾,于是a11=2.同理可得:a14=a17=a20=2;(3)证明:充分性、由数列{a n} 是周期为t的周期数列,每个周期均包含P中t个不同元素,对于P中的任意元素p i,为第k个满足的项,故由周期性得:i k+1=i k+t,于是,b k=i k+1﹣i k=t,数列{b k}为常数列,显然满足性质T.必要性、取足够大的N,使a1,a2,a3,…,a N包含P中t个所有互不相等的元素,考虑a N后的连续t项a N+1,a N+2,…,a N+t,对于P中任意元素p i,必等于a N+1,a N+2,…,a N+t中的某一个,否则考虑a1,a2,…,a N中最后一个等于p i的项,该项不满足性质T中的条件,矛盾.由p i的任意性知,a N+1,a N+2,…,a N+t这t个元素恰好等于P中t个互不相同的元素,再由数列{a n} 性质T中的条件得,a N+t+1=a N+1,a N+t+2=a N+2,…于是对于P中的任意元素p i,存在N′,有b k=i k+1﹣i k=t(n≥N′),即数列{b N′+k}为常数列,而数列{b k}满足性质T,故{b k}为常数列,从而{a n}是周期数列,故数列{a n} 是“周期为t的周期数列,且每个周期均包含t个不同实数”.。

上海市松江区2018届高三下学期质量监控二模数学试题

上海市松江区2018届高三下学期质量监控二模数学试题

上海市松江区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 双曲线22219x y a -=(0a >)的渐近线方程为320x y ±=,则a = 2. 若二元一次方程组的增广矩阵是121234c c ⎛⎫ ⎪⎝⎭,其解为100x y =⎧⎨=⎩,则12c c += 3. 设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m = 4. 定义在R 上的函数()21x f x =-的反函数为1()y f x -=,则1(3)f -= 5. 直线l 的参数方程为112x ty t=+⎧⎨=-+⎩(t 为参数),则l 的一个法向量为6. 已知数列{}n a ,其通项公式为31n a n =+,*n N ∈,{}n a 的前n 项和为n S ,则l i m nn nS n a →∞=⋅7. 已知向量a 、b 的夹角为60°,||1a =,||2b =,若(2)()a b xa b +⊥-,则实数x 的值为 8. 若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为 9. 若平面区域的点(,)x y 满足不等式||||14x y k +≤(0k >),且z x y =+的最小值为5-, 则常数k =10. 若函数2()log (1)a f x x ax =-+(0a >且1a ≠)没有最小值,则a 的取值范围是 11. 设1234,,,{1,0,2}x x x x ∈-,那么满足12342||||||||4x x x x ≤+++≤的所有有序数对1234(,,,)x x x x 的组数为12. 设*n N ∈,n a 为(4)(1)n n x x +-+的展开式的各项系数之和,324c t =-,t ∈R , 1222[][][]555n n n na a ab =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t bc -++的最小值为二. 选择题(本大题共4题,每题5分,共20分) 13. “0xy =”是“0x =且0y =”成立的( ) A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件14. 如图,点A 、B 、C 分别在空间直角坐标系O xyz - 的三条坐标轴上,(0,0,2)OC =,平面ABC 的法向量为(2,1,2)n =,设二面角C AB O --的大小为θ,则cos θ=( )A.4323 D. 23- 15. 已知等比数列{}n a 的前n 项和为n S ,则下列判断一定正确的是( ) A. 若30S >,则20180a > B. 若30S <,则20180a < C. 若21a a >,则20192018a a > D. 若2111a a >,则20192018a a < 16. 给出下列三个命题:命题1:存在奇函数()f x (1x D ∈)和偶函数()g x (2x D ∈),使得函数()()f x g x (12x D D ∈)是偶函数;命题2:存在函数()f x 、()g x 及区间D ,使得()f x 、()g x 在D 上均是增函数,但()()f x g x 在D 上是减函数;命题3:存在函数()f x 、()g x (定义域均为D ),使得()f x 、()g x 在0x x =(0x D ∈)处均取到最大值,但()()f x g x 在0x x =处取到最小值; 那么真命题的个数是( )A. 0B. 1C. 2D. 3三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是AB 、1CC 的中点. (1)求三棱锥E DFC -的体积;(2)求异面直线1A E 与1D F 所成的角的大小.18. 已知函数()cos f x x x ωω=+. (1)当()03f π-=,且||1ω<,求ω的值;(2)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,a =3b c +=,当2ω=,()1f A =时,求bc 的值.19. 某公司利用APP 线上、实体店线下销售产品A ,产品A 在上市20天内全部售完,据统计,线上日销售量()f t 、线下日销售量()g t (单位:件)与上市时间t (*t N ∈)天的关 系满足:10110()102001020t t f t t t ≤≤⎧=⎨-+<≤⎩,2()20g t t t =-+(120t ≤≤),产品A 每件的销售利润为40115()201520t h t t ≤≤⎧=⎨<≤⎩(单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A 的日销售利润为()F t ,写出()F t 的函数解析式; (2)产品A 上市的哪几天给该公司带来的日销售利润不低于5000元?20. 已知椭圆2222:1x y a bΓ+=(0a b >>),其左、右焦点分别为1F 、2F ,上顶点为B ,O为坐标原点,过2F 的直线l 交椭圆Γ于P 、Q两点,1sin BF O ∠=. (1)若直线l 垂直于x 轴,求12||||PF PF 的值; (2)若b =l 的斜率为12,则椭圆Γ上是否存在一点E ,使得1F 、E 关于直线l成轴对称?如果存在,求出点E 的坐标,如果不存在,请说明理由;(3)设直线1:l y =M 满足2OP OQ OM +=,当b 的取值最小时,求直线l 的倾斜角α.21. 无穷数列{}n a (*n N ∈),若存在正整数t ,使得该数列由t 个互不相同的实数组成,且对于任意的正整数n ,12,,,n n n t a a a +++⋅⋅⋅中至少有一个等于n a ,则称数列{}n a 具有性质T ,集合*{|,}n P p p a n N ==∈.(1)若(1)n n a =-,*n N ∈,判断数列{}n a 是否具有性质T ;(2)数列{}n a 具有性质T ,且11a =,43a =,82a =,{1,2,3}P =,求20a 的值; (3)数列{}n a 具有性质T ,对于P 中的任意元素i p ,k i a 为第k 个满足k i i a p =的项,记1k k k b i i +=-(*k N ∈),证明:“数列{}k b 具有性质T ”的充要条件为“数列{}n a 是周期为t 的周期数列,且每个周期均包含t 个不同实数”.上海市松江区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 双曲线22219x y a -=(0a >)的渐近线方程为320x y ±=,则a = 【解析】2a =2. 若二元一次方程组的增广矩阵是121234c c ⎛⎫ ⎪⎝⎭,其解为100x y =⎧⎨=⎩,则12c c += 【解析】12103040c c +=+=3. 设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m = 【解析】虚部为零,101m m +=⇒=-4. 定义在R 上的函数()21x f x =-的反函数为1()y f x -=,则1(3)f -= 【解析】1213(3)2x f --=⇒=5. 直线l 的参数方程为112x ty t =+⎧⎨=-+⎩(t 为参数),则l 的一个法向量为【解析】12(1)230y x x y =-+-⇒--=,法向量可以是(2,1)-6. 已知数列{}n a ,其通项公式为31n a n =+,*n N ∈,{}n a 的前n 项和为n S ,则li m nn nS n a →∞=⋅【解析】2352n n n S +=,1lim 2n n nS n a →∞=⋅7. 已知向量a 、b 的夹角为60°,||1a =,||2b =,若(2)()a b xa b +⊥-,则实数x 的值为【解析】(2)()0(21)803a b xa b x x x +⋅-=⇒+--=⇒=8. 若球的表面积为100π,平面α与球心的距离为3,则平面α截球所得的圆面面积为 【解析】5R =,4r =,16S π= 9. 若平面区域的点(,)x y 满足不等式||||14x y k +≤(0k >),且z x y =+的最小值为5-, 则常数k = 【解析】数形结合,可知图像||||14x y k +=经过点(5,0)-,∴5k = 10. 若函数2()log (1)a f x x ax =-+(0a >且1a ≠)没有最小值,则a 的取值范围是 【解析】分类讨论,当01a <<时,没有最小值,当1a >时,即210x ax -+≤有解, ∴02a ∆≥⇒≥,综上,(0,1)[2,)a ∈+∞11. 设1234,,,{1,0,2}x x x x ∈-,那么满足12342||||||||4x x x x ≤+++≤的所有有序数对1234(,,,)x x x x 的组数为【解析】① 1234||||||||2x x x x +++=,有10组;② 1234||||||||3x x x x +++=, 有16组;③ 1234||||||||4x x x x +++=,有19组;综上,共45组 12. 设*n N ∈,n a 为(4)(1)n n x x +-+的展开式的各项系数之和,324c t =-,t ∈R , 1222[][][]555n n n na a ab =++⋅⋅⋅+([]x 表示不超过实数x 的最大整数),则22()()n n t bc -++的最小值为【解析】52nnn a =-,2[][]155nn n n na n n n ⋅=-=-,22n n n b -=,22()()n n t b c -++的几何意义为点2(,)2n nn -()n ∈*N 到点3(,2)4t t -的距离,由图得,最小值即(2,1)到324y x =- 的距离,为0.4二. 选择题(本大题共4题,每题5分,共20分) 13. “0xy =”是“0x =且0y =”成立的( ) A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件【解析】B14. 如图,点A 、B 、C 分别在空间直角坐标系O xyz -的三条坐标轴上,(0,0,2)OC =,平面ABC 的法向量为(2,1,2)n =,设二面角C AB O --的大小为θ,则cos θ=( )A.43B. 323 D. 23- 【解析】42cos 233||||OC n OC n θ⋅===⋅⋅,选C15. 已知等比数列{}n a 的前n 项和为n S ,则下列判断一定正确的是( ) A. 若30S >,则20180a > B. 若30S <,则20180a < C. 若21a a >,则20192018a a > D. 若2111a a >,则20192018a a < 【解析】A 反例,11a =,22a =-,34a =,则20180a <;B 反例,14a =-,22a =,31a =-,则20180a >;C 反例同B 反例,201920180a a <<;故选D16. 给出下列三个命题:命题1:存在奇函数()f x (1x D ∈)和偶函数()g x (2x D ∈),使得函数()()f x g x (12x D D ∈)是偶函数;命题2:存在函数()f x 、()g x 及区间D ,使得()f x 、()g x 在D 上均是增函数,但()()f x g x 在D 上是减函数;命题3:存在函数()f x 、()g x (定义域均为D ),使得()f x 、()g x 在0x x =(0x D ∈)处均取到最大值,但()()f x g x 在0x x =处取到最小值; 那么真命题的个数是( )A. 0B. 1C. 2D. 3【解析】命题1:()()0f x g x ==,x ∈R ;命题2:()()f x g x x ==,(,0)x ∈-∞; 命题3:2()()f x g x x ==-,x ∈R ;均为真命题,选D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是AB 、1CC 的中点. (1)求三棱锥E DFC -的体积;(2)求异面直线1AE 与1DF 所成的角的大小. 【解析】(1)121233V =⨯⨯=(2)4cos 5θ==,所成角为4arccos 518.已知函数()cos f x x x ωω=+. (1)当()03f π-=,且||1ω<,求ω的值;(2)在ABC ∆中,a 、b 、c 分别是角A 、B 、C的对边,a =3b c +=,当2ω=,()1f A =时,求bc 的值.【解析】(1)()2sin()6f x x πω=+,()0336f k πωπππ-=⇒-+=,||1ω<,∴12ω=(2)()1f A =⇒3A π=,由余弦定理,2bc =19. 某公司利用APP 线上、实体店线下销售产品A ,产品A 在上市20天内全部售完,据统计,线上日销售量()f t 、线下日销售量()g t (单位:件)与上市时间t (*t N ∈)天的关 系满足:10110()102001020t t f t t t ≤≤⎧=⎨-+<≤⎩,2()20g t t t =-+(120t ≤≤),产品A 每件的销售利润为40115()201520t h t t ≤≤⎧=⎨<≤⎩(单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A 的日销售利润为()F t ,写出()F t 的函数解析式; (2)产品A 上市的哪几天给该公司带来的日销售利润不低于5000元?【解析】(1)22240(30),110()40(10200),101520(10200),1520t t t F t t t t t t t ⎧-+≤≤⎪=-++<≤⎨⎪-++<≤⎩(2)()5000515F t t ≥⇒≤≤,第5天到第15天20. 已知椭圆2222:1x y a bΓ+=(0a b >>),其左、右焦点分别为1F 、2F ,上顶点为B ,O为坐标原点,过2F 的直线l 交椭圆Γ于P 、Q两点,1sin 3BF O ∠=. (1)若直线l 垂直于x 轴,求12||||PF PF 的值; (2)若b =l 的斜率为12,则椭圆Γ上是否存在一点E ,使得1F 、E 关于直线l成轴对称?如果存在,求出点E 的坐标,如果不存在,请说明理由;(3)设直线1:l y =M 满足2OP OQ OM +=,当b 的取值最小时,求直线l 的倾斜角α.【解析】(1)22231x y b +=,:l x =,2PF =,1PF =,12||5||PF PF = (2)22231x y +=,1:(2)2l y x =-,1(2,0)F -,关于l 对称点216(,)55E --,不在椭圆上 (3)设:()l y k x =,点差得1:3OM l y x k=-,联立1:l y =(M -, 代入直线l()k =-,∴6b =≥,k =56πα=21. 无穷数列{}n a (*n N ∈),若存在正整数t ,使得该数列由t 个互不相同的实数组成,且对于任意的正整数n ,12,,,n n n t a a a +++⋅⋅⋅中至少有一个等于n a ,则称数列{}n a 具有性质T ,集合*{|,}n P p p a n N ==∈.(1)若(1)n n a =-,*n N ∈,判断数列{}n a 是否具有性质T ;(2)数列{}n a 具有性质T ,且11a =,43a =,82a =,{1,2,3}P =,求20a 的值; (3)数列{}n a 具有性质T ,对于P 中的任意元素i p ,k i a 为第k 个满足k i i a p =的项,记1k k k b i i +=-(*k N ∈),证明:“数列{}k b 具有性质T ”的充要条件为“数列{}n a 是周期为t 的周期数列,且每个周期均包含t 个不同实数”.【解析】(1)2t =,对任意正整数n ,2n n a a +=恒成立,∴具有性质T (2)分类讨论,得结论,6n ≥,{}n a 有周期性,周期为3,∴2082a a == (3)略。

上海2018届高三二模数学卷—三角函数汇编

上海2018届高三二模数学卷—三角函数汇编

上海2018届高三二模数学卷——三角函数汇编1. (2018宝山二模4)函数()x x x f 4cos 4sin 2=()x x x f 4cos 4sin 2=的最小正周期为 . 答案:4π 2. (2018宝山二模12)将实数z y x 、、中的最小值记为{}z y x ,,m in ,在锐角︒=∆60POQ ,1=PQ ,点T 在POQ ∆的边上或内部运动,且=TO {}TQ TO TP ,,m in ,由T 所组成的图形为M .设M POQ 、∆的面积为M POQ S S 、∆,若()2:1-=∆M POQ M S S S :,则=M S .3.(2018虹口二模3) 已知(0,)απ∈,3cos 5α=-,则tan()4πα+=【解析】4tan 3α=-,∴1tan()47πα+=- 4.(2018虹口二模12) 函数()sin f x x =,对于123n x x x x <<<⋅⋅⋅<且12,,,[0,8]n x x x π⋅⋅⋅∈(10n ≥),记1223341|()()||()()||()()||()()|n n M f x f x f x f x f x f x f x f x -=-+-+-+⋅⋅⋅+-,则M的最大值等于【解析】在[0,8]π有4个周期,最大值为4416⨯=5.(2018虹口二模)已知ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,cos sin z A i A =+⋅(i 是虚数单位)是方程210z z -+=的根,3a =.(1)若4B π=,求边长c 的值;(2)求ABC ∆面积的最大值.【解析】(1)解为12,∴3A π=,由正弦定理b =c =(2)画出△ABC 的外接圆可知,3AB AC ==时,面积最大,为4.6.(2018杨浦二模9)若53sin )cos(cos )sin(=---x y x x y x ,则y 2tan 的值为 . 答案:2424.77-或 (2018杨浦二模13)已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为 ( ) )(A4π )(B 2π )(C 2π-)(D 3π-答案: C(2018黄浦二模4)已知ABC ∆的三内角A B C 、、所对的边长分别为a b c 、、,若2222sin a b c bc A =+-,则内角A 的大小是 . 答案:4π(2018黄浦二模18)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知10,(010)OA OB x x ==<<米米,线段BA CD 、线段与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度. (1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.答案:解 (1)根据题意,可算得弧BC x θ=⋅(m ),弧10AD θ=(m ). 又30BA CD BC CD +++=弧弧,于是,10101030x x x θθ-+-+⋅+=, 所以,210(010)10x x x θ+=<<+.xy O12π4π1-(2) 依据题意,可知22111022OAD OBC y S S x θθ=-=⨯-扇扇 化简,得2550yx x =-++25225()24x =--+. 于是,当52x =(满足条件010x <<)时,max 2254y =(2m ).答 所以当52x =米时铭牌的面积最大,且最大面积为2254平方米.(2018静安二模15)函数的部分图像如图所示,则)3(πf 的值为( ). A .22 B 3 C .26D . 0答案:C(2018闵行二模18)已知函数()3cos f x x x ωω=+. (1)当()03f π-=,且||1ω<,求ω的值;(2)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,3a =3b c +=,当2ω=,()1f A =时,求bc 的值.【解析】(1)()2sin()6f x x πω=+,()0336f k πωπππ-=⇒-+=,||1ω<,∴12ω= (2)()1f A =⇒3A π=,由余弦定理,2bc =(2018青浦二模3)若1sin 3α=,则cos 2πα⎛⎫-= ⎪⎝⎭_______________.答案:13(2018青浦二模18)(本题满分14分,第1小题满分6分,第2小题满分8分)已知向量(cos,1)2x m =-,2(3sin ,cos )22x xn =,设函数()1f x m n =⋅+. (1)若[0,]2x π∈,11()10f x =,求x 的值; ()sin()(0,0)f x A x A ωθω=+>>(2)在△ABC 中,角A ,B ,C 的对边分别是c b a ,,且满足2cos 2,b A c ≤求()f B 的取值范围.解:(1)21cos ()cos cos 112222x x x xf x x +=-+=-+111cos sin()2262x x x π=-+=-+ ∵113() sin(); [0,]10652f x x x ππ=∴-=∈又∴33arcsin arcsin 6565x x ππ-=⇒=+ (2)由A C A B a c A b sin 3sin 2cos sin 232cos 2-≤-≤得2sin cos 2sin()B A A B A ⇒≤+2sin cos 2[sin cos cos sin )B A A B A B A ⇒≤+-2sin cos cos (0,]6A B A B B π⇒≥⇒≥⇒∈ ∴111sin()(,0],()sin()()(0,]62622B f B B f B ππ-∈-=-+⇒∈即 (2018崇明二模15)将函数sin 23y x π⎛⎫=- ⎪⎝⎭图像上的点,4P t π⎛⎫ ⎪⎝⎭向左平移(0)s s >个单位长度得到点P ',若P '位于函数sin 2y x =的图像上,则A .12t =,s 的最小值为6πB .t =,s 的最小值为6πC .12t =,s 的最小值为3πD .t ,s 的最小值为3π答案:C(2018崇明二模19)(本题满分14分,本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.) 如图,某公园有三条观光大道,,AB BC AC 围成直角三角形,其中直角边200BC =m ,斜边400AB =m .现有甲、乙、丙三位小朋友分别在,,AB BC AC 大道上嬉戏,所在位置分别记为点,,D E F .(1)若甲乙都以每分钟100m 的速度从点B 出发在各自的大道上奔走,到大道的另一端时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲乙两人之间的距离; (2)设CEF θ∠=,乙丙之间的距离是甲乙之间距离的2倍,且3DEF π∠=,请将甲乙之间的距离y 表示为θ的函数,并求甲乙之间的最小距离.19、解(1)6π=w ………………………………………………………………………2分⎩⎨⎧=-=+100500A k k A ……………………………………………………………………1分⎩⎨⎧==300200k A ………………………………………………………………………2分 32πθ=…………………………………………………………………………2分()300326cos 200+⎪⎭⎫ ⎝⎛+=∴ππn n f ………………………………………………………1分(2)令()()400cos ≥++=k wn A n f θ……………………………………………2分21326cos ≥⎪⎭⎫ ⎝⎛+⇒ππn []()Z k k k n ∈--∈⇒212,612[]12,1∈n[]10,6∈∴n 10,9,8,7,6=⇒n …………………………………………………3分 答:一年中10,9,8,7,6月是该地区的旅游“旺季”。

2018年上海市静安区高考数学二模试卷(解析版)

2018年上海市静安区高考数学二模试卷(解析版)
三、解答题(本大题共有 5 题,满分 76 分)解答下列各题必须在答题纸的相应位置写出必 要的步骤.
17.(14 分)某峡谷中一种昆虫的密度是时间 t 的连续函数(即函数图象不间断).昆虫密度 C 是指每平方米的昆虫数量,这个 C 的函数表达式为
这里的 t 是从午夜开始的小时
数,m 是实常数,m=C(8). (1)求 m 的值; (2)求出昆虫密度的最小值并指出出现最小值的时刻.
cm.
6.(4 分)如图,以长方体 ABCD﹣A1B1C1D1 的顶点 D 为坐标原点,过 D 的三条棱所在的
直线为坐标轴,建立空间直角坐标系,若 的坐标为(4,3,2),则 的坐标为

第 1 页(共 16 页)
7.(5 分)方程
的解集为

8.(5 分)已知抛物线的顶点在坐标原点,焦点在 y 轴上,抛物线上一点 M(a,﹣4)(a>
0)到焦点 F 的距离为 5.则该抛物线的标准方程为

9.(5 分)秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值
的秦九韶算法,至今仍是比较先进的算法.如图的流程图是秦九韶算法的一个实例.若
输入 n,x 的值分别为 4,2,则输出 q 的值为
.(在算法语言中用“*”表示乘法
运算符号,例如 5*2=10)
2018 年上海市静安区高考数学二模试卷
一、填空题(本大题共有 12 题,满分 54 分,第 1-6 题每题 4 分,第 7-12 题每题 5 分)考 生应在答题纸的相应位置直接填写结果.
1.(4 分)已知集合 A={1,3,5,7,9},B={0,1,2,3,4,5},则图中阴影部分集合
用列举法表示的结果是
(1)若 a=﹣1,解不等式 f(x)≥0;

2018学年上海高三数学二模分类汇编——向量与复数

2018学年上海高三数学二模分类汇编——向量与复数

向量:4(2018青浦二模). 已知两个不同向量(1,)OA m =uu r ,(1,2)OB m =-uu u r ,若OA AB ⊥u u r u u u r ,则实数m =5(2018黄浦二模). 已知向量a r 在向量b r 方向上的投影为2-,且||3b =r ,则a b ⋅r r =(结果用数值表示)7(2018松江二模). 已知向量a r 、b r 的夹角为60°,||1a =r ,||2b =r ,若(2)()a b x a b +⊥-r r r r ,则实数x 的值为 11(2018宝山二模). 如图,已知O 为矩形1234PP P P 内的一点,满足14OP =,35OP=,137PP =,则24OPOP ⋅uuu r uuu r 的值为11(2018长嘉二模). 在ABC ∆中,M 是BC 的中点,120A ∠=︒,12AB AC ⋅=-uu u r uuu r ,则线段AM 长的最小值为11(2018静安二模). 在直角三角形ABC 中,2A π∠=,3AB =,4AC =,E 为三角形ABC 内一点,且AE =AE AB AC λμ=+uu u r uu u r uuu r ,则34λμ+的最大值等于 12(2018崇明二模). 在平面四边形ABCD 中,已知1AB =,4BC =,2CD =,3DA =,则AC BD ⋅uuu r uu u r 的值为12(2018杨浦二模). 已知非零向量OP uu u r 、OQ uuu r 不共线,设111m OM OP OQ m m =+++uuu r uu u r uuu r ,定义点集{|}||||FP FM FQ FM A F FP FQ ⋅⋅==uu r uuu r uu u r uuu r uu r uu u r . 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ 上时,不等式12||||F F k PQ ≤uuu u r uu u r 恒成立,则实数k 的最小值为13(2018金山二模). 若向量(2,0)a =r ,(1,1)b =r ,则下列结论中正确的是( )A. 1a b ⋅=r rB. ||||a b =r rC. ()a b b -⊥r r rD. a r ∥b r14(2018虹口二模). 在Rt ABC ∆中,AB AC =,点M 、N 是线段AC 的三等分点,点P在线段BC 上运动且满足PC k BC =⋅uu u r uu u r ,当PM PN ⋅uuu r uuu r 取得最小值时,实数k 的值为( )A. 12B. 13C. 14D. 18 16. (2018青浦二模) 如图所示,将一圆的八个等分点分成相间的两组,连接每组的四个点得到两个正方形,去掉两个正方形内部的八条线段后可以形成一正八角星,设正八角星的中心为O ,并且1OA e =uur u r ,2OB e =uu u r u r ,若将点O 到正八角星16个顶点的向量都写成12e e λμ+u r u r ,,λμ∈R 的形式,则λμ+的取值范围为( )A. [-B. [-+C. [1-+D. [1-16(2018青浦二模). 如图,圆C 分别与x 轴正半轴、y 轴正半轴相切于点A 、B ,过劣弧AB 上一点T 作圆C 的切线,分别交x 轴正半轴,y 轴正半轴于点M 、N ,若点(2,1)Q 是切线上一点,则△MON 周长的最小值为( )A. 10B. 8C. D. 1216(2018黄浦二模). 在给出的下列命题中,是假命题的是( )A. 设O A B C 、、、是同一平面上四个不同的点,若(1)(R)OA m OB m OC m =⋅+-⋅∈u u r u u u r u u u r ,则点A B C 、、必共线B. 若向量a b r r 和是平面α上的两个不平行的向量,则平面α上的任一向量c r 都可以表示为(R)c a b λμμλ=+∈r r r 、,且表示方法是唯一的C. 已知平面向量OA uu r 、OB uu u r 、OC uuu r 满足|||||(0)OA OB OC r r ===>uu r uu u r uuu r |,且0OA OB OC ++=uu r uu u r uuu r r ,则ABC ∆是等边三角形D. 在平面α上的所有向量中,不存在这样的四个互不相等的非零向量a r 、b r 、c r 、d u r ,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直复数:2(2018静安二模). 若复数z 满足(1)2z i i -=(i 是虚数单位),则||z = 2(2018青浦二模). 若复数z 满足2315z i -=+(i 是虚数单位),则z =3(2018崇明二模). i 是虚数单位,若复数(12)()i a i -+是纯虚数,则实数a 的值为3(2018闵松二模). 设m ∈R ,若复数(1)(1)z mi i =++在复平面内对应的点位于实轴上,则m =3(2018长嘉二模). 已知复数z 满足243z i =+(i 为虚数单位),则||z = 6(2018杨浦二模). 若复数z 满足1z =,则z i -的最大值是7(2018奉贤二模). 设z 是复数,()a z 表示满足1n z =时的最小正整数n ,i 是虚数单位,则1()1i a i+=- 8(2018黄浦二模). 已知α是实系数一元二次方程22(21)10x m x m --++=的一个虚数根,且||2α≤,则实数m 的取值范围是12(2018徐汇二模). 已知向量a r 、b r 满足||a =r ||b =r ,若对任意的(,){(,)|||1,0}x y x y xa yb xy ∈+=>r r ,都有||1x y +≤成立,则a b ⋅的最小值为 13(2018青浦二模). 若向量(2,0)a =r ,(1,1)b =r ,则下列结论中正确的是( )A. 1a b ⋅=r rB. ||||a b =r rC. ()a b b -⊥r r rD. a b r r ∥13(2018普陀二模). 已知i 为虚数单位,若复数2()a i i +为正实数,则实数a 的值为( )A. 2B. 1C. 0D. 1- 13(2018青浦二模). 在四边形ABCD 中,AB DC =uu u r uuu r ,且0AC BD ⋅=uuu r uu u r ,则四边形ABCD是( )A. 菱形B. 矩形C. 直角梯形D. 等腰梯形13(2018浦东二模). 已知方程210x px -+=的两虚根为1x 、2x ,若12||1x x -=,则实数p 的值为( )A. B. C. D.14(2018静安二模). 若实系数一元二次方程20z z m ++=有两虚数根α,β,且||3αβ-=,那么实数m 的值是( ) A. 52 B. 1 C. 1- D. 52-14(2018崇明二模). 若1是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A. 2b =,3c =B. 2b =,1c =-C. 2b =-,3c =D. 2b =-,1c =-14(2018浦东二模). 在复数运算中下列三个式子是正确的:(1)1212||||||z z z z +≤+;(2)1212||||||z z z z ⋅=⋅;(3)123123()()z z z z z z ⋅⋅=⋅⋅,相应的在向量运算中,下列式子:(1)||||||a b a b +≤+r r r r ;(2)||||||a b a b ⋅=⋅r r r r ;(3)()()a b c a b c ⋅⋅=⋅⋅r r r r r r ,正确的个数是( )A. 0B. 1C. 2D. 318(2018金山二模). 复数21()2z =是一元二次方程210mx nx ++=(,m n ∈R )的一个根.(1)求m 和n 的值;(2)若()m ni u u z ++=(u C ∈),求u .18(2018宝山二模). 设1z +为关于x 的方程20x mx n ++=,,m n ∈R 的虚根,i 为虚数单位.(1)当1z i =-+时,求m 、n 的值;(2)若1n =,在复平面上,设复数z 所对应的点为P ,复数24i +所对应的点为Q ,试求||PQ 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018上海高三数学二模——函数汇编(2018宝山二模)10. 设奇函数()f x 定义为R ,且当0x >时,2()1m f x x x=+-(这里m 为正常数).若()2f x m ≤-对一切0x ≤成立,则m 的取值范围是 .答案:[)2,+∞(2018宝山二模)15.若函数()()f x x R ∈满足()1f x -+、()1f x +均为奇函数,则下列四个结论正确的是( ))(A ()f x -为奇函数 )(B ()f x -为偶函数)(C ()3f x +为奇函数 )(D ()3f x +为偶函数答案:C(2018宝山二模)19.(本题满分14分,第1小题满分6分,第2小题满分8分)某渔业公司最近开发的一种新型淡水养虾技术具有方法简便且经济效益好的特点,研究表明:用该技术进行淡水养虾时,在一定的条件下,每尾虾的平均生长速度为()g x (单位:千克/年)养殖密度为,0x x >(单位:尾/立方分米)。

当x 不超过4时,()g x 的值恒为2;当420x ≤≤,()g x 是x 的一次函数,且当x 达到20时,因养殖空间受限等原因,()g x 的值为0.(1)当020x <≤时,求函数()g x 的表达式。

(2)在(1)的条件下,求函数()()f x x g x =⋅的最大值。

答案:(1)()(][]()2,0,4,15,4,2082x g x x N x x *⎧∈⎪=∈⎨-+∈⎪⎩;(2)12.5千克/立方分米 (2018虹口二模5) 已知函数20()210x x x f x x -⎧-≥=⎨-<⎩,则11[(9)]f f ---= 【解析】120()log (1),0x f x x x -≤=-+>⎪⎩,1(9)3f --=,111[(9)](3)2f f f ----==- (2018虹口二模11) []x 是不超过x 的最大整数,则方程271(2)[2]044x x -⋅-=满足1x <的所有实数解是 【解析】当01x ≤<,[2]1x =,∴21(2)22x x =⇒=;当0x <,[2]0x =,21(2)4x =, ∴1x =-,∴满足条件的所有实数解为0.5x =或1x =-(2018虹口二模21)已知函数3()f x ax x a =+-(a ∈R ,x ∈R ),3()1x g x x =-(x ∈R ).(1)如果x =x 的不等式()0f x ≤的解,求实数a 的取值范围;(2)判断()g x 在(-和的单调性,并说明理由; (3)证明:函数()f x 存在零点q ,使得4732n a q q q q -=+++⋅⋅⋅++⋅⋅⋅成立的充要条件是a ≥【解析】(1)()023f a ≤⇒≥;(2)根据单调性定义分析,在(-上递减,在上递增; (3)“函数()f x 存在零点q ,使得4732n a q q q q -=+++⋅⋅⋅++⋅⋅⋅成立”说明473231n q a q q q q q-==+++⋅⋅⋅++⋅⋅⋅-成立,根据无穷等比数列相关性质,(1,1)q ∈-,结合第(2)问,31q a q =-在(-上递减,在上递增,∴min 3()1q a g q ≥==-,反之亦然.(2018杨浦二模1)函数lg 1y x =-的零点是 .答案: 10x =(2018杨浦二模17)(本题满分14分,第1小题满分7分,第2小题满分7分)共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用. 据市场分析,每辆单车的营运累计利润y (单位:元)与营运天数()*x x N ∈满足21608002y x x =-+-. (1)要使营运累计利润高于800元,求营运天数的取值范围;(2)每辆单车营运多少天时,才能使每天的平均营运利润y x的值最大? 【解】 (1) 要使营运累计收入高于800元,令80080060212>-+-x x , …………………………………2分 解得8040<<x . …………………………………5分所以营运天数的取值范围为40到80天之间 .…………………………………7分(2)6080021+--=xx x y…………………………………9分 20604002=+-≤ 当且仅当18002x x=时等号成立,解得400x = …………………………12分 所以每辆单车营运400天时,才能使每天的平均营运利润最大,最大为20元每天 .…14分(2018杨浦二模21)(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)记函数()f x 的定义域为D . 如果存在实数a 、b 使得()()f a x f a x b -++=对任意满足a x D -∈且a x D +∈的x 恒成立,则称()f x 为ψ函数.(1)设函数1()1f x x=-,试判断()f x 是否为ψ函数,并说明理由; (2)设函数t x g x +=21)(,其中常数0≠t ,证明:)(x g 是ψ函数; (3)若)(x h 是定义在R 上的ψ函数,且函数)(x h 的图象关于直线x m =(m 为常数)对称,试判断)(x h 是否为周期函数?并证明你的结论.【解】(1)1()1f x x=-是ψ函数 . ……1分 理由如下:1()1f x x =-的定义域为{|0}x x ≠,只需证明存在实数a ,b 使得()()f a x f a x b -++=对任意x a ≠±恒成立.由()()f a x f a x b -++=,得112b a x a x +-=-+,即2()()a x a xb a x a x ++-+=-+. 所以22(2)()2b a x a +-=对任意x a ≠±恒成立. 即2,0.b a =-=从而存在0,2a b ==-,使()()f a x f a x b -++=对任意x a ≠±恒成立. 所以1()1f x x=-是ψ函数. …………4分 (2)记()g x 的定义域为D ,只需证明存在实数a ,b 使得当a x D -∈且a x D +∈时,()()g a x g a x b -++=恒成立,即1122a x a x b t t -++=++恒成立. 所以22(2)(2)a x a x a x a x t t b t t +-+-+++=++, ……5分化简得,22(1)(22)(2)2a x a x a bt b t t +--+=+-.所以10bt -=,22(2)20a b t t +-=.因为0t ≠,可得1b t=,2log ||a t =, 即存在实数a ,b 满足条件,从而1()2x g x t=+是ψ函数. …………10分 (3)函数)(x h 的图象关于直线x m =(m 为常数)对称,所以)()(x m h x m h +=- (1), ……………12分 又因为b x a h x a h =++-)()( (2), 所以当a m ≠时,)]2([)22(a m x m h a m x h -++=-+由(1 ) )]([)2()]2([x a a h x a h a m x m h -+=-=-+-=由(2) )()]([x h b x a a h b -=---= (3)所以)22(]22)22[()44(a m x h b a m a m x h a m x h -+-=-+-+=-+(取a m x t 22-+=由(3)得)再利用(3)式,)()]([)44(x h x h b b a m x h =--=-+.所以()f x 为周期函数,其一个周期为a m 44-. ……………15分当a m =时,即)()(x a h x a h +=-,又)()(x a h b x a h +-=-, 所以2)(b x a h =+为常数. 所以函数)(x h 为常数函数,2)()1(b x h x h ==+,)(x h 是一个周期函数. ……………17分 综上,函数)(x h 为周期函数。

……………18分(2018黄浦二模3)若函数2()82f x ax x =--是偶函数,则该函数的定义域是 .答案:[2,2]-(2018黄浦二模6)方程33log (325)log (41)0x x ⋅+-+=的解x = .答案:2(2018黄浦二模12)已知函数2()(02)f x ax bx c a b =++<<对任意R x ∈恒有()0f x ≥成立,则代数式(1)(0)(1)f f f --的最小值是 . 答案:3.(2018黄浦二模18)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知10,(010)OA OB x x ==<<米米,线段BA CD 、线段与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.解 (1)根据题意,可算得弧BC x θ=⋅(m ),弧10AD θ=(m ).又30BA CD BC CD +++=弧弧,于是,10101030x x x θθ-+-+⋅+=,所以,210(010)10x x x θ+=<<+. (2) 依据题意,可知22111022OAD OBC y S S x θθ=-=⨯-扇扇 化简,得2550y x x =-++25225()24x =--+. 于是,当52x =(满足条件010x <<)时,max 2254y =(2m ). 答 所以当52x =米时铭牌的面积最大,且最大面积为2254平方米.(2018黄浦二模20)(本题满分16分)本题共有2个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数22, 10,()=1, 0 1.x x f x x x --≤<⎧⎨-≤≤⎩ (1) 求函数()f x 的反函数1()f x -;(2)试问:函数()f x 的图像上是否存在关于坐标原点对称的点,若存在,求出这些点的坐标;若不存在,说明理由;(3)若方程()|()240f x f x ax +---=的三个实数根123x x x 、、满足: 123x x x <<,且32212()x x x x -=-,求实数a 的值.解 (1) 22, 10,()=1, 0 1.x x f x x x --≤<⎧⎨-≤≤⎩∴当10x -≤<时,()2,0()2f x x f x =-<≤且.由2y x =-,得12x y =-,互换x y 与,可得11()(02)2f x x x -=-<≤. 当01x ≤≤时,2()1,()0f x x f x =-≤≤且-1.由21y x =-,得x =x y 与,可得1()10)f x x -=-≤≤.11, 0<2,2() 10.x x f x x -⎧-≤⎪∴=-≤≤(2) 答 函数图像上存在两点关于原点对称.设点00000(,)(01)(,)A x y x B x y <≤--、是函数图像上关于原点对称的点,则00()()0f x f x +-=,即200120x x -+=,解得001(1,)x x =舍去,且满足01x <≤ .因此,函数图像上存在点1,2(12)A B -和关于原点对称.(3) 考察函数()y f x =与函数y =当1x -≤≤()f x ≥4240x ax ---=,解得 2+2x a =-,且由21+22a -≤-≤-,得02a ≤≤.当12x -<≤时,有()f x <240ax -=,化简得 22(4)40a x ax ++=,解得24=0+4a x x a =-,或(当02a ≤≤时,24024a a -<-<+). 于是,123224,,024a x x x a a =-=-=++. 由32212()x x x x -=-,得22442=2(+)+442a a a a a -++,解得32a -±=.因为312a -=<-,故a =02a <=<,满足条件.因此,所求实数a = (2018静安二模3)函数y =的定义域为 . 答案:{}1x x ≥-(2018静安二模16)已知函数3()10f x x x =++,实数123,,x x x 满足1223310,0,0x x x x x x +<+<+<,则123()()()f x f x f x ++的值( ).A .一定大于30B .一定小于30C .等于30D .大于30、小于30都有可能答案:B(2018静安二模21)(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)设函数()|27|1f x x ax =-++(a 为实数).(1)若=1a -,解不等式()0f x ≥;(2)若当01x x>-时,关于x 的不等式()1f x ≥成立,求a 的取值范围; (3)设21()1x g x a x +=--,若存在x 使不等式()()f x g x ≤成立,求a 的取值范围. 解:(1)由()0f x ≥得271x x -≥-,………………………1分 解不等式得8|63x x x ⎧⎫≤≥⎨⎬⎩⎭或 ………………………………4分 (利用图像求解也可)(2)由01x x>-解得01x <<. 由()1f x ≥得|27|0x ax -+≥,当01x <<时,该不等式即为(2)70a x -+≥; …………………………5分当=2a 时,符合题设条件;……………………6分下面讨论2a ≠的情形,当2a >时,符合题设要求;……………………7分当2a <时,72x a ≤-,由题意得712a≥-,解得25a >≥-; 综上讨论,得实数a 的取值范围为{}|5a a ≥- ………………………10分 (3)由21()=21(1)1x g x x a x a x +=-++--,…………………………12分代入()()f x g x ≤得|27|2|1|1x x a ---+≤,令()|27|2|1|1h x x x =---+, 则6,17()410,1274,2x h x x x x ⎧⎪≤⎪⎪=-+<≤⎨⎪⎪->⎪⎩, 74()()(1)62h h x h -=≤≤=, ∴min ()4h x =-…………………………15分若存在x 使不等式()()f x g x ≤成立,则min (),4h x a a ≤≥-即. (1)(2018闵行二模4)定义在R 上的函数()21x f x =-的反函数为1()y f x -=,则1(3)f -=【解析】1213(3)2x f --=⇒=(2018闵行二模10) 若函数2()log (1)a f x x ax =-+(0a >且1a ≠)没有最小值,则a 的取值范围是【解析】分类讨论,当01a <<时,没有最小值,当1a >时,即210x ax -+≤有解,∴02a ∆≥⇒≥,综上,(0,1)[2,)a ∈+∞(2018闵行二模16) 给出下列三个命题:命题1:存在奇函数()f x (1x D ∈)和偶函数()g x (2x D ∈),使得函数()()f xg x (12x D D ∈)是偶函数;命题2:存在函数()f x 、()g x 及区间D ,使得()f x 、()g x 在D 上均是增函数,但()()f x g x 在D 上是减函数;命题3:存在函数()f x 、()g x (定义域均为D ),使得()f x 、()g x 在0x x =(0x D ∈)处均取到最大值,但()()f x g x 在0x x =处取到最小值;那么真命题的个数是( )A. 0B. 1C. 2D. 3【解析】命题1:()()0f x g x ==,x ∈R ;命题2:()()f x g x x ==,(,0)x ∈-∞; 命题3:2()()f x g x x ==-,x ∈R ;均为真命题,选D(2018闵行二模19)某公司利用APP 线上、实体店线下销售产品A ,产品A 在上市20天内全部售完,据统计,线上日销售量()f t 、线下日销售量()g t (单位:件)与上市时间t (*t N ∈)天的关系满足:10110()102001020t t f t t t ≤≤⎧=⎨-+<≤⎩,2()20g t t t =-+(120t ≤≤),产品A 每件的 销售利润为40115()201520t h t t ≤≤⎧=⎨<≤⎩(单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A 的日销售利润为()F t ,写出()F t 的函数解析式;(2)产品A 上市的哪几天给该公司带来的日销售利润不低于5000元?【解析】(1)22240(30),110()40(10200),101520(10200),1520t t t F t t t t t t t ⎧-+≤≤⎪=-++<≤⎨⎪-++<≤⎩(2)()5000515F t t ≥⇒≤≤,第5天到第15天(2018青浦二模10)已知()f x 是定义在[2,2]-上的奇函数,当(0,2]x ∈时,()21x f x =-,函数2()2g x x x m =-+. 如果对于任意的1[2,2]x ∈-,总存在2[2,2]x ∈-,使得12()()f x g x ≤,则实数m 的取值范围是 . 答案: 5m ≥-(2018青浦二模15)已知函数()f x 是R 上的偶函数,对于任意x ∈R 都有(6)()(3)f x f x f +=+成立,当[]12,0,3x x ∈,且12x x ≠时,都有1212()()0f x f x x x ->-.给出以下三个命题: ①直线6x =-是函数()f x 图像的一条对称轴;②函数()f x 在区间[]9,6--上为增函数;③函数()f x 在区间[]9,9-上有五个零点.问:以上命题中正确的个数有( ).(A )0个 (B )1个 (C )2个 (D )3个答案:B(2018青浦二模20)(本题满分16分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题6分. 设函数()2()5f x ax a x=-+∈R . (1)求函数的零点;(2)当3a =时,求证:()f x 在区间(),1-∞-上单调递减;(3)若对任意的正实数a ,总存在[]01,2x ∈,使得0()f x m ≥,求实数m 的取值范围.解:(1)①当0a =时,函数的零点为25x =-; ②当2508a a ≥-≠且时,函数的零点是52x a ±=;③当258a <-时,函数无零点; (2)当3a =时,2()3+5f x x x =-,令2()3+5g x x x=- 任取12,(,1)x x ∈-∞-,且12x x <, 则()211212121212()2322()()3535x x x x g x g x x x x x x x -+⎛⎫-=-+--+= ⎪⎝⎭因为12x x <,12,(,1)x x ∈-∞-,所以210x x ->,121x x >,从而()211212()230x x x x x x -+>即1212()()0()()g x g x g x g x ->⇒>故()g x 在区间(),1-∞-上的单调递减当(),1x ∈-∞-时,()()6,g x ∈+∞22()3+5=3+5()f x x x g x x x∴=--= 即当3a =时,()f x 在区间(),1-∞-上单调递减;(3)对任意的正实数a ,存在[]01,2x ∈使得0()f x m ≥,即0max ()f x m ≥,当()0,x ∈+∞时,25,02()+5255,2ax x x f x ax x ax x xa ⎧-+<<⎪⎪=-=⎨⎪-+-≥⎪⎩ 即()f x在区间50,2a ⎛+ ⎝⎭上单调递减,在区间⎫+∞⎪⎪⎝⎭上单调递增;所以{}{}0max ()max (1),(2)max 7,62f x f f a a ==--, 又由于0a >,{}8max 7,623a a --≥,所以83m ≤.(2018崇明二模9)设()f x 是定义在R 上以2为周期的偶函数,当[0,1]x ∈时,2()log (1)f x x =+,则函数()f x 在[1,2]上的解析式是 .答案: 2()log (3)f x x =-(2018崇明二模20)(本题满分16分,本题共有3个小题,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分7分.)已知函数2(),21x xaf x x R +=∈+. (1)证明:当1a >时,函数()y f x =是减函数;(2)根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由;(3)当2a =,且b c <时,证明:对任意[(),()]d f c f b ∈,存在唯一的0x R ∈,使得0()f x d =,且0[,]x b c ∈.20. 解:(1)证明:任取12,x x R ∈,设12x x <,则211212(1)(22)()()(21)(21)x x xx a f x f x ---=++因为12x x <,所以2122x x>,又1a >所以12()()0f x f x ->,即12()()f x f x >……3分所以当1a >时,函数()y f x =是减函数 ……4分 (2)当1a =时,()1f x =,所以()()f x f x -=,所以函数()y f x =是偶函数 ……1分当1a =-时,()2121x x f x -=+2112()()2121x xx x f x f x -----===-++所以函数()y f x =是奇函数 ……3分 当1a ≠且1a ≠-时,2(1)3a f +=,21(1)3a f +-= 因为(1)(1)f f -≠且(1)(1)f f -≠-所以函数()y f x =是非奇非偶函数 ……5分(3)证明:由(1)知,当2a =时函数()y f x =是减函数, 所以函数()y f x =在[,]b c 上的值域为[(),()]f c f b ,因为[(),()]d f c f b ∈,所以存在0x R ∈,使得0()f x d =. ……2分 假设存在110,x R x x ∈≠使得1()f x d =,若10x x >,则10()()f x f x <,若10x x <,则10()()f x f x >,与10()()f x f x d ==矛盾,故0x 是唯一的 ……5分 假设0[,]x b c ∉,即0x b <或0x c >,则0()()f x f b >或0()()f x f c < 所以[(),()]d f c f b ∉,与[(),()]d f c f b ∈矛盾,故0[,]x b c ∈……7分(2018奉贤二模9)给出下列函数:①1y x x=+;②x x y +=2;③2x y =;④23y x =;⑤x y tan =;⑥()sin arccos y x =;⑦(lg lg 2y x =-.从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是 . 【参考答案】:37(2018奉贤二模18)已知函数()1212-+=x x k x f ,0≠k ,R k ∈. (1)讨论函数()x f 的奇偶性,并说明理由;(2)已知()x f 在(]0,∞-上单调递减,求实数k 的取值范围.【参考答案】:(1)函数定义域为R …………………………………………………1分 01)0(≠=kf ()x f ∴不是奇函数……………………………………………………………………2分()1221-+⋅=-xxk x f ,令()()()02211=-⎪⎭⎫ ⎝⎛-⇒=--x x k x f x f 恒成立, 所以当1=k 时,函数()x f 为偶函数;……………………………………………4分 当1≠k 时,函数()x f 是非奇非偶函数。

相关文档
最新文档