初一奥数整式及有理数测试题汇总
初中奥数题及答案
年初中奥数题及答案初中奥数题试题一一、选择题(每题分,共分).如果,都代表有理数,并且+,那么 ( ).,都是.,之一是.,互为相反数.,互为倒数答案:解析:令,-,满足(-),由此、互为相反数。
.下面的说法中正确的是 ( ).单项式与单项式的和是单项式.单项式与单项式的和是多项式.多项式与多项式的和是多项式.整式与整式的和是整式答案:解析:²,都是单项式.两个单项式,²之和为²是多项式,排除。
两个单项式²,之和为是单项式,排除。
两个多项式与-之和为是个单项式,排除,因此选。
.下面说法中不正确的是 ( ). 有最小的自然数.没有最小的正有理数.没有最大的负整数.没有最大的非负数答案:解析:最大的负整数是,故错误。
.如果,代表有理数,并且+的值大于-的值,那么 ( ).,同号.,异号.>.>答案:.大于-π并且不是自然数的整数有 ( ).个.个.个.无数个答案:解析:在数轴上容易看出:在-π右边的左边(包括在内)的整数只有-,-,-,共个.选。
.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( ).个.个.个.个答案:解析:负数的平方是正数,所以一定大于它本身,故错误。
.代表有理数,那么,和-的大小关系是 ( ).大于-.小于-.大于-或小于-.不一定大于-答案:解析:令,马上可以排除、、,应选。
.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) .乘以同一个数.乘以同一个整式.加上同一个代数式.都加上答案:解析:对方程同解变形,要求方程两边同乘不等于的数,所以排除。
我们考察方程-,易知其根为.若该方程两边同乘以一个整式-,得(-)(-),其根为及,不与原方程同解,排除。
同理应排除.事实上方程两边同时加上一个常数,新方程与原方程同解,对,这里所加常数为,因此选..杯子中有大半杯水,第二天较第一天减少了,第三天又较第二天增加了,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( ).一样多.多了.少了.多少都可能答案:解析:设杯中原有水量为,依题意可得,第二天杯中水量为×(-);第三天杯中水量为()×()××;第三天杯中水量与第一天杯中水量之比为∶,所以第三天杯中水量比第一天杯中水量少了,选。
初一数每天三道数学题有理数和整式的计算
初一数每天三道数学题有理数和整式的计算一、有理数部分 【有关概念】1.下列各数中,-3的相反数是 ( )A .3B .-3C .31D .-312.2的相反数是 ( )A. -2B.2C.21-D.213.下列四个负数中-313,-3.14,-523 ,-3,最小的负数是 ( )A .-313B .-3.14C .-523 D .-34.在太阳系中,木星的表面积约61419000000平方千米,把61419000000这个数字用科学计数法表示应是( )A. 910419.61⨯B.10101419.6⨯C.1010419.61⨯D.11101419.6⨯5.下列由四舍五入法得到的近似数,精确到的位数说法正确的是 ( ) A.2102.1⨯是精确到十位 B.13亿是精确到个位 C.25.4是精确到4位 D.2.01是精确到0.16.在数轴上到原点距离等于8个单位长度的点表示的数是 ( ) A.8 B.-8 C.8± D.07.如图,b a ,是数轴上的两个数,那么下列不等式正确的是 ( )A. b a ≥-2B.b a >-2C.b a <-2D.b a ≤-28.数轴上点A ,B ,C ,D 对应的有理数都是整数,若点A 对应有理数a ,点B 对应有理数b ,且b﹣2a=7,则数轴上原点应是( )A .D 点B .C 点 C .B 点D .A 点 9.被誉为“天路”的青藏铁路是中国新世纪四大工程之一,2013年9月入选“全球百年工程”,它全长1956千米,用科学记数法表示青藏铁路的长度为米.10.2017年冬季某日,广州最低气温是5 ℃,呼和浩特最低气温是-8 ℃,这一天呼和浩特的最低气温比广州的最低气温低 ℃【计算】1.计算:=-⨯)(18.2.计算:2-1=.3.计算:=⨯÷2211.4.下列计算正确的是 ( ) A.5-3=-2 B.(+3)+(-1)=+4 C.(-6)÷(-3)=-2 D.(-3)×(+2)=-65.下列计算正确的是 ( ) A.12)4(3-=- B.1)1(100=- C.422=- D.9)3(3-=-6.下列等式不成立的是 ( ) A.55=- B.55--=- C.55=- D.55=--7.计算题(1))1.2()7.0(2.1)8.0(---++; (2))31(3)11(95-⨯÷-⨯-;(3)[])23(4)5.01()5(503322--⨯---÷+-.8.计算:(1))2()4()5()8(+---++- (2)[]25)24()4(51⨯+-⨯--+-(3))4(221)53(+⨯+÷- (4)36)187436597(⨯-+-(5)242)2()53()1(32-÷+---⨯+-9. 一快递小哥,在快递站A 处的东西向街道上收发快递,如果他向东走为正,下列是他收快递时所走的路程(单位为:km ).-5,+7,-2,+6,+1,+4,-3,+7,-2,-2 (1)他在上述过程中,走过的总路程是多少km ?(2)在上述过程中,走到最后一站时,他在A 处东边,还是西边,离A 处有多远?二、整式部分 【有关概念】1 .若代数式422--x x 的值为2,则代数式20632--x x 的值是 ( )A .2B .-2C .-38D .382.已知3=a ,5=b ,且b a b a +=+,则b a -值等于 ( )A .-2或8B .2或-8C .-2或-8D .±2或±83.多项式ab ab b a --222的项数及次数分别是 ( )A.3,3B.3,2C.2,3D.2,24.下列说法正确的是 ( )A .-32b 2的次数是2,系数是-3B .21-x 是单项式 C .ab π51-的系数是-51 D .数字0也是单项式5.下列各组中的两个项不属于同类项的是 ( )A .3x 2y 和-22x 2y B.-xy 和2yx C.35和53 D.a 2b 和ab 2 6.下列合并同类项正确的是 ( )A .a 2+3a=5a 3B .2a -3a=-1 C.ab b a =+2121 D .2222121yx yx y x =-7.计算:=-x x 35( )A.x 2B.22xC.x 2-D.-28.下列各式去括号后错误的是 ( ) A. 532)5()32(-++-=-++-a a a a B.b a a b a a +-=+-+2)2( C.b a a b a a -+=+--2)2( D.b a b a b a b a +---=----23)()23(9.对代数式)2()3(222ab b ab a ----进行去括号,合并同类项,最后结果正确的是 ( ) A.2282b ab a +- B.2252b ab a +- C.222b ab a +- D.2242b ab a +- 10.“数a 的2倍与10的和”用代数式表示为. 11.计算:3x -7x=.12.计算:=---+1)212(2)2(222x x x .13.请在括号中填上适当的项:-+=--++b a b a ab b a 22222( ). 14.把多项式523322--+-xy x y x 按x 的降幂排列结果是.16.若022)23(2=-++b a ,则b a =.17.对于有理数a 、b ,如果ab<0,a+b<0.则下列各式成立的是 (只填序号). ①a<0,b<0;②a>0,b<0且|b|>a ;③a>0,b<0且|b|<a ;④a<0,b>0且|a|<b ;⑤a<0,b>0且|a|>b ;⑥a>0,b>0.【化简求值】1.化简:4x 2+2(x 2-y 2)-3(x 2+y 2)2.先化简,再求值:3x 2y -[2x 2y -(xy 2-x 2y)-4xy 2],其中x=-4,y=214.先化简,再求值:[])3(2)52(52222a a a a a a --+--,其中2-=a .5.先化简,再求值 24)2(5)35(222-++--+a a a a a a ,其中2-=a .7.某同学做一道数学题:“两个多项式A、B,B=42x-5x-6,试求“A-B”,这位同学把“A-B”看成“A+B”,结果求出答案是72x-10x-12,那么A-B的正确答案是多少?三、一次方程部分 【有关概念】1 .下列方程中,属于一元一次方程的个数有 ( )①2x -3y=12;②x2+3=5;③﹣8x+4=13x ;④x 2+5x -1=0A .1个B .2个C .3个D .4个(5)3=x ;(6)8=+y x .其中一元一次方程的个数是 ( )A.2B.3C.4D.53.下列等式变形正确的是 ( )C.如果33-=-y x ,那么o y x =-D.如果my mx =,那么y x =【解一元一次方程】1.解方程:5x -2=0,则x=.2.把下列方程去分母,结果正确的是 ( )A.1512223=+--+x x 去分母后,得:11223=+-+x x B.1512223=+--+x x 去分母后,得11223=-++x xC.1512223=+--+x x 去分母后,得:10)12(2)23(5=--+x xD.1512223=+--+x x 去分母后,得:10)12(2)23(5=+--+x x3.方程312=-x 的解是 ( )A.-1B.-2C.1D.2( )5.解方程:(1)x x -=+736; (2))2(4153+=-x x ;(3)3221423x x x =--+(5)52221+-=--x x x .【应用题】1.某商场年末促销,一件衣服标价a 元,经两次降价后售价为115元,第一次降价打了“七折”,第二次降价每件又减25元,则得到方程.2.某学校要购买电脑,A 型电脑每台5000元,B 型电脑每台3000元,购买10台电脑共花费34000元.设购买A 型电脑x 台,购买B 型电脑y 台,则根据题意可列方程组为.往返都步行,则需 小时.4.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有_____只,兔有_____只.5.一个两位数,个位数字为a ,十位数字比个位数字大1,则这两位数可表示为 ( )A.111-aB.1011-aC.111+aD.1011+a6.某企业今年1月份产值为x 万元 ,2月份减少了10%,3月份比2月份增加了15%,则3月份的产值是 ( )A.(1-10%)(1+15%)x 万元B.(1-10%+15%)x 万元C.(x -10%)(x +15%)万元D.(1+10%-15%)x 万元7.李叔叔5年前把一笔钱作为奶奶定期存款存入银行,年利率是5.5%。
初一奥数整式及有理数测试题汇总
初一奥数整式及有理数测试题汇总奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。
国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。
下面是无忧考网为大家带来的初一奥数整式及有理数测试题汇总,欢迎大家阅读。
整式测试题一、填空题1、某天的温度为12oC,最低温度为aoC,则这天的温差是_______.2、用代数式表示比m的4倍大2的数为______.3、小彬上次数学成绩80分,这次成绩提高了a%,这次数学成绩为_______.4、有三个连续自然数,中间的一个数为k,则其它两个数是____ ._____.5、如果a=2b, b=4c,那么代数式6、若-7xm+2y与-3x3yn是同类项,则m=_______, n=________.7、若把多项式11x-9+76x+1-2x2-3x合并同类项后是________.8、2x-3是由_______和________两项组成。
9、若-7xm+2y与-3x3yn是同类项,则m=_______, n=________.10、把多项式11x-9+76x+1-2x2-3x合并同类项后是________.二、选择题11、已知2x6y2和- ( )A、-1B、-2C、-3D、-412、当x= ( )A、-3B、-5C、3D、513、m-[n-2m-(m-n)]等于( )A、-2mB、2m C. 4m-2n D.2m-2n14、用代数式表示“x的2倍与y的平方的差”是( )A. (2x-y)2B. x-2y2C. 2x2-y2D. 2x-y215、下列是同类项的一组是( )A. –ab2与B. xyz与8xyC. 3mn2与4D.16、下列运算正确的是( )A. 2x+2y=2xyB. 5x+x=5x2C. –3mn+mn=-2mnD. 8a2b-7a2b=117、下列等式中成立的是( )A. –a+b=-(a+b)B. 3x+8=3(x+8)C. 2-5x=-(5x-2)D. 12-4x=8x18、已知一个三位数,它的百位数字是a,十位数字是b, 个位数字是c,则这个三位数字是( )A. abcB. a+b+cC. 100a+10b+cD. 100c+10b+a19、已知a-b=5, c+d=-3, 则(b+c)-(a-d)的值为( )A. 2B. –2C. –8D. 820、点a、b在数轴上的位置关系如图所示,化简的结果等于( )A. 2aB. –2aC. 2bD. –2b三、计算题21、a+(5a-3b)-(a-2b)22、2a - [a + 2(a-b)] + b四、解答题23、按如图所示方式在餐桌上摆碗1) 一张餐桌上放6个碗,3张餐桌上放______个碗.2) 按照上图继续排列餐桌,完成下表24、已知:甲的年龄为m岁,乙的年龄比甲的年龄的3倍少7岁,丙的年龄比乙的年龄的还多3岁,求甲、乙、丙年龄之和.25、甲、乙两地相距100千米,一辆汽车的行驶速度为v千米/小时.(1)用代数式表示这辆汽车从甲地到乙地需行驶的时间?(2)若速度增加5千米/小时,则需多少时间?速度增加后比原来可早到多少时间?分别用代数式表示.(3)当v=50千米/时,分别计算上面各个代数式的值。
初一数学易错题汇总(有理数、整式、因式分解、一元一次方程)
精心整理初一数学易错题汇总第一章 有理数易错题练习一.判断⑴ a 与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6. ⑿一个数的倒数的绝对值等于这个数的相反数,这个数是 .三.解答题⑴已知a 、b 互为倒数,- c 与2d 互为相反数,且│x │=4,求2ab -2c +d +3x 的值. ⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9)+(+2)- (-5); ②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分):⑺比较4a和-4a的大小①已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;②已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;③已知3.412=11.63,那么(34.1)2=116300;④近似数2.40×104精确到百分位,它的有效数字是2,4;⑤已知5.4953=165.9,x3=0.0001659,则x=0.5495.⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼若x、y是有理数,且|x|-x=0,|y|+y=0,|y|>|x|,化简|x|-|y|-|x+y|.(3)绝对值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;(6) 平方得412的数是____;此题用符号表示:已知,4122=x 则x=_______; (7)若|a|=|b|,则a,b 的关系是________;A .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 (4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。
初中奥数题目及答案大全
初中奥数题目及答案大全初中奥数题及答案大全:一、选择题(每题1分,共10分)1.下面的说法中准确的是()A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。
两个单项式x2,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,所以选D。
2.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
3.下面说法中不准确的是()A.有ZUI小的自然数B.没有ZUI小的正有理数C.没有的负整数D.没有的非负数答案:C解析:的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有()A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不准确的说法的个数是()A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是()A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上能够排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,能够在原方程的两边()A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
七年级《有理数》《整式的加减》测试题
A32120 七年级《有理数》《整式的加减》测试题一、选择题(每小题3分,共24分)1.1—(—3)的相反数是 ( ) (A )3. (B )—4. (C )4. (D ). 2.如图,在数轴上点A 表示的数可能是(A )0.9. (B )1.8.(C ) 1.7-. (D ) 2.2-. (第2题) 3.2013年长春市初中毕业生的人数约为5.95万人,招生办统计这个数字的精确度是 ( ) (A )百分位. (B )十分位. (C )万位. (D )百位. 4.铅笔的单价是x 元,圆珠笔的单价是铅笔的2.5倍,则圆珠笔的单价是( ) (A )(x +2.5)元. (B )(x -2.5)元. (C )2.5x 元. (D )0.4x 元. 5.关于多项式233212364x y x y y --+,下列说法正确的是 ( ) (A )它是三次四项式. (B )它是关于字母y 的降幂排列.(C )它的一次项是14y . (D )232x y 与323x y -的次数不同. 6.下列各式合并同类项的结果正确的是 ( )(A )2842x x x =+. (B )xy x x 523=+. (C )43722=-x x . (D )09922=-ba b a . 7.计算(-2)33+(-2)34所得结果是 ( ) A. 233B.-1C.-2D. -2338.如图,某动物图案按一定规律排列,仔细观察,按此规律第2014个图案是( )(A ) (B ) (C ) (D )二、填空题(每小题3分,共21分)9.长春地铁2号线一期工程投资1 280 000万元,把1 280 000这个数字用科学记数法表示 为 . 10.比较大小: 87______76--11.π-3=12.写出一个系数为负数,关于x 、y 的3次单项式 。
13..长为m ,宽为n 的长方形周长是 .(用含m 、n 的代数式表示) 14.若代数式a b -的值为7,则5a b -+的值为_________.(第15题)15.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形;…;如此下去.则第n 个图形中共有 个正方形.(用含n 的代数式表示) 三.计算题:(每小题6分,共24分)16. ()231231813⎛⎫⨯-+⨯- ⎪⎝⎭. 17. 21-+21÷(-3)×[32)2()2(---]3)1(--18.22231()(5)22x x x --+-. 19. )2(2)32(3)(22222xy x x xy x xy x -+----四、解答题20.(7分)先化简,再求值:22225(3)(3)x y xy xy x y --+,其中12x =,1y =-.21. (7分)在一次数学考试中,某班8名学生的成绩如下(单位:分): 112,95,88,113,105,92,95,108.(1)以100分为基准,高出100分的分数记作正数,不足100分的分数记作负数.如97,记作3-.请按此要求表示这8名学生的成绩.(4分) (2)利用(1)的结果,求这8名学生的总成绩.(3分)22. (7分)已知2231M x x =--,232N x x =--,.(1)计算M —N 的差. (4分) (2)利用(1)的结论,比较M 与N 的大小.(3分)23.(9分)人在运动时的心跳速率通常和人的年龄有关.如果用m 表示一个人的年龄,用n表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么0.8(220)n m =-. (1)求正常情况下运动时,一名13岁的学生所能承受的每分钟心跳的最高次数.(4分) (2)若正常情况下一个40岁的人运动时,10秒钟心跳的次数是23次,请问他有危险吗?为什么?(5分)24.如图所示,A 、B 、C 是一条公路上的三个村庄,A 、B 间的路程为200km ,A 、C 间的路程为80km ,现在A 、B 之间设一个车站P ,设P 、C 之间的路程为x km . (1)用含x 的代数式表示车站到三个村庄的路程之和;(4分)(2)若x =20km ,则车站到三个村庄的路程之和是多少km ?(3分)(3)若要使车站到三个村庄的路程总和最小,问车站应设在何处?最小值是多少?(3分)25. (11分)某电视机厂要印制产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费;乙印刷厂提出:每份材料收2元印刷费,不收制版费.设该电视机厂要印制产品宣传材料x 份.(1)用含x 的代数式分别表示甲、乙两个印刷厂收取的费用.(4分)(2)当800x =、1000x =、1200x =时,分别求出甲、乙两个印刷厂收取的费用.(6分)(3)观察(2)的计算结果,当x 时,在甲印刷厂印制合算.(1分)。
初一整式测试题及答案
初一整式测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是单项式?A. 3x^2yB. 2x + 3C. 5x^2 - 3xD. 4x^3y^2 / 22. 合并同类项 2x^2 - 3x^2 + 5x^2 的结果是:A. 4x^2B. -x^2C. 0D. 3x^23. 整式 4x - 3y + 2z 的次数是:A. 1B. 2C. 3D. 44. 计算 (3x - 2)(2x + 5) 的结果是:A. 6x^2 + 11x - 10B. 6x^2 - 11x + 10C. 6x^2 + 11x + 10D. 6x^2 - 11x - 105. 多项式 2x^3 - 5x^2 + 3x - 1 的次数是:A. 1C. 3D. 46. 整式 3x^2y - 5x + 2 是关于 x 的:A. 一次单项式B. 一次多项式C. 二次单项式D. 二次多项式7. 整式 2x^2y + 3xy^2 - 4y 是关于 y 的:A. 一次单项式B. 一次多项式C. 二次单项式D. 二次多项式8. 计算 (x + 1)(x - 1) 的结果是:A. x^2 - 1B. x^2 + 1C. 2xD. 29. 整式 3x^2 - 2x + 1 的系数分别是:A. 3, -2, 1B. -3, 2, -1C. 3, 2, -1D. -3, -2, -110. 整式 4x^3 - 3x^2 + 2x - 1 的最高次项是:A. 4x^3B. -3x^2D. -1二、填空题(每题4分,共20分)1. 单项式 -5x^3y^2 的系数是 ________。
2. 合并同类项 4x^2 - 2x^2 + 3x^2 的结果是 ________。
3. 整式 2x^2y - 3xy^2 + 4y 是关于 y 的 ________ 次多项式。
4. 计算 (2x + 3)(x - 4) 的结果是 ________。
5. 整式 5x^4 - 3x^3 + 2x^2 - x + 1 的常数项是 ________。
有理数初一奥数习题
第一讲:有理数例1:若19a+98b=0,则ab 是 ( )(A )正数 (B )非正数 (C )负数 (D )非负数 例2:有如下四个命题: ○1有理数的相反数是正数; ○2两个同类项的数字系数是相同的; ○3两个有理数的和的绝对值大于这两个有理数绝对值的和; ○4两个负有理数的比值是正数。
其中真命题有( )(A )4个 (B )3个 (C )2个 (D )1个第11届(2000年)初一第2试例3:有理数a 等于它的倒数,有理数b 等于它的相反数,则a 1998+b 1998等于 ( ) (A )0 (B )1 (C )-1 (D )2第9届(1998年)初一第2试例4:22)34(34⨯--⨯-等于 ( )(A )0 (B )72 (C )—180 (D )108第5届(1994年)初一第1试例5:用简便方法计算7+97+997+9997+99997=第10届(1999年)初一培训题例6:=-⨯-÷-⨯-)1331()2.1()125.0321(117第10届(1999年)初一第1试例7:设),43(21,4)32(1),432(1,4321÷÷÷=÷÷÷=÷÷÷=÷÷÷=d c b a 则=÷÷÷)()(d c a b例8:=+++-+-+++-+-+++-+-+151413)12()11(109)8()7(65)4()3(2第3届(1992年)初一第1试例9:)69.032.031.030.0(20++++÷ 的值的整数部分是 ( )(A )1 (B )2 (C )3 (D )4第14届(2003年)初一培训题例10:)10198()9187()8176()7165()6154()5143(-++++++++++等于 ( )(A )5.5 (B )5.65 (C )6.05 (D )5.85第5届(1994年)初一第1试例11:计算=⨯-878)125.0(第6届(1995年)初一第1试例12:=-----)110001)(110011()119961)(119971)(119981(L第10届(1999年)初一第1试 例13:=-+-+-+-+-+-+--+-+-+-1471261058463422120021998200019971998199619961995第8届(1997年)初一第1试例14:=-+-+-+-222222222222)56()45()34()23(第4届(1993年)初一第1试例15:计算:=+--------10987654322222222222第10届(1999年)初一第1试例16:=-+++++12)12)(12)(12)(12)(12(3216842 第1届(1990年)初一第1试例17:=++++++-++++++)199613121)(19971211()19961211)(199713121(第8届(1997年)初一第2试 例18:=⨯++7655.0469.27655.02345.122第2届(1991年)初一第2试例19已知,200020002000200120012001,199919991999200020002000,199819981998199919991999-⨯-⨯-=+⨯-⨯-=+⨯-⨯-=c b a 则abc 等于 ( ) (A )-1 (B )3 (C )-3 (D )1 例20 已知02)1(2=-+-ab a ,求)1998)(1998(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值。
初中奥数题及答案
初中奥数题试题一一、选择题(每题1分,共10分)1.假如a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中准确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,所以选D。
3.下面说法中不准确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.假如a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不准确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故丙错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上能够排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,能够在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
整式的加减有理数的混合运算练习题(附答案)
整式的加减有理数的混合运算练习题一、单选题1.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A.4a >B.0c b ->C.0ac >D.0a c +>2.下列各数:822,7.1,0,3.14,2022,1840,57---+-,其中整数有m 个,负分数有n 个,则m n +等于( ) A.4 B.5 C.6 D.73.今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为( )A.50.77810⨯B.47.7810⨯C.377.810⨯D.277810⨯4.观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…,将这种做法继续下去(如图2,图3,…),则图6中挖去三角形的个数为( )A.121B.362C.364D.7295.下列计算:①112--=-;②3(2)8--=; ③11(1)(3)544-+-=; ④111()4242-÷⨯=-. 其中计算正确的个数为( )A.1B.2C.3D.46.下列说法中,正确的是( )A.若a b ≠,则22a b ≠B.若a b >,则a b >C.若a b =,则a b =D.若a b >,则a b >7.有理数a b ,在数轴上的位置如图,则2a b a b +--化简后为( )A.63a -B.2a b --C.2a b +D.a b --8.下列各组中是同类项的是( )A.23x y 与22xyB.413x y 与412yxC.2a -与0D.231π2a bc 与233a cb - 9.下列运算中,正确的是( )A.325a b ab +=B.323235a a a +=C.22330a b ba -=D.22541a a -=10.下列说法正确的是( )A.17a+是多项式 B.22243562x x y y ---是四次四项式C.61x -的项数和次数都是6D.3a b +不是多项式 二、解答题11.先化简,再求值(1)()()324323x y x y x x y ⎡---++-⎦-⎤⎣,其中1x =-,12y =-. (2)()3223323723x x x x x ⎡⎤---+-+⎣⎦,其中0.1x =.12.在一次游戏结束时, 5个队的得分如下(答对得正分,答错得负分):A 队: 50- 分;B 队: 150 分;C 队: 300- 分;D 队: 0分;E 队: 100分.1.画一条数轴,将每个队所得的分数标在数轴上,同时将代表该队的字母也标上;2.从数轴上看A 队与B 队的距离是多少? A 队与C 队的距离是多少? C 队与D 队的距离是多少?3.把这5个队的得分按由低到高的顺序排序.13.回答下列问题.(1)先化简,再求值:()()354246m n mn m n mn --+-+,其中7,5m n mn -==-.(2) 已知3235, 116,63A x x B x x C x =-=-+=-,求A B C -+的值.(3) 若21412x a b --与2132y a b +合并后结果为24a b ,求23x y -的值. 14.某一出租车一天下午以百货大楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9,-3,-5,+4,-10,+6,-3,-6,-4,+10.1.将最后 一名乘客送到目的地,出租车离百货大楼多远?2.若该司机的家在百货大楼西边13千米处,送完最后一名乘客,他还要行驶多少千米才能到家?3.若每千米的价格为2.4元,该司机一下午的营业额是多少?15.回答下列问题.(1)从某个多项式中减去23ab bc ac -+,却误以为加上此多项式,结果得到答案是232bc ac ab -+,试求出正确答案.(2) 已知22,3x y =-=,求221312()()323bx x y x y --+-+的值.一名同学做题时,把x 的值错看成了2x =,但最后也算出了正确结果,已知计算过程无误,试求b 的值.16.(1)日历图中粗线方框中的9个数之和与该方框正中间的数有什么关系?(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?(3)这个关系对任何一个月的日历都成立吗?为什么?17.阅读下列材料,并回答问题.111504312⎛⎫÷-- ⎪⎝⎭ (解法一)原式1115050504312=÷-÷-÷ 5045035012550=⨯-⨯-⨯=-. (解法二)原式34150121212⎛⎫=÷-- ⎪⎝⎭ ()25050630012⎛⎫=÷-=⨯-=- ⎪⎝⎭. (解法三)原式的倒数为1111111504312431250⎛⎫⎛⎫=--÷=--⨯ ⎪ ⎪⎝⎭⎝⎭ 11111114503501250300=⨯-⨯-⨯=-,故原式300=-. 上面的三种解法,哪几种是正确的? 请用你认为正确的一种解法计算:121126031065⎛⎫-÷-+- ⎪⎝⎭. 三、计算题18.计算(1)222302(3)(1)(1)---⨯--- (2)2211(0.51)()[2(3)]3---⨯-⨯-- (3)23225(3)(2)()52--⨯-+-⨯ (4)2223[(4)7]()2--÷- (5)321424(3)(3)263⨯--+--- (6)214(8.1)2(16)45549-÷⨯÷---÷ (7)2521(1)(1)(0.5)32-----+- (8)222247111()()(6)()36322-÷-÷-⨯- 四、填空题19.如果21(2)0a b -++=,那么a b += .20.若数轴上的点A 对应的有理数是223-,则与点A 相距4个单位长度的点B 所对应的有理数是 .21.-2的相反数是 ,123-的倒数是 ,16是 的平方. 22.已知3,2x y ==,且0xy <,则x y +的值为 .23.规定一种运算: *ab a b a b=+,计算()2*3-的值__________. 24.计算()3233a a a ---=⎡⎤⎣⎦ 。
有理数及整式测试题)
有理数及整式测试题一、选择题(下列的四个选项中只有一个是正确的,请选择出最佳选项)1、计算(-6)×(-3)+(-7)的值为()A、-11B、0C、11D、-252、-(-6)的相反数是()A、-6B、0C、6D、1/63、(-2)³为()A、-8B、-6C、6D、84、2的倒数与(-2)的绝对值的和为()A、0B、-4C、2.5D、45、绝对值大于2而不大于4的整数有()A、1个B、2个C、3个D、4个6、有理数在数轴上的位置如图所示,则(), , , ,A、a>b>c>0B、a>c>b>0 a 0 b cC、c>a>b>0D、c>b>0>a7、如果a/b>0,则a与b()A、同为正数B、同为负数C、同号D、异号8、若6a4b3-m与-4a2-n b3互为同类项,则m,n的值为()A、3,0B、0,2C、0,-2D、3,-29、- a - b + c的相反数为()A、a + b + cB、a - b + cC、a + b - cD、c - b – a10、若式子x²+ x-2的值为3,则式子2x²+2x +(-6)的值为()A、2B、3C、4D、5二、填空题11、|-3|-|-5|=_________;12、-6y+2x²y-3+4xy³是_____次______项式,最高项式_________,一次项系数为________;13、已知a与b互为相反数,且|m|=2,则m+a+b=_______;14、化简(a + b)+2(a + b)-4(a + b)结果是_________;15、若-7xy n+1与3x m y是同类项,则m + n=________;三、计算题16、在数轴上标出下列各点。
-6,0,2.5,-3,4,1.517、计算:-7²+2×(-3)²+(-6)÷(-1/3)²18、将多项式5x²+ 4 - 4x²-5x + 6x³+3x -3x²合并同类项19、先化简,再求值-3a²b-2(-a b + a²b -2ab)+a b²-a²b,其中a=2,b=1/2。
七年级上册有理数奥数题
七年级上册有理数奥数题一、有理数奥数题。
1. 计算:(-1)+2+(-3)+4+·s+(-99)+100- 解析:- 我们可以将相邻的两项分为一组,即(-1 + 2)=1,(-3+4)=1,以此类推。
- 从1到100共有100个数,两两一组,可以分成100÷2 = 50组。
- 所以原式=1×50 = 50。
2. 若| a - 2|+(b + 3)^2 = 0,求a + b的值。
- 解析:- 因为绝对值是非负的,一个数的平方也是非负的。
- 要使| a - 2|+(b + 3)^2 = 0成立,则| a - 2|=0且(b + 3)^2 = 0。
- 由| a - 2|=0可得a - 2 = 0,即a = 2;由(b + 3)^2 = 0可得b+3 = 0,即b=-3。
- 所以a + b=2+(-3)=-1。
3. 计算:1 - 2 - 3+4+5 - 6 - 7 + 8+·s+97 - 98 - 99+100- 解析:- 把原式每四项分为一组,(1-2 - 3 + 4)=0,(5 - 6 - 7+8)=0,以此类推。
- 因为100÷4 = 25,所以原式=0×25 = 0。
4. 已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求(a + b)/(m)+m - cd 的值。
- 解析:- 因为a、b互为相反数,所以a + b = 0;因为c、d互为倒数,所以cd = 1;因为m的绝对值是2,所以m=±2。
- 当m = 2时,(a + b)/(m)+m - cd=(0)/(2)+2 - 1=1;当m=-2时,(a +b)/(m)+m - cd=(0)/(-2)-2 - 1=-3。
5. 计算:(-2019)×(2017)/(2018)- 解析:- 我们将-2019写成(-2018 - 1),则原式=(-2018-1)×(2017)/(2018)- =(-2018)×(2017)/(2018)-1×(2017)/(2018)- =-2017-(2017)/(2018)=-2017(2017)/(2018)。
《有理数》奥数专题练习
《有理数》奥数专题练习一、填空题.1.绝对值小于4的整数是 ±3,±2,±1,0 ,其中 –3 最小,0,1,2, 3 是非负数, 0 的绝对值最小;2. a - b 的相反数是 b – a ,如果 a ≤b ,那么 | a – b | = b – a ;3. 若a,b,c 在数轴上位置如图所示,那么|a|–|b – c| + |c| = -a + b ;a b 0 c4. 如果 那么,111=--m m m < 0 , 如果a 是有理数,那么aa = ±1 ; 5. 如果每个人的工作效率都相同,且a 个人b 天做c 个零件,那么b 个人做a 个零件所需的天数为 ca 2。
略解:1个人1天做ab c 个零件,那么b 个人做a 个零件所需的天数为 .2c a ac a ab c b a ==⋅ 6. 观察下列算式:4 × 1 × 2+1=324 × 2 × 3+l=524 × 3 × 4+l=724 × 4 × 5+1=92用代数式表示上述的规律是 . 2)12(1)1(4+=++a a a7. 701班连班主任一起共48人到公园去划船. 每只小船坐3人,租金20元,每只大船坐5人,租金30元. 他们租船要付的最少租金是 290 元.8.2011减去它的21,再减去剩余数的31,再减去剩余数的41,…,依此类推,一直到减去剩余数的20111,那么最后剩余的数是 1 .二、判断题(每小题2分,共16分):1.若 a + b = 0,则 |a|=|b| (√)2. 若|a|=|b|,则 a = b (×)3. 若|a|=|b|,则a + b = 0 (×)4. 若ab ≥0,则a ≥0且b ≥0 (×)5. 若ab = 0,则 a=0或 b=0 (√)6. 若a < b < 0,则 a 2 > b 2 (√)7. 若 a < b ,则 |a| < |b| (×)8. 若 a 3 > b 3,则a 2 > b 2 (×)提示:设 a = -0.1, b = -0.2,虽有(-0.1)3 > (-0.2)3,但却有(-0.1)2<(-0.2)2三、选择题(每小题4分,共24分):1.把0。
初一年级《有理数》计算题集500道(含答案)(1)(2)(2)(1)(2)(3)(2)
有理数计算 1使用说明:本题集的制作初衷是为学生提供计算题目以便强化计算能力。
此题集共500道,1-445题为基本四则运算,建议每天做10道,如能保证答题准确率在80%以上,说明计算能力比较过关。
446-500题为能力计算题目,涉及等差数列,等比数列,裂项等技巧,建议学完计算技巧后再作题进行巩固。
要相信坚持总有回报,祝愿每位同学取得优异的成绩。
由于时间有限,后面所附答案如有错漏之处,请批评指正。
1. ⨯--÷5324()61152. ÷--⨯-÷7571234(2)525553. ⨯+⨯--÷+⨯1177110.8 4.8() 2.20.822394. --+-⨯-⨯620512)(154)(13475. -⨯⨯-187()( 2.4)736. ÷-⨯÷-7772()(5)3417. -+⨯÷-24528[15(13)](1)113118. ⨯-÷-⨯55(5)()511初一年级《有理数》计算题集500道(含答案)第1页,共64页有理数计算2 9. --+-÷-32114742)()(1132110. -⨯-⨯+⨯--⨯3737130.34(13)0.34221511. -⨯-⨯⨯-1367(13)(134)()1112. ---+--8248(4)(5)(4)3711113. --+÷-(16503)(2)14. (-)-(-)-+420.53 6.7551115. -++-212117887.21435312.7921916. -⨯-+-÷--(6)(4)(32)(8)317. ----+722()|1|21118. -⨯-+-÷(9)(4) (60)12第2页,共64页3有理数计算 19. 9581[()1]()1472142--+÷-20. 1|3|10(15)3--÷--⨯21. 375112532162-⨯-÷()22. 11171(231)(1)(7)32186+÷-⨯--23. 31(820.04)43-⨯--24. []551(0.4)( 2.5)---⨯-25. 251(1)(10.5)3---⨯26.575(7)(243)(246)--+---+-+-27. 213(2)(1)8()312--⨯--÷-⨯-+28. 912311(27)9()(24)1123412-÷-+--⨯-第3页,共64页有理数计算430.()()1120.12533110.25483⎛⎫⎛⎫⎛⎫+++-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31. 211(455)365455211545545365⨯-+⨯-⨯+⨯32. 102131111()[9(3)]314122---⨯--+÷33. 8221211(1)()()[2(3)]0.52368---÷-⨯-----34. 25171()24(5)138612⎡⎤--+⨯÷-⎢⎥⎣⎦35. ()131170.125 1.213213⎛⎫⎛⎫-⨯-÷-⨯- ⎪ ⎪⎝⎭⎝⎭36. ()2342()()0.2534⨯-+-÷-37. ()7511[30()36]59612-+-⨯-÷-()第4页,共64页5有理数计算 38. 23155(1)()()()74148+÷-÷-⨯-39. 31315(1)(1) ()()42424-÷--+÷-40. 8)3(4)2(323+-⨯--⨯41. 2)2(2)1(3210÷-+⨯-42. 2)2(2)2(23322--+----43. ])3(2[61124--⨯--44. ]2)33()4[()10(222⨯+--+-45. ])2(2[31)5.01()1(24--⨯⨯---46. 20022003)2()2(-+-47. 20052004(0.25)4-⨯48. 94)211(42415.0322⨯-----+-第5页,共64页有理数计算6 49. )2()3(]2)4[(3)2(223-÷--+-⨯--50. 32(4)(75)÷-⨯-+-51. 2)2(2)1(3210÷-+⨯-52. ()()574283+-⨯-÷-53. 2225(3)[()](6)439⨯+÷-----54. 31[2(10.54)]⨯-----55. 312123)2122(3)543(31512⨯-÷++÷+-⨯-56. 295(3)(2)4⨯--÷+-57. 3(5)[2(6)]3005-⨯---÷ 58. 2211(1)1339⨯-÷-59. [124(310)]4⨯-÷-第6页,共64页7有理数计算 60. 32(3)4(3)15⨯-⨯--+61. 4211[2(3)]6―⨯---62. 213502()15÷⨯-+-63. 421632()94÷⨯--64. ()1003212181215.20-⨯⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-÷-65. 21002212(1)1221|132|----÷-+--⨯()66. 3483(1)(4)--⨯---67. 3145()2⨯--68. 2)3121(36-⨯69. 24)23(942-⨯÷-第7页,共64页有理数计算8 70. 5434361832411÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-+- 71. )12()4332125(-⨯-+72. )4()81()2(163-⨯---÷73. 2111()()(2)(14)236--÷--⨯-+ 74. 33[5(10.2)(2)]5---+-⨯÷-75. 111122399100++⋅⋅⋅+⨯⨯⨯76. 911321321÷⎪⎭⎫⎝⎛-⨯-77. ()124310(49)-⨯-÷-⎡⎤⎣⎦78. 4435222-+--÷-()() 79. 32416210+÷-÷-()() 第8页,共64页9有理数计算 80. 2153233+÷÷-+-()()()81. 3342331---÷-()() 82. 232[3323]43-⨯-⨯--()83. 1293123223-÷+-⨯+()84. )6(23517235)34()235(-⨯-⨯--⨯-85. 15511512277227⎛⎫⎛⎫⨯--⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭86. 23(2)(1)31(2)-⨯--⨯---[] 87. 3223(4)(9)0---⨯-⨯ 88. 31452-⨯-()89. 348311--⨯---()()第9页,共64页有理数计算10 90. 32422()93-÷⨯-91. 211[123]6--⨯--()92. 759015-⨯--÷-()()() 93. 23420.2534⨯-+-÷-()()()94. ()11731348126424⎛⎫-+-⨯- ⎪⎝⎭95. ()113700.2524.5525%42⎛⎫⎛⎫-⨯-+⨯--⨯ ⎪ ⎪⎝⎭⎝⎭96. 333145⎛⎫⨯- ⎪⎝⎭97. ()()()525306⎛⎫-⨯-⨯+⨯- ⎪⎝⎭98. ()5411.5112153⎛⎫-⨯⨯-⨯ ⎪⎝⎭第10页,共64页99. 13810.0434⎛⎫⎛⎫-+-⨯- ⎪ ⎪⎝⎭⎝⎭100. ()()3338878158777⎛⎫⎛⎫-⨯-+-⨯--⨯ ⎪ ⎪⎝⎭⎝⎭101. 1799918⎛⎫⨯- ⎪⎝⎭102. ()17.984⎛⎫-⨯- ⎪⎝⎭103. ()()()450.258-⨯⨯-⨯-104. 130.570445⎛⎫⎛⎫-⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭105. 7213.2329213⎡⎤⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯--⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦106. ()74948⨯-107. 157556⎛⎫⨯- ⎪⎝⎭有理数计算12 108. ()24912525⎛⎫-⨯- ⎪⎝⎭109. ()200420062005-⨯110. ()231243412⎛⎫-++⨯- ⎪⎝⎭111. 2211613325⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭112. 17371178412⎛⎫⎛⎫-⨯-+- ⎪ ⎪⎝⎭⎝⎭113. 1173332127⎛⎫-⨯⨯ ⎪⎝⎭114. 15511521214142214⎛⎫⎛⎫-⨯--⨯+⨯ ⎪ ⎪⎝⎭⎝⎭115. 4555542792793⎛⎫⨯+⨯+⨯- ⎪⎝⎭116. ()7 1.7516⎛⎫+÷- ⎪⎝⎭117. 31231527⎛⎫⎛⎫⎛⎫-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭118. ()()148121549-÷⨯÷-119. ()()()1084-÷-⨯-120. ()()1177-÷⨯-121. 294.558-⨯÷122. 121311234⎛⎫⎛⎫⎛⎫-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭123. 141315432251518⎛⎫⎛⎫⎛⎫⎛⎫+÷-⨯-÷- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭124. ()1347415620512⎛⎫⨯-⨯--+- ⎪⎝⎭125. 111111111111357357357357⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯+-⨯-⨯-+-⨯-⨯+⨯-⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭126. 25(8)(1)--⨯-有理数计算14 127. 11()128--+128. 4(6)(3)-⨯-129. 12()( 3.25)5---130. 313.5(0.7)(5)5-⨯-÷-131. 112167342⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭132. ()1230.1434⎛⎫⎛⎫÷---÷- ⎪ ⎪⎝⎭⎝⎭133. 2212162()2-÷⨯-134. 344411117777⎛⎫⎛⎫-⨯÷--+ ⎪ ⎪⎝⎭⎝⎭135. 211110.5210.5100.5323⎛⎫⎛⎫⎛⎫-÷--÷-+÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭136. 21.8( 1.8)3--+137. 114254-+138. 1348(1)124-⨯-+139. 220.52(3)⨯--140. 113()1234÷-+141. 322322(2)()(2)2()833-⨯---÷⨯-142. 4327221()()1727173⎡⎤----+-⎢⎥⎣⎦143. 3777(1)()48128--÷-144. 241(7)(30)3 3.25134-÷--⨯+145. 868635.28.642⨯-⨯-+有理数计算16 146. 200720092008-⨯147. 199279-⨯148. 762()(1.5)3-⨯149. 201020111()33-⨯150. 201120102009(7)147(49)(7)-+⨯--⨯-151. 214.732(2.631)33⎡⎤---⎢⎥⎣⎦152. 421(3)(1)()7315-÷-⨯-153. 812763189--+-÷-()() 154. 13122(3)2523-⨯--+÷---155. ()28[710.63]3⎛⎫-⨯-+-⨯÷- ⎪⎝⎭156. 151()46-+-157. 2(0.8)15-+-158. 15631218⎛⎫+- ⎪⎝⎭159. ()(){}1.5 1.80.80.9+-++-⎡⎤⎣⎦160. 112133[2357]32324⎛⎫⎛⎫-++-++- ⎪ ⎪⎝⎭⎝⎭161. 222115[1344]33155⎛⎫-+--+- ⎪⎝⎭162. ()43510.712150.7(15)9494⨯+⨯-+⨯+⨯-163. 45812605615⎛⎫--⨯ ⎪⎝⎭164. ()15154232918⎛⎫-÷-÷- ⎪⎝⎭有理数计算18 165. 142 81614 9÷÷--⨯()166. 1211 4.43.1830+++++-())(167. 41889365036.25525323+-++--()168. 53145119(20)(302.5)(151)119197131717132⎛⎫⎛⎫+-+-+-+-+- ⎪ ⎪⎝⎭⎝⎭169. ()5113(3[(2) 5.1753 6.325]3714837⎛⎫-+-++++-+ ⎪⎝⎭) 170. 53124(3)(3)(1)6565--+---+171. 3511(114662+--+)172. 224411()(0.6)33535⎛⎫-+----- ⎪⎝⎭173. 7131441232555555---++-+174.1116 3253 5.252 3477⎡⎤⎛⎫--+---⎪⎢⎥⎝⎭⎣⎦175.275315 (3(2)(3)5(1)5 58125812⎛⎫++--+--+--⎪⎝⎭)176.21 1(1) 35⨯-177.()56.5()6 -⨯-178.314 ()(1)() 429 -⨯-⨯-179.50.25(4)9 6-⨯⨯-⨯180.51 ()(3) 63 -÷-181.421 (3)(1)(1)7314 -÷-÷-182.12114 ()()(1)(1)(1) 23435 -⨯-⨯-⨯-⨯-有理数计算20 183. 31123.8 2.4799.6()(339)8873-⨯⨯⨯-⨯-⨯⨯184. ()8[3.6(0.2)(0.4)1]-----⨯-⨯-185. 2231356(8)2(2)4⎡⎤⨯-+--⨯-⨯⎢⎥⎣⎦186. 5.7215.8-+()187. 0.47()50347---188. 11(3)(5)24--+189. 1111(()()()6432-+---+--)190. ()23632(2)3482(2)-⨯+-⨯-÷-+-191. 232111(32)4(0.5)(1)325⎡⎤--÷-⨯-⨯-⎣⎦192. 54()(3)(1)(2)65-÷-⨯-⨯-193. 283256(1)(0.5)81477⨯-÷-+-194. 3311112(2)332--⨯-+-195. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-196. 2(3)2--⨯197. 12411()()()23523+-++-+-198. 11( 1.5)4 2.75(5)42-+++-199. 8(5)63-⨯--200. 3145()2-⨯-201. 25()()( 4.9)0.656-+----202. 22(10)5()5-÷⨯-有理数计算22 203. 323(5)()5-⨯-204. 25(6)(4)(8)⨯---÷-205. 1612()(2)472⨯-÷-206. 67()()51313-+--207. 211()1722---+-208. 737()()848-÷-209. 21(50)()510-⨯+210. 2(16503)(2)5--+÷-211. 32(6)8(2)(4)5-⨯----⨯ 212. 21122()(2)2233-+⨯--213. 199711(10.5)3---⨯214. 2232[3()2]23-⨯-⨯--215. 232()(1)043-+-+⨯216. 4211(10.5)[2(3)]3---⨯⨯--217. 4(81)( 2.25)()169-÷+⨯-÷218. 215[4(10.2)(2)]5---+-⨯÷-219. 666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-220. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-221. 23122(3)(1)6293--⨯-÷-222. 32323(2)()()32-⨯-⨯-有理数计算24 223. 13812711()3(2)()23-⨯⨯-⨯-224. 222172(3)(6)()3+⨯-+÷---225.()43212(8)()(2)2-÷---⨯-226. 81)4(2833--÷-227. 22100(2)(2)()3÷---÷-228. 22(3)(4)-÷-229. 22312()(0.8)2-⨯-÷-230. 2232113()(2)()32-⨯---÷-231. 232()(1)043-⨯-+⨯232. 2162()5+⨯-233. 2108(2)43-+÷--⨯234. []551(0.4)( 2.5)---⨯-235. 251(1)(10.5)3---⨯236. (14)26(14)(16)8-++-+-+ 237. ( 5.5)( 3.2)( 2.5) 4.8-+---- 238. (8)(25)(0.02)-⨯-⨯- 239. 1557()(72)29612-+-⨯-240. 11(2)()32-÷-241. 211(4)()22+-⨯-有理数计算26 242. 51552040.65(31)112280.52-÷⨯+÷--÷243. 2212113()12( 4.53)()233⎡⎤⎡⎤⨯⨯---⨯---+⎣⎦⎢⎥⎣⎦244. 23242341()()()(1)32232-⨯-÷-⨯--+-245. 111512255()()16(1)44543⎧⎫⎡⎤÷-+⨯÷--⨯-⎨⎬⎢⎥⎣⎦⎩⎭246. 20(15)(28)17-+---- 247. 6523157-+-+248. 2113()(1)3838---+-249. ( 5.54)( 3.2)( 2.5) 4.8-+---- 250. 295(3)(2)4+⨯---÷ 251. 32(1)(5)(3)2(5)⎡⎤-⨯-÷-+⨯-⎣⎦252. 32432(2)(1)(2)(2)-+-⨯---÷-253. []3(5)2(6)3005-⨯---÷ 254. 222221()32()4(1)3332-⨯-⨯-+-⨯-255. 221313(5)()240(4)2354⎡⎤-⨯--⨯--÷-⨯-⎢⎥⎣⎦256. 1347()(154)620512--+-⨯-⨯257. 3412()(5)777÷-⨯÷-258. ( 5.5) 3.2 4.5 6.8-⨯+⨯ 259. 2238()(4)()(8)595⨯---⨯-+-⨯260. 11(13)(134)()1367-⨯-⨯⨯-261. ()()()224275543()7811⎡⎤----⨯÷⨯-⎣⎦有理数计算28 262. ()()23210022()(2)3÷---÷-+-263. 222172(3)(6)()3-+⨯-+-÷-264. 2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦265. 201023)1()2(161)1()21()21(-÷-⨯⎥⎦⎤⎢⎣⎡--÷--266. )145()2(52825-⨯-÷+-267. 7111(4)(5)(4)38248---+--268. 11(0.5)(3) 6.75542---+-269. (6)(4)(32)(8)3-⨯-+-÷-- 270. 1(5)(16)(2)3-÷-÷-271. 4321(2)(8)()(2)2-÷---⨯-272. 322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--273. 111117(113)(2)92844⨯-+⨯-274. 235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭275. 1113|16|2(4)()448⎡⎤⎡⎤---⨯-÷--⎢⎥⎢⎥⎣⎦⎣⎦276. (9)(4)(60)12-⨯-+-÷ 277. 230(3)3(2)--÷⨯-278. 22312()(0.8)2-⨯-÷-279. 37511()2532162-⨯-÷280. 2232113()(2)()32-⨯---÷-281. 2333(2)(3)(1)(3)---⨯---有理数计算30 282. 3233112()()(2)33-÷---⨯-283. 22131(2)2[()3]245--⨯--⨯÷284. 13611754136227231++-285. 22)36()33(24)12581(÷-÷---⨯-286. 2132()5+⨯-287. 222172(3)(6)()3-+⨯-+-÷-288. 225(3)[()]39-⨯-+-289. 28(3)(2)+-⨯- 290. 22100(2)(2)()3÷÷----291. 421232()33÷⨯--292. 24(3)2(3)4--⨯--⨯293. 12411()()()23523+-++-+-294. 11( 1.5)4 2.75(5)42-+++-295. 200612(1)(24)(2 2.75)83-+-⨯+-296. 103(1)2(2)4-⨯+-÷297. 422(10)[(4)(33)2]-+--+⨯298. 33422()93-÷⨯-299. 2310110.25(0.5)()(1)82-÷-+-⨯-300. 4321(2)(8)()(2)2-÷---⨯-301. 222475(5)4(3)()(7)811⎡⎤----⨯÷⨯-⎣⎦有理数计算32 302. 31{(3)[30.4(1)(2)]}2---+⨯-÷-303. 421110.52(3)3-+-⨯⨯⨯-()[]304. 3334[(17)6][(5)3](2)⨯-÷+--÷--305. 332313[8(2)1](3)(2)0.25--÷--+-⨯-÷306. 9.538(2|11.64 1.53 1.36|)----+-307. 73.17(812.03|219.83518|)--+308. 1112(398)-+--309. 95(945)----310. 5.6 4.7| 3.8 3.8-+---|311. 1213521(36)(16)(45)(10)27277+-+-+-++312. 5211()(2)(4)319152⨯-⨯-⨯-313. 555()83()(13)()28666-⨯+-⨯---⨯314. 23181920222...222-----+315. 111 (133519971999)+++⨯⨯⨯316. 3145()2-⨯-317. 25()()( 4.9)0.656-+----318. 22(10)5()5-÷⨯-319. 323(5)()5-⨯-320. 25(6)(4)(8)⨯---÷-321. 1612()(2)472⨯-÷-322. 2(16503)(2)5--+÷-有理数计算34 323. 32(6)8(2)(4)5-⨯----⨯324. 235()(4)0.25(5)(4)8-⨯--⨯-⨯-325. 23122(3)(1)6293--⨯-÷-326. 21122()(2)2233-+⨯--327. 19971(1)(10.5)3----⨯328. 2232[3()2]23-⨯-⨯--329. 232()(1)043-+-+⨯330. 4211(10.5)[2(3)]3---⨯⨯--331. 215[4(10.2)(2)]5---+-⨯÷-332. 666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-333. 42311[ 2(3)]6--⨯--- 334. 7574.037127.5371236)9618-+-⨯-+(335. 2212[3()0.8](2)35-⨯--÷-336. --+⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪---+3825583521()337. [(3)(4)5][82(6)]4-⨯--⨯--⨯-÷338. -÷--÷-824134()()339. ()[()()]-÷-⨯⨯-11551135340. 42991310.25(1)12 3.7524283⎛⎫⎛⎫-÷-⨯-++-⨯ ⎪ ⎪⎝⎭⎝⎭341. 131********11-÷⨯÷342. ---⎛⎝ ⎫⎭⎪----⎛⎝ ⎫⎭⎪1133411334有理数计算36 343. ()()------22222233344. 1235342123341822--÷-⎛⎝ ⎫⎭⎪+⨯-⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⨯⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪345. -----÷-+--÷--22331349722232()|()()|||||346. 13525(2)2514⎛⎫--÷-⨯- ⎪⎝⎭347. 234( 1.5)1243⎛⎫-÷-⨯- ⎪⎝⎭348. 34311(1)2⎡⎤⎛⎫-----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦349. 210.2343 5.35⎡⎤⎛⎫-⨯--⨯- ⎪⎢⎥⎝⎭⎣⎦350. 222243(3)(5)(0.3)0.95⎛⎫---+-⨯---÷- ⎪⎝⎭351. ()11232311412243⨯⨯-⎛⎝ ⎫⎭⎪--⎡⎣⎢⎢⎤⎦⎥⎥+÷-⎛⎝ ⎫⎭⎪352. 71957180251411313..-⎛⎝ ⎫⎭⎪÷-÷⨯⎛⎝ ⎫⎭⎪353. ()-÷⨯-⨯÷⨯-⎛⎝ ⎫⎭⎪11234021341435..354. ()()11160752116340534+--⎡⎣⎢⎤⎦⎥⨯-⎧⎨⎩⎫⎬⎭÷---⎛⎝ ⎫⎭⎪..355. ()-⨯-⎛⎝ ⎫⎭⎪-⨯--⨯-⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⨯⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥212341351499113192222356. 4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦357. 33423(1)(1)--⨯---358. 33510.2(2)5⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦359. 12(17)1(0.6)4⎡⎤---÷-+-⎢⎥⎣⎦360. 2311(10.6432)⎡⎤----÷⎣⎦有理数计算38 361. 3213322.2512853⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--÷-+-⨯-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦362. []261(0.4)( 2.5)---⨯-363. 362211362⎛⎫⎛⎫-⨯÷ ⎪ ⎪⎝⎭⎝⎭364. 1448551836615335175123192155⨯÷-+⨯⎛⎝ ⎫⎭⎪-⨯+⎛⎝ ⎫⎭⎪-⎡⎣⎢⎤⎦⎥.....365. ()()()222410.4 3.1 2.610.30.15⎧⎫⎡⎤⎛⎫-⨯---+⨯---÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭366. 513113(50)217348⎛⎫⎛⎫⎛⎫⨯-÷-⨯-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭367. ()11572348126824⎛⎫-+-⨯- ⎪⎝⎭368. 4535522723723237⎛⎫⎛⎫⎛⎫⨯---⨯--⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭369. ()199719996661998⎛⎫-⨯- ⎪⎝⎭370. 33371. 4946111(3)20.24911235⎡⎤⎛⎫⎛⎫-÷⨯-⨯-⨯-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦372. 2782411813318833⨯÷⎪⎭⎫ ⎝⎛-⨯373. )2()2(2123322-+--⎪⎭⎫ ⎝⎛-+-374. ⎪⎭⎫⎝⎛----÷⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2135322132213122375. ()87216543313113)1(61)5.4(187********÷⎪⎭⎫⎝⎛-÷⎪⎭⎫⎝⎛---⨯⎪⎭⎫⎝⎛--⨯+-⨯⎪⎭⎫ ⎝⎛-376. )57(5857-⨯377. ()4443145-÷-378.(有理数计算40 379. ()3330037÷-380. ()()()199084481990199014181990-⨯--⨯--⨯-⨯381. ()()999999999999999999+-⨯-+-382. ()()()()()149297483149297483-÷-⨯-÷-⨯-÷-383. ()()()⎭⎬⎫⎩⎨⎧-⎪⎭⎫ ⎝⎛-÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-÷⨯-2314.0411432417384. ()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯÷⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+÷-⨯⨯-⎪⎭⎫ ⎝⎛-÷-12122211341125.0221132322385. ()41611143125.1012112310013+--⎪⎭⎫ ⎝⎛-÷+386. 199519953(0.125)[(2)]⨯-387. 25413()(0.612)()651010⨯+-÷-388. 322333342(-)⨯(-0.6)-(-)⨯1.5-2÷(-)253389. 232006333...3++++390. 199720002000200019971997⨯-⨯391. 22222221949195019511952...199719981999-+-++-+392. 22221111(1)(1)...(1)(1)23910---- 393. 1111 (12123123100)++++++++++394. 987654321987654324987654323987654322⨯-⨯395.1121231299()()...(...)233444100100100++++++++++396. 32)65()43(21--+---397. 38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭有理数计算42398.111135()532114⨯-⨯÷399. 34153()2--⨯-()400. 42223721-+--⨯-()()401. 1031224-⨯+-÷()()402. 2395525-⨯-÷-()()() 403. 333(125)()62187()777-÷-+÷+÷- 404.2725.0)431(218)522(52⨯÷--⨯--÷405. 311252525424⨯--⨯-⨯()406. 38(4)23--÷⨯407. 22733(3)⨯÷+-408. 4435(2)2(2)-+--÷-409. (28)(64)(1)5-÷-++-⨯410. 2(2)07(8)(2)÷-+÷--⨯-411. 13131()24524864⎡⎤-+-⨯÷⎢⎥⎣⎦412. 2332312(3)(2)(9)3÷-÷---÷413. 222122(1)33-÷⨯-414. 32432(2)(1)(2)(2)-+-⨯---÷-415. 32(1)(5)(3)2(5)⎡⎤-⨯-÷-+⨯-⎣⎦416. 75.61258)431(121-----417. 2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦418. 75)21(212)75(75211⨯-+⨯--⨯有理数计算44419. 4)2(51232⨯--÷-420. 50)3(15)3(42--÷--⨯421. 3211(10.5)2(3)7⎡⎤---⨯⨯--⎣⎦422. 22)7()6(6112119750-÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫⎝⎛+--423. []3521325.06.05.2)1(⎪⎭⎫⎝⎛-⨯+--÷-424. 111117(113)(2)92844⨯-+⨯-425. 419932(4)(1416)41313⎡⎤--⨯-÷-⎢⎥⎣⎦426. 33221121(5533)22⎡⎤⎛⎫⎛⎫--÷+⨯+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦427. 2375(2)(10.8)114⎡⎤----+-⨯÷--⎢⎥⎣⎦428. 151623-÷-÷-()()() 429. 42(3)60.25-+⨯--÷430. 3(5)[1.85(21)7]4-÷--⨯431. []18{10.4 (10.4)0.4}÷-+-⨯432. 1111()636÷-⨯433. –3[4(4 3.51)][2(3)]---⨯⨯-+-434. ()3.57.75 4.25 1.1--÷435. 321612115()|(2)|(2)(|()|)2114332⎡⎤----+-⨯-÷---⎢⎥⎣⎦436. 1110.125(3)(3)()(0.25)488+++-+++-437. 5215[(9)]317.75632-----+有理数计算46438. 1211[3()1](8)8233⨯⨯---⨯--439. 7211()(4)9353-÷--⨯-440. 78(0.125)8-⨯441. 4010(0.25)256⨯442. 12(3)(4)56(7)(8)(23)(24)++-+-+++-+-+⋯+-+-443.1111111142648620102008-+-+-+⋯+-444. 1111(1)(1)(1)(1)2009200820071000-⨯-⨯-⨯⋯⨯- 445. 19(7)128(7)33(7)÷--÷-+÷-446.111111223344556++++⨯⨯⨯⨯⨯447.111 (101111125960)+++⨯⨯⨯448.2222 109985443 ++++⨯⨯⨯⨯449.1111 11212312100 ++++++++++450.1111 133******** ++++⨯⨯⨯⨯451.1111251335572325⎛⎫⨯++++⎪⨯⨯⨯⨯⎝⎭452.251251251251251 4881212162000200420042008 +++++⨯⨯⨯⨯⨯453.3245671 255771111161622222929 ++++++⨯⨯⨯⨯⨯⨯454.11111111()128 8244880120168224288+++++++⨯455.11111111 612203042567290 +++++++456.111111 13610152128 ++++++457.111111111 2612203042567290 --------458.11111 104088154238 ++++459.1111 135357579200120032005 ++++⨯⨯⨯⨯⨯⨯⨯⨯460.74.50.161111 1813153563 13 3.75 3.23⨯+⎛⎫⨯+++⎪⎝⎭-⨯461.11111 123420 261220420 +++++462.11111 20082009201020112012 1854108180270 ++++463.11224 26153577 ++++464.1111111 315356399143195 ++++++465.1511192997019899 2612203097029900 +++++++466.111 123234789 +++⨯⨯⨯⨯⨯⨯467.111 1232349899100 +++⨯⨯⨯⨯⨯⨯有理数计算48468.1111 135246357202224 ++++⨯⨯⨯⨯⨯⨯⨯⨯469.4444...... 135357939597959799 ++++⨯⨯⨯⨯⨯⨯⨯⨯470.9998971 12323434599100101 ++++⨯⨯⨯⨯⨯⨯⨯⨯471.11111 123423453456678978910 +++⋅⋅⋅++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯472.333...... 1234234517181920 +++⨯⨯⨯⨯⨯⨯⨯⨯⨯473.5719 1232348910 +++⨯⨯⨯⨯⨯⨯474.571719 1155234345891091011⨯++++⨯⨯⨯⨯⨯⨯⨯⨯()475.34512 12452356346710111314 ++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯476.12349 223234234523410 +++++⨯⨯⨯⨯⨯⨯⨯⨯⨯477.123456 121231234123451234561234567 +++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯有理数计算50478.23993!4!100!+++ 479.234501(12)(12)(123)(123)(1234)(12349)(1250)++++⨯++⨯++++⨯+++++++⨯+++ 480.2341001(12)(12)(123)(123)(1234)(1299)(12100)++++⨯++⨯++++⨯++++++⨯+++ 481. 23101112(12)(123)(1239)(12310)----⨯++⨯++++++⨯++++ ()482.22222211111131517191111131+++++------483. 222222111111(1)(1)(1)(1)(1)(1)23454849-⨯-⨯-⨯-⨯⨯-⨯- 484.222222223571512233478++++⨯⨯⨯⨯ 485. 222222222231517119931199513151711993119951++++++++++-----。
七年级奥数有理数试题及答案
【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更⾼、更强。
国际数学奥林匹克作为⼀项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育⽔平,难度⼤⼤超过⼤学⼊学考试。
下⾯是⽆忧考为⼤家带来的七年级奥数有理数试题及答案,欢迎⼤家阅读。
⼀、选择题(共30分) 1.下列说法中正确的是 ( ) A.⼀个数的相反数是负数 B.⼀个数的绝对值⼀定不是负数 C.⼀个数的绝对值⼀定是正数 D.⼀个数的绝对值的相反数⼀定是负数 2.数轴上在原点以及原点右侧的点所表⽰的数是 ( ) A.正数 B.负数 C.⾮负数 D.⾮正数 3.绝对值⼤于⼀2且⼩于5的所有的整数的和是 ( ) A.7 B.⼀7 C.0 D.5 4.下列算式中正确的是 ( ) A.(⼀14)⼀5=⼀9 B.0⼀(⼀3)=3 C.(⼀3)⼀(⼀3)= ⼀6 D. =⼀(5—3) 5.下列说法中错误的是 ( ) A.⼀a的绝对值为a B.⼀a的相反数为a C.的倒数是a D.⼀a的平⽅等于a的平⽅ 6.⽐较⼀2.4,⼀0.5,⼀(⼀2),⼀3的⼤⼩,下列正确的是 ( ) A.⼀3>⼀2.4>⼀(⼀2)> ⼀0.5 B.⼀(⼀2)> ⼀3>⼀2.4>⼀0.5 C.⼀(⼀2)> ⼀0.5>⼀2.4>⼀3 D.⼀3>⼀(⼀2)> ⼀2.4>⼀0.5 7.⼀个数的平⽅是81,则这个数是 ( ) A. B.9 C.⼀9 D.92 8.⼀(⼀4)3等于 ( ) A.⼀12 B.12 C.⼀64 D.64 9.有理数a、b在数轴上的位置如图所⽰,则a+b的值 ( ) A.⼤于0 B.⼩于0 C.等于0 D.⼤于6 10.若ab<0,且a⼀b>0,则下列选项中,正确的是 ( ) A.a< 0,b<0 B.a<0.b>0 C.a>0,b<0 D.a>0.b>0 ⼆、填空题(共24分) 11.如果收⼊1 000元记作+1 000元,那么⼀600元表⽰_______________. 12.的相反数是___ ______,倒数是__________,绝对值是__________. 13.⽐⼀3⼤的负整数是_________,⽐3⼩的⾮负整数是_________ . 14.在数轴上,与原点距离为5个单位的点有_________个,它们是_________ 15.⽐较⼤⼩:⼀4.8_________⼀ 3.8; _________ (⼀2)3. 16.,则a+6=_________. 17.—24=_________ (⼀2)4=_________, =_________. 18.太阳直径为1 390 000 km,⽤科学记数法表⽰为_________. 三、解答题(共46分) 19.把下列各数分别填⼈相应的集合⾥. —5,,0,—3.14,,—12,+1.99,—(—6) (1)正数集合:{ …} (2)负数集合:{ …} (3)整数集合:{ …} (4)分数集合:{ …} 20.在数轴上表⽰下列各数,并把它们按照从⼩到⼤的顺序排列. 2,⼀l,⼀1.5,0,,. 21.计算: (1)24+(⼀14)+(⼀16)+8: 22.若,求m+n的值 23.根据某地实验测得的数据表明,⾼度每增加1 km,⽓温⼤约下降6℃,已知该地地⾯ 温度为21℃. (1)⾼空某处⾼度是8 km,求此处的温度是多少; (2)⾼空某处温度为⼀24 ℃,求此处的⾼度. 24.某巡警骑摩托车在⼀条南北⼤道上巡逻,某天他从岗亭出发,晚上停留在A处,规定 向北⽅向为正,当天⾏驶纪录如下(单位:km) +10,⼀9,+7,⼀15,+6,⼀14,+4,⼀2 (1)A在岗亭何⽅?距岗亭多远? (2)若摩托车⾏驶1 km耗油0.05 L,这⼀天共耗油多少升? 25.如果a>0,b<0, 且,试⽐较a,b,—a, —b的⼤⼩ 参考答案 1.B 2.C 3.C 4.B 5.A 6.C 7.A 8.D 9.A 10.C 11.⽀出.600元 12. 13.⼀2:⼀1 0 ,1 ,2 14.2±5 15.<< 16.-1 17.-6 16 18.1.39×106km 19. 20. 21.(1)2(2)2(3)6(4)⼀19(5)⼀5(6)⼀2 22.±3或±13 23.(1)-27℃ (2)7.5 km 24.(1)A在岗亭的南边,距岗亭13 km (2)3.35 L 25.b<-a。
初一年级奥数整式测试题及答案
初一年级奥数整式测试题及答案1.关于单项式-23x2y2z,下列结论中准确的是(DX)TA.X系数是-2,次数是4TB.X系数是-2,次数是5TC.X系数是-2,次数是8TD.X系数是-23,次数是52.在代数式x-3y2中,含y的项的系数是(CX)TA.X-3 TB.X3TC.X-32 TD.X323.下列说法中,准确的是(DX)TA.Xa是单项式,它的系数是0TB.X3x+3xy-3y+5是一个多项式TC.X多项式x2-2xy+y2是单项式x2,2xy,y2的和TD.X多项式72x2-x是二次二项式4.多项式xy2-8xy+32y+25的二次项为(DX)TA.X3 TB.X-8TC.X3x2y TD.X-8xy5.单项式TπXx2y2的系数是__TπX2__,次数是__3__.6.若-5x2ym-1为四次单项式,则m=__3__.7.在多项式3x-2TπXx2y3+5x4-3中,次项的系数是__-2TπX__,常数项是__-3__.8.若多项式58abm-3ab-3是关于a,b的三次三项式,则m=__2__.9.下列代数式中,哪些是整式?哪些是单项式?哪些是多项式?把它们填在相对应的横线上.aTπX,TπX,TπXa,-3x2y,-3x2+y,a,2a,3x2+y.属于单项式的有:aTπX,TπX,-3x2y,2a;属于多项式的有:-3x2+y;属于整式的有:aTπX,TπX,-3x2y,-3x2+y,2a.10.填表:代数式系数次数5a 5 1-b2c -1 312mn122-14TπXa2-14πX223xy-142-72-722m3n3-3mn+16(第11题)11.用代数式表示图中阴影部分的面积,并计算当x=10,y=14时阴影部分的面积.【解】阴影部分的面积为:9y-12(y-x).当x=10,y=14时,阴影部分的面积为:9×14-12×(14-10)=124.12.某公司的年销售额为a万元,成本为销售额的60T%X,税额和其他费用合计为销售额的pT%X.(1)用关于a,p的代数式表示该公司的年利润;(2)若a=8000,p=7,则该公司的年利润为多少万元?【解】(1)a(1-60T%X-pT%X)(万元).(2)当a=8000,p=7时,a(1-60T%X-pT%X)=8000×(1-60T%X-7T%X)=2640(万元).13.如果3x3y2的次数与单项式ab2mc2的次数相同,试求代数式(-1)2m+3m的值.【解】由题意,得1+2m+2=3+2,∴m=1.∴(-1)2m+3m=(-1)2+3×1=4.14.代数式ax2+bx+c(a,b,c为常数)为x的一次单项式的条件是(BX)TA.Xa≠0,b=0,c=0 TB.Xa=0,b≠0,c=0TC.Xa≠0,b=0,c≠0 TD.Xa=0,b≠0,c≠015.当(m+n)2+2015取得最小值时,m2-n2+2|m|-2|n|等于(CX)TA.X1 TB.X-1TC.X0 TD.X不确定【解】∵(m+n)2≥0,∴当m+n=0时,(m+n)2+2015的值最小,此时m与n互为相反数.∴m2=n2,|m|=|n|.∴m2-n2+2|m|-2|n|=0+0=0.16.已知(a-2)x2y|a|-1是关于x,y的三次单项式,则a=__-2__.【解】由题意,得2+|a|-1=3,∴|a|=2,∴a=±2.又∵a-2≠0,∴a≠2,∴a=-2.17.若关于x的代数式xm-(n-2)x+2是一个三次二项式,则m-n=__1__.【解】由题意,得m=3,-(n-2)=0,∴m=3,n=2,∴m-n=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一奥数整式及有理数测试题汇总
奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。
国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。
下面是无忧考网为大家带来的初一奥数整式及有理数测试题汇总,欢迎大家阅读。
整式测试题
一、填空题
1、某天的温度为12oC,最低温度为aoC,则这天的温差是_______.
2、用代数式表示比m的4倍大2的数为______.
3、小彬上次数学成绩80分,这次成绩提高了a%,这次数学成绩为_______.
4、有三个连续自然数,中间的一个数为k,则其它两个数是
____ ._____.
5、如果a=2b, b=4c,那么代数式
6、若-7xm+2y与-3x3yn是同类项,则m=_______, n=________.
7、若把多项式11x-9+76x+1-2x2-3x合并同类项后是________.
8、2x-3是由_______和________两项组成。
9、若-7xm+2y与-3x3yn是同类项,则m=_______, n=________.
10、把多项式11x-9+76x+1-2x2-3x合并同类项后是________.
二、选择题
11、已知2x6y2和- ( )
A、-1
B、-2
C、-3
D、-4
12、当x= ( )
A、-3
B、-5
C、3
D、5
13、m-[n-2m-(m-n)]等于( )
A、-2m
B、2m C. 4m-2n D.2m-2n
14、用代数式表示“x的2倍与y的平方的差”是( )
A. (2x-y)2
B. x-2y2
C. 2x2-y2
D. 2x-y2
15、下列是同类项的一组是( )
A. –ab2与
B. xyz与8xy
C. 3mn2与4
D.
16、下列运算正确的是( )
A. 2x+2y=2xy
B. 5x+x=5x2
C. –3mn+mn=-2mn
D. 8a2b-7a2b=1
17、下列等式中成立的是( )
A. –a+b=-(a+b)
B. 3x+8=3(x+8)
C. 2-5x=-(5x-2)
D. 12-4x=8x
18、已知一个三位数,它的百位数字是a,十位数字是b, 个位数字是c,则这个三位数字是( )
A. abc
B. a+b+c
C. 100a+10b+c
D. 100c+10b+a
19、已知a-b=5, c+d=-3, 则(b+c)-(a-d)的值为( )
A. 2
B. –2
C. –8
D. 8
20、点a、b在数轴上的位置关系如图所示,化简的结果等于( )
A. 2a
B. –2a
C. 2b
D. –2b
三、计算题
21、a+(5a-3b)-(a-2b)
22、2a - [a + 2(a-b)] + b
四、解答题
23、按如图所示方式在餐桌上摆碗
1) 一张餐桌上放6个碗,3张餐桌上放______个碗.
2) 按照上图继续排列餐桌,完成下表
24、已知:甲的年龄为m岁,乙的年龄比甲的年龄的3倍少7岁,丙的年龄比乙的年龄的还多3岁,求甲、乙、丙年龄之和.
25、甲、乙两地相距100千米,一辆汽车的行驶速度为v千米/小时.
(1)用代数式表示这辆汽车从甲地到乙地需行驶的时间?
(2)若速度增加5千米/小时,则需多少时间?速度增加后比原来
可早到多少时间?分别用代数式表示.
(3)当v=50千米/时,分别计算上面各个代数式的值。
有理数测试题
1.下列说法中正确的是( )
A.一个数的相反数是负数
B.一个数的绝对值一定不是负数
C.一个数的绝对值一定是正数
D.一个数的绝对值的相反数一定是负数
2.数轴上在原点以及原点右侧的点所表示的数是( ) A.正数B.负数C.非负数D.非正数
3.绝对值大于一2且小于5的所有的整数的和是( ) A.7 B.一7 C.0 D.5
4.下列算式中正确的是( )
A.(一14)一5=一9 B.0一(一3)=3
C.(一3)一(一3)= 一6 D.=一(5—3)
5.下列说法中错误的是( )
A.一a的绝对值为a B.一a的相反数为a
C.的倒数是a D.一a的平方等于a的平方
6.比较一2.4,一0.5,一(一2),一3的大小,下列正确的是( )
A.一3 一2.4 一(一2) 一0.5 B.一(一2) 一3 一2.4 一0.5
C.一(一2) 一0.5 一2.4 一3 D.一3 一(一2) 一2.4 一0.5
7.一个数的平方是81,则这个数是( )
A.B.9 C.一9 D.92
8.一(一4)3等于( )
A.一12 B.12 C.一64 D.64
9.有理数a、b在数轴上的位置如图所示,则a+b的值( )
A.大于0 B.小于0 C.等于0 D.大于6
10.若ab 0,且a一b 0,则下列选项中,正确的是( )
A.a 0,b 0 B.a 0.b 0
C.a 0,b 0 D.a 0.b 0
11.如果收入1 000元记作+1 000元,那么一600元表示_______________.
12.的相反数是___ ______,倒数是__________,绝对值是__________.
13.比一3大的负整数是_________,比3小的非负整数是_________ .
14.在数轴上,与原点距离为5个单位的点有_________个,它
们是_________
15.比较大小:一4.8_________一3.8;_________ (一2)3.16.,则a+6=_________.
17.—24=_________ (一2)4=_________,=_________.
18.太阳直径为1 390 000 km,用科学记数法表示为_________.。