福建中考数学23题
福建省福州市屏东、延安、十六中联考2024-2025学年上学期九年级期中考数学试卷(含答案)
2024-2025学年第一学期期中考试九年级数学试题(满分150分,完卷时间120分钟)班级______姓名______成绩______一、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B.C. D.2.用配方法解一元二次方程的过程中,配方正确的是( )A. B. C. D.3.如图,在中,,则等于( )A. B. C. D.4.抛物线与轴的交点是( )A. B. C. D.5.正多边形的中心角为,则正多边形的边数是( )A.4B.6C.8D.126.如图,将绕点逆时针旋转,得到.若点在线段的延长线上,则的度数为( )A. B. C. D.7.在平面直角坐标系中,三个顶点的坐标分别为,,,以原点为位似中心,把这个三角形缩小为原来的,可以得到,则点的坐标为( )A. B.或C.或 D.2450x x --=()221x +=()221x -=()229x +=()229x -=O e 60ABC ∠=︒AOC ∠30︒60︒120︒150︒223y x =+y ()0,5()0,3()0,2()2,145︒ABC △A 100︒ADE △D BC B ∠30︒40︒50︒60︒ABC △()4,2A ()2,0B ()0,0C O 12A B C '''△A '()2,1()1,2()1,2--()2,1()2,1--()1,2--8.如图,在中,为上一点,连接、,且、交于点,,则为( )A. B. C. D.9.已知抛物线,与的部分对应值如表所示,下列说法错误是( )01230343A.开口向下 B.顶点坐标为C.当时,随的增大而减小D.10.如图,在矩形中,,,以点为圆心作与直线相切,点是上一个动点,连接交于点,则的最小值是( ).A. B.1D.二、填空题(本大题共6小题,每小题4分,共24分)11.在直角坐标系中,若点,点关于原点中心对称,则______.12.已知关于的一元二次方程有一个根为,则______.13.如图,在中,分别交、于点、;若,,,则的长为______.14.如图,四边形为的内接四边形,,则的度数为______.ABCD □E CD AE BD AE BD F :4:25DEF ABF S S =△△:DF BF 2:52:33:53:22y ax bx c =++y x x1-y m()1,41x <y x 0m =ABCD 8AB =6AD =C C e BD P C e AP BD T AT PT3512()1,A a (),2B b -a b +=x 20x x m -+=2-m =ABC △MN BC ∥AB AC M N 1AM =2MB =9BC =MN ABCD O e 100A ∠=︒DCE ∠15.若圆锥的高为,母线长为,则这个圆锥的侧面展开图的弧长是______.(结果保留)16.关于的一元二次方程有两个整数根且乘积为正,关于的一元二次方程同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②③;④,其中正确结论的结论是______.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题8分)用适当的方法解下列方程:(1)(2)18.(本小题8分)已知是关于的一元二次方程,求证:方程总有两个不相等的实数根.19.(本小题8分)为了测量水平地面上一棵直立大树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在与树底端相距8米的点处,然后沿着直线后退到点,这时恰好在镜子里看到树梢顶点,再用皮尺量得米,观察者目高米,求树的高度.20.(本小题8分)如图1、图2,,均是等腰直角三角形,,(1)在图1中,求证:;(2)若绕点顺时针旋转一定角度后如图2所示,请问与还相等吗?为什么?图1 图221.(本小题8分)如图,是的直径,过点作的切线,点是射线上的一点,连接,过点作,交于点,连接.8cm 10cm cm πx 2220x mx n ++=y 2220y ny m ++=22m n <()()22112m n -+-≥1221m n -≤-≤2240x x +-=()3284x x x -=-()2310x a x a ++++=x B E BE D A 1.6DE = 1.5CD =AB AOB △COD △90AOB COD ︒∠=∠=AC BD =COD △O AC BD AB O e A O e AC P AC OP B BD OP ∥O e D PD(1)请补全图形;(要求:尺规作图,不写作法,保留作图痕迹)(2)证明:是的切线.22.(本小题10分)如图,四边形内接于,为的直径,平分,,点在的延长线上,连接.(1)求直径的长;(2)若.23.(本小题10分)施工队要修建一个横断面为抛物线的公路隧道,其最高点距离地面高度为8米,宽度为16米.现以点为原点,所在直线为轴建立直角坐标系(如图所示).(1)求出这条抛物线的函数解析式,并写出自变量的取值范围;(2)隧道下的公路是单向双车道,车辆并行时,安全平行间距为2米,该双车道能否同时并行两辆宽2.5米、高5米的特种车辆?请通过计算说明;24.(本小题12分)问题背景:如图1,已知,求证:;尝试运用:如图2,在中,点是边上一动点,,且,,,与相交于点,在点运动的过程中,连接,当时,求的长度;拓展创新:如图3,是内一点,,,,,求的长.PD O e ABCD O e BD O e AC BAD ∠CD =E BC DE BD BE =P OM O OM x x ABC ADE ∽△△ABD ACE ∽△△ABC △D BC 90BAC DAE ︒∠=∠=ABC ADE ∠=∠4AB =3AC =AC DE F D CE 12CE CD =DE D ABC △BAD CBD ∠=∠12CD BD =90BDC ∠=︒3AB =AC =AD图1 图2图325.(本小题14分)已知抛物线过点和,与轴交于另一点,顶点为.(1)求抛物线的解析式,并直接写出点的坐标;(2)如图1,为线段上方的抛物线上一点,,垂足为,轴,垂足为,交于点.当时,求的面积;(3)如图2,与的延长线交于点,在轴上方的抛物线上是否存在点,使若存在,求出点的坐标;若不存在,请说明理由.图1 图22024-2025学年第一学期期中考试九年级数学参考答案及评分标准一、选择题(共10小题,每小题4分,满分40分)题号12345678910答案A D C B C B C A CD二、填空题(本大题共24分,每小题4分)11.112.13.314.15.16.①③④三、解答题(共8小题,满分86分)17.(1)解:.,,,22y ax ax c =-+()1,0A -()0,3C x B D D E BC EF BC ⊥F EM x ⊥M BC G BG CF =EFG △AC BD H x P OPB AHB ∠=∠P 6-100︒12π2240x x --=1a = 2b =-4c =-.,即,(2)解:或,.18.证明:,故方程总有两个不相等的实数根;19.解:根据题意,易得,则,则,即,解得:,答:树的高度为.20.解:(1)证明:,均是等腰直角三角形,,,,,;(2)答:相等.在图2中,,,,在和中,,,.21.解:(1)答:补全图形如图所示:()()2242414200b ac ∴∆=-=--⨯⨯-=>1x ∴===11x =+21x =()()3242x x x -=--()()32420x x x -+-=()()3420x x +-=340x +=20x -=12x ∴=243x =-()()()22223411694425140a a a a a a a a ∆=+-⨯⨯+=++--=++=++>90CDE ABE ∠=∠=︒CED AEB∠=∠ABE CDE ∽△△BE AB DE CD =81.6 1.5AB =7.5AB =AB 7.5m AOB △COD △90AOB COD ︒∠=∠=OA OB ∴=OC OD =OA OC OB OD ∴-=-AC BD ∴=90AOB COD ︒∠=∠=DOB COD COB ∠=∠-∠ COA AOB COB ∠=∠-∠DOB COA∴∠=∠DOB △COA △OD OC DOB COA OB OA =⎧⎪∠=∠⎨⎪=⎩()SAS DOB COA ∴≌△△BD AC ∴=(2)解:证明:连接,切于,,即,,,,,,在和中,,,,,即,是的半径,是的切线.22.(1)解:如图所示,连接,为的直径,平分,OD PA O e A PA AB ∴⊥90PAO ∠=︒OP BD ∥DBO AOP ∴∠=∠BDO DOP∠=∠OD OB = BDO DBO ∴∠=∠DOP AOP ∴∠=∠AOP △DOP △,AO DO AOP DOP PO PO =⎧⎪∠=∠⎨⎪=⎩()SAS AOP DOP ∴≌△△PDO PAO ∴∠=∠90PAO ︒∠= 90PDO ︒∴∠=OD PD ⊥OD O e PD ∴O e OC BD O e AC BAD ∠,,..,,,即...(2)解:如图所示,设其中小阴影面积为,大阴影面积为,弦与劣弧所形成的面积为,由(1)已知,,,,.,弦弦,劣弧劣弧..为的直径,,,,...23.(1)解:依题意:抛物线形的公路隧道,其高度为8米,宽度为16米,现在点为原点,点,顶点,设抛物线的解析式为,把点,点代入得:,90BAD ︒∴∠=11904522BAC DAC BAD ∠=∠=∠=⨯︒=︒OB OD=90COD ︒∴∠=CD = OC OD =222OD CD ∴=228OD =2OD ∴=224BD OD OB ∴=+=+=1S 3S CD CD 2S 90COD ∠=︒45DAC ∠=︒OC OD =4BD =()11180904522BDC COD ︒︒︒∴∠=-∠=⨯=DAC BDC ∠=∠ ∴BC =CD BC =CD 12S S ∴=BD O e CD =90BCD ECD ∴∠=∠=︒BC CD ==BE = CE BE BC ∴=-=-=11622ECD S CE CD ∴=⋅=⨯=△13236ECD S S S S S S ∴=+=+==阴影部分△OM O ∴()16,0M ()8,8P 2y ax bx =+()16,0M ()8,8P 6488256160a b a b +=⎧⎨+=⎩解得抛物线的解析式为,,自变量的取值范围为:.(2)解:当时,,故能同时并行两辆宽2.5米、高5米的特种车辆.24.证明:问题背景:,,,,,,.尝试应用:如图(2),连接,,,,,,,,,,,,,,,182a b ⎧=-⎪⎨⎪=⎩∴2128y x x =-+16OM = ()16,0M ∴x 016x ≤≤98 2.512x =--=21992072582232y ⎛⎫=-⨯+⨯=> ⎪⎝⎭ABC ADE ∽△△AB AC AD AE∴=BAC DAE ∠=∠BAD DAC DAC CAE ∴∠+∠=∠+∠BAD CAE ∴∠=∠AB AD AC AE=ABD ACE ∴∽△△CE 4AB = 3AC =90BAC ∠=︒5BC ∴===90BAC DAE ∠=∠=︒ ABC ADE ∠=∠ABC ADE ∴∽△△AB AC AD AE∴=43AB AD AC AE ∴==90BAC DAE ︒∠=∠= 90BAD CAE DAC ∴∠=∠=︒-∠BAD CAE ∴∽△△B ACE ∴∠=∠43AB BD AC CE ==设,,,,,,,,,,拓展创新:过点作的垂线,过点作的垂线,两垂线交于点,连接,图3,,,又,,,又,,即,,,,,,∴4BD x =3CE x =54CDx ∴=-90B ACB ︒∠+∠= 90ACE ACB ︒∴∠+∠=90DCE ︒∴∠=12EC DC = 31542x x ∴=-12x ∴=32EC ∴=3CD =DE ∴===A AB D AD M BM 90BAM ADM BDC ︒∴∠=∠=∠=BAD DBC ∠=∠ DAM BCD ∴∠=∠90ADM BDC ︒∠=∠= BDC MDA ∴∽△△BD DC MD DA∴=BDC ADM ∠=∠BDC CDM ADM CDM ∴∠+∠=∠+∠BDM CDA ∠=∠BDM CDA ∴∽△△BM DM BD AC AD DC∴==12CD BD = 2BD CD ∴=2BM AC ∴==2DM AD =,,,(舍去).25.解:(1)把点,代入中,,解得,,顶点;(2)方法一:如图1,抛物线,令,,或,.设的解析式为,将点,代入,得,解得,..设直线的解析式为,设点的坐标为,将点坐标代入中,得,,联立得.AM ∴===222AD DM AM += 22423AD AD ∴+=AD ∴=()1,0A -()0,3C 22y ax ax c =-+203a a c c ++=⎧⎨=⎩13a c =-⎧⎨=⎩223y x x ∴=-++∴()1,4D 223y x x =-++0y =1x ∴=-3x =()3,0B ∴BC ()0y kx b k =+≠()0,3C ()3,0B 330b k b =⎧⎨+=⎩13k b =-⎧⎨=⎩3y x ∴=-+EF CB ⊥ EF y x b =+E ()2,23m m m -++E y x b =+23b m m =-++23y x m m ∴=-++233y x y x m m =-+⎧⎨=-++⎩.把代入,得,..,即.解得或.点是上方抛物线上的点,(舍去).点,,,,,;方法二:图1如图所示,过点作、分别垂直,轴,分别交于,点设,由可知,则,则代入二次函数解析式化简的解得,(舍去)则22262m m x m m y ⎧-=⎪⎪∴⎨-++⎪=⎪⎩226,22m m m m F ⎛⎫--++∴ ⎪⎝⎭x m =3y x =-+3y m =-+(),3G m m ∴-+BG CF = 22BG CF ∴=()()2222223322m m m m m m ⎛⎫⎛⎫---+-=+ ⎪ ⎪⎝⎭⎝⎭2m =3m =- E BC 3,m ∴=-∴()2,3E ()1,2F ()2,1G EF ==FG ==112EFG S ∴==△F FR FH y x R H RF m =CF BG =CRF GMB ≌△△RF MB m ==32HM m ∴=-()232EG m =-()23263EM m m m ∴=-+=-()3,63E m m --2760m m -+=11m =26m =1121122EFG S EG FK ∴=⨯⨯=⨯⨯=△(3)如图2,过点作于,点,,.点,点,,联立得,.设,把代入,得,,联立得,,,..设点.过点作轴于点,在轴上作点使得,且点的坐标为.若在和中,,,.A AN HB ⊥N ()1,4D ()3,0B 26BD y x ∴=-+ ()1,0A -()0,3C 33AC y x ∴=+326y x y x =+⎧⎨=-+⎩35245x y ⎧=⎪⎪∴⎨⎪=⎪⎩324,55H ⎛⎫∴ ⎪⎝⎭12AN y x b =+()1,0-12b =1122y x ∴=+112226y x y x ⎧=+⎪⎨⎪=-+⎩11585x y ⎧=⎪⎪∴⎨⎪=⎪⎩118,55N ⎛⎫∴ ⎪⎝⎭2222211816815555AN ⎛⎫⎛⎫⎛⎫⎛⎫∴=++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22281655HN ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭AN HN ∴=45H ∴∠=︒()2,23P n n n -++P PR x ⊥R x S RS PR =45RSP ︒∴∠=S ()233,0n n -++45OPB AHB ︒∠=∠=OPS △OPB △POS POB ∠=∠OSP OPB ∠=∠OPS OBP ∴∽△△...或或(舍去).,,.OP OS OB OP∴=2OP OB OS ∴=⋅()()()222213333n n n n n ∴++-=⋅-++0n ∴=n =3n =()10,3P∴2P3P。
2023年中考数学压轴题专题23 二次函数推理计算与证明综合问题【含答案】
专题23二次函数推理计算与证明综合问题【例1】(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c (a>0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.【例2】(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.【例3】(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P (2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.【例4】(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x ﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.【例5】(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.(1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).①求a,c的值;②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m 的取值范围.一.解答题(共20题)1.(2022•瑞安市校级三模)已知抛物线y=ax2﹣2ax﹣2+a2(a≠0).(1)求这条抛物线的对称轴;若该抛物线的顶点在x轴上,求a的值;(2)设点P(m,y1),Q(4,y2)在抛物线上,若y1<y2,求m的取值范围.2.(2022•西城区校级模拟)在平面直角坐标系xOy中,点A(x1,y1)、点B(x2,y2)为抛物线y=ax2﹣2ax+a(a≠0)上的两点.(1)求抛物线的对称轴;(2)当﹣2<x1<﹣1且1<x2<2时,试判断y1与y2的大小关系并说明理由;(3)若当t<x1<t+1且t+2<x2<t+3时,存在y1=y2,求t的取值范围.3.(2022•新野县三模)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+2.(1)抛物线的对称轴为直线,抛物线与y轴的交点坐标为;(2)若当x满足1≤x≤5时,y的最小值为﹣6,求此时y的最大值.4.(2022•萧山区二模)在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.5.(2022•盈江县模拟)抛物线C1:y=x2+bx+c的对称轴为x=1,且与y轴交点的纵坐标为﹣3.(1)求b,c的值;(2)抛物线C2:y=﹣x2+mx+n经过抛物线C1的顶点P.①求证:抛物线C2的顶点Q也在抛物线C1上;②若m=8,点E是在点P和点Q之间抛物线C1上的一点,过点E作x轴的垂线交抛物线C2于点F,求EF长度的最大值.6.(2022•沂水县二模)抛物线y=ax2+bx经过点A(﹣4,0),B(1,5);点P(2,c),Q (x0,y0)是抛物线上的点.(1)求抛物线的顶点坐标;(2)若x0>﹣6,比较c、y0的大小;(3)若直线y=m与抛物线交于M、N两点,(M、N两点不重合),当MN≤5时,求m的取值范围.7.(2022•姜堰区二模)设一次函数y1=2x+m+n和二次函数y2=x(2x+m)+n.(1)求证:y1,y2的图象必有交点;(2)若m>0,y1,y2的图象交于点A(x1,a)、B(x2,b),其中x1<x2,设C(x3,b)为y2图象上一点,且x3≠x2,求x3﹣x1的值;(3)在(2)的条件下,如果存在点D(x1+2,c)在y2的图象上,且a>c,求m的取值范围.8.(2022•西城区校级模拟)已知抛物线y=x2﹣4mx+4m2﹣1.(1)求此抛物线的顶点的坐标;(2)若直线y=n与该抛物线交于点A、B,且AB=4,求n的值;(3)若这条抛物线经过点P(2m+1,y1),Q(2m﹣t,y2),且y1<y2,求t的取值范围.9.(2022•黄岩区一模)在平面直角坐标系中,已知抛物线y1=ax2+bx+3与直线y2=x+1.(1)当抛物线y1=ax2+bx+3与直线y2=x+1两个交点的横坐标分别为﹣1和2时.①求抛物线解析式;②直接写出当y1>y2,时x的取值范围;(2)设y=y1﹣y2,当x=m时y=M,x=n时y=N,当m+n=1(m≠n)时,M=N.求证:a+b=1.10.(2022•路桥区一模)在平面直角坐标系中,已知二次函数y=x2﹣(m+2)x+m(m是常数).(1)求证:不论m取何值,该二次函数的图象与x轴总有两个交点;(2)若点A(2m+1,7)在该二次函数的图象上,求该二次函数的解析式;(3)在(2)的条件下,若抛物线y=x2﹣(m+2)x+m与直线y=x+t(t是常数)在第四象限内有两个交点,请直接写出t的取值范围.11.(2022•安徽模拟)已知:抛物线y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)若抛物线经过(﹣1,﹣2)时,求抛物线解析式;(2)设P点的纵坐标为y p,当y p取最小值时,抛物线上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)若线段AB两端点坐标分别是A(0,2),B(2,2),当抛物线与线段AB有公共点时,直接写出m的取值范围.12.(2022•富阳区一模)已知抛物线y=a(x﹣1)(x﹣).(1)若抛物线过点(2,1),求抛物线的解析式;(2)若该抛物线上任意不同两点M(x1,y1)、N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,试判断点(2,﹣9)在不在此抛物线上;(3)抛物线上有两点E(0,n)、F(b,m),当b≤﹣2时,m≤n恒成立,试求a的取值范围.13.(2022•河东区二模)已知抛物线y=a(x+3)(x﹣4)与y轴交于点A(0,﹣2).(Ⅰ)求抛物线y=a(x+3)(x﹣4)的解析式及顶点坐标;(Ⅱ)设抛物线与x轴的正半轴的交点为点B,点P为x轴上一动点,点D满足∠DPA=90°,PD=PA.(i)若点D在抛物线上,求点D的坐标;(ii)点E(2,﹣)在抛物线上,连接PE,当PE平分∠APD时,求出点P的坐标.14.(2022•长春模拟)在平面直角坐标系中,已知抛物线y=x2+bx+c(b、c是常数)经过点(0,﹣1)和(2,7),点A在这个抛物线上,设点A的横坐标为m.(1)求此抛物线对应的函数表达式并写出顶点C的坐标.(2)点B在这个抛物线上(点B在点A的左侧),点B的横坐标为﹣1﹣2m.①当△ABC是以AB为底的等腰三角形时,求OABC的面积.②将此抛物线A、B两点之间的部分(包括A、B两点)记为图象G,当顶点C在图象G 上,记图象G最高点的纵坐标与最低点的纵坐标的差为h,求h与m之间的函数关系式.(3)设点D的坐标为(m,2﹣m),点E的坐标为(1﹣m,2﹣m),点F在坐标平面内,以A、D、E、F为顶点构造矩形,当此抛物线与矩形有3个交点时,直接写出m的取值范围.15.(2022•长春二模)在平面直角坐标系中,抛物线y=x2﹣2mx+m2与y轴的交点为A,过点A作直线l垂直于y轴.(1)求抛物线的对称轴(用含m的式子表示);(2)将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M(x1,y1),N(x2,y2)为图形G上任意两点.①当m=0时,若x1<x2,判断y1与y2的大小关系,并说明理由;②若对于x1=m﹣1,x2=m+1,都有y1>y2,求m的取值范围;(3)当图象G与直线y=m+2恰好有3个公共点时,直接写出m的取值范围.16.(2022•开福区校级一模)已知:抛物线C1:y=ax2+bx+c(a>0).(1)若顶点坐标为(1,1),求b和c的值(用含a的代数式表示);(2)当c<0时,求函数y=﹣2022|ax2+bx+c|﹣1的最大值;(3)若不论m为任何实数,直线与抛物线C1有且只有一个公共点,求a,b,c的值;此时,若k≤x≤k+1时,抛物线的最小值为k,求k的值.17.(2022•安徽模拟)已知二次函数y=ax2﹣x+c的图象经过点A(﹣2,2),该图象与直线x=2相交于点B.(1)求点B的坐标;(2)当c>0时,求该函数的图象顶点纵坐标的最小值;(3)点M(m,0)、N(n,0)是该函数图象与x轴的两个交点.当m>﹣2,n<3时,结合函数图象分析a的取值范围.18.(2022•江都区一模)对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数.在所有满足条件的M中,其最小值称为这个函数的上确界.例如,函数y=﹣(x﹣3)2+2是有上界函数,其上确界是2.(1)函数①y=x2+2x+1和②y=2x﹣3(x≤5)中是有上界函数的为(只填序号即可),其上确界为;(2)若反比例函数y=(a≤x≤b,a>0)的上确界是b+1,且该函数的最小值为2,求a、b的值;(3)如果函数y=﹣x2+2ax+2(﹣1≤x≤3)是以6为上确界的有上界函数,求实数a的值.19.(2022•亭湖区校级一模)已知抛物线y=ax2﹣(3a﹣1)x﹣2(a为常数且a≠0)与y 轴交于点A.(1)点A的坐标为;对称轴为(用含a的代数式表示);(2)无论a取何值,抛物线都过定点B(与点A不重合),则点B的坐标为;(3)若a<0,且自变量x满足﹣1≤x≤3时,图象最高点的纵坐标为2,求抛物线的表达式;(4)将点A与点B之间的函数图象记作图象M(包含点A、B),若将M在直线y=﹣2下方的部分保持不变,上方的部分沿直线y=﹣2进行翻折,可以得到新的函数图象M1,若图象M1上仅存在两个点到直线y=﹣6的距离为2,求a的值.20.(2022•义安区模拟)已知抛物线的图象经过坐标原点O.(1)求抛物线解析式.(2)若B,C是抛物线上两动点,直线BC:y=kx+b恒过点(0,1),设直线OB为y=k1x,直线OC为y=k2x.①若B、C两点关于y轴对称,求k1k2的值.②求证:无论k为何值,k1k2为定值.【例1】(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c (a>0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.【分析】(1)将点(1,m),(3,n)代入抛物线解析式,再根据m=n得出b=﹣4a,再求对称轴即可;(2)再根据m<n<c,可确定出对称轴的取值范围,进而可确定x0的取值范围.【解答】解:(1)将点(1,m),(3,n)代入抛物线解析式,∴,∵m=n,∴a+b+c=9a+3b+c,整理得,b=﹣4a,∴抛物线的对称轴为直线x=﹣=﹣=2;∴t=2,∵c=2,∴抛物线与y轴交点的坐标为(0,2).(2)∵m<n<c,∴a+b+c<9a+3b+c<c,解得﹣4a<b<﹣3a,∴3a<﹣b<4a,∴<﹣<,即<t<2.当t=时,x0=2;当t=2时,x0=3.∴x0的取值范围2<x0<3.【例2】(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.【分析】(1)将图象经过的两个点的坐标代入二次函数解析式解答即可;(2)根据x的取值范围,二次函数图象的开口方向和对称轴,结合二次函数的性质判定y 的最大值即可;(3)根据对称轴为x=﹣3,结合二次函数图象的性质,分类讨论得出m的取值范围即可.【解答】解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=或m=(舍去).综上所述,m=﹣2或.【例3】(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P (2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.【分析】(1)将(2,4)代入解析式求解.(2)由判别式Δ的符号可判断抛物线与x轴交点个数.【解答】解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.【例4】(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x ﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.【分析】(1)根据A、B两点的坐标特征,可设函数y1的表达式为y1=2(x﹣x1)(x﹣x2),其中x1,x2是抛物线与x轴交点的横坐标;(2)把函数y1=2(x﹣h)2﹣2,化成一般式,求出对应的b、c的值,再根据b+c式子的特点求出其最小值;(3)把y1,y2代入y=y1﹣y2求出y关于x的函数表达式,再根据其图象过点(x0,0),把(x0,0)代入其表达式,形成关于x0的一元二次方程,解方程即可.【解答】解:(1)∵二次函数y1=2x2+bx+c过点A(1,0)、B(2,0),∴y1=2(x﹣1)(x﹣2),即y1=2x2﹣6x+4.∴抛物线的对称轴为直线x=﹣=.(2)把y1=2(x﹣h)2﹣2化成一般式得,y1=2x2﹣4hx+2h2﹣2.∴b=﹣4h,c=2h2﹣2.∴b+c=2h2﹣4h﹣2=2(h﹣1)2﹣4.把b+c的值看作是h的二次函数,则该二次函数开口向上,有最小值,∴当h=1时,b+c的最小值是﹣4.(3)由题意得,y=y1﹣y2=2(x﹣m)(x﹣m﹣2)﹣(x﹣m)=(x﹣m)[2(x﹣m)﹣5].∵函数y的图象经过点(x0,0),∴(x0﹣m)[2(x0﹣m)﹣5]=0.∴x0﹣m=0,或2(x0﹣m)﹣5=0.即x0﹣m=0或x0﹣m=.【例5】(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.(1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).①求a,c的值;②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m 的取值范围.【分析】(1)设函数y=2x+1的和谐点为(x,x),可得2x+1=x,求解即可;(2)将点(,)代入y=ax2+6x+c,再由ax2+6x+c=x有且只有一个根,Δ=25﹣4ac =0,两个方程联立即可求a、c的值;②由①可知y=﹣x2+6x﹣6=﹣(x﹣3)2+3,当x=1时,y=﹣1,当x=3时,y=3,当x=5时,y=﹣1,则3≤m≤5时满足题意.【解答】解:(1)存在和谐点,理由如下,设函数y=2x+1的和谐点为(x,x),∴2x+1=x,解得x=﹣1,∴和谐点为(﹣1,﹣1);(2)①∵点(,)是二次函数y=ax2+6x+c(a≠0)的和谐点,∴=a+15+c,∴c=﹣a﹣,∵二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点,∴ax2+6x+c=x有且只有一个根,∴Δ=25﹣4ac=0,∴a=﹣1,c=﹣;②由①可知y=﹣x2+6x﹣6=﹣(x﹣3)2+3,∴抛物线的对称轴为直线x=3,当x=1时,y=﹣1,当x=3时,y=3,当x=5时,y=﹣1,∵函数的最大值为3,最小值为﹣1;当3≤m≤5时,函数的最大值为3,最小值为﹣1.一.解答题(共20题)1.(2022•瑞安市校级三模)已知抛物线y=ax2﹣2ax﹣2+a2(a≠0).(1)求这条抛物线的对称轴;若该抛物线的顶点在x轴上,求a的值;(2)设点P(m,y1),Q(4,y2)在抛物线上,若y1<y2,求m的取值范围.【分析】(1)把解析式化成顶点式,根据顶点式求得对称轴和顶点坐标,根据顶点在x轴上得到关于a的方程,解方程求得a的值;(2)根据二次函数的性质,分两种情况即可求出m的范围.【解答】解:(1)∵抛物线y=ax2﹣2ax﹣2+a2=a(x﹣1)2+a2﹣a﹣2,∴抛物线的对称轴为直线x=1.若抛物线的顶点在x轴上,则a2﹣a﹣2=0,∴a=2或﹣1.(2)∵抛物线的对称轴为直线x=1,则Q(4,y2)关于直线x=1对称点的坐标为(﹣2,y2),∴当a>0时,若y1<y2,m的取值范围为:﹣2<m<4;当a<0时,若y1<y2,m的取值范围为:m<﹣2或m>4.2.(2022•西城区校级模拟)在平面直角坐标系xOy中,点A(x1,y1)、点B(x2,y2)为抛物线y=ax2﹣2ax+a(a≠0)上的两点.(1)求抛物线的对称轴;(2)当﹣2<x1<﹣1且1<x2<2时,试判断y1与y2的大小关系并说明理由;(3)若当t<x1<t+1且t+2<x2<t+3时,存在y1=y2,求t的取值范围.【分析】(1)先化抛物线的表达式为y=a(x﹣1)2+1,依此可求抛物线的对称轴;(2)利用二次函数性质即可求得答案;(3)利用二次函数性质存在A到对称轴的距离与B到对称轴的距离相等即可解答.【解答】解:(1)y=ax2﹣2ax+a=a(x﹣1)2,∴抛物线的对称轴为x=1;(2)∵﹣2<x1<﹣1,1<x2<2,∴1﹣x1>1﹣x2,∴A离对称轴越远,若a>0,开口向上,则y1>y2,若a<0,开口向下,则y1<y2,(3)∵t<x1<t+1,t+2<x2<t+3,存在y1=y2,则t+1<1且t+2>1,∴t<0且t>1,∴存在1﹣x1=x2﹣1,即存在A到对称轴的距离与B到对称轴的距离相等,∴1﹣t>t+2﹣1且1﹣(t+1)<t+3﹣1,∴﹣1<t<0.3.(2022•新野县三模)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+2.(1)抛物线的对称轴为直线x=2,抛物线与y轴的交点坐标为(0,2);(2)若当x满足1≤x≤5时,y的最小值为﹣6,求此时y的最大值.【分析】(1)由对称轴方程,将对应系数代入可得,令抛物线解析式中的x=0,求得y,答案可得;(2)利用当x满足1≤x≤5时,y的最小值为﹣6,可求得a的值,再利用二次函数图象的特点可确定y的最大值.【解答】解:(1)∵抛物线y=ax2﹣4ax+2的对称轴为直线x=﹣=2.令x=0,则y=2.∴抛物线y=ax2﹣4ax+2与y轴的交点为(0,2).故答案为:x=2;(0,2).(2)∵抛物线y=ax2﹣4ax+2的对称轴为直线x=2,∴顶点在1≤x≤5范围内,∵当x满足1≤x≤5时,y的最小值为﹣6,∴当a<0时,抛物线开口向下,x=5时y有最小值﹣6,∴25a﹣20a+2=﹣6,解得a=﹣,∴抛物线为y=﹣x2+x+2当x=2时,y=﹣×22+×2+2=,∴此时y的最大值为.当a>0,抛物线开口向上,x=2时y有最小值﹣6,∴4a﹣8a+2=﹣6,解得a=2,∴抛物线为y=2x2﹣8x+2,当x=5时,y=2×25﹣8×5+2=12,∴此时y的最大值12.综上,y的最大值为12.4.(2022•萧山区二模)在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.【分析】(1)直接将点(1,2)代入即可求得a的值,然后根据顶点公式求得即可;(2)利用题意,﹣===﹣1求解a,然后把解析式化成顶点式,根据二次函数的性质即可得到结论;(3)利用顶点公式求得x=﹣=﹣+,y==﹣,由a<0且a≠﹣1即可判断x<0,y>0,即可得到该二次函数图象的顶点在第二象限.【解答】解:(1)∵函数图象过点(1,2),∴将点代入y=ax2+(a﹣1)x﹣1,解得a=2,∴二次函数的解析式为y=2x2+x﹣1,∴x=﹣=﹣,∴y=2×﹣﹣1=﹣,∴该二次函数的顶点坐标为(﹣,﹣);(2)函数y=ax2+(a﹣1)x﹣1的对称轴是直线x=﹣,∵(x1,y1),(x2,y2)为此二次函数图象上的两个不同点,且x1+x2=﹣2,则y1=y2,∴﹣===﹣1,∴a=﹣1,∴y=﹣x2﹣2x﹣1=﹣(x+1)2≤0,∴当x=﹣1时,函数有最大值0;(3)∵y=ax2+(a﹣1)x﹣1,∴由顶点公式得:x=﹣=﹣+,y==﹣,∵a<0且a≠﹣1,∴x<0,y>0,∴该二次函数图象的顶点在第二象限.5.(2022•盈江县模拟)抛物线C1:y=x2+bx+c的对称轴为x=1,且与y轴交点的纵坐标为﹣3.(1)求b,c的值;(2)抛物线C2:y=﹣x2+mx+n经过抛物线C1的顶点P.①求证:抛物线C2的顶点Q也在抛物线C1上;②若m=8,点E是在点P和点Q之间抛物线C1上的一点,过点E作x轴的垂线交抛物线C2于点F,求EF长度的最大值.【分析】(1)根据对称轴公式x=﹣,即可求出b的值,由抛物线与y轴交点的纵坐标为﹣3即可求得c的值;(2)①由(1)可得抛物线C1的解析式,从而可得抛物线C1的顶点P的坐标,由抛物线C2经过抛物线C1的顶点可得n=﹣m﹣3,从而可得抛物线C2为:y=﹣x2+mx﹣m﹣3,根据对称轴公式x=﹣,即可求出顶点Q的坐标,再将点Q的横坐标代入抛物线C1的解析式中,即可证明;②先分别求出点P和点Q的横坐标,由①可得n=﹣11,设点E横坐标为x,由点E在抛物线C1上可表示出纵坐标,由题可知点F与点E横坐标相同,代入抛物线C2的解析式中可得点F纵坐标,即可求解.【解答】(1)解:∵抛物线C1:y=x2+bx+c对称轴为x=1,且与y轴交点的纵坐标为﹣3,∴x=﹣=1,c=﹣3,∴b=﹣2;(2)①证明:∵抛物线C1的解析式为:y=x2﹣2x﹣3,∴顶点P的坐标为:(1,﹣4),∵抛物线C2经过抛物线C1的顶点,∴﹣4=﹣12+m+n,∴n=﹣m﹣3,∴抛物线C2为:y=﹣x2+mx﹣m﹣3,∴对称轴为:直线x=﹣=,将x=代入y=﹣x2+mx﹣m﹣3,得:y=﹣m﹣3,∴点Q坐标为:(,﹣m﹣3),将x=代入y=x2﹣2x﹣3,得:y=﹣m﹣3,∴点Q也在抛物线C1上;②解:由①知n=﹣m﹣3,∵m=8,∴n=﹣11,∴抛物线C2的解析式为:y=﹣x2+8x﹣11,对称轴为:直线x==4,设点E横坐标为x,∵点E是在点P和点Q之间抛物线C1上的一点,∴点E坐标为(x,x2﹣2x﹣3),1<x<4,∵过点E作x轴的垂线交抛物线C2于点F,∴点F横坐标为x,∴点F坐标为(x,﹣x2+8x﹣11),∴EF=﹣x2+8x﹣11﹣(x2﹣2x﹣3)=﹣x2+8x﹣11﹣x2+2x+3=﹣2x2+10x﹣8=﹣2(x2﹣5x+4)=﹣2(x2﹣5x+)+=﹣2(x﹣)2+,∴当x=时,EF取得最大值,最大值为,∴EF长度的最大值为.6.(2022•沂水县二模)抛物线y=ax2+bx经过点A(﹣4,0),B(1,5);点P(2,c),Q (x0,y0)是抛物线上的点.(1)求抛物线的顶点坐标;(2)若x0>﹣6,比较c、y0的大小;(3)若直线y=m与抛物线交于M、N两点,(M、N两点不重合),当MN≤5时,求m的取值范围.【分析】(1)利用待定系数法即可求得抛物线解析式,化成顶点式即可求得顶点坐标;(2)根据二次函数的性质判断即可;(3)设M、N的横坐标分别为x1、x2,则x1、x2是方程x2+4x=m的两个根,根据根与系数的关系得到x1+x2=﹣4,x1x2=﹣m,由MN≤5,则(x1﹣x2)2≤25,所以(x1+x2)2﹣4x1x2≤25,即16+4m≤25,解得即可.【解答】解:(1)∵抛物线y=ax2+bx经过点A(﹣4,0),B(1,5),∴,解得,∴抛物线为y=x2+4x,∵y=x2+4x=(x+2)2﹣4,∴抛物线的顶点坐标为(﹣2,﹣4);(2)∵抛物线为y=x2+4x的对称轴为直线x=﹣2,且开口向上,∴当x<﹣2时,y随x的增大而减小,∵点P(2,c)关于对称轴的对称点为(﹣6,c),∵x0>﹣6,∴当﹣6<x0<2时,则c>y0;当x0≥2时,则c≤y0;(3)设M、N的横坐标分别为x1、x2,∵直线y=m与抛物线交于M、N两点,(M、N两点不重合),∴x1、x2是方程x2+4x=m的两个根,∴x1+x2=﹣4,x1x2=﹣m,∵MN≤5,∴(x1﹣x2)2≤25,∴(x1+x2)2﹣4x1x2≤25,即16+4m≤25,解得m≤,∵抛物线的顶点坐标为(﹣2,﹣4),∴函数的最小值为﹣4,∴﹣4<m≤.7.(2022•姜堰区二模)设一次函数y1=2x+m+n和二次函数y2=x(2x+m)+n.(1)求证:y1,y2的图象必有交点;(2)若m>0,y1,y2的图象交于点A(x1,a)、B(x2,b),其中x1<x2,设C(x3,b)为y2图象上一点,且x3≠x2,求x3﹣x1的值;(3)在(2)的条件下,如果存在点D(x1+2,c)在y2的图象上,且a>c,求m的取值范围.【分析】(1)证明y1=y2时,方程2x+m+n=x(2x+m)+n有解,进而转化证明一元二次方程的根的判别式非负便可;(2)由y1=y2,求出x1与x2,进而求得b,由b的值,求得x3的值,进而得x3﹣x1的值;(3)把点A(x1,a)、点D(x1+2,c)代入y2=x(2x+m)+n,根据a>c得x1(2x1+m)+n﹣2(x1+2)2﹣m(x1+2)﹣n>0,化简得4x1+4+m<0,由(2)得x1=﹣,代入求解即可.【解答】(1)证明:当y1=y2时,得2x+m+n=x(2x+m)+n,化简为:2x2+(m﹣2)x﹣m=0,△=(m﹣2)2+8m=(m+2)2≥0,∴方程2x+m+n=x(2x+m)+n有解,∴y1,y2的图象必有交点;(2)解:当y1=y2时,2x+m+n=x(2x+m)+n,化简为:2x2+(m﹣2)x﹣m=0,(2x+m)(x﹣1)=0,∵m>0,x1<x2,∴x1=﹣,x2=1,∴b=2+m+n,当y=2+m+n时,y2=x(2x+m)+n=2+m+n,化简为:2x2+mx﹣m﹣2=0,2x2﹣2+mx﹣m=0,2(x+1)(x﹣1)+m(x﹣1)=0,(2x+m+2)(x﹣1)=0,解得,x=1(等于x2),或x=,∴x3=,∴x3﹣x1=﹣(﹣)=﹣1;(3)解:∵点D(x1+2,c)在y2的图象上,∴c=(x1+2)[2(x1+2)+m]+n=2(x1+2)2+m(x1+2)+n.∵点A(x1,a)在y2的图象上,∴a=x1(2x1+m)+n.∵a>c,∴a﹣c>0,∴x1(2x1+m)+n﹣2(x1+2)2﹣m(x1+2)﹣n>0,化简得4x1+4+m<0,由(2)得x1=﹣,∴4×(﹣)+4+m<0,﹣2m+4+m<0,﹣m+4<0,m>4,∴m的取值范围为m>4.8.(2022•西城区校级模拟)已知抛物线y=x2﹣4mx+4m2﹣1.(1)求此抛物线的顶点的坐标;(2)若直线y=n与该抛物线交于点A、B,且AB=4,求n的值;(3)若这条抛物线经过点P(2m+1,y1),Q(2m﹣t,y2),且y1<y2,求t的取值范围.【分析】(1)将二次函数解析式化为顶点式求解.(2)由二次函数的对称性及AB=4可得点A,B坐标,进而求解.(3)由点P坐标及抛物线对称轴可得点P关于对称轴的对称点P'坐标,由抛物线开口向下可求解.【解答】解:(1)∵y=x2﹣4mx+4m2﹣1=(x﹣2m)2﹣1,∴抛物线顶点坐标为(2m,﹣1).(2)∵点A,B关于抛物线对称轴对称,AB=4,对称轴为直线x=2m,∴抛物线经过(2m+2,n),(2m﹣2,n),将(2m+2,n)代入y=(x﹣2m)2﹣1得n=22﹣1=3.(3)点P(2m+1,y1)关于抛物线对称轴的对称点P'坐标为(2m﹣1,y1),∵抛物线开口向上,∴当2m﹣t>2m+1或2m﹣t<2m﹣1时,且y1<y2,解得t<﹣1或t>1.9.(2022•黄岩区一模)在平面直角坐标系中,已知抛物线y1=ax2+bx+3与直线y2=x+1.(1)当抛物线y1=ax2+bx+3与直线y2=x+1两个交点的横坐标分别为﹣1和2时.①求抛物线解析式;②直接写出当y1>y2,时x的取值范围;(2)设y=y1﹣y2,当x=m时y=M,x=n时y=N,当m+n=1(m≠n)时,M=N.求证:a+b=1.【分析】(1)①由交点横坐标及直线解析式可得交点坐标,然后通过待定系数法求解.②由抛物线开口方向及交点横坐标求解.(2)由y=y1﹣y2,M=N可得m,n为方程ax2+(b﹣1)x+2=0的两个根,由一元二次方程根与系数的关系进行证明.【解答】解:(1)①将x=﹣1和x=2分别代入y2=x+1得y2=0,y2=3,∴抛物线经过(﹣1,0),(2,3),∴,解得,∴y1=﹣x2+2x+3.②∵抛物线y1=﹣x2+2x+3开口向下,抛物线与直线交点坐标为(﹣1,0),(2,3),∴﹣1<x<2时,y1>y2.(2)∵y=y1﹣y2=ax2+bx+3﹣(x+1)=ax2+(b﹣1)x+2,∴x=m时,M=am2+(b﹣1)m+2,x=n时,N=an2+(b﹣1)n+2,∴m,n为方程ax2+(b﹣1)x+2=0的两个根,由一元二次方程根与系数的关系可得m+n=﹣=1,∴b﹣1=﹣a,∴a+b=1.10.(2022•路桥区一模)在平面直角坐标系中,已知二次函数y=x2﹣(m+2)x+m(m是常数).(1)求证:不论m取何值,该二次函数的图象与x轴总有两个交点;(2)若点A(2m+1,7)在该二次函数的图象上,求该二次函数的解析式;(3)在(2)的条件下,若抛物线y=x2﹣(m+2)x+m与直线y=x+t(t是常数)在第四象限内有两个交点,请直接写出t的取值范围.【分析】(1)由Δ=b2﹣4ac>0证明.(2)将点A坐标代入解析式求解.(3)分类讨论,通过数形结合求解.【解答】解:(1)令x2﹣(m+2)x+m=0,则Δ=(m+2)2﹣4m=m2+4>0,∴方程x2﹣(m+2)x+m=0有两个不相等实数根,∴二次函数的图象与x轴总有两个交点.(2)将(2m+1,7)代入y=x2﹣(m+2)x+m得7=(2m+1)2﹣(m+2)(2m+1)+m,解得m=2或m=﹣2,当m=2时,y=x2﹣4x+2,当m=﹣2时,y=x2﹣2.(3)①当m=2时,y=x2﹣4x+2,令x2﹣4x+2=0,解得x1=2+,x2=2﹣,∴抛物线与x轴交点坐标为(2+,0),(2﹣,0),如图,当直线y=x+t经过(2+,0)时,2++t=0,解得t=﹣2﹣,当直线y=x+t与抛物线y=x2﹣4x+2只有1个公共点时,令x2﹣4x+2=x+t,整理得x2﹣5x+2﹣t=0,则Δ=52﹣4(2﹣t)=17+4t=0,解得t=﹣,∴﹣<t<﹣2﹣满足题意.②同理,当m=﹣2时,y=x2﹣2,将x=0代入y=x2﹣2得y=﹣2,∴抛物线经过(0,﹣2),将(0,﹣2)代入y=x+t得t=﹣2,令x2﹣2=x+t,由Δ=1﹣4(﹣2﹣t)=0可得t=﹣,∴﹣<t<﹣2满足题意.综上所述,﹣<t<﹣2﹣或﹣<t<﹣2.11.(2022•安徽模拟)已知:抛物线y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)若抛物线经过(﹣1,﹣2)时,求抛物线解析式;(2)设P点的纵坐标为y p,当y p取最小值时,抛物线上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)若线段AB两端点坐标分别是A(0,2),B(2,2),当抛物线与线段AB有公共点时,直接写出m的取值范围.【分析】(1)将(﹣1,﹣2)代入解析式求解.(2)将x=﹣2代入解析式求出点P纵坐标,通过配方可得y p取最小值时m的值,再将二次函数解析式化为顶点式求解.(3)分别将点A,B坐标代入解析式求解.【解答】解:(1)将(﹣1,﹣2)代入y=x2﹣2mx+m2﹣2得﹣2=1+2m+m2﹣2,解得m=﹣1,∴y=x2+2x﹣1.(2)将x=﹣2代入y=x2﹣2mx+m2﹣2得y P=m2+4m+2=(m+2)2﹣2,∴m=﹣2时,y p取最小值,∴y=x2+4x+2=(x+2)2﹣2,∴x<﹣2时,y随x增大而减小,∵x1<x2≤﹣2,∴y1>y2.(3)∵y=x2﹣2mx+m2﹣2=(x﹣m)2﹣2,∴抛物线顶点坐标为(m,﹣2),∴抛物线随m值的变化而左右平移,将(0,2)代入y=x2﹣2mx+m2﹣2得m2﹣2=2,解得m=2或m=﹣2,将(2,2)代入y=x2﹣2mx+m2﹣2得2=4﹣4m+m2﹣2,解得m=0或m=4,∴﹣2≤m≤0时,抛物线对称轴在点A左侧,抛物线与线段AB有交点,2≤m≤4时,抛物线对称轴在点A右侧,抛物线与线段AB有交点.∴﹣2≤m≤0或2≤m≤4.12.(2022•富阳区一模)已知抛物线y=a(x﹣1)(x﹣).(1)若抛物线过点(2,1),求抛物线的解析式;(2)若该抛物线上任意不同两点M(x1,y1)、N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,试判断点(2,﹣9)在不在此抛物线上;(3)抛物线上有两点E(0,n)、F(b,m),当b≤﹣2时,m≤n恒成立,试求a的取值范围.【分析】(1)将(2,1)代入函数解析式求解.(2)由当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,可得抛物线对称轴为y轴,从而可得a的值,然后将x=2代入解析式判断.(3)由b≤﹣2时,m≤n恒成立,可得抛物线开口向下,求出点E关于对称轴对称的点坐标,列不等式求解.【解答】解:(1)将(2,1)代入y=a(x﹣1)(x﹣)得1=a(2﹣),解得a=2,∴y=2(x﹣1)(x﹣).(2)∵y=a(x﹣1)(x﹣),∴抛物线与x轴交点坐标为(1,0),(,0),∴抛物线对称轴为直线x=,∵x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,∴抛物线对称轴为值x=0,即1+=0,解得a=﹣3,∴y=﹣3(x﹣1)(x+1),将x=2代入y=﹣3(x﹣1)(x+1)得y=﹣9,∴点(2,﹣9)在抛物线上.(3)∵抛物线对称轴为直线x=,∴点E(0,n)关于对称轴对称的点E'(1+,n),∵当b≤﹣2时,m≤n恒成立,∴抛物线开口向下,即a<0,且﹣2≤1+,解得a≤﹣1.13.(2022•河东区二模)已知抛物线y=a(x+3)(x﹣4)与y轴交于点A(0,﹣2).(Ⅰ)求抛物线y=a(x+3)(x﹣4)的解析式及顶点坐标;(Ⅱ)设抛物线与x轴的正半轴的交点为点B,点P为x轴上一动点,点D满足∠DPA=90°,PD=PA.(i)若点D在抛物线上,求点D的坐标;(ii)点E(2,﹣)在抛物线上,连接PE,当PE平分∠APD时,求出点P的坐标.【分析】(Ⅰ)将点A(0,﹣2)代入y=a(x+3)(x﹣4),即可求解;(Ⅱ)(i)设P(t,0),分两种情况讨论:当D点在点P右侧时,过点D作DN⊥x轴交于点N,通过证明△PND≌△AOP(AAS),可得D(t+2,﹣t),再将D点代入二次函数解析式求出t的值,从而求出D的坐标;当点D在点P的左侧时,同理可得D(t﹣2,t),再将D点代入二次函数解析式求出t的值,即可求解;(ii)分两种情况讨论:当D点在x轴下方时,当PE∥y轴时,∠OAP=45°,P(2,0);当D点在x轴上方时,过A点作AG⊥PA交PE于点G,过G点作FG⊥x轴,交于点F,可证明△GAF≌△APO(AAS),从而得到GF=2,则E点与G点重合,OP=AF=OA﹣OF=2﹣=,求出P(﹣,0).【解答】解:(Ⅰ)将点A(0,﹣2)代入y=a(x+3)(x﹣4),得﹣12a=﹣2,∴a=,∴y=(x+3)(x﹣4)=x2﹣x﹣2,∵y=x2﹣x﹣2=(x﹣)2﹣,∴顶点为(,﹣);(Ⅱ)(i)令a(x+3)(x﹣4)=0,解得x=4或x=﹣3,∴B(4,0),设P(t,0),如图1,当D点在点P右侧时,过点D作DN⊥x轴交于点N,∵∠APD=90°,∴∠OPA+∠NPD=90°,∠OPA+∠OAP=90°,∴∠NPD=∠OAP,∴△PND≌△AOP(AAS),∴OP=ND,AO=PN,∴D(t+2,﹣t),∴(t+5)(t﹣2)=﹣t,解得t=1或t=﹣10,∴D(3,﹣1)或(﹣8,10);当点D在点P的左侧时,同理可得D(t﹣2,t),∴t=(t﹣2+3)(t﹣2﹣4),解得t=,∴D(,)或(,);综上所述:D点坐标为(3,﹣1)或(﹣8,10)或(,)或(,);(ii)如图2,当D点在x轴下方时,∵PE平分∠APD,∴∠APE=∠EPD,∵∠APD=90°,∴∠APE=45°,当PE∥y轴时,∠OAP=45°,∴P(2,0);如图3,当D点在x轴上方时,过A点作AG⊥PA交PE于点G,过G点作FG⊥x轴,交于点F,∵∠PAF+∠FAG=90°,∠FAG+∠FGA=90°,∴∠PAF=∠FGA,∵PE平分∠APD,∠APD=90°,∴∠APE=∠EPD=45°=∠AGP,∵AP=AG,∴△GAF≌△APO(AAS),∴AF=OP,FG=OA,∵OA=2,∴GF=2,∵E(2,﹣),∴E点与G点重合,∴OP=AF=OA﹣OF=2﹣=,∴P(﹣,0);综上所述:P点坐标为(2,0)或(﹣,0).14.(2022•长春模拟)在平面直角坐标系中,已知抛物线y=x2+bx+c(b、c是常数)经过点(0,﹣1)和(2,7),点A在这个抛物线上,设点A的横坐标为m.(1)求此抛物线对应的函数表达式并写出顶点C的坐标.(2)点B在这个抛物线上(点B在点A的左侧),点B的横坐标为﹣1﹣2m.①当△ABC是以AB为底的等腰三角形时,求OABC的面积.②将此抛物线A、B两点之间的部分(包括A、B两点)记为图象G,当顶点C在图象G 上,记图象G最高点的纵坐标与最低点的纵坐标的差为h,求h与m之间的函数关系式.(3)设点D的坐标为(m,2﹣m),点E的坐标为(1﹣m,2﹣m),点F在坐标平面内,以A、D、E、F为顶点构造矩形,当此抛物线与矩形有3个交点时,直接写出m的取值范围.【分析】(1)用待定系数法求出抛物线的解析式,再将抛物线的解析式化成顶点式,即可求解;(2)①先根据等腰三角形的性质求出A、B、C三点坐标,再根据三角形面积公式求解即可;②按第一种情况:当点A是最高点,可得m>1或m<﹣,第二种情况:当点B是最高点,得m的取值范围,再计算纵坐标的差h即可解答;(3)分情况讨论:①当m<﹣1时,②当﹣1≤m≤1时时,③当1<m<2时,④当2<m<3时,⑤当m=3,⑥当3≤m<4时,⑦当m=4时,⑧当m>4时,分别画出图形求解即可.【解答】解:(1)把(0,﹣1)和(2,7)代入y=x2+bx+c,得:,解得:,∴抛物线对应的函数表达式为:y=x2+2x﹣1,∵y=x2+2x﹣1=(x+1)2﹣2,∴顶点C的坐标为(﹣1,﹣2);(2)①当x=﹣1﹣2m时,y=(﹣1﹣2m+1)2﹣2=4m2﹣2,∴B(﹣1﹣2m,4m2﹣2).当△ABC是以AB为底的等腰三角形时,则AC=BC,又∵点C在抛物线对称轴x=﹣1上,∴点A、点B关于直线x=﹣1对称,∴A(2m﹣1,4m2﹣2),∵点A的横坐标为m,∴2m﹣1=m,解得:m=1,∴A(1,2),B(﹣3,2),∵由(1)得,C(﹣1,﹣2),=[1﹣(﹣3)]×[2﹣(﹣2)]=8;∴S△ABC②∵A(m,(m+1)2﹣2),B(﹣1﹣2m,4m2﹣2).∴当点A是最高点,即m>1或m<﹣时,则h=(m+1)2﹣2﹣(﹣2)=(m+1)2;当点B是最高点,即0≤m<1时,则h=4m2﹣2﹣(﹣2)=4m2,综上,h与m之间的函数关系式为:h=(m+1)2(m>1或m<﹣)或h=4m2(0≤m<1);(3)①当m<﹣1时,则2﹣m>3,1﹣m>2,如图:。
2022年福建省中考数学试题及答案解析
2022年福建省中考数学试卷一、选择题(本大题共10小题,共40.0分)1.−11的相反数是( )A. −11B. −111C. 111D. 112.如图所示的圆柱,其俯视图是( )A.B.C.D.3.5G应用在福建省全面铺开,助力千行百业迎“智”变.截止2021年底,全省5G终端用户达1397.6万户.数据13976000用科学记数法表示为( )A. 13976×103B. 1397.6×104C. 1.3976×107D. 0.13976×1084.美术老师布置同学们设计窗花,下列作品为轴对称图形的是( )A. B.C. D.5.如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是( )A. −√2B. √2C. √5D. π6.不等式组{x−1>0,x−3≤0的解集是( )A. x>1B. 1<x<3C. 1<x≤3D. x≤37.化简(3a2)2的结果是( )A. 9a2B. 6a2C. 9a4D. 3a48.2021年福建省的环境空气质量达标天数位居全国前列.如图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是( )A. F1B. F6C. F7D. F109.如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为( )(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A. 9.90cmB. 11.22cmC. 19.58cmD. 22.44cm10.如图,现有一把直尺和一块三角尺,其中∠ABC=90°,∠CAB=60°,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到△A′B′C′,点A′对应直尺的刻度为0,则四边形ACC′A′的面积是( )A. 96B. 96√3C. 192D. 160√3二、填空题(本大题共6小题,共24.0分)11.四边形的外角和度数是______.12.如图,在△ABC中,D,E分别是AB,AC的中点.若BC=12,则DE的长为______.13.一个不透明的袋中装有3个红球和2个白球,这些球除颜色外无其他差别.现随机从袋中摸出一个球,这个球是红球的概率是______.14.已知反比例函数y=k的图象分别位于第二、第四象限,则实数k的值可以是x______.(只需写出一个符合条件的实数)15.推理是数学的基本思维方式,若推理过程不严谨,则推理结果可能产生错误.例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:设任意一个实数为x,令x=m,等式两边都乘以x,得x2=mx.①等式两边都减m2,得x2−m2=mx−m2.②等式两边分别分解因式,得(x+m)(x−m)=m(x−m).③等式两边都除以x−m,得x+m=m.④等式两边都减m,得x=0.⑤所以任意一个实数都等于0.以上推理过程中,开始出现错误的那一步对应的序号是______.16.已知抛物线y=x2+2x−n与x轴交于A,B两点,抛物线y=x2−2x−n与x轴交于C,D两点,其中n>0.若AD=2BC,则n的值为______.三、解答题(本大题共9小题,共86.0分)17.计算:√4+|√3−1|−20220.18.如图,点B,F,C,E在同一条直线上,BF=EC,AB=DE,∠B=∠E.求证:∠A=∠D.19.先化简,再求值:(1+1a )÷a2−1a,其中a=√2+1.20.学校开展以“劳动创造美好生活”为主题的系列活动,同学们积极参与主题活动的规划、实施、组织和管理,组成调查组、采购组、规划组等多个研究小组.调查组设计了一份问卷,并实施两次调查.活动前,调查组随机抽取50名同学,调查他们一周的课外劳动时间t(单位:ℎ),并分组整理,制成如下条形统计图.活动结束一个月后,调查组再次随机抽取50名同学,调查他们一周的课外劳动时间t(单位:ℎ),按同样的分组方法制成如下扇形统计图.其中A组为0≤t<1,B组为1≤t<2,C组为2≤t<3,D组为3≤t<4,E组为4≤t<5,F组为t≥5.(1)判断活动前、后两次调查数据的中位数分别落在哪一组;(2)该校共有2000名学生,请根据活动后的调查结果,估计该校学生一周的课外劳动时间不小于3ℎ的人数.21.如图,△ABC内接于⊙O,AD//BC交⊙O于点D,DF//AB交BC于点E,交⊙O于点F,连接AF,CF.(1)求证:AC=AF;(2)若⊙O的半径为3,∠CAF=30°,求AC⏜的长(结果保留π).22.在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.23.如图,BD是矩形ABCD的对角线.(1)求作⊙A,使得⊙A与BD相切(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,设BD与⊙A相切于点E,CF⊥BD,垂足为F.若直线CF与⊙A相切于点G,求tan∠ADB的值.24.已知△ABC≌△DEC,AB=AC,AB>BC.(1)如图1,CB平分∠ACD,求证:四边形ABDC是菱形;(2)如图2,将(1)中的△CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;(3)如图3,将(1)中的△CDE绕点C顺时针旋转(旋转角小于∠ABC),若∠BAD=∠BCD,求∠ADB的度数.25.在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B(1,4)两点.P是抛物线上一点,且在直线AB的上方.(1)求抛物线的解析式;(2)若△OAB面积是△PAB面积的2倍,求点P的坐标;(3)如图,OP交AB于点C,PD//BO交AB于点D.记△CDP,△CPB,△CBO的面积分别为S1,S2,S3.判断S1S2+S2S3是否存在最大值.若存在,求出最大值;若不存在,请说明理由.答案解析1.【答案】D【解析】解:−(−11)=11.故选:D.应用相反数的定义进行求解即可得出答案.本题主要考查了相反数,熟练掌握相反数的定义进行求解是解决本题的关键.2.【答案】A【解析】解:根据题意可得,圆柱的俯视图如图,.故选:A.应用简单几何体的三视图判定方法进行判定即可得出答案.本题主要考查了简单几何体的三视图,熟练掌握简单几何体的三视图的判定方法进行求解是解决本题的关键.3.【答案】C【解析】解:13976000=1.3976×107.故选:C.应用科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a< 10,n为正整数.】本题主要考查了科学记数法−表示较大的数,熟练掌握科学记数法−表示较大的数的方法进行求解是解决本题的关键.4.【答案】A【解析】解:选项B、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:A.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【答案】B【解析】解:根据题意可得,1<P<2,∵1<√2<2,∴这个无理数是√2.故选:B.应用估算无理数大小的方法进行判定即可得出答案.本题主要考查了无理数,熟练掌握估算无理数大小的方法进行求解是解决本题的关键.6.【答案】C【解析】解:{x−1>0①x−3≤0②,由①得:x>1,由②得:x≤3,∴不等式组的解集为1<x≤3.故选:C.分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.7.【答案】C【解析】解:(3a2)2=9a4.故选:C.应用积的乘方运算法则进行求解即可得出答案.本题主要考查了积的乘方,熟练掌握积的乘方运算法则进行求解是解决本题的关键.8.【答案】D【解析】解:根据题意可得,F10地区环境空气质量综合指数约为1.9,是10个地区中最小值.故选:D.根据折线统计图的信息进行判定即可得出答案.本题主要考查了折线统计图,根据题意读取折线统计图中的信息进行求解是解决本题的关键.9.【答案】B【解析】解:∵AB=AC,BC=44cm,∴BD=CD=22cm,AD⊥BC,∵∠ABC=27°,≈0.51,∴tan∠ABC=ADBD∴AD≈0.51×22=11.22cm,故选:B.根据等腰三角形性质求出BD,根据角度的正切值可求出AD.本题考查了等腰三角形的性质,三角函数的定义,掌握三角形函数的定义是解题关键.10.【答案】B【解析】解:在Rt△ABC中,∠CAB=60°,AB=8,则BC=AB⋅tan∠CAB=8√3,由平移的性质可知:AC=A′C′,AC//A′C′,∴四边形ACC′A′为平行四边形,∵点A对应直尺的刻度为12,点A′对应直尺的刻度为0,∴AA′=12,∴S=12×8√3=96√3,四边形ACC′A′故选:B.根据正切的定义求出BC,证明四边形ACC′A′为平行四边形,根据平移的性质求出AA′= 12,根据平行四边形的面积公式计算,得到答案.本题考查的是平移的性质、平行四边形的判定和性质以及解直角三角形,得出四边形ACC′A′为平行四边形是解题的关键.11.【答案】360°【解析】解:四边形的外角和度数是360°,故答案为:360°.根据多边形的外角和都是360°即可得出答案.本题考查了多边形的内角与外角,掌握多边形的外角和都是360°是解题的关键.12.【答案】6【解析】解:∵D,E分别是AB,AC的中点,∴DE为△ABC的中位线,∴DE=12BC=12×12=6.故答案为:6.直接利用三角形中位线定理求解.本题考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.13.【答案】35【解析】解:根据题意可得,P(A)=35.故答案为:35.应用简单随机事件的概率计算方法进行计算即可得出答案.本题主要考查了概率公式,熟练掌握简单随机事件的概率计算方法进行求解是解决本题的关键.14.【答案】−3(答案不唯一)【解析】解:∵该反比例图象经过第二、四象限,∴k<0,∴k取值不唯一,可取−3,故答案为:−3(答案不唯一).根据图象经过第二、四象限,易知k<0,写一个负数即可.本题考查反比例函数的性质,根据图象分别位于第二、第四象限,找到k的范围即可.【解析】解:设任意一个实数为x,令x=m,等式两边都乘以x,得x2=mx.①依据为等式的基本性质2;等式两边都减m2,得x2−m2=mx−m2.②依据为等式的基本性质1;等式两边分别分解因式,得(x+m)(x−m)=m(x−m).③依据为分解因式;等式两边都除以x−m,得x+m=m.④依据为等式的基本性质2;但是用法出错,当x−m=0时,不能直接除,而题干中给出的条件是x=m,此处不能直接除.故答案为:④.根据等式的基本性质和分解因式判断每一步的依据,再进行判断即可.本题主要考查等式的基本性质,推理与论证,掌握等式的基本性质是解题关键.16.【答案】8【解析】解:针对于抛物线y=x2+2x−n,令y=0,则x2+2x−n=0,∴x=−1±√n+1,针对于抛物线y=x2−2x−n,令y=0,则x2−2x−n=0,∴x=1±√n+1,∵抛物线y=x2+2x−n=(x+1)2−n−1,∴抛物线y=x2+2x−n的顶点坐标为(−1,−n−1),∵抛物线y=x2−2x−n=(x−1)2−n−1,∴抛物线y=x2−2x−n的顶点坐标为(1,−n−1),∴抛物线y=x2+2x−n与抛物线y=x2−2x−n的开口大小一样,与y轴相交于同一点,顶点到x轴的距离相等,∴AB=CD,∵AD=2BC,∴抛物线y=x2+2x−n与x轴的交点A在左侧,B在右侧,抛物线y=x2−2x−n与x轴的交点C在左侧,D在右侧,∴A(−1−√n+1,0),B(−1+√n+1,0),C(1−√n+1,0),D(1+√n+1,0),∴AD=1+√n+1−(−1−√n+1)=2+2√n+1,BC=−1+√n+1−(1−√n+1)=−2+2√n+1,∴2+2√n+1=2(−2+2√n+1),故答案为:8.先判断出了抛物线与x轴的两交点坐标,进而求出AD,BC,进而建立方程,求解即可求出答案.此题主要考查了抛物线的性质,抛物线与x轴交点的求法,表示出点A,B,C,D的坐标是解本题的关键.17.【答案】解:原式=2+√3−1−1=√3.【解析】应用零指数幂,绝对值,算术平方根的计算方法进行计算即可得出答案.本题主要考查了零指数幂,绝对值,算术平方根,熟练掌握零指数幂,绝对值,算术平方根的计算方法进行求解是解决本题的关键.18.【答案】证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,{AB=DE∠B=∠EBC=EF,∴△ABC≌△DEF(SAS),∴∠A=∠D.【解析】利用SAS证明△ABC≌△DEF,根据全等三角形的性质即可得解.此题考查了全等三角形的判定与性质,利用SAS证明△ABC≌△DEF是解题的关键.19.【答案】解:原式=a+1a ÷(a+1)(a−1)a=a+1a ⋅a(a+1)(a−1)=1a−1,当a=√2+1时,原式=√2+1−1=√22.【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.此题考查了分式的化简求值,平方差公式,因式分解−运用公式法,以及二次根式的性质与化简,熟练掌握运算法则及公式是解本题的关键.20.【答案】解:(1)把第1次调查的50名学生课外劳动时间从小到大排列,处在中间位置的两个数,即处在第25、第26位的两个数都落在C组,因此第1次调查学生课外劳动时间中位数在C组;把第2组调查的50名学生课外劳动时间从小到大排列各个分组,计算所占百分比的和,和为50%在D组,因此第2次调查学生课外劳动时间的中位数在D组;(2)2000×(30%+24%+16%)=1400(人),答:该校学生一周的课外劳动时间不小于3ℎ的人数大约是1400人.【解析】(1)根据中位数的定义进行判断即可;(2)根据第2次课外劳动时间不小于3ℎ所占调查总人数的百分比,进行计算即可.本题考查条形统计图、扇形统计图、中位数,掌握条形统计图、扇形统计图的意义以及中位数的计算方法是解决问题的前提.21.【答案】证明:(1)∵AD//BC,DF//AB,∴四边形ABCD是平行四边形,∴∠B=∠D,∵∠AFC=∠B,∠ACF=∠D,∴∠AFC=∠ACF,∴AC=AF.(2)连接AO,CO,由(1)得∠AFC=∠ACF,∵∠AFC=180°−30°2=75°,∴∠AOC=2∠AFC=150°,∴AC⏜的长l=150×π×3180=5π2.【解析】(1)根据已知条件可证明四边形ABCD是平行四边形,由平行四边形的性质可得∠B=∠D,等量代换可得∠AFC=∠ACF,即可得出答案;(2)连接AO,CO,由(1)中结论可计算出∠AFC的度数,根据圆周角定理可计算出∠AOC的度数,再根据弧长计算公式计算即可得出答案.本题主要考查了等腰三角形的判定与性质,平行四边形的判定与性质,圆的性质与弧长公式,考查化归与转化思想,推理能力,几何直观等数学素养.22.【答案】解:(1)设购买绿萝x 盆,吊兰y 盆,依题意得:{x +y =469x +6y =390, 解得:{x =38y =8. ∵8×2=16,16<38,∴{x =38y =8符合题意. 答:购买绿萝38盆,吊兰8盆.(2)设购买绿萝m 盆,则购买吊兰(46−m)盆,依题意得:m ≥2(46−m),解得:m ≥923.设购买两种绿植的总费用为w 元,则w =9m +6(46−m)=3m +276,∵3>0,∴w 随m 的增大而增大,又∵m ≥923,且m 为整数,∴当m =31时,w 取得最小值,最小值=3×31+276=369.答:购买两种绿植总费用的最小值为369元.【解析】(1)设购买绿萝x 盆,吊兰y 盆,利用总价=单价×数量,结合购进两种绿植46盆共花费390元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买绿萝m 盆,则购买吊兰(46−m)盆,根据购进绿萝盆数不少于吊兰盆数的2倍,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,设购买两种绿植的总费用为w 元,利用总价=单价×数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质,即可解决最值问题.本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.23.【答案】解:(1)根据题意作图如下:(2)设∠ADB=α,⊙A的半径为r,∵BD与⊙A相切于点E,CF与⊙A相切于点G,∴AE⊥BD,AG⊥CG,即∠AEF=∠AGF=90°,∵CF⊥BD,∴∠EFG=90°,∴四边形AEFG是矩形,又AE=AG=r,∴四边形AEFG是正方形,∴EF=AE=r,在Rt△AEB和Rt△DAB中,∠BAE+∠ABD=90°,∠ADB+∠ABD=90°,∴∠BAE=∠ADB=α,,在Rt△ABE中,tan∠BAE=BEAE∵四边形ABCD是矩形,∴AB//CD,AB=CD,∴∠ABE=∠CDF,又∠AEB=∠CFD=90°,∴△ABE≌△CDF,∴BE=DF=r⋅tanα,∴DE=DF+EF=r⋅tanα+r,,在Rt△ADE中,tan∠ADE=AEDE即DE⋅tanα=AE,∴r⋅tanα+r=r,即tan2α+tanα−1=0,∵tanα>0,∴tanα=√5−1,2.即tan∠ADB的值为√5−12【解析】(1)以A为圆心AB长为半径画弧交BD与M,作BM的垂直平分线,交BD与N,以A为圆心AN为半径画圆即为所求;(2)设∠ADB=α,⊙A的半径为r,证四边形AEFG是正方形,根据AAS证△ABE≌△CDF,得出BE=DF=r⋅tanα,DE=DF+EF=r⋅tanα+r,根据等量关系列出关系式求出tanα的值即可.本小题考查直角三角形的性质,特殊平行四边形的判定与性质,圆的概念与性质,锐角三角函数、一元二次方程等基础知识,考查尺规作图技能,考查函数与方程、化归与转化等数学思想方法,考查推理能力,运算能力、空间观念与几何直观、创新意识等数学素养,渗透数学文化.24.【答案】(1)证明:∵△ABC≌△DEC,∴AC=DC,∵AB=AC,∴∠ABC=∠ACB,AB=DC,∵CB平分∠ACD,∴∠DCB=∠ACB,∴AB//CD,∴四边形ABDC为平行四边形,∵AB=AC,∴平行四边形ABDC为菱形;(2)解:∠ACE+∠EFC=180°,理由如下:∵△ABC≌△DEC,∴∠ABC=∠DEC,∴∠ACB=∠DEC,∵∠ACB+∠ACF=∠DEC+∠CEF=180°,∴∠CEF=∠ACF,∵∠CEF+∠ECF+∠EFC=180°,∴∠ACF+∠ECF+∠EFC=180°,∴∠ACE+∠EFC=180°;(3)解:如图3,在AD上取点M,使AM=BC,连接BM,在△AMB和△CBD中,{AM=BC∠BAM=∠DCB AB=CD,∴△AMB≌△CBD(SAS),∴BM=BD,∠ABM=∠CDB,∴∠BMD=∠BDM,∵∠BMD=∠BAD+∠MBA,∴∠ADB=∠BCD+∠BDC,设∠BCD=∠BAD=α,∠BDC=β,则∠ADB=α+β,∵CA=CD,∴∠CAD=∠CDA=α+2β,∴∠BAC=∠CAD−∠BAD=2β,∴∠ACB=12×(180°−2β)=90°−β,∴∠ACD=90°−β+α,∵∠ACD+∠CAD+∠CDA=180°,∴90°−β+α+α+2β+α+2β=180°,∴α+β=30°,即∠ADB=30°.【解析】(1)根据全等三角形的性质得到AC =DC ,根据角平分线的定义得到∠DCB =∠ACB ,证明四边形ABCD 为平行四边形,根据菱形的判定定理证明结论;(2)根据全等三角形的性质得到∠ABC =∠DEC ,根据三角形内角和定理证明即可;(3)在AD 上取点M ,使AM =BC ,连接BM ,证明△AMB≌△CBD ,得到BM =BD ,∠ABM =∠CDB ,根据三角形的外角性质、三角形内角和定理计算,得到答案.本题考查的是旋转变换、菱形的判定、等腰三角形的性质、全等三角形的判定和性质,证明△AMB≌△CBD 是解题的关键.25.【答案】解:(1)将A(4,0),B(1,4)代入y =ax 2+bx ,∴{16a +4b =0a +b =4,解得{a =−43b =163. ∴抛物线的解析式为:y =−43x 2+163x.(2)设直线AB 的解析式为:y =kx +t ,将A(4,0),B(1,4)代入y =kx +t ,∴{4k +t =0k +t =4, 解得{k =−43t =163. ∵A(4,0),B(1,4),∴S △OAB =12×4×4=8,∴S △OAB =2S △PAB =8,即S △PAB =4,过点P 作PM ⊥x 轴于点M ,PM 与AB 交于点N ,过点B 作BE ⊥PM 于点E ,如图,∴S △PAB =S △PNB +S △PNA =12PN ×BE +12PN ×AM =32PN =4,设点P的横坐标为m,∴P(m,−43m2+163m)(1<m<4),N(m,−43m+163),∴PN=−43m2+163m−(−43m+163)=83.解得m=2或m=3;∴P(2,163)或(3,4).(3)∵PD//OB,∴∠DPC=∠BOC,∠PDC=∠OBC,∴△DPC∽△BOC,∴CP:CO=CD:CB=PD:OB,∵S1S2=CDCB,CDCB=CPCO,∴S1S2+S2S3=2PDOB.设直线AB交y轴于点F.则F(0,163),过点P作PH⊥x轴,垂足为H,PH交AB于点G,如图,∵∠PDC=∠OBC,∴∠PDG=∠OBF,∵PG//OF,∴∠PGD=∠OFB,∴△PDG△OBF,∴PD:OB=PG:OF,设P(n,−43n2+163n)(1<n<4),由(2)可知,PG=−422016,∴S1S2+S2S3=2PDOB=2PGOF=38PG=−12(n−52)2+98.∵1<n<4,∴当n=52时,S1S2+S2S3的最大值为98.【解析】(1)将点A,B的坐标代入二次函数的解析式,利用待定系数法求解即可;(2)利用待定系数法求出直线AB的解析式,过点P作PM⊥x轴于点M,PM与AB交于点N,过点B作BE⊥PM于点E,可分别表达△OAB和△PAB的面积,根据题意列出方程求出PN 的长,设出点P的坐标,表达PN的长,求出点P的坐标即可;(3)由三角形面积的“背靠背模型”可得S1S2+S2S3=CDCB+CPCD.本题考查一次函数和二次函数的图象与性质、三角函数、三角形面积、相似三角形的判定与性质等基础知识,考查数形结合、函数与方程,函数建模等数学思想方法,考查运算能力、推理能力、空间观念与几何直观、创新意识等数学素养.第21页,共21页。
23年福建中考数学试卷
一、选择题(本大题共12小题,每小题3分,共36分)1. 若方程 $2x - 3 = 5$ 的解为 $x = 3$,则方程 $4x - 6 = 10$ 的解为()A. $x = 4$B. $x = 2$C. $x = 3$D. $x = 5$2. 下列函数中,在定义域内是单调递增的是()A. $y = -x^2 + 2x$B. $y = x^2 - 2x$C. $y = 2x - 1$D. $y = -2x + 1$3. 在直角坐标系中,点A(-1,2)关于y轴的对称点为()A.(-1,-2)B.(1,2)C.(1,-2)D.(-1,-2)4. 已知 $a > 0$,$b < 0$,则下列不等式中正确的是()A. $a + b > 0$B. $a - b > 0$C. $-a - b > 0$D. $-a + b > 0$5. 在三角形ABC中,$AB = 5$,$BC = 6$,$AC = 7$,则三角形ABC是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形6. 若 $x^2 - 3x + 2 = 0$,则 $x^3 - 3x^2 + 2x = $()A. 0B. 1C. 2D. 37. 已知函数 $y = 2x + 1$,若 $y = 3$,则 $x = $()A. 1B. 2C. 3D. 48. 在梯形ABCD中,$AD // BC$,$AD = 4$,$BC = 6$,$AB = CD = 5$,则梯形ABCD的面积是()A. 15B. 20C. 25D. 309. 在等腰三角形ABC中,$AB = AC$,$BC = 8$,$AD$是底边BC上的高,则$AD = $()A. 4B. 6C. 8D. 1010. 已知 $a^2 + b^2 = 100$,$ab = 20$,则 $a^3 + b^3 = $()A. 600B. 800C. 1000D. 120011. 在直角坐标系中,点P(2,3)到直线 $y = 2x - 1$ 的距离是()A. 1B. 2C. 3D. 412. 若 $x + y = 5$,$xy = 6$,则 $x^2 + y^2 = $()A. 25B. 30C. 35D. 40二、填空题(本大题共8小题,每小题3分,共24分)13. 若 $a = 2$,$b = -3$,则 $a^2 + b^2 = $__________。
中考数学23题专题练习
中考数学23题专题练习1. 如图,在矩形ABCD中,E、F分别是AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC。
(1)求证:OE=OF(2)若BC=23,求AB的长。
2、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE(1)求证:BE=CE;(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.3、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点,且∠BEH=∠HEG.(1)若HE=HG,求证:△EBH≌△GFC;(2)若CD=4,BH=1,求AD的长.4、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF.(1)当CE=1时,求△BCE的面积;(2)求证:BD=EF+CE.5、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E作EF∥CA,交CD于点F,连接OF.(1)求证:OF∥BC;(2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°.(1)若AB=6cm,,求梯形ABCD的面积;(2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.7、如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.(1)求证:DP平分∠ADC;(2)若∠AEB=75°,AB=2,求△DFP的面积.。
中考数学 专题23《特殊四边形》练习题
《特殊四边形》练习题一.选择题1.如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,则∠BFC为( )A.45° B.55° C.60° D.75°2.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分3.下列命题中,真命题是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形4.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°5.(2016·四川泸州)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.6.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF二.填空题7. (2016·内蒙古包头)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.8. 如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.9. 如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为.10. 如图,矩形ABCD中,AD=5,AB=7. 点E为DC上一个动点,把△ADE沿AE折叠,当点D 的对应点D'落在∠ABC的角平分线上时,DE的长为 .11. 如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=13a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=13A1B2,….依次规律继续下去,则正方形A n B n C n D n的面积为.三.解答题12.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.13.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.14.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE= ;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形.15.(2016·陕西)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.答案:1.C2.B3.C4.C5.B6.B7. 22.5°8. 2﹣2 9. (4,4)10. 52或53.11. 25()9n a12. 解:(1)∵正方形ABCD∴AD=B A,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ13. (1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF.(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,14. (1)证明:∵∠ABC=90°,AM=MC,∴BM=AM=MC,∴∠A=∠ABM,∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME.(2)①由(1)可知,∠A=∠MDE,∴DE∥AB,∴=,∵A D=2DM,∴DM:MA=1:3,∴DE=AB=×6=2.故答案为2.②当∠A=60°时,四边形ODME是菱形.理由:连接OD、OE,∵OA=OD,∠A=60°,∴△AOD是等边三角形,∴∠AOD=60°,∵DE∥AB,∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.故答案为60°.15. 解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,交BC于G,交CD于H,连接FG,EH,则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8,∴E′F′=10,EF=2,∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,∴在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小,最小值为2+10;(3)能裁得,理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,在△AEF与△BGF中,,∴△AEF≌△BGF,∴AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x,∴x2+(3﹣x)2=()2,解得:x=1,x=2(不合题意,舍去),∴AF=BG=1,BF=AE=2,∴DE=4,CG=5,连接EG,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,此时,四边形EFGH′是要想裁得符合要求的面积最大的,∴C在线段EG的垂直平分线设,∴点F,O,H′,C在一条直线上,∵EG=,。
2021年中考数学真题(全国通用)专题23 锐角三角函数(共65题)-(原卷版)
专题23锐角三角函数(共65题)一、单选题1.(2021·湖南中考真题)下列计算正确的是( )A .B .CD .0(3)1π-=1tan 302=︒2=±236a a a ⋅=2.(2021·福建中考真题)如图,某研究性学习小组为测量学校A 与河对岸工厂B 之间的距离,在学校附近选一点C ,利用测量仪器测得.据此,可求得学校与工厂之间的距离60,90,2km A C AC ∠=︒∠=︒=等于( )ABA .B .C .D .2km 3km 4km3.(2021·浙江金华市·中考真题)如图是一架人字梯,已知米,AC 与地面BC 的夹角为2AB AC ==α,则两梯脚之间的距离BC 为( )A .米B .米C .米D .米4cos α4sin α4tan α4cos α4.(2021·湖北随州市·中考真题)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为时,梯子顶端靠在墙面上的点处,底端落在水平地面的点处,现将梯子底端向墙面靠近,使梯子αA B 与地面所成角为,已知,则梯子顶端上升了( )β3sin cos 5αβ==A .1米B .1.5米C .2米D .2.5米5.(2021·湖南衡阳市·中考真题)如图是某商场营业大厅自动扶梯的示意图.自动扶梯的倾斜角为AB ,大厅两层之间的距离为6米,则自动扶梯的长约为(37︒BC AB )( ).sin 370.6,cos370.8,tan 370.75︒≈︒≈︒≈A .7.5米B .8米C .9米D .10米6.(2021·天津中考真题)的值等于()tan 30︒ABC .1D .27.(2021·湖南株洲市·中考真题)某限高曲臂道路闸口如图所示,垂直地面于点,与水平线AB 1l A BE 2l 的夹角为,,若米,米,车辆的高度为(单位:米),()090αα︒≤≤︒12////EF l l 1.4AB =2BE =h 不考虑闸口与车辆的宽度.①当时,小于3.3米的车辆均可以通过该闸口;90α=︒h ②当时,等于2.9米的车辆不可以通过该闸口;45α=︒h ③当时,等于3.1米的车辆不可以通过该闸口.60α=︒h 则上述说法正确的个数为( )A .0个B .1个C .2个D .3个8.(2021·重庆中考真题)如图,在建筑物AB 左侧距楼底B 点水平距离150米的C 处有一山坡,斜坡CD 的坡度(或坡比)为,坡顶D 到BC 的垂直距离米(点A ,B ,C ,D ,E 在同一平面1:2.4i =50DE =内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为(参考数据:;sin 500.77︒≈;)cos500.64︒≈tan 50 1.19︒≈A .69.2米B .73.1米C .80.0米D .85.7米9.(2021·浙江中考真题)如图,已知在矩形中,,点是边上的一个动ABCD 1,AB BC ==P AD 点,连结,点关于直线的对称点为,当点运动时,点也随之运动.若点从点运动BP C BP 1C P 1C P A 到点,则线段扫过的区域的面积是()D 1CCA .B .CD .ππ2π10.(2021·浙江丽水市·中考真题)如图,是的直径,弦于点E ,连结.若AB O A CD OA ⊥,OC OD 的半径为,则下列结论一定成立的是( )O A ,m AOD α∠=∠A .B .C .D .tan OE m α=⋅2sin CD m α=⋅cos AE m α=⋅2sin CODS m α=⋅A 11.(2021·浙江宁波市·中考真题)如图,在中,于点D ,ABC A 45,60,B C AD BC ∠=︒∠=︒⊥.若E ,F 分别为,的中点,则的长为()BD =AB BCEF ABC .1D12.(2021·云南中考真题)在中,,若,则的长是ABC A 90ABC ∠=︒s n 3100,5i A A C ==AB ( )A .B .C .60D .805003503513.(2021·山东泰安市·中考真题)如图,为了测量某建筑物的高度,小颖采用了如下的方法:先从与BC 建筑物底端B 在同一水平线上的A 点出发,沿斜坡行走130米至坡顶D 处,再从D 处沿水平方向继AD 续前行若干米后至点E 处,在E 点测得该建筑物顶端C 的仰角为60°,建筑物底端B 的俯角为45°,点A 、B 、C 、D 、E 在同一平面内,斜坡的坡度.根据小颖的测量数据,计算出建筑物的AD 1:2.4i =BC 高度约为( ))1.732≈A .136.6米B .86.7米C .186.7米D .86.6米14.(2021·江苏连云港市·中考真题)如图,中,,、相交于点D ,ABC A BD AB ⊥BD AC ,,,则的面积是( )47AD AC =2AB =150ABC ∠=︒DBC△ABCD15.(2021·浙江绍兴市·中考真题)如图,中,,,点D 是边BC 的中Rt ABC A 90BAC∠=︒1cos 4B =点,以AD 为底边在其右侧作等腰三角形ADE ,使,连结CE,则的值为( )ADE B ∠=∠CEAD A .B C D .32216.(2021·重庆中考真题)如图,相邻两个山坡上,分别有垂直于水平面的通信基站MA 和N D .甲在山脚点C 处测得通信基站顶端M 的仰角为60°,测得点C 距离通信基站MA 的水平距离CB 为30m ;乙在另一座山脚点F 处测得点F 距离通信基站ND 的水平距离FE 为50m ,测得山坡DF 的坡度i =1:1.25.若,点C ,B ,E ,F 在同一水平线上,则两个通信基站顶端M 与顶端N 的高度差为( )58ND DE =)1.73≈≈A .9.0m B .12.8m C .13.1m D .22.7m17.(2021·四川南充市·中考真题)如图,在矩形ABCD 中,,,把边AB 沿对角线BD 15AB =20BC =平移,点,分别对应点A ,B .给出下列结论:①顺次连接点,,C ,D 的图形是平行四边'A 'B 'A 'B 形;②点C 到它关于直线的对称点的距离为48;③的最大值为15;④的最'AA ''A C B C -''A C B C +小值为)A .1个B .2个C .3个D .4个18.(2021·浙江温州市·中考真题)图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形.若.OABC 1AB BC ==AOB α∠=,则的值为( )2OCA .B .C .D .211sin α+2sin 1α+211cos α+2cos 1α+19.(2021·四川南充市·中考真题)如图,在菱形ABCD 中,,点E ,F 分別在边AB ,BC 上,60A ∠=︒,的周长为,则AD 的长为()2AE BF ==DEFA A B.CD.11-20.(2021·湖北荆州市·中考真题)如图,在菱形中,,,以为圆心、长ABCD 60D ∠=︒2AB=B BC 为半径画,点为菱形内一点,连接,,.当为等腰直角三角形时,图中阴影部AAC P PA PBPC BPC △分的面积为( )A .B .C .D.23π-23π2π2π21.(2021·吉林长春市·中考真题)如图是净月潭国家森林公园一段索道的示意图.已知A 、B 两点间的距离为30米,,则缆车从A 点到达B 点,上升的高度(BC 的长)为( )A α∠=A .米B .米C .米D .米30sin α30sin α30cos α30cos α22.(2021·湖北黄冈市·中考真题)如图,为矩形的对角线,已知,.点P 沿AC ABCD 3AD =4CD =折线以每秒1个单位长度的速度运动(运动到D 点停止),过点P 作于点E ,则C A D --PE BC ⊥的面积y 与点P 运动的路程x 间的函数图象大致是( )CPE △A .B .C .D .23.(2021·四川达州市·中考真题)在平面直角坐标系中,等边如图放置,点的坐标为,每AOB ∆A ()1,0一次将绕着点逆时针方向旋转,同时每边扩大为原来的2倍,第一次旋转后得到,AOB ∆О60︒11A OB ∆第二次旋转后得到,…,依次类推,则点的坐标为( )22A OB ∆2021AA .B .()202020202,2-()202120212,2-C .D.()202020202,2()201120212,2-24.(2021·湖北十堰市·中考真题)如图,小明利用一个锐角是的三角板测量操场旗杆的高度,已知他30°与旗杆之间的水平距离为,为(即小明的眼睛与地面的距离),那么旗杆的高度是BC 15m AB 1.5m ()A .B .C .D.3m 2⎛⎫+ ⎪⎝⎭3m 2⎛⎫+ ⎪⎝⎭25.(2021·浙江台州市·中考真题)如图,将长、宽分别为12cm ,3cm 的长方形纸片分别沿AB ,AC 折叠,点M ,N 恰好重合于点P .若∠α=60°,则折叠后的图案(阴影部分)面积为()A .(36)cm 2B .(36)cm 2C .24 cm 2D .36 cm2--26.(2021·湖南怀化市·中考真题)如图,菱形ABCD 的四个顶点均在坐标轴上,对角线AC 、BD 交于原点O ,于E 点,交BD 于M 点,反比例函数的图象经过线段DC 的中点N ,若AE BC⊥0)y x =>,则ME 的长为( )4BD =A .B .53ME =43=ME C .D .1ME =23ME =27.(2021·湖北十堰市·中考真题)如图,内接于是的直ABC A ,120,,O BAC AB AC BD ∠=︒=A O A 径,若,则( )3AD =BC=A .B .C .3D .4二、填空题28.(2021·江苏无锡市·中考真题)一条上山直道的坡度为1:7,沿这条直道上山,则前进100米所上升的高度为________米.29.(2021·广东中考真题)如图,在中,.过点D 作,垂ABCD A 45,12,sin 5AD AB A ===DE AB ⊥足为E ,则______.sin BCE ∠=30.(2021·安徽中考真题)如图,圆O 的半径为1,内接于圆O .若,,则ABC A 60A ∠=︒75B ∠=︒______.AB =31.(2021·海南中考真题)如图,的顶点的坐标分别是,且ABC A B C 、(1,0)、,则顶点A 的坐标是_____.90,30ABC A ∠=︒∠=︒32.(2021·甘肃武威市·中考真题)如图,在矩形中,是边上一点,ABCD E BC 是边的中点,,则________.90,30,AED EAD F ∠=︒∠=︒AD 4cm EF =BE =cm33.(2021·四川广元市·中考真题)如图,在的正方形网格图中,已知点A 、B 、C 、D 、O 均在格点44⨯上,其中A 、B 、D 又在上,点E 是线段与的交点.则的正切值为________.O A CD O A BAE ∠34.(2021·湖南中考真题)如图,在中,,,,交于点ABC A 5AB =4AC =4sin 5A =BD AC ⊥AC .点为线段上的动点,则的最小值为________.D P BD 35PC PB +35.(2021·湖北武汉市·中考真题)如图,海中有一个小岛,一艘轮船由西向东航行,在点测得小岛A B 在北偏东方向上;航行到达点,这时测得小岛在北偏东方向上.小岛到航线A 60︒12n mile C A 30°A的距离是__________,结果用四舍五入法精确到0.1).BC n mile 1.73≈36.(2021·四川乐山市·中考真题)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点处测得石碑C 顶点的仰角为,她朝石碑前行5米到达点处,又测得石顶点的仰角为,那么石碑的高度A 30°D A 60︒的长________米.(结果保留根号)AB =37.(2021·四川乐山市·中考真题)如图,已知点,点为直线上的一动点,点,(4,3)A B 2y =-()0,C n ,于点,连接.若直线与正半轴所夹的锐角为,那么当的值23n -<<AC BC ⊥C AB AB x αsin α最大时,的值为________.n38.(2021·浙江衢州市·中考真题)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE 与地面平行,支撑杆AD ,BC 可绕连接点O 转动,且,椅面底部有一根可以绕点H 转动的OA OB =连杆HD ,点H 是CD 的中点,FA ,EB 均与地面垂直,测得,,.54cm FA =45cm EB =48cm AB =(1)椅面CE 的长度为_________cm .(2)如图3,椅子折叠时,连杆HD 绕着支点H 带动支撑杆AD ,BC 转动合拢,椅面和连杆夹角CHD ∠的度数达到最小值时,A ,B 两点间的距离为________cm (结果精确到0.1cm ).(参考数据:30°,,)sin150.26︒≈cos150.97︒≈tan150.27︒≈39.(2021·浙江中考真题)如图,已知在中,,则的值是Rt ABC A 90,1,2ACB AC AB ∠=︒==sin B ______.40.(2021·浙江宁波市·中考真题)如图,在矩形中,点E 在边上,与关于直ABCD AB BEC △FEC A 线对称,点B 的对称点F 在边上,G 为中点,连结分别与交于M ,N 两点,若EC AD CD BG ,CE CF ,,则的长为________,的值为__________.BM BE =1MG =BN sin AFE ∠41.(2021·四川乐山市·中考真题)在中,.有一个锐角为,.若点在Rt ABC A 90C ∠=︒60︒4AB =P 直线上(不与点、重合),且,则的长为________.AB A B 30PCB ∠=︒CP 42.(2021·湖北荆州市·中考真题)如图1是一台手机支架,图2是其侧面示意图,,可分别绕点AB BC ,转动,测量知,.当,转动到,时,点A B 8cm BC =16cm AB =AB BC 60=︒∠BAE 50ABC ∠=︒到的距离为_____________cm .(结果保留小数点后一位,参考数据:C AE sin 700.94︒≈ 1.73≈)43.(2021·山西中考真题)太原地铁2号线是山西省第一条开通运营的地铁线路,于2020年12月26日开通.如图是该地铁某站扶梯的示意图,扶梯的坡度(为铅直高度与水平宽度的比).王老师AB 5:12i =i 乘扶梯从扶梯底端以0.5米/秒的速度用时40秒到达扶梯顶端,则王老师上升的铅直高度为A B BC __________米.44.(2021·湖北宜昌市·中考真题)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛ABC 三角形”,该“莱洛三角形”的面积为____________平方厘米.(圆周率用表示)π45.(2021·湖北黄冈市·中考真题)如图,建筑物上有一高为的旗杆,从D 处观测旗杆顶部A BC 8m AB 的仰角为,观测旗杆底部B 的仰角为,则建筑物的高约为_____(结果保留小数点后一53︒45︒BC m 位).(参考数据,,)sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈46.(2021·四川眉山市·中考真题)如图,在菱形中,,对角线、相交于点ABCD 10AB AC ==AC BD ,点在线段上,且,点为线段上的一个动点,则的最小值是O M AC 3AM =P BD 12MP PB +______.47.(2021·江苏苏州市·中考真题)如图,射线、互相垂直,,点位于射线的上OM ON 8OA =B OM 方,且在线段的垂直平分线上,连接,.将线段绕点按逆时针方向旋转得到对应OA l AB 5AB =AB O 线段,若点恰好落在射线上,则点到射线的距离______.A B ''B 'ON A 'ON d ≈48.(2021·新疆中考真题)如图,已知正方形ABCD 边长为1,E 为AB 边上一点,以点D 为中心,将按逆时针方向旋转得,连接EF ,分別交BD ,CD 于点M ,N .若,则DAE △DCF A 25AE DN =__________.sin EDM ∠=49.(2021·四川达州市·中考真题)如图,在边长为6的等边中,点,分别是边,上ABC ∆E F AC BC 的动点,且,连接,交于点,连接,则的最小值为___________.AE CF =BE AF P CP CP三、解答题50.(2021·广东中考真题)如图,在中,,作的垂直平分线交于点D ,延长Rt ABC A 90A ∠=︒BC AC 至点E ,使.AC CE AB =(1)若,求的周长;1AE =ABD △(2)若,求的值.13AD BD =tan ABC ∠51.(2021·内蒙古通辽市·中考真题)计算;101(3)2cos30|3|2π-⎛⎫+--︒+ ⎪⎝⎭52.(2021·湖南中考真题)“2021湖南红色文化旅游节——重走青年毛泽东游学社会调查之路”启动仪式于4月29日在安化县梅城镇举行.该镇南面山坡上有一座宝塔,一群爱好数学的学生在研学之余对该宝塔的高度进行了测量.如图所示,在山坡上的A 点测得塔底B 的仰角,塔顶D 的仰角13BAC ∠=︒,斜坡米,求宝塔的高(精确到1米)(参考数据:38DAC ∠=︒50AB =BD )sin130.22,cos130.97,tan130.23,sin 380.62,cos380.79,tan 380.78︒≈︒≈︒≈︒≈︒≈︒≈53.(2021·湖南中考真题)已知锐角中,角A ,B ,C 的对边分别为a ,b ,c ,边角总满足关系ABC A 式:.sin sin sin a b c A B C==(1)如图1,若,求b 的值;6,45,75a B C =∠=∠=︒︒(2)某公园准备在园内一个锐角三角形水池中建一座小型景观桥(如图2所示),若ABC CD 米,米,,求景观桥的长度.,14CD AB AC ⊥=10AB=sin ACB ∠=CD54.(2021·湖南张家界市·中考真题)张家界大峡谷玻璃桥是我市又一闻名中外的五星景点.某校初三年级在一次研学活动中,数学研学小组设计以下方案测量桥的高度.如图,在桥面正下方的谷底选一观测点A ,观测到桥面,的仰角分别为,测得长为320米,求观测点到桥面的距离.(结B C 30,60︒︒BC A BC)1.73≈55.(2021·黑龙江绥化市·中考真题)一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为,点在同一条直线上,测得ABC A B C D 、、,,其中一段支撑杆,另一段支撑杆90,60,32cm ACB ABC AB ∠=︒∠=︒=75BDE ∠=︒84cm CD =,求支撑杆上的点到水平地面的距离是多少?(用四舍五入法对结果取整数,参考数据70cm DE =E EF)sin150.26,cos150.97,tan15 1.732︒≈︒≈︒≈≈56.(2021·浙江宁波市·中考真题)我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄始终平分同一平面内两条伞骨所成的角,且,从而保证伞圈D 能沿着伞柄滑动.如AP BAC ∠AB AC =图2是伞完全收拢时伞骨的示意图,此时伞圈D 已滑动到点的位置,且A ,B ,三点共线,D ¢D ¢,B 为中点,当时,伞完全张开.40cm AD '=AD '140BAC ∠=︒(1)求的长.AB (2)当伞从完全张开到完全收拢,求伞圈D 沿着伞柄向下滑动的距离.(参考数据:)sin 70094,cos700.34,tan 70 2.75︒≈︒≈︒≈57.(2021·江西中考真题)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄与手臂始终在同一直线上,枪身与额头保持垂直量得胳膊,BC MC BA 28cm MN =,肘关节与枪身端点之间的水平宽度为(即的长度),枪身42cm MB =M A 25.3cm MP 8.5cm BA =.图1(1)求的度数;ABC ∠(2)测温时规定枪身端点与额头距离范围为.在图2中,若测得,小红与测A 3~5cm 68.6BMN ∠=°温员之间距离为问此时枪身端点与小红额头的距离是否在规定范围内?并说明理由.(结果保留50cm A 小数点后一位)(参考数据:,,)sin 66.40.92︒≈cos 66.40.40=°sin 23.60.40︒≈ 1.414≈58.(2021·甘肃武威市·中考真题)如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年(1535年),是明代平凉韩王府延恩寺的主体建筑.宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”.某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:方案设计:如图2,宝塔垂直于地面,在地面上选取两处分别测得和的度数(CD ,A B CAD ∠CBD ∠在同一条直线上).,,A D B 数据收集:通过实地测量:地面上两点的距离为.,A B 58m,42,58CAD CBD ∠=︒∠=︒问题解决:求宝塔的高度(结果保留一位小数).CD 参考数据:,sin 420.67,cos 420.74,tan 420.90︒≈︒=︒≈sin 580.85,cos580.53,tan 58 1.60︒=︒=︒=.根据上述方案及数据,请你完成求解过程.59.(2021·青海中考真题)如图1是某中学教学楼的推拉门,已知门的宽度米,且两扇门的大小2AD =相同(即),将左边的门绕门轴向里面旋转,将右边的门绕门轴AB CD =11ABB A 1AA 35︒11CDD C 1DD 向外面旋转,其示意图如图2,求此时与之间的距离(结果保留一位小数).(参考数据45︒B C,).sin 350.6︒≈cos 350.8︒≈ 1.4≈60.(2021·四川成都市·中考真题)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A 处安置测倾器,测得点M 的仰角,在与点A 相距3.5米的测点33MBC ∠=︒D 处安置测倾器,测得点M 的仰角 (点A ,D 与N 在一条直线上),求电池板离地面的高45MEC ∠=︒度的长.(结果精确到1米;参考数据:)MN sin 330.54,cos330.84,tan 330.65︒≈︒≈︒≈61.(2021·山东聊城市·中考真题)时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A 处向正南方向走300米到达革命纪念碑B 处,再从B 处向正东方向走到党史纪念馆C处,然后从C 处向北偏西37°方向走200米到达人民英雄雕塑D 处,最后从D 处回到A 处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)62.(2021·四川广元市·中考真题)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D 点处时,无人机测得操控者A 的俯角为,测得小区楼房顶端点C 处的俯角为.已知操控75︒BC 45︒者A 和小区楼房之间的距离为45米,小区楼房的高度为米.BCBC(1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于的方向,并以5米/秒的速度继续向前匀速飞AB 行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A ,B ,C ,D 都在同一平面内.参考数据:.计算结果保留根号)tan 752︒=tan152︒=63.(2021·四川资阳市·中考真题)资阳市为实现5G 网络全覆盖,2020-2025年拟建设5G 基站七千个.如图,在坡度为的斜坡上有一建成的基站塔,小芮在坡脚C 测得塔顶A 的仰角为1:2.4i =CB AB ,然后她沿坡面行走13米到达D 处,在D 处测得塔顶A 的仰角为(点A 、B 、C 、D 均在同45︒CB 53︒一平面内)(参考数据:)434sin 53,cos53,tan 53553︒≈︒≈︒≈(1)求D 处的竖直高度;(2)求基站塔的高.AB 64.(2021·江苏连云港市·中考真题)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿摆成如图1所示.已知,鱼竿尾端A 离岸边,即.海面与AB 4.8m AB =0.4m 0.4m AD =地面平行且相距,即.AD 1.2m 1.2m DH =(1)如图1,在无鱼上钩时,海面上方的鱼线与海面的夹角,海面下方的鱼线BC HC 37BCH ∠=︒CO 与海面垂直,鱼竿与地面的夹角.求点O 到岸边的距离;HC AB AD 22BAD ∠=︒DH (2)如图2,在有鱼上钩时,鱼竿与地面的夹角,此时鱼线被拉直,鱼线,53BAD ∠=︒ 5.46m BO =点O 恰好位于海面.求点O 到岸边的距离.(参考数据:,DH 3sin 37cos535︒=︒≈,,,,)4cos37sin 535=︒︒≈3tan 374︒≈3sin 228︒≈15cos 2216︒≈2tan 225︒≈65.(2021·四川凉山彝族自治州·中考真题)王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB 的高度,他在点C 处测得大树顶端A 的仰角为,再从C 点出发沿斜坡走45︒米到达斜坡上D 点,在点D 处测得树顶端A 的仰角为,若斜坡CF 的坡比为(点30︒1:3i =在同一水平线上).E C H ,,(1)求王刚同学从点C 到点D 的过程中上升的高度;(2)求大树AB 的高度(结果保留根号).。
中考数学真题试题 23
2021年中考数学试题〔卷〕〔本套试卷满分是150分,考试时间是是120分钟〕A卷(满分是100分)一、选择题(本大题一一共10小题,每一小题4分,每一小题给出的四个选项里面,只有一个是正确的,请把正确的选项选出来)1.(20214分)假如+3吨表示运入仓库的大樱桃吨数,那么运出5吨大樱桃表示为【】A.-5吨 B.+5吨 C.-3吨 D.+3吨【答案】A。
2.(20214分)点M到x轴的间隔为1,到y轴的间隔为2,那么M点的坐标为【】A.(1,2) B.(-1,-2)C.(1,-2) D.(2,1),(2,-1),(-2,1),(-2-1)【答案】D。
3.(20214分)在以下图形中,既是轴对称图形,又是中心对称图形的是【】【答案】D。
4.(20214分)如图,直线AB、CD相交于点O,∠1=80°,假如DE∥AB,那么∠D的度数是【】A.80° B.90° C.100° D.110°【答案】C。
5.(20214分)从一只装有5个红球的袋中随机摸出一球,假设摸到白球的概率是P1,摸到红球的概率是P2,那么【】A.P1=1,P2=1 B.P1=0,P2=1 C.P1=0,P2=15D.P1=0,P2=0【答案】B。
6.(20214分)以下图是小明用八块小正方体搭的积木,该几何体的俯视图是【】【答案】D。
7.(20214分)有理数a、b在数轴上对应点的位置如下图,那么【】A.a+b<0 B.a+b>0 C.a-b=0 D.a-b<0【答案】B。
8.(20214分)甲瓶盐水含盐量为1a,乙瓶盐水含盐量为1b,从甲乙两瓶中各取重量相等的盐水混合制成新盐水的含盐量为【】A.a b2ab+ B.a bab+ C.1abD.随所取盐水重量而变化【答案】A。
9.(20214分)如下图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,那么sin∠EAB的值是【】A.43B.34C.45D.35【答案】D。
2023中考数学23题
2023中考数学23题题目描述:某班级有60名学生,其中男生占全班的3/5,女生占全班的2/5。
男生中1/4会打篮球,女生中1/3会打篮球。
已知班级中既会打篮球又会踢足球的学生有10名,既不会打篮球又不会踢足球的学生有5名。
求该班级中会踢足球的学生有多少名?解析:设男生有3x名,女生有2x名,男生会打篮球的人数为3x/4,女生会打篮球的人数为2x/3。
班级中会打篮球的学生总数为3x/4 + 2x/3,由于已知班级中既会打篮球又会踢足球的学生有10名,因此有等式:3x/4 + 2x/3 = 10化简等式得:9x/12 + 8x/12 = 1017x/12 = 10解得x ≈ 7.059班级中男生的人数为3x ≈ 3 * 7.059 ≈ 21.177,取整为21人。
班级中女生的人数为2x ≈ 2 * 7.059 ≈ 14.118,取整为14人。
班级中会踢足球的学生总数为10 + 5 = 15人。
班级中既会打篮球又会踢足球的学生人数为15 - 5 = 10人。
根据题意,班级中会踢足球的学生总数为男生会踢足球的人数加上女生会踢足球的人数。
设男生会踢足球的人数为y,女生会踢足球的人数为z,由于男生会打篮球的人数为3x/4,女生会打篮球的人数为2x/3,因此有等式:3x/4 - 10 = y2x/3 - 10 = z化简等式得:3x - 40 = 4y2x - 30 = 3z代入x ≈ 7.059得:3 * 7.059 - 40 = 4y2 * 7.059 - 30 = 3z化简等式得:21.177 - 40 = 4y14.118 - 30 = 3z-18.823 = 4y-15.882 = 3z解得y ≈ -4.706,z ≈ -5.294由于学生人数不能为负数,所以班级中会踢足球的学生人数为0。
因此,该班级中会踢足球的学生有0名。
福建省中考数学几何题选编
福建省中考数学几何题选一、填空题:1.(福建龙岩)6.一个凸多边形的内角和与外角和相等,它是 边形 .2.(福建龙岩)7.如图,□ABCD 中,CE ⊥AB ,垂足为E ,如果∠A =115°,则∠BCE = .3.(福建龙岩)9.如图,量角器外沿上有A 、B 两点,它们的读数分别是70°、40°,则∠1的度数为 .4.(福建龙岩)10.如图,在Rt△ABC 中,∠CAB=90°,AD 是∠CAB 的平分线,tanB=21,则CD∶DB= .5.(福建南平)12.如图,奥运五环标志里,包含了圆与圆的位置关系中的外离..和 . 6.(福建南平)15.如图,菱形ABCD 中,O 是对角线AC BD ,的交点,5cm AB =,4cm AO =,则BD = cm .7.(福建南平)17.如图,ABC △中,AB AC >,D E ,两点分别在边AC AB ,上,且DE 与BC 不平行.请填上一个..你认为合适的条件: ,使ADE ABC △∽△. (不再添加其他的字母和线段;只填一个条件,多填不给分!)8.(福建泉州)12、如图,AB ∥DC ,AD ∥BC ,若∠A=35°,则∠C=______度。
9.(福建泉州)13、两个相似三角形对应边的比为6,则它们周长的比为___________。
10.(福建泉州)15、在右图方格纸中,△ABC 向右平移_______格后得到△A 1B 1C 1(第9题图)(第10题图)(第7题图)°ABD(第12题图)A 1C 1B 1C A B(第15题图)11.(福建泉州)17、圆锥底面周长为π2米,母线长为4米,则它的侧面展开图的面积为_________平方米(结果保留π)。
12.(福建泉州)18、四边形ABCD 为边长等于1的菱形,顺次连结它的各边中点组成四边形EFGH (四边形EFGH 称为原四边形的中点四边形),再顺次连结四边形EFGH 的各边中点组成第二个中点四边形,……,则按上述规律组成的第八个中点四边形的边长等于_____________。
中考数学第23-24题(解答中档题:圆、二次函数的实际应用)考前预测
押中考数学第23-24题(解答中档题:圆、二次函数的实际应用)专题诠释:圆和二次函数的实际应用在了历年的中考中均有所考察,分值一般在20-24之间,分值较高且有一定的难度。
圆常常会结合勾股定理、全等、相似或锐角三角函数一起考察;二次函数的实际应用考察最多的是利润问题。
能根据题意进行合理的转化是做题的关键!知识点一:圆〖押题冲关〗1.(2023·四川成都·统考二模)如图,在Rt△ABC中,∠BAC=90°,BO平分∠ABC,交AC于点O.以点O为圆心,OA为半径作⊙O,交BO于点D,连接AD.(1)求证:BC为⊙O的切线;(2)若OA=3,OC=27,求AB的长;7(3)在(2)的条件下,求tan∠BAD的值.2.(2023·四川达州·统考一模)如图,△ABC为⊙O的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD交AD于E,交AB于F,交⊙O于G.(1)判断直线PA与⊙O的位置关系,并说明理由;(2)求证:AG2=AB⋅AF.3.(2023·浙江台州·统考一模)如图,△ABC内接于半圆O,已知AB是半圆O的直径.AB=10,AD平分∠BAC,分别交半圆O和BC于点D,E,过点D作DH⊥AB,垂足为点H,交BC于点F.(1)求证:EF=DF;⌢的长.(2)连接OD交BC于点G,若EG=FG,求BC4.(2023·安徽滁州·统考二模)如图,△ABC中,∠C=90°,BD平分∠ABC交AC于点D,BD的垂直平分线交AB于点O,以O为圆心,OB长为半径作⊙O.(1)求证:AC与⊙O相切于点D.(2)若BC=3,AC=4,求⊙O的半径.5.(2023·广东东莞·校考二模)如图,四边形ABCD内接于⊙O,AB为直径,BC=CD,过点C作CE⊥AB于点E,CH⊥AD交AD的延长线于点H,连接BD交CE于点G.(1)求证:CH是⊙O的切线:(2)若点D为AH的中点,求证:AD=BE;,CG=10,求BD的长.(3)若cos∠DBA=456.(2023·四川成都·统考二模)如图,D是以AB为直径的⊙O上一点,过点D的切线交AB的延长线于点E,过点B作BF⊥DE,垂足为点F,延长BF交AD的延长线于点C.(1)求证:AB=BC;(2)若⊙O的直径为5,sinA=3,求线段BF和BE的长.57.(2023·陕西西安·统考二模)如图,⊙O中两条互相垂直的弦AB,CD交于点E.(1)OM⊥CD,OM=6,⊙O的半径为10,求弦CD的长;(2)过点A作AN⊥BD交CD于点F,求证:CE=EF.8.(2023·北京房山·统考一模)如图,△ABC中,AB=AC,以BC为直径作⊙O,与边AC交于点D,过点D的⊙O的切线交BC的延长线于点E.(1)求证:∠BAC=2∠DBC;(2)若cos∠BAC=3,DE=4,求BE的长.59.(2023·安徽合肥·校考一模)如图,在Rt△ABC中,∠ACB=90°,以AC为弦作⊙O,交BC的延长线于点D,且DC=BC,∠CAB=∠BDE.(1)求证:DE为⊙O的切线;(2)若⊙O的半径为2,AB=BE,求劣弧AC的长.10.(2023·安徽阜阳·统考二模)如图,以△ABC的边AB为直径作半圆O交AC于点D,且OD∥BC,半圆O交BC于点E.(1)求证:∠C=∠CED.,AD=4,求半圆O的半径r.(2)若CE=83知识点二:二次函数的实际应用〖押题冲关〗(1)求此桥拱截面所在抛物线的表达式;4.(2023·四川成都·统考二模)2022年卡塔尔世界杯期间,某网点直接从工厂购进A,B两款拉伊卜吉祥物手办,A款的购进单价比B款贵20元,用400元购进A款手办的数量比用400元购进B款手办的数量少一件.A,B两款手办的销售单价分别是120元和95元.(注:利润=销售价-购进价)(1)求A,B两款手办的购进单价分别是多少元?(2)世界杯结束后,为了尽快减少库存,加快资金周转,网店决定对A款拉伊卜吉祥物手办进行调价销售,如果按照原价销售,平均每天可销售5件,经调查发现,每降价2元就可以多销售1件,试问将销售价定为每件多少元时,才能使A款手办平均每天的销售利润最大?5.(2023·安徽蚌埠·校考二模)如图,蚌埠花博园要建造一圆形喷水池,在水池中央垂直于水面安装一个柱子OA,O恰在水面中心,OA高3米,如图1,由柱子顶端处的喷头向外喷水,水流在各方面沿形状相同的抛物线落下.(1)如果要求设计成水流在离OA距离为1米处达到最高点,且与水面的距离是4米,那么水池的内部半径至少要多少米,才能使喷出的水不致落到池外;(利用图2所示的坐标系进行计算)(2)若水流喷出的抛物线形状与(1)相同,水池内部的半径为5米,要使水流不落到池外,此时水流达到的最高点与水面的距离应是多少米?6.(2023·河南三门峡·统考一模)如图,在某中学的一场篮球赛中,李明在距离篮圈中心5.5m (水平距离)处跳起投篮,球出手时离地面2.2m,当篮球运行的水平距离为3m时达到离地面的最大高度4m.已知篮球在空中的运行路线为一条抛物线,篮圈中心距地面3.05m.(1)建立如图所示的平面直角坐标系,求篮球运动路线所在抛物线的函数解析式;(2)场边看球的小丽认为,李明投出的此球不能命中篮圈中心.请通过计算说明小丽判断的正确性;(3)在球出手后,未达到最高点时,被防守队员拦截下来称为盖帽.但球到达最高点后,处于下落过程时,防守队员再出手拦截,属于犯规.在(1)的条件下,防守方球员张亮前来盖帽,已知张亮的最大摸球高度为3.2m,则他应该在李明前面多少米范围内跳起拦截才能盖帽成功?7.(2023·辽宁葫芦岛·统考一模)超市需购进某种商品,每件的进价为10元,该商品的销售单价不低于进价,且不高于20元,在销售过程中发现,该商品的日销售量y(件)与销售单价x(元)之间存在如图所示的一次函数关系:(1)求y与x之间的函数关系式,并直接写出自变量x的取值范围;(2)当该商品的销售单价为多少元时,销售这种商品的日销售利润最大?最大利润是多少?8.(2023·陕西西安·统考二模)2023兔年春节期间,全国各地举办焰火晚会,庆祝农历新年的到来.九年级学生王毅也在父母的陪同下前往指定区域燃放一种手持烟花,这种烟花每隔2s发射一枚花弹,每枚花弹的飞行路径视为同一条抛物线,飞行相同时间后发生爆炸,王毅燃放的手持烟花发射出的第一枚花弹的飞行高度h(单位:m)随飞行时间t(单位:s)变化的规律如下表:。
中考数学第23题分类试题
中考数学第23 题的分类试题一、动点问题(一)、因动点产生的面积关系例 1、在平面直角坐标系中,△BCD的边长为3cm 的等边三角形,动点P、Q同时从点A、 O两点出发,分别沿AO、OB方向匀速挪动,它们的速度都是1cm/s,当点P抵达点O时,P、Q两点停止运动.设点P的运动时间为t(s),解答以下问题 :(1)求 OA所在直线的分析式 ;(2)当 t 为什么值时 , △ POQ是直角三角形 ;(3) 能否存在某一时辰 t ,使四边形 APQB的面积是△ AOB面积的三分之二若存在 , 求出相应的 t 值 ; 若不存在,请说明原因.例 2、如图,边长为 1 的正方形的极点为坐标原点,点A在x轴的正半OABC O轴上,点 C 在 y 轴的正半轴上.动点 D 在线段 BC上挪动(不与 B, C 重合),连结于点 E,连结 OE.记 CD的长为 t .yAPPO Q B x OD,过点 D作 DE⊥ OD,交边 AB(1)当 t =1时,求直线 DE的函数表达式;3(2)假如记梯形 COEB的面积为 S,那么能否存在 S 的最大值若存在,恳求出这个最大值及此时 t 的值;若不存在,请说明原因;(二)因动直线产生的面积关系例3.如下图,已知抛物线 y=x 2+bx+c 经过点( 1,- 5)和(- ?2 , 4).(1)求这条抛物线的分析式.(2)设此抛物线与直线 y=x 订交于点 A, B(点 B 在点 A 的右边),平行于 x? 轴的直线 x=m(0<m< 5 +1)与抛物线交于点M,与直线y=x 交于点 N,交 x 轴于点 P,求线段MN的长( ? 用含 m的代数式表示).( 3)在条件( 2)的状况下,连结 OM, BM,能否存在 m的值,使△ BOM的面积 S 最大若存在,恳求出若不存在,请说明原因.yx = mNOPAM m的值,y=xBx同步练习1、如图,在平面直角坐标系中,四边形 OABC 为菱形, ? 点 C 的坐标为( 4, 0),∠ AOC=60°,垂直于 x 轴的直线L 从 y 轴出发, 沿 x 轴正方向以每秒 1? 个单位长度的速度挪动, 设直线 L 与菱形 OABC 的两边分别交于点 M ,N (点M 在点 N 的上方).( 1)求 A ,B 两点的坐标;( 2)设△ OMN 的面积为 S ,直线 L 的运动时间为 ts (0≤t ≤6),试求 S 与 t? 的函数表达式;( 3)在( 2)的条件下, t 为什么值时, S 的面积最大最大面积是多少2. 正方形 ABCD 的边长为4, BE ∥ AC 交 DC 的延伸线于 E 。
福建中考数学23题
福建中考数学23题福建中考数学是福建省中学生的一项重要考试科目,其中第23题是数学考试中的一道经典题目。
下面,我将根据题目要求,为您详细解答。
题目描述:已知数列 {an} 为等差数列,首项为 a1,公差为 d,数列的前 n 项和为 Sn,且满足 Sn=3n²+3n。
求数列的通项公式。
解题思路:要求解数列的通项公式,首先需要了解数列的概念以及数列的前 n 项和的计算方法。
数列是按照一定的规律排列的一列数,其中的每个数称为数列的项。
数列的通项公式表示数列的第 n 项与 n 的关系,可以用来求解数列的任意项。
数列的前 n 项和是指数列的前 n 项数的和,通常用 Sn 表示。
根据题目中的信息,已知数列 {an} 为等差数列,首项为 a1,公差为 d,数列的前 n 项和为 Sn,且满足 Sn=3n²+3n。
我们需要根据这些条件,来求解数列的通项公式。
解题步骤:步骤 1:数列的前 n 项和的计算公式已知数列 {an} 的前 n 项和为 Sn=3n²+3n,根据数列的前 n 项和的计算公式,我们可以得到 Sn 的表达式。
根据公式 Sn=n(a1+an)/2,将已知的 Sn=3n²+3n 代入,得到:3n²+3n=n(a1+an)/2步骤 2:数列的前 n 项和的计算公式的变形将公式 3n²+3n=n(a1+an)/2 进行变形,得到:6n²+6n=n(a1+an)步骤 3:利用等差数列的通项公式已知数列 {an} 是等差数列,公差为 d,根据等差数列的通项公式 an=a1+(n-1)d,将公式代入得到:6n²+6n=n(a1+a1+(n-1)d)步骤 4:整理方程将公式 6n²+6n=n(a1+a1+(n-1)d) 进行整理,得到:6n²+6n=2na1+(n²-n)d步骤 5:整理方程,消去 n将公式 6n²+6n=2na1+(n²-n)d 进行整理,消去 n,得到:6n²+6n-2na1-n²d+nd=0步骤 6:整理方程,合并同类项将公式 6n²+6n-2na1-n²d+nd=0 进行整理,合并同类项,得到:n²(6-d)+n(6-2a1)+6=0步骤 7:整理方程,提取公因式将公式 n²(6-d)+n(6-2a1)+6=0 进行整理,提取公因式,得到:(n²+n(6-2a1)+(6-d))=0步骤 8:根据求根公式求解由于方程为一元二次方程,我们可以使用求根公式进行求解。
2024年福建厦门中考数学试题及答案
2024年福建厦门中考数学试题及答案一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.下列实数中,无理数是( )A .3-B .0C .23D 2.据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为( )A .696110´B .2696.110´C .46.96110´D .50.696110´3.如图是由长方体和圆柱组成的几何体,其俯视图是( )A .B .C .D .4.在同一平面内,将直尺、含30°角的三角尺和木工角尺(CD ^DE )按如图方式摆放,若AB P CD ,则1Ð的大小为( )A .30°B .45°C .60°D .75°5.下列运算正确的是( )A .339a a a ×=B .422a a a ¸=C .()235a a =D .2222a a -=6.哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是( )A .14B .13C .12D .237.如图,已知点,A B 在O e 上,72AOB Ð=°,直线MN 与O e 相切,切点为C ,且C 为»AB 的中点,则ACM Ð等于( )A .18°B .30°C .36°D .72°8.今年我国国民经济开局良好,市场销售稳定增长,社会消费增长较快,第一季度社会消费品零售总额120327亿元,比去年第一季度增长4.7%,求去年第一季度社会消费品零售总额.若将去年第一季度社会消费品零售总额设为x 亿元,则符合题意的方程是( )A .()1 4.7%120327x +=B .()1 4.7%120327x -=C .1203271 4.7%x=+D .1203271 4.7%x=-9.小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB V 与ODC V 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ^.下列推断错误的是( )A .OB OD ^B .BOC AOBÐ=ÐC .OE OF =D .180BOC AOD Ð+Ð=°10.已知二次函数()220y x ax a a =-+¹的图象经过1,2a A y æöç÷èø,()23,B a y 两点,则下列判断正确的是( )A .可以找到一个实数a ,使得1y a >B .无论实数a 取什么值,都有1y a >C .可以找到一个实数a ,使得20y <D .无论实数a 取什么值,都有20y <二、填空题:本题共6小题,每小题4分,共24分.11.因式分解:x 2+x = .12.不等式321x -<的解集是 .13.学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是 .(单位:分)14.如图,正方形ABCD 的面积为4,点E ,F ,G ,H 分别为边AB ,BC ,CD ,AD 的中点,则四边形EFGH 的面积为 .15.如图,在平面直角坐标系xOy 中,反比例函数ky x=的图象与O e 交于,A B 两点,且点,A B 都在第一象限.若()1,2A ,则点B 的坐标为 .16.无动力帆船是借助风力前行的.下图是帆船借助风力航行的平面示意图,已知帆船航行方向与风向所在直线的夹角PDA Ð为70°,帆与航行方向的夹角PDQ Ð为30°,风对帆的作用力F 为400N .根据物理知识,F 可以分解为两个力1F 与2F ,其中与帆平行的力1F 不起作用,与帆垂直的力2F 仪可以分解为两个力1f 与21,f f 与航行方向垂直,被舵的阻力抵消;2f 与航行方向一致,是真正推动帆船前行的动力.在物理学上常用线段的长度表示力的大小,据此,建立数学模型:400F AD ==,则2f CD == .(单位:N )(参考数据:sin400.64,cos400.77°=°=)三、解答题:本题共9小题,共86分。
2023福建中考数学23题
中考数学试卷一、单项选择题(共12分)1.在同一平面直角坐标系中,函数y=x﹣1与函数y=1x的图象可能是()A.B. C.D.2.已知m3=n4,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=123.在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.1B.√22C.√3D.√334.如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈5.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是()A.过图象上任一点P作x轴、y轴的垂线,垂足分别A,B,则矩形O APB 的面积为kB.若点(2,4)在其图象上,则(−2,4)也在其图象上C.反比例函数的图象关于直线y=x和y=−x成轴对称D.当k>0时,y随x的增大而减小(k≠0),当x<0时,y随x的增大而增大,那么一6.已知反比例函数y=kx次函数y=kx−k的图象经过()。
A.第一,二,三象限B.第一,二,四象限C.第一,三,四象限D.第二,三,四象限7.如图,四边形ABCD是矩形,E是边BC延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对C.2对D.1对8.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3D.x1=0,x2=3二、填空题(共24分)9.如图,一架长为6米的梯子AB斜靠在一竖直的墙AO上,这时测得∠ABO= 70∘,如果梯子的底端B外移到D,则梯子顶端A下移到C,这时又测得∠CDO=50∘,那么AC的长度约为()米。
10.已知方程x2+mx﹣6=0的一个根为﹣2,则另一个根是。
11.把一张半径为2cm,圆心角为120°的扇形纸片卷成一个圆锥的侧面,那么这个圆锥的底面积是。
中考数学专题复习《21~23题题型》测试卷-附带答案
中考数学专题复习《21~23题题型》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________1.市体育局对甲乙两运动队的某体育项目进行测试两队人数相等测试后统计队员的成绩分别为:7分8分9分10分(满分为10分).依据测试成绩绘制了如图所示尚不完整的统计图表:甲队成绩统计表成绩7分8分9分10分人数01m7请根据图表信息解答下列问题:(1)填空:α=__________︒m=_________(2)补齐乙队成绩条形统计图(3)①甲队成绩的中位数为_________ 乙队成绩的中位数为___________①分别计算甲乙两队成绩的平均数并从中位数和平均数的角度分析哪个运动队的成绩较好.2.某校在评选“劳动小能手”活动中随机调查了部分学生的周末家务劳动时间根据调查结果将劳动时长划分为A B C D四个组别并绘制成如下不完整统计图表学生周末家务劳动时长分组表组别A B C Dt(小时)0.5t<0.51t≤<1 1.5t≤< 1.5t≥请根据图表中的信息解答下列问题:(1)这次抽样调查共抽取______名学生条形统计图中的=a______ D组所在扇形的圆心角的度数是______(2)已知该校有900名学生根据调查结果请你估计该校周末家务劳动时长不低于1小时的学生共有多少人?(3)班级准备从周末家务劳动时间较长的三男一女四名学生中随机抽取两名学生参加“我劳动我快乐”的主题演讲活动 请用列表法或画树状图法求出恰好选中两名男生的概率.3..如图 ABC 内接于O AB 是O 的直径 BC BD = DE AC ⊥于点E DE 交BF 于点F 交AB 于点G 2BOD F ∠=∠ 连接BD .(1)求证:BF 是O 的切线(2)判断DGB 的形状 并说明理由(3)当2BD =时 求FG 的长.4.如图 AB 是O 的直径 点E C 在O 上 点C 是BE 的中点 AE 垂直于过C 点的直线DC 垂足为D AB 的延长线交直线DC 于点F .(1)求证:DC 是O 的切线(2)若2AE = 1sin 3AFD ∠= ①求O 的半径 ①求线段DE 的长.5.如图 在菱形ABCD 中 对角线,AC BD 相交于点,E O 经过,A D 两点 交对角线AC 于点F 连接OF 交AD 于点G 且AG GD =.(1)求证:AB 是O 的切线(2)已知O 的半径与菱形的边长之比为5:8 求tan ADB ∠的值.6.如图 在O 中 直径AB 垂直弦CD 于点E 连接,,AC AD BC 作CF AD ⊥于点F 交线段OB 于点G (不与点,O B 重合) 连接OF .(1)若1BE = 求GE 的长.(2)求证:2BC BG BO =⋅.(3)若FO FG = 猜想CAD ∠的度数 并证明你的结论.7. 我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系 用直线上点的位置刻画圆上点的位置 如图 AB 是O 的直径 直线l 是O 的切线 B 为切点.P Q 是圆上两点(不与点A 重合 且在直径AB 的同侧) 分别作射线AP AQ 交直线l 于点C 点D .(1)如图1 当6AB = BP 的长为π时 求BC 的长.(2)如图2 当34AQ AB = BP PQ =时 求BC CD的值. (3)如图3 当6sin BAQ ∠=BC CD =时 连接BP PQ 直接写出PQ BP 的值.8.如图 一次函数1(0)y kx b k =+≠与函数为2(0)m y x x =>的图象交于1(4,1),,2A B a ⎛⎫ ⎪⎝⎭两点. (1)求这两个函数的解析式(2)根据图象 直接写出满足120y y ->时x 的取值范围(3)点P 在线段AB 上 过点P 作x 轴的垂线 垂足为M 交函数2y 的图象于点Q 若POQ △面积为3 求点P 的坐标.9..如图 在平面直角坐标系中 四边形OABC 是边长为2的正方形.点A C 在坐标轴上.反比例函数()0k y x x=>的图象经过点B . (1)求反比例函数的表达式(2)点D 在反比例函数图象上 且横坐标大于2 3OBD S =.求直线BD 的函数表达式.10.如图 点A 在反比例函数(0)k y k x=≠的图象上 点C 是点A 关于y 轴的对称点 OAC 的面积是8. (1)求反比例函数的解析式(2)当点A 的横坐标为2时 过点C 的直线2y x b =+与反比例函数的图象相交于点P 求交点P 的坐标.11.如图 点A 在反比例函数()0k y x x =>的图象上 AB y ⊥轴于点B 1tan 2AOB =∠ 2AB =. (1)求反比例函数的解析式(2)点C 在这个反比例函数图象上 连接AC 并延长交x 轴于点D 且45ADO ∠=︒ 求点C 的坐标.12.如图 一次函数2y x =的图象与反比例函数(0)ky x x=>的图象交于点()4,A n .将点A 沿x 轴正方向平移m 个单位长度得到点,B D 为x 轴正半轴上的点 点B 的横坐标大于点D 的横坐标 连接,BD BD 的中点C在反比例函数(0)k y x x =>的图象上. (1)求,n k 的值(2)当m 为何值时 AB OD ⋅的值最大?最大值是多少?13.如图 在平面直角坐标系xOy 中 直线y kx b =+与x 轴交于点()4,0A 与y 轴交于点()0,2B 与反比例函数m y x=在第四象限内的图象交于点()6,C a . (1)求反比例函数的表达式:(2)当m kx b x+>时 直接写出x 的取值范围 (3)在双曲线m y x=上是否存在点P 使ABP 是以点A 为直角顶点的直角三角形?若存在 求出点P 的坐标 若不存在 请说明理由.参考答案与解析1.【答案】(1)126,12m α=︒=(2)见解析(3)①9分 8分①=9.3x 甲 =8.3x 乙 中位数角度看甲队成绩较好 从平均数角度看甲队成绩较好【分析】(1)根据样本容量=频数÷所占百分比 结合圆心角的计算解答即可.(2)根据样本容量 求得7分的人数补图即可.(3)①根据有序数据的中间数据或中间两个数据的平均数为中位数计算即可.①根据加权平均数公式计算即可.【详解】(1)解:本次抽样调查的样本容量是72420360︒÷=︒(人) ①201712m =--=(人) 736012620α=⨯︒=︒故答案为:126 12.(2)①20-4-5-4=7(人)①补图如下:(3)①①甲队的第10个 11个数据都是9分①中位数是9+9=92(分)①乙队的第10个 11个数据都是8分①中位数是8+8=82(分)故答案为:9分 8分. ①①70+81+912+107==9.320x ⨯⨯⨯⨯甲(分)77+84+95+104==8.320x ⨯⨯⨯⨯乙(分)故从中位数角度看甲队成绩较好 从平均数角度看甲队成绩较好.【点睛】本题考查了中位数 条形统计图 扇形统计图 熟练掌握中位数 平均数 扇形统计图条形统计图的基本计算是解题的关键.2.【答案】(1)50 9 108︒(2)估计该校周末家务劳动时长不低于1小时的学生共有666人 (3)12【分析】(1)根据数据计算即可(2)根据(1)求出的D 组所占的比例计算结果(3)列出所有可能情况求概率.【详解】(1)解:这次抽样调查共抽取的人数有:224450÷=%(人)B 组的人数为:5018%9a =⨯=(人)D 组所占的比例为:18%18%44%30---=︒①D 组所在扇形的圆心角的度数是:36030%108︒⨯=︒(2)解:根据题意得 900(30%44%)666⨯+=(人)答:估计该校周末家务劳动时长不低于1小时的学生共有666人(3)解:列表如下: 男1 男2 男3 女男1 (男2 男1) (男3 男1) (女 男1)男2 (男1 男2) (男3 男2) (女 男2)男3 (男1 男3) (男2 男3) (女 男3)女 (男1 女) (男2 女) (男3 女)共有12中等可能结果 其中恰好选中两名男生的结果数为6①恰好选中两名男生的概率61122==. 【点睛】本题主要考查了统计的实际问题 涉及用样本估计总体的数量 求圆心角的度数 求概率等 属于基础题要认真读图.3.【答案】(1)见解析(2)DGB 是等腰三角形 理由见解析(3)4FG =【分析】(1)连接CO 根据圆周角定理得出2BOD BOC BAC ∠=∠=∠ 根据已知得出F BAC ∠=∠ 根据DE AC ⊥得出90AEG ∠=︒ 进而根据对等角相等 以及三角形内角和定理可得90FBG AEG ∠=∠=︒ 即可得证(2)根据题意得出AD AC = 则ABD ABC ∠=∠ 证明EF BC ∥ 得出AGE ABC ∠=∠ 等量代换得出FGB ABD ∠=∠ 即可得出结论(3)根据FGB ABD ∠=∠ AB BF ⊥ 设FGB ABD α∠=∠= 则90DBF F α∠=∠=︒- 等边对等角得出DB DF = 则224FG DG DB ===.【详解】(1)证明:如图所示 连接CO①BC BD = ①2BOD BOC BAC ∠=∠=∠①2BOD F ∠=∠ ①F BAC ∠=∠①DE AC ⊥ ①90AEG ∠=︒①AGE FGB ∠=∠①90FBG AEG ∠=∠=︒即AB BF ⊥ 又AB 是O 的直径 ①BF 是O 的切线(2)①BC BD = AB 是O 的直径 ①AD AC = BC AC ⊥ ①ABD ABC ∠=∠①DE AC ⊥ BC AC ⊥①EF BC ∥ ①AGE ABC ∠=∠又AGE FGB ∠=∠ ①FGB ABD ∠=∠ ①DGB 是等腰三角形(3)①FGB ABD ∠=∠ AB BF ⊥设FGB ABD α∠=∠= 则90DBF F α∠=∠=︒-①DB DF = ①224FG DG DB ===.【点睛】本题考查了切线的判定 等腰三角形的性质与判定 圆周角定理 熟练掌握以上知识是解题的关键.4.【答案】(1)证明见解析(2)①3 ①2【分析】(1)根据等弧所对的圆周角相等和等边对等角的性质 得到CAE ACO ∠=∠ 推出AD OC ∥ 进而得到OC DC ⊥ 再利用圆的切线的判定定理即可证明结论(2)①连接BE 根据直径所对的圆周角是直角和平行线的判定 得到BE DF ∥ 进而得到AFD ABE ∠=∠ 再利用锐角三角函数 求得6AB = 即可求出O 的半径①利用锐角三角函数 分别求出BF 和AD 的长 即可得到线段DE 的长.【详解】(1)证明:如图 连接OC 点C 是BE 的中点 CE CB ∴= CAE CAB ∴∠=∠OA OC = CAB ACO ∴∠=∠ CAE ACO ∴∠=∠AD OC ∴∥AD DC ⊥ OC DC ∴⊥ OC 是O 的半径 DC ∴是O 的切线(2)解:①如图 连接BEAB 是直径 90AEB ∴∠=︒ BE AD ∴⊥AD DF ⊥ BE DF ∴∥ AFD ABE ∠=∠∴ 1sin 3AFD ∠= 1sin 3AE ABE AB ∴∠== 2AE = 6AB ∴=∴O 的半径为3①由(1)可知 OC DF ⊥ 1sin 3OC AFD OF ∴∠== 3OC = 3OF OB BF BF =+=+ 3133BF ∴=+ 6BF ∴= 6612AF AB BF ∴=+=+= AD DF ⊥ 1sin 123AD AD AFD AF ∴∠=== 4AD ∴= 2AE = 422DE AD AE ∴=-=-=.【点睛】本题是圆和三角形综合题 考查了圆的切线的判定定理 圆的性质 等腰三角形的性质 锐角三角函数等知识 熟练掌握圆的相关性质 灵活运用正弦值求边长是解题关键.5.【答案】(1)见解析(2)tan 2ADB ∠=【分析】(1)利用垂径定理得OF AD ⊥ 利用菱形的性质得GAF BAF ∠=∠ 利用半径相等得OAF OFA ∠=∠ 即可证明90OAF BAF ∠+∠=︒ 据此即可证明结论成立(2)设4AG GD a == 由题意得:5:4OA AG = 求得5OA a = 由勾股定理得到3OG a = 求得2FG a = 利用菱形的性质求得ADB AFG ∠=∠ 据此求解即可.【详解】(1)证明:连接OA①AG GD = 由垂径定理知OF AD ⊥ ①90OGA FGA ∠=∠=︒①四边形ABCD 是菱形 ①GAF BAF ∠=∠ ①90GAF AFG BAF AFG ∠+∠=︒=∠+∠ ①OA OF = ①OAF OFA ∠=∠ ①90OAF BAF OAB ∠+∠=∠=︒ 又①OA 为O 的半径 ①AB 是O 的切线(2)解:①四边形ABCD 是菱形 AG GD = ①设4AG GD a == ①O 的半径与菱形的边长之比为5:8 ①在Rt OAG △中 :5:4OA AG = ①5OA a = 223OG OA AG a -= ①2FG OF OG a =-=①四边形ABCD 是菱形 ①BD AC ⊥ 即90DEA FGA ∠=︒=∠ ①ADB AFG ∠=∠ ①4tan tan 22AG aADB AFG FG a∠=∠===. 【点睛】本题考查了菱形的性质 垂径定理 切线的判定 求角的正切值 勾股定理 解答本题的关键是明确题意 找出所求问题需要的条件.6.【答案】(1)1(2)见解析【分析】(1)由垂径定理可得90AED ∠=︒ 结合CF AD ⊥可得DAE FCD ∠=∠ 根据圆周角定理可得DAE BCD ∠=∠ 进而可得BCD FCD ∠=∠ 通过证明BCE GCE ≌可得1GE BE == (2)证明ACB △CEB ∽ 根据对应边成比例可得2BC BA BE =⋅ 再根据2AB BO = 12BE BG =可证2BC BG BO =⋅【详解】(1)解:直径AB 垂直弦CD ∴90AED ∠=︒ ∴90DAE D ∠+∠=︒CF AD ⊥ ∴90FCD D ∠+∠=︒ ∴DAE FCD ∠=∠由圆周角定理得DAE BCD ∠=∠ ∴BCD FCD ∠=∠ 在BCE 和GCE 中BCE GCE CE CEBEC GEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BCE GCE ≌()ASA∴1GE BE ==(2)证明:AB 是O 的直径 ∴90ACB ∠=︒在ACB △和CEB 中90ACB CEB ABC CBE ∠=∠=︒⎧⎨∠=∠⎩∴ACB △CEB ∽ ∴BC BABE BC= ∴2BC BA BE =⋅ 由(1)知GE BE = ∴12BE BG =又2AB BO =∴2122BC BA BE BO BG BG BO =⋅=⋅=⋅7.【答案】(1)3(2)34 10【分析】(1)根据扇形的弧长公式即可求出BOP ∠度数 利用切线的性质和解直角三角形即可求出BC 的长.(2)根据等弧所对圆周角相等推出BAC DAC ∠=∠ 再根据角平分线的性质定理推出CF CB = 利用直角三角形的性质即可求出FCD BAQ ∠=∠ 通过等量转化和余弦值可求出答案. (3)根据三角形相似的性质证明APQ ADC ∽△△和APB ABC ∽△△ 从而推出PQ APCDAD和BP AP BC AB = 利用已知条件将两个比例线段相除 根据正弦值即可求出答案 【详解】(1)解:如图1 连接OP 设BOP ∠的度数为n .=6AB BP 的长为ππ3π180n ⋅⋅∴=. 60n ∴= 即60BOP ∠=︒.1302BAP BOP ∴∠=∠=︒.直线l 是O 的切线90ABC ∴∠=︒.①233BC == (2)解:如图2 连接BQ 过点C 作CF AD ⊥于点FAB 为直径90BQA ∴∠=︒.3cos 4AQ BAQ AB ∴∠==. BP PQ = BAC DAC ∴∠=∠.CF AD ⊥ AB BC ⊥CF CB ∴=.90BAQ ADB ∠+∠=︒ 90FCD ADB ∠+∠=︒FCD BAQ ∴∠=∠.3cos cos 4BC FC FCD BAQ CD CD ∴==∠=∠=. (310理由如下: 如图3 连接BQAB BC ⊥ BQ AD ⊥90ABQ BAD ∴∠+∠=︒ 90ADB BAD ∠+∠=︒ ABQ ADC ∴∠=∠ABQ APQ ∠=∠ ∴APQ ADC ∠=∠. PAQ CAD ∠=∠ APQ ADC ∴∽△△PQ APCD AD.① BAP BAC ∠=∠ 90ABC APB ∠=∠=︒APB ABC ∴△∽△ BP APBC AB∴=.① BC CD = ÷①②得cos PQ ABBAQ BP AD ==∠. 6sin BAQ ∠=10cos BAQ ∴∠=.【点睛】本题是圆的综合题 考查了圆周角定理 相似三角形的判定与性质 解直角三角形以及三角函数 切线的性质定理 扇形的弧长公式 角平分线性质定理等 解题的关键在于熟练掌握相关性质定理和相关计算公式. 8.【答案】(1)129y x =-+ 24(0)y x x => (2)142x << (3)点P 的坐标为()2,5或5,42⎛⎫ ⎪⎝⎭【分析】(1)将(4,1)A 代入2(0)my x x=>可求反比例函数解析式 进而求出点B 坐标 再将(4,1)A 和点B 坐标代入1(0)y kx b k =+≠即可求出一次函数解析式(2)直线AB 在反比例函数图象上方部分对应的x 的值即为所求(3)设点P 的横坐标为p 代入一次函数解析式求出纵坐标 将x p =代入反比例函数求出点Q 的纵坐标 进而用含p 的代数式表示出PQ 再根据POQ △面积为3列方程求解即可. 【详解】(1)解:将(4,1)A 代入2(0)my x x => 可得14m = 解得4m =∴反比例函数解析式为24(0)y x x=>1,2B a ⎛⎫⎪⎝⎭在24(0)y x x =>图象上∴4812a == ∴1,82B ⎛⎫ ⎪⎝⎭将(4,1)A 1,82B ⎛⎫⎪⎝⎭代入1y kx b =+ 得:41182k b k b +=⎧⎪⎨+=⎪⎩ 解得29k b =-⎧⎨=⎩∴一次函数解析式为129y x =-+(2)解:142x << 理由如下: 由(1)可知1(4,1),,82A B ⎛⎫⎪⎝⎭当120y y ->时 12y y >此时直线AB 在反比例函数图象上方 此部分对应的x 的取值范围为142x <<即满足120y y ->时 x 的取值范围为142x <<(3)解:设点P 的横坐标为p将x p =代入129y x =-+ 可得129y p =-+ ∴(),29P p p -+.将x p =代入24(0)y x x=> 可得24y p =∴4,Q p p ⎛⎫⎪⎝⎭.∴429PQ p p=-+-∴11429322POQP SPQ x p p p ⎛⎫=⋅=⨯-+-⋅= ⎪⎝⎭整理得229100p p -+= 解得12p = 252p =当2p =时 292295p -+=-⨯+= 当52p =时 5292942p -+=-⨯+= ∴点P 的坐标为()2,5或5,42⎛⎫ ⎪⎝⎭.【点睛】本题属于一次函数与反比例函数的综合题 考查求一次函数解析式 反比例函数解析式 坐标系中求三角形面积 解一元二次方程等知识点 解题的关键是熟练运用数形结合思想.9.【答案】(1)4y x =(2)132y x =-+ 【分析】(1)根据四边形OABC 是边长为2的正方形求出点B 的坐标 代入ky x=求出k (2)设4,D a a ⎛⎫⎪⎝⎭过点D 作DH x ⊥轴 根据OBDOBHBHDODHSSSS=+-面积列方程 求出点D 坐标 再由待定系数法求出直线BD 的函数表达式.【详解】(1)解:四边形OABC 是边长为2的正方形 ∴4OABC S xy ==正方形 ∴4k =即反比例函数的表达式为4y x=. (2)解:设4,D a a ⎛⎫⎪⎝⎭过点D 作DH x ⊥轴点()2,2B 4,D a a ⎛⎫⎪⎝⎭(),0H a①12OBHS OH AB a =⋅= 1144(2)(2)222BHDa SDH AH a a a-=⋅=⋅⋅-= 122ODHSOH DH =⋅=3OBDOBHBHDODHSSSS=+-=∴4(2)232a a a-+-= 解得:14a = 21a =- 经检验4a = 是符合题意的根 即点()4,1D设直线BD 的函数解析式为y kx b =+ 得① 2241k b k b +=⎧⎨+=⎩ 解得:123k b ⎧=-⎪⎨⎪=⎩ 即:直线BD 的函数解析式为132y x =-+.【点睛】本题考查了反比例函数的几何意义和待定系数法求一次函数解析式 反比例函数ky x=图象上任意一点做x 轴 y 轴的垂线 组成的长方形的面积等于k 灵活运用几何意义是解题关键.10.【答案】(1)8y x=(2)(222,442P -++或(222,442P --- 【分析】(1)设,k A m m ⎛⎫ ⎪⎝⎭可得,k C m m ⎛⎫- ⎪⎝⎭ 结合OAC 的面积是8.可得()182k m m m += 从而可得答案(2)先求解()2,4A ()2,4C - 可得直线为28y x =+ 联立828y x y x ⎧=⎪⎨⎪=+⎩ 再解方程组即可. 【详解】(1)解:①点A 在反比例函数(0)ky k x=≠的图象上 ①设,k A m m ⎛⎫⎪⎝⎭①点C 是点A 关于y 轴的对称点 ①,k C m m⎛⎫- ⎪⎝⎭①OAC 的面积是8. ①()182km m m+= 解得:8k①反比例函数解析式为:8y x=(2)①点A 的横坐标为2时 ①842A y == 即()2,4A 则()2,4C -①直线2y x b =+过点C ①44b -+= ①8b =①直线为28y x =+ ①828y x y x ⎧=⎪⎨⎪=+⎩解得:22242x y ⎧=-+⎪⎨=+⎪⎩222442x y ⎧=--⎪⎨=-⎪⎩经检验 符合题意 ①(222,442P -++或(222,442P ---.【点睛】本题考查的是一次函数与反比例函数的综合应用 轴对称的性质 一元二次方程的解法 熟练的利用图形面积建立方程求解是解本题的关键.11.【答案】(1)8y x=(2)()4,2C 【分析】(1)利用正切值 求出4OB = 进而得到()2,4A 即可求出反比例函数的解析式(2)过点A 作AE x ⊥轴于点E 易证四边形ABOE 是矩形 得到2OE = 4AE = 再证明AED △是等腰直角三角形 得到4DE = 进而得到()6,0D 然后利用待定系数法求出直线AD 的解析式为6y x =-+ 联立反比例函数和一次函数 即可求出点C 的坐标. 【详解】(1)解:AB y ⊥轴90ABO ∴∠=︒1tan 2AOB =∠ 12AB OB ∴= 2AB =4OB ∴=()2,4A ∴点A 在反比例函数()0k y x x=>的图象上248k ∴=⨯=∴反比例函数的解析式为8y x=(2)解:如图 过点A 作AE x ⊥轴于点E90ABO BOE AEO ∠=∠=∠=︒∴四边形ABOE 是矩形2OE AB ∴== 4OB AE ==45ADO ∠=︒AED ∴是等腰直角三角形 4DE AE ∴== 246OD OE DE ∴=+=+= ()6,0D ∴设直线AD 的解析式为y kx b =+2460k b k b +=⎧∴⎨+=⎩ 解得:16k b =-⎧⎨=⎩∴直线AD 的解析式为6y x =-+点A C 是反比例函数8y x=和一次函数6y x =-+的交点 联立86y x y x ⎧=⎪⎨⎪=-+⎩ 解得:24x y =⎧⎨=⎩或42x y =⎧⎨=⎩ ()2,4A ()4,2C ∴.【点睛】本题是反比例函数综合题 考查了锐角三角函数值 矩形的判定和性质 待定系数法求函数解析式 反比例函数和一次函数交点问题等知识 求出直线AD 的解析式是解题关键. 12.【答案】(1)8n = 32k = (2)当6m =时 AB OD ⋅取得最大值 最大值为36【分析】(1)把点()4,A n 代入2y x = 得出8n = 把点()4,8A 代入(0)k y x x=> 即可求得32k = (2)过点C 作x 轴的垂线 分别交,AB x 轴于点,E F 证明ECB FCD △≌△ 得出,BE DF CE CF == 进而可得(8),4C 根据平移的性质得出,(48)B m + (12),0D m - 进而表示出AB OD ⋅ 根据二次函数的性质即可求解.【详解】(1)解:把点()4,A n 代入2y x = ①24n =⨯ 解得:8n =把点()4,8A 代入(0)k y x x=> 解得32k = (2)①点B 横坐标大于点D 的横坐标 ①点B 在点D 的右侧如图所示 过点C 作x 轴的垂线 分别交,AB x 轴于点,E F①AB DF ∥①B CDF ∠=∠在ECB 和FCD 中BCE DCF BC CDB CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩①()ASA ECB FCD ≌①,BE DF CE CF ==①8A EF y ==①4CE CF ==①(8),4C①将点A 沿x 轴正方向平移m 个单位长度得到点B①,(48)B m +①4BE DF m ==-①(12),0D m -①12OD m =-①()()212636AB OD m m m ⋅=-=--+①当6m =时 AB OD ⋅取得最大值 最大值为36.【点睛】本题考查了一次函数与反比例函数综合 二次函数的性质 全等三角形的性质与判定 熟练掌握以上知识是解题的关键.13.【答案】(1)6y x =- (2)<2x -或06x << (3)()32-,或()16-, 【分析】(1)将()4,0A ()0,2B 代入y kx b =+,求得一次函数表达式 进而可得点C 的坐标 再将点C 的坐标代入反比例函数即可(2)将一次函数与反比例函数联立方程组 求得交点坐标即可得出结果(3)过点A 作AP BC ⊥交y 轴于点M 勾股定理得出点M 的坐标 在求出直线AP 的表达式 与反比例函数联立方程组即可.【详解】(1)解:把()4,0A ()0,2B 代入y kx b =+中得:402k b b +=⎧⎨=⎩ ①122k b ⎧=-⎪⎨⎪=⎩ ①直线y kx b =+的解析式为122y x =-+ 在122y x =-+中 当6x =时 1212y x =-+=- ①()61C -,把()61C -,代入m y x=中得:16m -= ①6m =-①反比例函数的表达式6y x=- (2)解:联立1226y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩解得61x y =⎧⎨=-⎩或23x y =-⎧⎨=⎩ ①一次函数与反比例函数的两个交点坐标分别为()()6123--,、, ①由函数图象可知 当<2x -或06x <<时 一次函数图象在反比例函数图象上方①当m kx b x+>时 <2x -或06x << (3)解:如图所示 设直线AP 交y 轴于点()0M m ,①()4,0A ()0,2B ①222244BM m m m =-=-+ 2222420AB 2222416AM m m =+=+①ABP 是以点A 为直角顶点的直角三角形①90BAM ∠=︒①222BM BA AM =+①22442016m m m -+=++解得8m =-①()08M -,同理可得直线AM 的解析式为28y x =- 联立286y x y x =-⎧⎪⎨=-⎪⎩解得32x y =⎧⎨=-⎩或16x y =⎧⎨=-⎩ ①点P 的坐标为()32-,或()16-,.【点睛】本题主要考查了反比例函数与一次函数综合 勾股定理 正确利用待定系数法求出对应的函数解析式是解题的关键.。
2021年福建省漳州市数学中考试题(含答案)
2021年漳州市初中毕业暨高中阶段招生考试数学试题(满分:150分。
考试时间:120分钟)友情提示:请把所有答案填写(涂)到答题卡上!请不要错位、越界答题!! 姓名_______________准考证号________________注意:在解答题中,凡是涉及到画图,可先用铅笔画在答题卡上,后必须用黑色签字笔重描确认,否则无效.一、选择题(共10小题,每小题4分,满分40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.6的倒数是A .B .- C.6 D.-62.计算a 6·a 2的结果是A .a 12B .a 8C .a 4D .a 33.如图,是一个正方体的平面展开图,原正方体中“祝”的对面是A .考B .试C .顺D .利4.二元一次方程组的解是A .B .C .D .5.一组数据:-l 、2、l 、0、3,则这组数据的平均数和中位数分别是 A.1,0 B .2,1 C .1,2 D .1,16.如图,在等腰梯形ABCD 中,AD∥BC,AB=DC,∠B=80o ,则∠D 的度数是A .120oB .110oC .100oD .80o7.将一副直角三角板,按如图所示叠放在一起,则图中∠的度数是A .45oB .60oC .75oD .90o6161⎩⎨⎧=-=+12,2y x y x ⎩⎨⎧==.2,0y x ⎩⎨⎧==.1,1y x ⎩⎨⎧-=-=.1,1y x ⎩⎨⎧==.0,2y x α8.下列说法中错误的是A .某种彩票的中奖率为1%,买100张彩票一定有1张中奖B .从装有10个红球的袋子中,摸出1个白球是不可能事件C .为了解一批日光灯的使用寿命,可采用抽样调查的方式D .掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是9.如图,一枚直径为4cm 的圆形古钱币沿着直线滚动一周,圆心移动的距离是A .2cmB.4cmC .8cmD .16cm10.在公式=中,当电压一定时,电流与电阻之间的函数关系可用图象大致表示为二、填空题(共6小题,每小题4分,满分24分.请将答案填入答题卡的相应位置)11.今年高考第一天,漳州的最低气温25℃,最高气温33℃,则这天的温差是________℃.12.方程2x-4=0的解是__________.13.据福建日报报道:福建省2011年地区生产总值约为17410亿元,这个数用科学记数法表示为____________________亿元.14.漳州市某校在开展庆“六·一”活动前夕,从该校七年级共400名学生中,随机抽取40名学生进行“你最喜欢的活动”问卷调查,调查结果如下表:你最喜欢的活动猜谜唱歌投篮跳绳其它人 数681682请你估计该校七年级学生中,最喜欢“投篮”这项活动的约有_____人.15.如图,⊙O 的半径为3cm,当圆心0到直线AB 的距离为_______cm 时,61ππππI RU U I R直线AB 与⊙0相切.16.如图,点A(3,n)在双曲线y=上,过点A 作 AC ⊥x 轴,垂足为C . 线段OA 的垂直平分线交OC 于点B,则△ABC 周长的值是________.三、解答题(共9题,满分86分.请在答题卡的相应位置解答)17.(满分8分)计算:+∣-5∣.18.(满分8分)化简:.19.(满分8分)在数学课上,林老师在黑板上画出如图所示的图形(其中点B 、F 、C 、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:______________。
2023中考数学莆田23题分值
2023中考数学莆田23题分值2023年中考数学莆田23题的分值为多少?这是考生们普遍关心的问题。
在本文中,我们将详细介绍这道题目的分值,并探讨其解题思路。
首先,让我们来看一下这道题目的具体内容:【题目描述】已知函数f(x) = 2x^2 - 3x + 1,g(x) = x + 2,h(x) = f(g(x)),求h(3)的值。
【解题思路】要求h(3)的值,首先需要计算g(3)的值,然后再将g(3)的值代入f(x)中计算h(3)。
根据题目给出的函数定义,我们可以得到g(3) = 3 + 2 = 5。
接下来,将g(3)的值代入f(x)中计算h(3)。
根据函数f(x)的定义,我们有:f(x) = 2x^2 - 3x + 1将x替换为g(3),即x = 5,我们可以得到:f(g(3)) = 2(5)^2 - 3(5) + 1计算得到:f(g(3)) = 2(25) - 15 + 1 = 50 - 15 + 1 = 36因此,h(3)的值为36。
【分值计算】根据中考数学莆田23题的分值规定,一般情况下,每道题的分值为1分。
因此,根据题目的难度和复杂程度,我们可以初步判断这道题目的分值也为1分。
然而,需要注意的是,具体的分值还需要根据考试命题的要求来确定。
不同地区、不同年份的中考数学试卷可能会有所不同,因此,我们无法准确确定这道题目的分值。
总结起来,2023中考数学莆田23题的分值可能为1分,但具体的分值还需根据考试命题确定。
【结论】本文详细介绍了2023中考数学莆田23题的内容和解题思路,并讨论了其分值计算的问题。
虽然我们无法准确确定这道题目的分值,但我们可以根据题目的难度和复杂程度初步判断其分值为1分。
希望本文对考生们了解这道题目的分值有所帮助,祝愿大家在中考中取得优异的成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建中考数学23题
摘要:
1.福建中考数学23 题的背景和重要性
2.23 题的内容和难度
3.23 题的解题技巧和方法
4.23 题对学生数学能力的锻炼和提高
5.23 题的启示和建议
正文:
福建中考数学23 题一直以来都是中考数学科目中的一道压轴题,以其独特的难度和重要的分数占比,吸引了无数师生的关注。
这道题目的内容通常涉及到初中数学的各个方面,如代数、几何、统计等,需要学生对初中数学知识有一个全面而深入的理解。
其难度在于需要学生灵活运用所学知识,创新思维,突破题目的陷阱和难点。
对于这道题目,学生们需要掌握一定的解题技巧和方法。
首先,他们需要有扎实的数学基础,熟悉各种数学公式和定理。
其次,他们需要有良好的逻辑思维能力,能够根据题目条件推导出结论。
最后,他们需要有出色的解题技巧,能够灵活运用各种数学方法解决难题。
做23 题不仅可以检验学生的数学知识水平,更重要的是可以锻炼他们的数学能力,提高他们的创新思维和解决问题的能力。
对于23 题,我们建议学生们在日常学习中多加练习,提高自己的解题能力和技巧。
同时,也要注重数学基础知识的学习,只有基础扎实,才能在解题中游刃有余。
总的来说,福建中考数学23 题既是学生的挑战,也是他们提高数学能力的机会。