杆件结构的有限元法

合集下载

第六章杆系结构

第六章杆系结构

第六章杆件系统结构有限元法杆件系统是由几何特征为长度比横梁面的两个尺寸大很多的杆件连接而成的结构体系。

起重机械和运输机械的动臂、汽车的车架、钢结构等,都是由金属的杆件组成的。

杆件系统的有限元法在机械、建筑、航空、造船等各个工程领域得到了广泛的应用。

若杆件之间由铰相连,并且外载荷都作用在铰节点上,则该体系称为桁架。

有限元中将桁架的单元称为杆单元,即桁架是由仅承受轴向拉压的杆单元的集合。

如果杆件之间是由刚性连接,则该体系是刚架,刚架的单元称为梁单元。

梁单元可以承受轴力、弯矩、剪力及扭矩的作用。

第一节等截面梁单元平面刚架结构——所有杆件的轴线以及所有外力作用线都位于同一平面内,并且各杆件都能在此平面内产生平面弯曲,从而结构的各个节点位移都将发生在这个平面内。

一、结构离散化原则:杆件的交叉点、边界点、集中力作用点、位移约束点、分布力突变的位置都要布置成节点,而不同横截面的分界面和不同材料的分界面都要成为单元的分界面。

平面桁架对于桁架结构,因每个杆件都是一个二力杆,故每个杆件可设置成一个单元。

平面桁架结构每个节点有2个自由度,分别是u 和v ,每个单元有4个自由度。

最大半带宽B=(2+1)×2=6。

一维单元和二维单元的混合应用:左边部分是平面问题的二维板件结构(黑线部分),右面框架部分是一维杆件结构(红线部分)。

xy采用平面4节点四边形单元模拟二维板件,用平面杆单元单元模拟一维杆件结构。

离散化后,共有37个节点,32个单元,其中4节点四边形单元16个,杆单元单元16个。

因为平面4节点四边形单元和平面杆单元单元每个节点都有2个自由度,4节点四边形单元的刚度矩阵是8×8,平面杆单元的刚度矩阵是4×4。

整体刚度矩阵刚[]k 的维数是227474n n ⨯=⨯。

其中部分总刚子块为[](1)(2)(3)(4)777777777722k k k k k ⨯⎡⎤⎡⎤⎡⎤⎡⎤=+++⎣⎦⎣⎦⎣⎦⎣⎦(4)(6)(19)11,1111,1111,1111,1122k k k k ⨯⎡⎤⎡⎤⎡⎤⎡⎤=++⎣⎦⎣⎦⎣⎦⎣⎦最大半带宽B=[(8-2) +1]×2=14。

龙驭球《结构力学》笔记和课后习题(含真题)详解(矩阵位移法)【圣才出品】

龙驭球《结构力学》笔记和课后习题(含真题)详解(矩阵位移法)【圣才出品】

第9章 矩阵位移法9.1 复习笔记一、矩阵位移法的基本思路矩阵位移法又称为杆件结构的有限元法。

分析的两个基本步骤:(1)单元分析;(2)整体分析。

单元分析:建立杆端力与杆端位移间的刚度方程,形成单元刚度矩阵。

整体分析:将单元合成整体,按照刚度集成规则形成整体刚度矩阵,建立位移基本方程。

二、单元刚度矩阵(局部坐标系)进行单元分析,推导单元刚度方程和单元刚度矩阵。

单元刚度方程是指由单元杆端位移求单元杆端力的一组方程,可以用“”表示,由位移求力称为“正问题”。

相应的由力求位移称为“反问题”。

正问题的解是唯一的确定的,但是反问题则可能无解,如果有解也非唯一解。

当外部荷载为不平衡力系时,反问题无解;当外荷载为平衡力系时,反问题有解但是因为杆件除本身变形外还可有任意刚体位移,此时反问题的解不唯一。

本书暂不考虑反问题的求解。

1.一般单元图9-1所示为平面刚架中的一个等截面直杆单元.单元的两个端点采用局部编码1和2,由端点1到端点2的方向规定为杆轴的正方向,在图中用箭头标明。

F →∆e图9-1图中采用坐标系,其中轴与杆轴重合。

这坐标系称为单元坐标系或者局部坐标系。

字母、的上面都画了一横,作为局部坐标系的标志。

推导单元刚度方程时,有以下几点需要注意:重新规定正负号规则、讨论杆件单元的一般情况、采用矩阵表示形式。

在局部坐标系中,图9-2所示的位移、力分量方向为正方向。

图9-2杆件性质:长度l ,截面面积A ,截面惯性矩I ,弹性模量E ;杆端位移u 、v 、θ。

根据杆端位移可以推导出下面两组刚度方程:(9-1)x y x x y(9-2)将上述六个刚度方程列成矩阵形式:(9-3)其中就是局部坐标系下单元刚度矩阵,即为(9-4)2.单元刚度矩阵的性质 (1)单元刚度系数的意义e e ek F∆=eK代表单元杆端第j 个位移分量等于1时所引起的第i 个杆端力分量。

(2)是对称矩阵,即。

(3)一般单元的是奇异矩阵,即,因此不存在逆矩阵。

杆件结构的有限元法

杆件结构的有限元法
第一篇 有限元法
第一篇 有限元法
第二章 杆件结构的有限元法
当结构长度尺寸比两个截面方向的尺 寸大得多时,这类结构称为杆件。工程中 常见得轴、支柱、螺栓、加强肋以及各类 型钢等都属于杆件。
杆件结构可分为珩杆和梁两种。
和其他结构采用铰连接的杆称为珩杆。珩杆的连接处可以自由转动, 因此这类结构只承受拉压作用,内部应力为拉压应力。影响应力的 几何因素主要是截面面积,与截面形状无关。 和其他结构采用固定连接的杆称为梁。链的连接处不能自由转动, 因此梁不仅能够承受拉压,而且能承受弯曲和扭转作用。这类杆件 的内部应力状态比较复杂,应力大小和分布不仅与截面大小有关, 而且与截面形状和方位有很大关系。 建立有限元模型时,这两类杆件结构可用相应的杆单元和梁单元离散。
Ke 1 kkaa
ka
ka
中的元素在总刚度矩阵中应在位置第1行、第2行的第1列,第2列
k k
1 11
1 21
k
1 12
k
1 22
0
0
0 0 0
第2个单元的节点号为2和3,则单元刚度矩阵叠加到总刚度矩阵 的第2行、第3行的第2列、第3列元素上
0 0 0
0
k
2 22
k
2 23
0
k
2-3 杆件系统的有限元法
一、铰支杆系统的有限元计算格式 上面求解弹簧系统的有限元方法可以直接用力求解受轴向力的杆件系统。 均质等截面铰支杆,刚度值可由材料力学中力与变形的关系中获得
AE F1 L u1
k AE L
均质等截面铰支杆的力-位移方程可写为
F F12ALE11 11uu12
坐标变换
由杆件组成的机构体系称为杆系,如起重机、桥梁等。 由珩杆组成的杆系称为珩架,由梁组成的杆系称为刚架。

第五章杆系结构的有限元法

第五章杆系结构的有限元法

第五章 杆系结构的有限元法 5.1 引言杆系结构是工程中应用较为广泛的结构体系,包括平面或空间形式的梁、桁架、刚架、拱等。

其组成形式虽然复杂多样,但用计算机进行分析时却较为简单。

杆系结构中的每个杆件都是一个明显的单元。

杆件的两个端点自然形成有限元法的节点,杆件与杆件之间则用节点相连接。

显然,只要建立起杆件两端位移与杆端力之间的关系,则整体平衡方程的建立与前几章完全相同。

杆端位移与杆端力之间的关系,可用多种方法建立,包括前面几章一直采用的虚功原理,但是采用材料力学、结构力学的某些结论,不仅物理概念清晰、直观,而且推导过程简单明了。

因此,本章将采用这种方法进行单元分析。

至于整体平衡方程的建立,则和前面几章所讲的方法一样,即借助于单位定位向量,利用单元集成法进行。

5.2 平面桁架的有限元分析平面桁架在计算上有以下几个特点: 1. 杆件的每个节点仅有两个线位移; 2. 杆件之间的连接为理想铰,即在节点处各杆件可相对自由转动,且杆件轴线交于一点。

3. 外载荷均为作用于节点的集中力。

由于以上特点,所以在理论上各杆件只产生轴向拉、压力,截面应力分布均匀,材料可得到充分利用,因此桁架结构往往用于大跨结构。

5.2.1 局部坐标系下的单元刚度矩阵从平面桁架中任取一根杆件作为单元,称作桁架单元,单元长为L ,横截面面积为A ,图5.1。

两端节点分别用i 和j 表示,规定从i 到j 的连线方向为局部坐标x 轴,垂直于x 的方向为y 轴。

图5.1由于桁架中各杆只产生轴向力和轴向变形,所以节点i 和j 只发生沿x 方向的位移,用i u 和j u 表示,相应的杆端轴力分别用xi F 和xj F 表示。

由虎克定律可推得)()()(j i i j xj j i xi u u L EA u u L EA F u u LEAF --=-=-=将这两个式子写成矩阵形式,就是e j i exj xi u u L EA LEA L EA L EA F F ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ (5.1)显然,在局部坐标系下,i 、j 两节点沿y 轴方向的位移0==j i v v ,在y 轴方向的节点力0==yj yi F F 。

有限元法(杆系)

有限元法(杆系)

Fjy
FFji Fj
s in cos s in
s in
0 0
0 0 0
0
cos s in
或 F(e) T F (e) (1)
Fiy
i
Fi i
Fix
拉压杆单元
0 Fi e
0 0 0
0 Fj 0
F jy
j
j
uiy ui
uix
u jy
y
Fj
F jx uj
u jx
2)
叠加形成总刚度矩阵,求位移
2sin2
0
sin2 EA sin cos
l
0
0
sin2
sin cos
0 2 cos2 1 sin cos
cos2 0 1
sin cos cos2
sin2 sin cos
sin2 sin cos
0 0 0 0
sin cos cos2 sin cos cos2
• 用单元节点位移表示单元内部位移
第 i 个单元中的位移用所包含的结点位移来表示:
u(x)
ui
ui1 ui Li
(x
xi )
(1- 1)
其中 u i 为第 i 结点的位移, xi 为第 i 结点的坐标。
第 i 个单元的应变为 i ,应力为 i ,内力为 N i :
i
du dx
ui1 ui Li
x
在局部坐标下,轴向力与轴向位移的关系:
(e)
Fi
1 0 1 0ui e
0
Fj
0
EA
0
0
l 1 0
0
0
0 1 0
0 0 0

有限元(第二章-杆单元部分)tg

有限元(第二章-杆单元部分)tg


1 2 1 2 1 2 1 − 2

1 2 1 2 1 2 1 − 2
1 2 1 − 2 1 − 2 1 2
按节点号叠加得6×6阶总刚度矩阵
−1 1 0 0 1 0 1 − 1 0 1 + 2 2 [K ] = 0 0 − 1 2 2 0 0 − 1 2 2 1 0 −1 2 2 0 0 1 − 2 2 1 2 2 1 2 2 1 − 2 2 0 0 0 −1 1 1 − 2 2 2 2 1 1 2 2 2 2 1 1 − 2 2 2 2 1 1 − 1+ 2 2 2 2
2-10 刚度矩阵元素的带状分布
【例】对图(a)中结构分别采用图(b)、图 (c)两种编号方式以观察其刚度矩阵的带宽。
对于图(b)、(c) 编号方式的结构,总刚度矩阵 的非零元素分布分别如下图(a)、(b) 所示。
[K ]
e
λ2 AE λµ = L − λ2 − λµ
λµ µ2 − λµ − µ2
Fx1 1 Fy1 AE 0 = L − 1 F x2 Fy 2 0
即:
0 − 1 0 u1 0 0 0 v1 0 1 0 u 2 0 0 0 v 2
{F }= [K e ]{δ }
求各杆单元的λ和μ的值。Φ角是按 逆时针从x轴正向转到单元ij方向的
三杆受力桁架
单元⑴ 单元⑵ 单元⑶
ϕ = 0 o , λ = 1, µ = 0 ϕ = 90 o , λ = 0 , µ = 1 ϕ = 135 o , λ = −
1 1 ,µ = 2 2
单元刚度矩阵分别为

第3章杆件结构的有限元法_虚功原理

第3章杆件结构的有限元法_虚功原理
V
( { })
* x
u = ∫ ε σdV = ∫ [B ] V V u
T
* 1 * 2
E [B ] δ x dV = ∫ δ
V
{ }
u1 E [B ] dV u 2
T
{ } [B]
* x T
T
E [B ] δ x dV
{ }
[K ]
(e)
1 0 AE = L − 1 0
0 − 1 0 0 0 0 0 1 0 0 0 0
小结: (1)本章从设置位移函数(也称为位移插值函 数或试探函数)出发,利用虚功原理导出了局 部坐标系下的杆单元的有限元计算格式,利用 前一章的坐标变换矩阵[T],就可以将它转换到 整体坐标系下,然后将各单元的刚度矩阵按照 节点力平衡的原理,经过叠加,即可得到总体 刚度矩阵。 (2)本章的方法具有一般性。 (3)位移插值函数的选择与单元节点的数目有 关。一般不可能精确描述单元内各点真实的位 移情况。
Fy(1e ) 0 0 v 1 = (e) Fy 2 0 0 v 2
下面建立 x 方向位移的插值函数。 设杆件内任意一点沿 x 的位移向量为
δ x = u = α1 + α 2 x
第三步:求单元内任意一点的位移与节点位移的 关系 由 x1 = 0, u = u1 ; x 2 = L, u = u 2 可写出
3 杆件结构的有限元法—虚功原理 直接刚度法:已知杆件刚度,利用位移和 力的关系,建立单元刚度矩阵。 不知道力——位移的关系,怎样求解? 本章介绍一种更为一般的有限元求解力学 问题的方法:虚功原理推导杆单元刚度 矩阵。
这一方法分为6步。 第一步:建立局部坐标系,写出单元的位移向量 和节点力向量。

杆结构 分析的有限元方法(有限元)

杆结构   分析的有限元方法(有限元)
局部坐标系中的单元述
杆单元形状函数
杆单元刚度矩阵
平面问题中的坐标变换
梁结构分析的有限元方法
梁:承受横向荷载和弯矩的杆件。
梁的主要变形为挠度v
横截面变形前后都垂直于杆变形前的轴线x轴
中性层变形=0
纯弯曲没有剪力,只有弯矩
梁截面的惯性矩
杆结构分析的有限元方法
杆:承受轴向荷载的杆件
最基本的承力结构件:杆、梁
弹簧--简单的承受轴力的结构件
有限元方法中,每一个处理步骤都是标准化和规范化的,
因而可以在计算机上通过编程来自动实现。
F=kδ
k--刚性系数
位移的绝对变化量/杆件的伸长量δ=u2—u1
应力某截面上单位面积上的内力/内力的分布集度
应变相对伸长量单位长度的伸长量
杆单元的特性是节点位移及节点力的方向都是沿轴线方向。
杆结构的力学分析
铰接的杆结构----杆只受轴力-----杆件拉伸问题---可自然离散
两端为铰接的杆件只承受轴力。
各个单元研究(基于局部坐标系的表达)
各个单元研究
离散单元的集合、组装
杆单元及坐标变换
自由度:描述物体位置状态的每个独立变量。
对于杆单元,其节点位移有两个自由度。

杆件系统有限单元法

杆件系统有限单元法
e
(3)单元应力场的表达 由弹性力学中物理方程有:
σ e ( x ) = E eε e ( x ) = E e B e ( x ) ⋅ δ e = S e ( x ) ⋅ δ e
其中Se为单元的应力函数矩阵:
⎡ E S ( x) = E B ( x) = ⎢ − ⎣ l
e e e
e
E ⎤ ⎥ l ⎦
平面梁单元的节点位移δe和节点力Fe为:
δ =⎡ ⎣ui vi θi u j v j θ j ⎤ ⎦
e e
T
F =⎡ ⎣ FNi FQi M i FNj FQj M j ⎤ ⎦
相应的刚度方程为:
T
K e ⋅δ e = F e
将杆单元刚度矩阵与纯弯梁单元刚度矩阵进行组 合,可得到平面梁单元的刚度矩阵:
可以写出节点位移向量和节点力向量:
δ =⎡ ⎣ui u j ⎤ ⎦
e
e
T
T ⎡ ⎤ F = ⎣ FNi FNj ⎦
(1)单元位移模式的表达 由于每个节点只有一个轴向位移,即一个单元共有 两个自由度,因此可假设该单元的位移模式为具有 两个待定系数的函数模式:
u ( x ) = a 0 + a1 x
e
第三章
杆件结构的有限元分析 (FEA)
在杆件系统中根据单元受力的特点,我们可以 把它们分成两大类:杆和梁。为了以后描述的 方便,我们把两端铰接,只受轴向力的基本结 构称为杆单元,而受轴向力和弯矩、扭矩、剪 力共同作用的基本结构称为梁单元。
3.1 平面杆单元
局部坐标系中的杆单元描述
设有一任意的杆单元如图所示,i 和j 为单元的两 个结点,x 为该单元的局部坐标,其原点设在单 元的i 结点。设两个结点在x 方向的位移为 u i 和 u j ,它们的正方向如图3-1 所示,与它们相应的 结点力 FN δ e

有限单元法课件第四章 杆件系统的有限元法

有限单元法课件第四章 杆件系统的有限元法
桁杆 梁
(a)
(b)
由杆件组成的结构体系称为杆系,如起重机,桥梁等。
由桁杆组成的杆系称为桁架。
由梁组成的杆系成为刚架。
若杆系和作用力均位于同一平面内,则称为平面桁架 或平面刚架,否则称为空间桁架或空间刚架。
由于杆件结构采用一维单元进行离散,所以杆系的网 格划分容易用半自动方法实现。当采用自动网格划 分方法时,杆系的几何模型是由杆件轴线构成的线框 模型。
R
e P
RiP R jP
R
lP
R
R
e F
RiF R jF
Rlx Rly NlT l R l
lF T l
Px dx (l i, j ) Py
e T
Bj dx
kii k ji
kij k jj
其中矩阵元素为
kst D Bt dx B as 0 EA 0 at 0 0 0 bs dx 0 EI 0 bt ct 0 cs 0 0 EAas at dx 0 EIb b EIb c s t s t EIcs bt EIcs ct 0
e
du dx e x 2 B Bi q x d v dx 2
Bj q
e
其中
ai 0 0 Bi 0 b c i i a j 0 0 Bj 0 b c j j 1 12 6 ai a j bi b j 3 x 2 l l l 4 6 2 6 ci 2 x cj 2 x l l l l

第2章杆件结构的有限元法_直接刚度法

第2章杆件结构的有限元法_直接刚度法

对于弹簧2-3(2单元)
F2( 2) 1800 − 1800 u 2 ( 2) = u F3 − 1800 1800 3
对于弹簧3-4(3单元)
F3( 3) 1500 − 1500 u 2 ( 3) = u F4 − 1500 1500 3
上式可以简写为 {F} = [K ]{δ } 上述过程可以用节点力平衡来完成。 为此,先写出单元的节点位移和节点力向 量的关系式: F1( e1 ) k1 − k1 u1 ( e1 ) = u F2 − k1 k1 2 F2( e2 ) k 2 − k 2 u2 ( e2 ) = u F3 − k 2 k 2 3
F 2 = 10 kN
F 3 = 20 kN
F1
F4
1
k1
2
k2
3
k3
4
三弹簧受力系统
解: (1)单元分划 一个弹簧为一个单元,一共3个单元,4个节点。 (2)形成每个单元的刚度矩阵 对于弹簧1-2(1单元)
F1(1) 1200 − 1200 u1 (1) = u F2 − 1200 1200 2
用下,发生与杆长垂直方向的位移。
(3) 局部坐标系和总体坐标系的关系 为了根据节点的力平衡条件建立杆系总体刚度矩 阵,必须将局部坐标系下的单元刚度矩阵转换到 总体坐标系下。
y
(e Fy(e ) 2
F
(e) y1
2
Fx(1e )
o
o
ϕ
F22 = (k1 + k 2 )u 2
F12 = −k1u2
F32 = −k 2u2

杆系结构的有限元法分析

杆系结构的有限元法分析

杆系结构的有限元法分析有限元法是一种结构分析方法,常用于分析各种不同类型的结构系统,其中包括杆系结构。

杆系结构是由杆件连接而成的桁架结构,常见于桥梁、塔架和支撑结构等。

利用有限元法进行杆系结构的分析,可以得到结构的位移、应力、应变和刚度等信息,帮助工程师评估结构的稳定性和安全性。

下面将介绍杆系结构的有限元法分析的步骤。

首先,进行前期准备工作。

这包括收集与结构相关的几何信息(如杆件长度、截面形状等)、边界条件(如固定支座、外载荷等)和材料性质(如材料的弹性模量、密度等)。

这些信息将是有限元模型建立所需要的输入参数。

接下来,建立有限元模型。

将杆系结构离散化为一个个的杆单元,采用有限元方法对每个杆单元进行离散近似。

常用的杆单元包括横截面线性杆单元、三节点弯曲杆单元和非线性杆单元等。

然后,确定单元刚度矩阵。

对于横截面线性杆单元,其刚度矩阵可以根据材料性质和几何信息计算得到。

对于弯曲杆单元和非线性杆单元,则需要考虑附加的几何和材料非线性效应。

接着,组装全局刚度矩阵。

将所有杆单元的刚度矩阵按照其关联的节点自由度进行组装。

在组装过程中,需要考虑杆单元之间的关联关系,确保刚度矩阵的正确性和完整性。

然后,应用边界条件。

根据实际情况,将已知的边界条件(如固定支座、已知位移等)施加到全局刚度矩阵中。

这将改变全局刚度矩阵的特征值和特征向量,从而影响结构的响应。

接下来,求解结构的位移和应力。

通过求解结构的整体刚度方程以及施加的边界条件,可以得到结构的位移解向量和应力解向量。

位移解向量描述了结构的变形情况,而应力解向量体现了结构的应力分布情况。

最后,进行后处理。

在得到位移和应力解后,可以计算结构的应变分布、变形形态以及额外的设计指标。

通过这些结果,可以对结构的性能进行评估,以便优化设计。

综上所述,杆系结构的有限元法分析包括前期准备、建立有限元模型、确定单元刚度矩阵、组装全局刚度矩阵、应用边界条件、求解结构的位移和应力以及后处理等步骤。

第三讲 杆件结构有限元分析

第三讲 杆件结构有限元分析
du dx

l
0
AE
l du d u dx f x udx 0 dx dx
其中E表示弹性模量,A表示横截面积,方程左端得到单元的刚度矩阵。
建立有限元模型
现考虑一个由5个长度相同(le=1m)横截面积不同的杆件构成的一维杆件,各杆弹性模量都为 E=1.0e10pa,A1=0.5m2,A2=0.4 m2,A3=0.3 m2,A4=0.2 m2,A5=0.1 m2,如图1所示,右端给定位移 u右=0.1,左端固定位移u左,分析杆件内位移分布:
根据虚功原理,方程两边乘以虚位移δu,平衡方程可以写为:

其弱形式为:
l
0
[
d ( A x ) f ( x)] udx 0 dx

l
0
A x
l d u dx f x udx Pj u j 0 dx j
基本方程的最终弱形式
其中,右端最后一项可以看作是节点力情况,所以可以不单独列出,同时 x E 所以上式可以继续写为:
网格尺寸设置
网格划分信息
网格划分
选择calculate → calculate,在弹出的对话框,点击OK,保存,前处理完毕。
工程求解
点击工具栏中“求解计算”按钮,完成模型的求解计算。
后处理
点击工具栏中的“后处理”按钮进入GID,查看计算结果,如下图所示。
结果分析: 本章针对一个变截面一维杆件,通过理论分析和ELAB1.0软件实现两种方式来分析,一方面对有限元
几何模型
将其划分为五个单元六个节点,即每根杆件作为一个单元,每个单元的节点关系如下图所示:
单元拓扑关系
确定杆单元的形函数
考虑其中一个杆单元,其两个端点分别为节点1,节点2,基本变量为节点位移u1,u2::

有限元方法第三章杆系结构有限元

有限元方法第三章杆系结构有限元
稳定性以及波浪载荷的影响。
应用实例
某大型桥梁的稳定性分析
采用杆系结构有限元对某大型桥梁进行稳定性分析,评估其在不同载 荷下的变形和承载能力。
高层建筑的抗震性能研究
利用杆系结构有限元模拟高层建筑的抗震性能,分析地震作用下结构 的响应和破坏模式。
汽车悬挂系统的优化设计
通过杆系结构有限元模拟汽车悬挂系统的运动和受力情况,优化悬挂 参数以提高车辆行驶的稳定性和舒适性。
有限元方法第三章杆系结 构有限元
• 引言 • 杆系结构有限元的基本概念 • 杆系结构有限元的建模方法 • 杆系结构有限元的求解方法 • 杆系结构有限元的应用案例 • 结论与展望
01
引言
目的和背景
杆系结构是工程中常见的一种结构形式,广泛应用于桥梁、 建筑、机械等领域。由于其具有复杂的几何形状和受力特性 ,因此需要采用有限元方法进行数值分析。
THANKS
感谢观看
04
杆系结构有限元的求解方法
求解步骤
确定边界条件
根据实际情况,确定杆系结构 的边界条件,如固定、自由、 受压等。
求解线性方程组
将所有单元的平衡方程组合成 一个线性方程组,然后使用数 值方法求解该线性方程组。
建立离散模型
首先将杆系结构离散化为若干 个小的单元,每个单元具有一 定的物理属性。
应用力学平衡方程
杆系结构有限元的优缺点
优点
能够处理复杂的几何形状和边界条件, 适用于大规模问题求解,计算精度可 调,可模拟复杂的结构和场。
缺点
需要针对不同的问题建立不同的模型, 计算量大,需要较高的计算机资源, 对于非线性问题求解较为困难。
03
杆系结构有限元的建模方法
建模步骤
确定研究问题

杆件结构有限元分析

杆件结构有限元分析
u5 u4 K (3) u4 u3
1.0e10 0.1 1 1 u6 1 1 u 1 5 u3 u2
1.0e10 0.2 1 1 u5 1 1 u 1 4
1.0e10 0.3 1 1 u4 1 1 u 1 3 u2 u1
u( x) N1u1 N2u2
通常来说形函数需满足以下条件:
• 在单元内,一阶导数必须存在;
• 在单元之间的连接处,位移必须连续;
推导该问题的单元刚度矩阵表达式
对于基本方程的最终弱形式:
l du d u dx f x udx 0 dx dx

l
0
AE
在一个单元内: u( x) N1u1 N2u2 因此:
K
(4)
1.0e10 0.4 1 1 u3 1 1 u 1 2
K
(5)
1.0e10 0.5 1 1 u2 1 1 u 1 1
确定该问题总体刚度矩阵
将得到的各个单元刚度矩阵按节点编号进行组装,可以形成整体刚度矩阵,同时将所有节点荷载也 进行组装。 刚度矩阵: K K (1) K (2) K (3) K (4) K (5)
le x2 x1
由上面的关系式可得到:
1 1 u1 dN 2 du dN1 u1 u2 dx dx dx le le u2
对δu取与u相同的形函数,并将上面的关系式带入基本方程的最终弱形式中可得:
1 le l du d u AE dx u u 1 2 0 dx dx 1 l e 1 AE le 1 l 1 e u1 u2 AEle 1 le l e 1 u1 le 1 1 d le u2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


3

2012/5/24
杆件结构的有限元法—组合弹簧

矩阵扩大 按节点编号将相应单元的刚度矩阵元素叠加 刚度矩阵和节点编号、自由度关系
杆件结构的有限元法—组合弹簧

刚度矩阵奇异性的物理意义 刚度矩阵求解
F1 K11 K12 X 1 F2 K 21 K 22 X 2

弹簧的节点力向量和节点位移向量
F
F1 F 2
u
u1 u 2

1

2012/5/24
杆件结构的有限元法—单个弹簧

单个弹簧力的刚度(矩阵形式表示)
1 2
k11 k12 k 21 k22
1
2

单个弹簧力和位移关系(矩阵形式)

杆件结构的单元划分、节点定义

节点定义 单元划分 节点力和位移
杆件结构的有限元法—杆件刚度矩阵

杆件的力与变形关系
等效刚度
F

A E u L
杆件的单元刚度矩阵(均质等截面铰支杆)
F1 A E 1 1 u1 u F 1 1 L 2 2
杆件结构的有限元法—组合弹簧
F1 ka F2 ka F 0 3

ka k a kb kb
0 u1 kb u2 kb u3
节点自由度和总体刚度矩阵阶数的关系 引入约束条件求解方程
F1 k11 k12 u1 u F k k 2 21 22 2
杆件结构的有限元法—单个弹簧

单个弹簧的力—位移关系
F1 k F2 k

k u1 k u2
Fx1 cos Fy1 sin Fx2 0 Fy2 0
杆件结构的有限元法—杆件刚度矩阵

节点位移变换
坐标变换矩阵
T

杆件的单元刚度矩阵在整体坐标下的表达式
F T T K e T K e
单元刚度 刚度矩阵的对称性 刚度矩阵的奇异性

2

2012/5/24
杆件结构的有限元法—组合弹簧

组合弹簧中节点和单元

单元刚度矩阵 单元刚度组合成系统刚度矩阵
F1 ka F2 ka F 0 3
ka k a kb kb
0 u1 kb u2 kb u3
节点 自由度
0 1 0 0 0 1 0 0
0 u1 v1 0 0 u2 0 v2

6

2012/5/24
杆件结构的有限元法—杆件刚度矩阵

节点力坐标变换
F T F
sin cos 0 0 0 0 cos sin 0 Fx1 0 Fy1 sin Fx2 F cos y2
局部坐标下 单元刚度矩阵 整体坐标下 单元刚度矩阵

7

2012/5/24
杆件结构的有限元法—杆件刚度矩阵

刚度矩阵重要性质

对称性—关于主对角线对称 稀疏性—矩阵中有大量的零元素 带状性—非零元素在主对角线两侧呈带状分布
杆件结构的有限元法—例题

三杆受力桁架有限元建模

节点自由度 单元划分 单元类型选择 边界条件

8

2012/5/24
杆件结构的有限元法—杆件刚度矩阵

节点排列和编号 刚度矩阵的特点源自 对称性 稀疏性 带状分布

刚度矩阵的存储

9
已知力和位移 未知力和位移
F1 K11 X 1 K12 X 2 F2 K 21 X 1 K 22 X 2 X 2 K 22 1 F2 K 21 X 1

4

2012/5/24
杆件结构的有限元法—杆件刚度矩阵

5

2012/5/24
杆件结构的有限元法—坐标系

局部坐标系统
每个杆件单元坐标系统

整体坐标 坐标变换
杆件结构的有限元法—杆件刚度矩阵

考虑横向力情况下的杆件单元刚度矩阵
Fx1 1 Fy1 A E 0 F 1 L x 2 F y 0 2

2012/5/24
杆件结构的有限元法

杆件结构的有限元法

单个弹簧的刚度矩阵 组合弹簧的刚度矩阵 铰支杆系的有限元计算格式 单元坐标系统(局部坐标系)、整体坐标系 刚度、单元刚度矩阵、整体刚度矩阵 自由度

基本概念

杆件结构的有限元法—单个弹簧

单个弹簧力和位移关系(线弹性)
F k
相关文档
最新文档