七年级上册数学整式的加减之去括号与添括号巩固练习典型题目及答案解析

合集下载

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析1.因式分解:(1)x3-4x; (2)(3a-b)(x-y)+(a+3b)(y-x).【答案】(1) x(x+2)(x-2);(2) 2(x-y)(a-2b).【解析】(1)先提出公因式x,剩下的因式用平方差公式分解即可;(2)两次提取公因式即可得解.试题解析:(1)原式=x(x2-4)=x(x+2)(x-2);(2)原式=(3a-b)(x-y)-(a+3b)(x-y)=(x-y)(2a-4b)=2(x-y)(a-2b).【考点】1.因式分解——提公因式法;2.因式分解——公式法.2.已知代数式的值为,求代数式的值.【答案】-6【解析】解:.因为3,故上式.3.先化简,后求值:已知,求代数式的值.【答案】【解析】解:由得,,解得,.将代数式化简得.将,代入得原式.4.多项式3a2b2-5ab2+a2-6是___次项式,常数项是 .【答案】四次四项式、-6【解析】本题中未知数的最高次是4次,所以是四次,未知数有a,b两个,故是四次二项式;常数项是-6【考点】多项式点评:本题属于对多项式的基本常识的考查,需要考生在对多项式基本次数的基础上熟练把握5.下列计算正确的是()A.2x+3y=5xy B.-3x-x=-xC.-xy+6x y=5x y D.5ab-b a=ab【答案】D【解析】根据合并同类项的法则依次分析各选项即可作出判断.A、2x与3y不是同类项,无法合并,B、-3x-x=-x,C、-xy与6x y不是同类项,无法合并,故错误;D、5ab-b a=ab,本选项正确.【考点】合并同类项点评:解题的关键是熟练掌握合并同类项的法则:把同类项的系数相加,字母和字母的指数不变.6.若2x y与-3x y是同类项,则-m=【答案】3【解析】先根据同类项的定义求得m、n的值,再根据有理数的乘方法则计算即可.由题意得,解得,则-m【考点】同类项,有理数的乘方点评:解题的关键是熟记同类项的定义:所含字母相同,并且相同字母的指数也分别相同的项是同类项.7.已知:A=x+xy+y,B=-3xy-x求(1)B-A;(2)2A-3B;(3)若A-B-C=0,则C如何用含x,y的代数式表示?【答案】(1)-2x-4xy-y;(2)5x+11xy+2y;(3)2x+4xy+y【解析】先根据题意分别列出代数式,再去括号、合并同类项即可.(1)B-A=(-3xy-x)-(x+xy+y)=-3xy-x-x-xy-y=-2x-4xy-y;(2)2A-3B=2(x+xy+y)-3(-3xy-x)=2x+2xy+2y+9xy+3x=5x+11xy+2y ;(3)∵A-B-C=0∴C= A-B=(x+xy+y)-(-3xy-x)=x+xy+y+3xy+x= 2x+4xy+y.【考点】整式的加减点评:解题的关键是熟练掌握在去括号时,若括号前是“-”号,把括号和括号前的“-”号去掉后,括号里各项的符号均要改变.8.化简或求值:(1)化简:(2)已知,求的值。

2.2 沪科版七年级上册数学第二章《整式的加减》整式加减——去括号 专题训练含答案及解析

2.2 沪科版七年级上册数学第二章《整式的加减》整式加减——去括号 专题训练含答案及解析

简单1、下列运算正确的是()A.-3(x-1)=-3x-1 B.-3(x-1)=-3x+1C.-3(x-1)=-3x-3 D.-3(x-1)=-3x+3分析:当括号前面是负号时,去掉括号后括号内各项均需变号。

解析:根据去括号法则,-3(x-1)=-3x+3.2、化简-16(x-0.5)的结果是()A.-16x-0.5 B.-16x+0.5 C.16x-8 D.-16x+8【分析】根据去括号的法则计算即可.【解答】-16(x-0.5)=-16x+8,故选D3、下列各式中与a-b-c的值不相等的是()A.a-(b+c)B.a-(b-c)C.(a-b)+(-c)D.(-c)-(b-a)【分析】根据去括号方法逐一计算即可.【解答】A、a-(b+c)=a-b-c;B、a-(b-c)=a-b+c;C、(a-b)+(-c)=a-b-c;D、(-c)-(b-a)=-c-b+a.故选:B.4、下列去括号正确的是()A.-(a+b-c)=-a+b-c B.-2(a+b-3c)=-2a-2b+6cC.-(-a-b-c)=-a+b+c D.-(a-b-c)=-a+b-c【解答】A、-(a+b-c)=-a-b+c,故不对;B、正确;C、-(-a-b-c)=a+b+c,故不对;D、-(a-b-c)=-a+b+c,故不对.故选B.5、-(π-3)去括号后正确的是()A.π-3 B.-π-3 C.π+3 D.3-π【分析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【解答】原式=-π+3=3-π.故选:D.6、下列变形正确的是()A.a-b-c=a-(b-c)B.a-b-c=a+(b-c)C.a-b-c=a-(b+c)D.a-b-c=-(a-b+c)【分析】根据括号前是负号去掉括号要变号,括号前是正号去掉括号不变号,可得答案.【解答】Aa-b-c=a-(b+c),故A错误;B a-b-c=a+(-b-c),故B错误;C a-b-c=a-(b+c),故C正确;D a-b-c=-(-a+b+c),故D错误;故选:C.7、对整式-a+b-2c进行添括号,正确的是()A.-(a-b+2c)B.-(a-b-2c)C.-(a+b-2c)D.-(a+b+2c)【分析】本题添了1个括号,且所添的括号前为负号,括号内各项改变符号.【解答】根据添括号的法则可知,原式=-(a-b+2c).故选:A.8、在等式a-()=a+b-c中,括号内应填的多项式是()A.b-c B.b+c C.-b+c D.-b-c【分析】根据去括号的法则:括号前是正数去括号不变号,括号前是负数去括号全变号,可得答案.【解答】a-()=a+b-c中,括号内应填的多项式是-b+c,故选:C.9、-[-(m-n)]去括号得()A.m-n B.-m-n C.-m+n D.m+n【分析】根据去括号的顺序与法则依次进行,先去大括号,再去中括号,最后去小括号.【解答】根据去括号的法则可知,-[-(m-n)]=m-n,故选A.10、三个连续奇数,设中间一个为2n+1,则这三个数的和是()A.6n B.6n+1 C.6n+2 D.6n+3 【分析】根据题意可得另外两个奇数分别为(2n-1)与(2n+3),然后求和即可.【解答】由题意得,另外两个奇数分别为(2n-1)与(2n+3),则这三个数的和=2n-1+(2n+1)+(2n+3)=6n+3.故选D.11、一个长方形的一边长是2a+3b,另一边的长是a-b,则这个长方形的周长是()A.6a+3b B.3a-2b C.3a+3b D.6a+4b 【分析】根据长方形的周长=2(一边+另一边),代入即可得出答案.【解答】长方形的周长=2(一边+另一边),=2×(2a+3b+a-b)=2×(3a+2b)=6a+4b,故选D.12、化简:3x-[5x-(2x-1)]=_________.【分析】原式去括号合并即可得到结果.【解答】原式=3x-(5x-2x+1)=3x-5x+2x-1=-1.故答案为:-1.13、若2a-b=2,则6+8a-4b=________.【分析】观察题中的两个代数式2a-b和6+8a-4b,可以发现,8a-4b=4(2a-b),因此整体代入即可求出所求的结果.【解答】∵2a-b=2,代入6+8a-4b,得6+4(2a-b)=6+4×2=14.14、去括号并合并同类项:2a-(5a-3)=__________.【分析】先去括号,然后合并同类项即可.【解答】原式=2a-5a+3=-3a+3.故答案为:-3a+3.【分析】求-a+2b-3c的相反数在整个式子的前面加上负号,再去掉括号即可.【解答】-(-a+2b-3c)=a-2b+3c.故选A.2、若代数式2x2-3x+1的值是3,则代数式-4x2+6x+7的值是()A.2 B.3 C.5 D.7 【分析】将-4x2+6x+7变形为-2(2x2-3x)+7,再将2x2-3x整体代入可得出结果.【解答】由题意得:2x2-3x=2,-4x2+6x+7=-2(2x2-3x)+7=3.故选B.3、若代数式2x2+3x+7的值是12,则代数式6x+4x2-9的值是________.A.3 B.2 C.1 D.0 【分析】由代数式2x2+3x+7的值是12,整理得出代数式2x2+3x=5,在整体代入代数式6x+4x2-9=2(2x2+3x)-9求得结论.【解答】∵2x2+3x+7=12∴2x2+3x=5,∴6x+4x2-9=2(2x2+3x)-9=2×5-9=10-9=1.故答案为:1.4、已知一个三角形周长为b+2c-2a,其中有两边分别为a+2b、3b-2c,求第三边的长.【分析】根据三角形的周长公式列出算式,再进行计算即可.【解答】∵三角形周长为b+2c-2a,其中有两边分别为a+2b、3b-2c,∴第三边的长=(b+2c-2a)-(a+2b+3b-2c)=b+2c-2a-a-2b-3b+2c=-4b-3a+4c;则第三边的长是-4b-3a+4c.5、已知2y-x=5,那么式子4y-2x+3的值是()A.13 B.8 C.-13 D.-7 -b|=_________.A.-4 B.7 C.10 D.13 【分析】由于x=1时,代数式ax3+bx+7的值为4,把x=1代入ax3+bx +7=4,可以解得a+b的值,然后把x=-1代入所求代数式,整理得到a +b的形式,然后将a+b的值整体代入.【解答】∵当x=1时,ax3+bx+7=4,∴a+b=-3,当x=-1时,ax3+bx+7=-a-b+7=-(a+b)+7=3+7=10.故选C.9、已知x2-x-1=0,则x3-2x+1的值是()A.1 B.2 C.3 D.4【分析】对等式变形得x2-x=1,可得x3-x2=x,即x3-x=x2,代入原式中x3-x-x+1=x2-x+1,又x2-x-1=0,即x2-x=1,即可得出原式=2.【解答】根据题意,x2-x=1,∴x3-x2=x,即x3-x=x2,∴x3-2x+1=x2-x+1=1+1=2,故选B.10、已知a-b=-3,c+d=2,则(a-d)-(b+c)的值为()A.-5 B.1 C.5 D.-1【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【解答】根据题意:(a-d)-(b+c)=(a-b)-(c+d)=-3-2=-5,故选A.11、下列去括号正确的是()A.x-(5y-3x)=x-5y-3x B.5x-[2y-(x-z)]=5x-2y+x-z C.2x+(-3y+7)=2x-3y-7 D.a-3(b-c+d)=a-3b-3c-3d 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】A、x-(5y-3x)=x-5y+3x.故本选项错误;B、5x-[2y-(x-z)]=5x-2y+x-z.故本选项正确;C、2x+(-3y+7)=2x-3y+7.故本选项错误;D、a-3(b-c+d)=a-3b+3c-3d.故本选项错误;故选:B.12、-(x2+2x-5)化简的结果是()A.x2+2x-5 B.x2-2x+5 C.-x2+2x-5 D.-x2-2x+5 【分析】根据括号前是“-”号,把括号和它前面的“-”号去掉,把括号内的各项都变号,即可得出答案.【解答】-(x2+2x-5)=-x2-2x+5,故选D.13、化简-[0-(a-2b)]的结果是()A.a-2b B.+2b C.-a+2b D.-a-2b【分析】根据去括号法则解答.先去中括号,再去小括号.【解答】根据去括号的方法可知:-[0-(a-2b)]=a-2b.故选A.14、已知a-b=5,c+d=-3,则(b+c)-(a-d)的值为()A.2 B.-2 C.8 D.-8【分析】先把所求代数式去括号,再添括号化成已知的形式,再把已知整体代入即可求解.【解答】解根据题意可得:(b+c)-(a-d)=(c+d)-(a-b)=-3-5=-8,故选D.15、将4a2-2(a2-b2)-3(a2+b2)先去括号,再合并同类项得()A.-a2-b2B.-a2+b2C.a2-b2D.-2a2-b2【分析】首先把括号外的数利用分配律乘到括号内,然后利用去括号法则去掉括号,最后合并同类项即可.【解答】4a2-2(a2-b2)-3(a2+b2)=4a2-2a2+2b2-3a2-3b2=-a2-b2.故选A.16、化简9x-{4x-[5x-(8x-2)]}的结果是()A.2x-2 B.8x+2 C.16x+2 D.2x+2【分析】根据去括号的顺序与法则依次进行,先去大括号,再去中括号,最后去小括号.【解答】原式=9x-4x+5x-8x+2=2x+2,故选D.17、去括号:2(a-b)-(c+d)=()A.2a-b-c-d B.2a+2b-c+d C.2a+b-c-d D.2a-2b-c-d 【分析】括号前面是负号,去括号是要注意符号的变化.【解答】2(a-b)-(c+d)=2a-2b-c-d.故选D.18、将方程3(x-1)-2(x-3)=5(1-x)去括号得()A.3x-1-2x-3=5-x B.3x-1-2x+3=5-xC.3x-3-2x-6=5-5x D.3x-3-2x+6=5-5x【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】根据去括号的方法可知:3(x-1)-2(x-3)=(3x-3)-(2x-6)=3x-3-2x+6;5(1-x)=5-5x;∴3(x-1)-2(x-3)=5(1-x)去括号得3x-3-2x+6=5-5x;故选D.19、-[x-(z-y)]去括号后等于()A.-x-z-y B.-x-z+y C.-x+z-y D.-x+z+y 【分析】根据去括号法则进行计算,注意先去小括号,再去中括号.【解答】-[x-(z-y)]=-[x-z+y]=-x+z-y.故选C.20、m-[n-2m-(m-n)]等于()A.-2m B.2m C.4m-2n D.2m-2n 【分析】先去小括号,再去中括号,去括号时,若括号前面是负号则括号里面的各项需变号,若括号前面是正号,则可以直接去括号.【解答】原式=m-[n-2m-m+n],=m-n+2m+m-n,=4m-2n.故选C.。

人教版七年级上册数学复习练习卷:整式的加减之去括号(附答案)

人教版七年级上册数学复习练习卷:整式的加减之去括号(附答案)

七年级上册数学人教版整式的加减之去括号一、选择题1.李老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A. 6a+bB. 6aC. 3aD. 10a-b2.如图,两个正方形的面积分别为9、4,两个阴影部分的面积分别为S1、S2,(S1>S),则S1-S2的值为()2A. 5B. 4C. 3D. 23.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+2xy)-(2x2+4xy)=-x2□,此空格的地方被钢笔水弄污了,那么空格中的一项是()A. -2xyB. 6xyC. -6xyD. 2xy4.一种商品每件进价为a元,按进价增加40%定出售价,后因库存积压降价,按售价的八折出售,每件还盈利()A. 0.15a元B. 0.12a元C. 1.25a元D. 0.32a元,n=−1时,代数式3mn-2m2+(2m2-2mn)-(3mn-n2)的值是()5.当m=32A. 3B. 4C. 5D. 66.已知A=2a2-3a,B=2a2-a-1,当a=-4时,A-B等于()A. 8B. 9C. -9D. -77.已知a+b=5,ab=4,则代数式(3ab+5a+8b)+(3a-4ab)的值为()A. 36B. 40C. 44D. 468.若(a+1)2+|b-2|=0,化简a(x2y+xy2)-b(x2y-xy2)的结果为()A. 3x2yB. -3x2y+xy2C. -3x2y+3xy2D. 3x2y-xy29.已知多项式(2ax2+3x-1)-(3x-2x2-3)的值与x的取值无关,试求2a3-[a2-2(a+1)+a]-2的值()A. 2B. 0C. -2D. -410.多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m为()A. 2B. -2C. 4D. -411.有理数a、b在数轴上的位置如图所示,则化简|a-b|+|a+b|的结果为()A. -2aB. 2aC. 2bD. -2b二、填空题12.三个小队植树,第一队种x棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树___________棵.13.如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a-b)米.问小明家楼梯的竖直高度(即:BC的长度)为___________米.14.某便民超市原有蒙牛牛奶(5a2+8a)箱,上午卖出(7a-5)箱,中午休息时又购进同样的牛奶(a2-a)箱,中午过后卖出牛奶(6a2-a).则超市下午满仓时有该种牛奶___________箱(用含有a的式子表示).15.如果代数式(3x2+mx-2y+4)-(3nx2-2x+6y-3)的值与字母x的取值无关,代数式m+n的值为___________.16.a 、b 在数轴上的位置如图所示,化简:|a +b |-2|b -a |=___________.17、当2,1p q ==时,分别求出下列各式的值.(1)221()2()()3()3p q p q q p p q -+-----;(2)2283569p q q p -+--18、已知关于x ,y 的代数式2213383x kxy y xy ----中不含xy 项,求k 的值.三、解答题19、已知:2263A x x =+-,213B x x =--,2451C x x =--,当32x =-时,求代数式32A B C -+的值.20、计算下式的值:其中114x ,y ,==-甲同学把14x =错抄成14x =-,但他计算的结果也是正确的,你能说明其中的原因吗?)4()2()242(33432242234y y x x y y x x y x y x x -+-++----答案解析1.【答案】B【解析】根据题意,长方形周长=2[(2a+b)+(a-b)]=2(2a+b+a-b)=2×3a=6a.2.【答案】A【解析】设空白部分的面积是S,因为两个正方形的面积分别为9,4,所以S1=9-S,S2=4-S,所以S1-S2=(9-S)-(4-S)=9-S-4+S=5.3.【答案】A【解析】左边=x2+2xy-2x2-4xy=-x2-2xy.4.【答案】B【解析】因为每件进价为a元,按进价增加40%定出售价,所以每件的售价为(1+40%)a元,所以按售价的八折出售时的价格是(1+40%)a×80%,所以每件盈利=(1+40%)a×80%-a=1.12a-a=0.12a(元).5.【答案】B【解析】3mn-2m2+(2m2-2mn)-(3mn-n2)=3mn-2m2+2m2-2mn-3mn+n2=-2mn+n2=-2×3×(-1)+(-1)22=4.6.【答案】B【解析】A-B=2a2-3a-(2a2-a-1)=2a2-3a-2a2+a+1=-2a+1,把a=-4代入原式,得-2a+1=-2×(-4)+1=9.7.【答案】A【解析】因为a+b=5,ab=4,所以原式=3ab+5a+8b+3a-4ab=8(a+b)-ab=40-4=36.8.【答案】B【解析】因为(a+1)2+|b-2|=0,所以a+1=0,b-2=0,即a=-1,b=2,则原式=-(x2y+xy2)-2(x2y-xy2)=-x2y-xy2-2x2y+2xy2=-3x2y+xy2.9.【答案】D【解析】(2ax2+3x-1)-(3x-2x2-3)=2ax2+3x-1-3x+2x2+3=2ax2+2x2+2=(2a+2)x2+2,多项式(2ax2+3x-1)-(3x-2x2-3)的值与x的取值无关,得2a+2=0.解得a=-1,2a3-[a2-2(a+1)+a]-2=2a3-(a2-2a-2+a)-2=2a3-a2+a,当a=-1时,原式=-2-1-1=-4.10.【答案】C【解析】因为多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3相加后不含x的二次项,所以-8x2+2mx2=(2m-8)x2,所以2m-8=0,解得m=4.11.【答案】A【解析】根据数轴上点的位置得a<-1<0<b<1,所以a-b<0,a+b<0,则原式=b-a-a-b=-2a.12.【答案】4x+6【解析】依题意得:第二队种的树的棵数为2x+8,(2x+8)-6=x-2,第三队种的树的棵数为12所以三队共种树x+(2x+8)+(x-2)=(4x+6)棵.13.【答案】a-2b【解析】(3a-b)-(2a+b)=3a-b-2a-b=(a-2b)米.故小明家楼梯的竖直高度(即:BC的长度)为(a-2b)米.14.【答案】a+5【解析】由题意得(5a2+8a)-(7a-5)+(a2-a)-(6a2-a)=5a2+8a-7a+5+a2-a-6a2+a=a+5.15.【答案】-1【解析】原式=3x 2+mx -2y +4-3nx 2+2x -6y +3=(3-3n )x 2+(m +2)x -8y +7,由结果与x 取值无关,得到3-3n =0,m +2=0, 解得m =-2,n =1,则m +n =-2+1=-1.16.【答案】-3a +b【解析】通过数轴可以得出结论:a >0,b <0,且|a |<|b |,则原式=-(a +b )-2(a -b )=-a -b -2a +2b=-3a +b .17、【答案与解析】(1)把()p q -当作一个整体,先化简再求值: 解:22221()2()()3()31(1)()(23)()32()()3p q p q q p p q p q p q p q p q -+-----=--+--=---- 又 211p q -=-=所以,原式=22222()()111333p q p q ----=-⨯-=- (2)先合并同类项,再代入求值.解:2283569p q q p -+-- 2(86)(35)9p q =-+-+-2229p q =+-当p =2,q =1时,原式=22229222191p q +-=⨯+⨯-=.18、【解析】解: 222222111338(3)38(3)38333x kxy y xy x kxy xy y x k xy y ----=+----=+---- 因为不含xy 项,所以此项的系数应为0,即有:1303k --=,解得:19k =-. ∴19k =-.19.【解析】解:∵222263,31,45 1.A x x B x x C x x ⎧=+-⎪=--+⎨⎪=--⎩ ∴ 222263,3393,2810 2.A x x B x x C x x ⎧=+-⎪⎪-=+-⎨⎪=--⎪⎩∴2321358A B C x x -+=+- 当32x =-时,32A B C -+33915117303213()5()81388132242444=⨯-+⨯--=⨯--=--=. 20. 【解析】解:∵化简结果与x 无关∴将x 抄错不影响最终结果.43224223433432242234333(242)(2)(4)242242y x x y x y x x y y x x y y x x y x y x x y y x x y y ----++-+-----+-- =+- = 。

(必考题)初中七年级数学上册第二章《整式的加减》经典测试(含答案解析)

(必考题)初中七年级数学上册第二章《整式的加减》经典测试(含答案解析)

1.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次C解析:C【分析】 首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次. 故选C .此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.2.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、 2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C解析:C【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答.【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2;即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A = 所以点A 2008表示的数为: 2008÷2= 1004A 2009表示的数为:- (2009+1) ÷2=-1005故选: C .【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.3.下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.4.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 5.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b A解析:A【解析】 2a -[3b -5a -(2a -7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b ,故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.6.下列各代数式中,不是单项式的是( )A .2m -B .23xy -C .0D .2tD 解析:D【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】 A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意. 故选D .【点睛】 本题考查单项式的定义,较为简单,要准确掌握定义.7.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a A解析:A【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:b <a <0,且|a |<|b |,∴a -b >0,a +b <0,∴原式=a -b -a -b =-2b .故选:A .【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.8.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.9.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .32A 解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10.下面去括号正确的是( )A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ B解析:B【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误;故选:B【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.11.下列判断中错误的个数有( ) (1)23a bc 与2bca -不是同类项; (2)25m n 不是整式; (3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个B解析:B【分析】 根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错; (3)单项式-x 3y 2的系数是-1,正确;(4)3x 2-y+5xy 2是3次3项式,故错误.故选:B .【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.12.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差D解析:D【分析】 说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.13.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A 解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.14.如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个C解析:C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -.∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C【点睛】此题考查图形的变化类,解题关键在于找出其规律型.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m 的值应是_______. 184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m 的值.2.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n时,最多可有的交点数m 与直线条数n之间的关系式为:m=_____.(用含n的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n条直线相交最多有1+2+3+…+(n-1)=个解析:()12 n n-【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.3.观察下列图形它们是按一定规律排列的,依照此规律,第20个图形共有________________ 个★.【分析】由排列组成的图形都是三角形找出规律即可求出答案【详解】解:根据规律可知:第一个图形中有1×3=3个★第二个图形中有2×3=6个★第三个图形中有3×3=9个★…第n个图形有3n个★∴第20个图解析:60【分析】由排列组成的图形都是三角形,找出规律,即可求出答案.【详解】解:根据规律可知:第一个图形中有1×3=3个★,第二个图形中有2×3=6个★,第三个图形中有3×3=9个★,…第n 个图形有3n 个★,∴第20个图形共有20×3=60个★.故答案为:60.【点睛】解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n 个图形有3n 个★.4.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b +%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -. 【点睛】本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.5.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.6.如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.【分析】由长方形的面积减去PQLM 与RKTS 的面积再加上重叠部分面积即可得到结果【详解】S 矩形ABCD=AB•AD=abS 道路面积=ca+cb-c2所以可绿化面积=S 矩形ABCD-S 道路面积=ab-解析:2ab bc ac c --+【分析】由长方形的面积减去PQLM 与RKTS 的面积,再加上重叠部分面积即可得到结果.【详解】S 矩形ABCD =AB•AD=ab ,S 道路面积=ca+cb-c 2,所以可绿化面积=S 矩形ABCD -S 道路面积=ab-(ca+cb-c 2),=ab-ca-cb+c 2.故答案为:ab-bc-ac+c 2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.7.已知5a b -=,3c d +=,则()()b c a d +--的值等于______.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2【分析】把原式去括号转化为含有(a -b )和(c +d )的式子,然后代入求值即可.【详解】()()()()532b c a d b c a d b a c d +--=+-+=-++=-+=-.故答案为:-2.【点睛】本题考查了整式的化简求值,把原式转化为含有(a -b )和(c +d )的式子是解决此题的关键. 8.在x y +,0,21>,2a b -,210x +=中,代数式有______个.3【分析】代数式是指把数或表示数的字母用+-×÷连接起来的式子而对于带有=><等数量关系的式子则不是代数式【详解】解:是不等式不是代数式;是方程不是代数式;0是代数式共3个故答案是:3【点睛】本题考解析:3【分析】代数式是指把数或表示数的字母用+、-、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.【详解】解:21>是不等式,不是代数式;210x +=是方程,不是代数式;x y +,0,,2a b -,是代数式,共3个.故答案是:3.【点睛】本题考查了代数式的定义,理解定义是关键.9.用棋子按下列方式摆图形,依照此规律,第n 个图形比第()1n -个图形多______枚棋子. …第1个 第2个 第3个【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数相减即可得到结果【详解】解:第1个图形棋子的个数:1;第2个图形1+4;第3个图形1+4+7;第4个图形1+4+7+10;…第n 个图形1+ 解析:32n -【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数,相减即可得到结果.【详解】解:第1个图形棋子的个数:1;第2个图形,1+4;第3个图形,1+4+7;第4个图形,1+4+7+10;…第n 个图形,1+4+7+…+(3n -2);则第n 个图形比第(n-1)个图形多(3n-2)枚棋子.故答案为:3n-2【点睛】此题主要考查了图形的变化类问题,同时还考查了学生通过特例分析从而归纳总结出一般结论的能力.10.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.11.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________; 4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法. 1.计算:7ab-3a 2b 2+7+8ab 2+3a 2b 2-3-7ab .解析:8ab 2+4.【分析】原式合并同类项即可得到结果.【详解】原式=(7﹣7)ab +(﹣3+3)a 2b 2+8ab 2+(7﹣3)=8ab 2+4.【点睛】本题考查了合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.2.已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4【分析】 根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.3.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.4.观察下列等式.第1个等式:a 1=113⨯=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=135⨯=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=157⨯=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=179⨯=12×1179⎛⎫- ⎪⎝⎭; … 请解答下列问题.(1)按以上规律列出第5个等式:a 5=____=____;(2)求a 1+a 2+a 3+a 4+…+a 100的值.解析:(1)1911⨯;12×11911⎛⎫- ⎪⎝⎭;(2)100201. 【分析】(1)根据连续奇数乘积的倒数等于这两个奇数的倒数差的一半列式可得;(2)根据以上所得规律列式111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再进一步计算可得. 【详解】(1)由观察知, 左边:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1,右边:这两个奇数的倒数差的一半,∴第5个式子是:()()111115215219112911⎛⎫==⨯- ⎪⨯-⨯-⨯⎝⎭; 故答案为:1911⨯;12×11911⎛⎫- ⎪⎝⎭; (2)a 1+a 2+a 3+a 4+…+a 100 111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111111233557199201⎛⎫=⨯-+-+-++- ⎪⎝⎭1112201⎛⎫=⨯- ⎪⎝⎭ 12002201=⨯ 100201=. 【点睛】本题主要考查了数字的变化规律,解题的关键是根据已知等式得出规律:连续奇数乘积的倒数等于这两个奇数的倒数差的一半.。

【中小学资料】七年级数学上册 3.4 整式的加减 3.4.3 去括号与添括号跟踪训练(含解析)(新版)华东师大版

【中小学资料】七年级数学上册 3.4 整式的加减 3.4.3 去括号与添括号跟踪训练(含解析)(新版)华东师大版

去括号与添括号一.选择题(共8小题)1.去括号:﹣(a﹣b)等于()A.a﹣b B.a+b C.﹣a﹣b D.b﹣a2.下面的计算正确的是()A.6a﹣5a=1 B.﹣(a﹣b)=﹣a+b C. a+2a2=3a3D. 2(a+b)=2a+b3.下列运算正确的是()A.﹣2(3x﹣1)=﹣6x﹣1 B.﹣2(3x﹣1)=﹣6x+1 C.﹣2(3x﹣1)=﹣6x﹣2 D.﹣2(3x﹣1)=﹣6x+24.下列各式,去括号正确的是()A.a+(b﹣c)+d=a﹣b+c﹣d B.a﹣(b﹣c+d)=a﹣b﹣ c+dC.a﹣(b﹣c+d)=a﹣b+c﹣d D.a﹣(b﹣c+d)=a﹣b+c+d5.将多项式2a﹣3ab+4b2﹣5b的一次项放在前面带有“+”号的括号里,二次项放在前面带有“﹣”的括号里:以下答案不正确的是()A.2a﹣3ab+4b2﹣5b=+(2a﹣5b)﹣(3ab﹣4b2)B.2a﹣3ab+4b2﹣5b=﹣(﹣4b2+3ab)+(2a ﹣5b)C.2a﹣3ab+4b2﹣5b=+(2a﹣3ab)﹣(5b﹣4b2)D.2a﹣3ab+4b2﹣5b=+(2a﹣5b)﹣(﹣4b2+3ab)6.下列各式中去括号正确的是()A.a2﹣(2a﹣b2+b)=a2﹣2a﹣b2+b B.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣5)=2x2﹣3x+5 D.﹣a3﹣=﹣a3+4a2﹣1+3a7.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A. 1 B.5C.﹣5 D.﹣18.下列各题去括号错误的是()A.x﹣(3y﹣)=x﹣3y+ B.m+(﹣n+a﹣b)=m﹣n+a﹣bC.﹣(4x﹣6y+3)=﹣2x+3y+3 D.(a+b)﹣(﹣c+)=a+b+c﹣二.填空题(共7小题)9.去括号:(a﹣b)﹣(﹣c+d)= _________ .10.去括号填空:﹣= _________ .11.(﹣a+b+c)(a+b+c)=(b+ _________ )(b﹣_________ )12.当1≤m<3时,化简|m﹣1|﹣|m﹣3|= _________ .13.在括号内填上适当的项:(a+b﹣c)(a﹣b+c)=.14.不改变多项式3b3﹣2ab2+4a2b﹣a3的值,把后三项放在前面是“﹣”号的括号中,则该式可写成_________ .15.根据添括号法则完成变形:(x+2y﹣3)(x﹣2y+3)=.三.解答题(共7小题)16.去括号,并合并同类项:﹣3(2x﹣y)﹣2(4x+y)+2009.17.把代数式(a2﹣2ab+b2+5)(﹣a2+2ab﹣b2+5)写成(5+m)(5﹣m)的形式,并求出m.18.把多项式x4y﹣4xy3+2x2﹣xy﹣1按下列要求添括号:(1)把四次项结合,放在带“+”号的括号里;(2)把二次项相结合,放在带“﹣”号的括号里.19.去括号,合并同类项(1)﹣3(2s﹣5)+6s;(2)3x﹣;(3)6a2﹣4ab﹣4(2a2+ab);(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)20.先去括号、再合并同类项①2(a﹣b+c)﹣3(a+b﹣c)②3a2b﹣2.21.去括号并合并含相同字母的项:(x﹣6)+3(y﹣1)﹣2(﹣2y+6).22.先去括号,后合并同类项:(1)x+;(2);(3)2a﹣(5a﹣3b)+3(2a﹣b);(4)﹣3{﹣3}.第三章整式加减3.4.1.3去括号与添括号参考答案与试题解析一.选择题(共8小题)1.去括号:﹣(a﹣b)等于()A.a﹣b B.a+b C.﹣a﹣b D.b﹣a考点:-去括号与添括号.分析:-根据去括号的法则去括号时,不要漏乘括号里的每一项.解答:-解:原式=﹣a﹣(﹣b)=﹣a+b=b﹣a.故选D.点评:-本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.2.下面的计算正确的是()A.6a﹣5a=1 B.﹣(a﹣b)=﹣a+b C.a+2a2=3a3 D. 2(a+b)=2a+b考点:-去括号与添括号;合并同类项.专题:-计算题.分析:-A、合并同类项得到结果,即可作出判断;B、利用去括号法则去括号得到结果,即可作出判断;C、原式为最简的,不能合并;D、利用去括号法则去括号后得到结果,即可作出判断.解答:-解:A、6a﹣5a=a,本选项错误;B、﹣(a﹣b)=﹣a+b,本选项正确;C、a+2a2不是同类项,不能合并,本选项错误;D、2(a+b)=2a+2b,本选项错误.故选B.点评:-此题考查了添括号与去括号,以及合并同类项,熟练掌握法则是解本题的关键.3.下列运算正确的是()A.﹣2(3x﹣1)=﹣6x﹣1 B.﹣2(3x﹣1)=﹣6x+1C.﹣2(3x﹣1)=﹣6x﹣2 D.﹣2(3x﹣1)=﹣6x+2考点:-去括号与添括号.分析:-利用去括号法则,将原式去括号,进而判断即可得出答案即可.解答:-解:A.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x﹣1错误,故此选项错误;B.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x+1错误,故此选项错误;C.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x﹣2错误,故此选项错误;D.﹣2(3x﹣1)=﹣6x+2,故此选项正确;故选:D.点评:-此题主要考查了去括号法则,利用去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反得出是解题关键.4.下列各式,去括号正确的是()-A.-a+(b﹣c)+d=a﹣b+c﹣d- B.-a﹣(b﹣c+d)=a﹣b﹣c+d-C.-a﹣(b﹣c+d)=a﹣b+c﹣d- D.-a﹣(b﹣c+d)=a﹣b+c+d考点:-去括号与添括号.分析:-根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.解答:-解:A、a+(b﹣c)+d=a+b﹣c+d,故错误;B、a﹣(b﹣c+d)=a﹣b+c﹣d,故错误;D、a﹣(b﹣c+d)=a﹣b+c﹣d,故错误;只有C符合运算方法,正确.故选C.点评:-本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.5.将多项式2a﹣3ab+4b2﹣5b的一次项放在前面带有“+”号的括号里,二次项放在前面带有“﹣”的括号里:以下答案不正确的是()A.2a﹣3ab+4b2﹣5b=+(2a﹣5b)﹣(3ab﹣4b2) B. 2a﹣3ab+4b2﹣5b=﹣(﹣4b2+3ab)+(2a﹣5b)C.2a﹣3ab+4b2﹣5b=+(2a﹣3ab)﹣(5b﹣4b2) D. 2a﹣3ab+4b2﹣5b=+(2a﹣5b)﹣(﹣4b2+3ab)考点:-去括号与添括号.分析:-根据添括号的方法逐一计算即可.解答:-解:A、2a﹣3ab+4b2﹣5b=+(2a﹣5b)﹣(3ab﹣4b2),正确;B、2a﹣3ab+4b2﹣5b=﹣(﹣4b2+3ab)+(2a﹣5b),正确;C、2a﹣3ab+4b2﹣5b=+(2a﹣3ab)﹣(5b﹣4b2),一次项与二次项放在了同一括号里,错误;D、2a﹣3ab+4b2﹣5b=+(2a﹣5b)﹣(﹣4b2+3ab),正确.故选C.点评:-本题考查添括号的方法:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.6.下列各式中去括号正确的是()A.a2﹣(2a﹣b2+b)=a2﹣2a﹣b2+b B.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣5)=2x2﹣3x+5 D.﹣a3﹣=﹣a3+4a2﹣1+3a考点:-去括号与添括号.分析:-根据去括号法则(括号前是“+”号,去括号时,把括号和它前面的“+”去掉,括号内的各项都不变,括号前是“﹣”号,去括号时,把括号和它前面的“﹣”去掉,括号内的各项都变号)去括号,即可得出答案.解答:-解:A、a2﹣(2a﹣b2+b)=a2﹣2a+b2﹣b,故本选项错误;B、﹣(2x+y)﹣(﹣x2+y2)=﹣2x﹣y+x2﹣y2,故本选项错误;C、2x2﹣3(x﹣5)=2x2﹣3x+15,故本选项错误;D、﹣a3﹣=﹣a3﹣=﹣a3+4a2﹣1+3a,故本选项正确.故选D.点评:-本题考查了去括号法则的应用,注意:①括号前是“+”号,去括号时,把括号和它前面的“+”去掉,括号内的各项都不变,括号前是“﹣”号,去括号时,把括号和它前面的“﹣”去掉,括号内的各项都变号,②m(a+b)=ma+mb,不是等于ma+b.7.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A. 1 B.5 C.﹣5 D.﹣1考点:-去括号与添括号.专题:-计算题.分析:-先把括号去掉,重新组合后再添括号.解答:-解:因为(b+c)﹣(a﹣d)=b+c﹣a+d=(b﹣a)+(c+d)=﹣(a﹣b)+(c+d)…(1),所以把a﹣b=﹣3、c+d=2代入(1)得:原式=﹣(﹣3)+2=5.故选:B.点评:-(1)括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去括号;(2)添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“﹣”,括号里的各项都改变符号.运用这一法则添括号.8.下列各题去括号错误的是()A.x﹣(3y﹣)=x﹣3y+ B.m+(﹣n+a﹣b)=m﹣n+a﹣bC.﹣(4x﹣6y+3)=﹣2x+3y+3 D.(a+b)﹣(﹣c+)=a+b+c﹣考点:-去括号与添括号.分析:-根据去括号与添括号的法则逐一计算即可.解答:-解:A、x﹣(3y﹣)=x﹣3y+,正确;B、m+(﹣n+a﹣b)=m﹣n+a﹣b,正确;C、﹣(4x﹣6y+3)=﹣2x+3y﹣,故错误;D、(a+b)﹣(﹣c+)=a+b+c﹣,正确.故选C.点评:-本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.二.填空题(共7小题)9.去括号:(a﹣b)﹣(﹣c+d)= a﹣b+c﹣d .考点:-去括号与添括号.分析:-根据去括号法则解答.(a﹣b)前是“+”,去括号后,括号里的各项都不改变符号;﹣(﹣c+d)括号前是“﹣”,去括号后,括号里的各项都改变符号.解答:-解:(a﹣b)﹣(﹣c+d)=a﹣b+c﹣d,故填a﹣b+c﹣d.点评:-括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.10.去括号填空:﹣= ﹣a+3b﹣3c .考点:-去括号与添括号.专题:-计算题.分析:-原式去括号即可得到结果.解答:-解:原式=﹣a+3(b﹣c)=﹣a+3b﹣3c.故答案为:﹣a+3b﹣3c点评:-此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.11.(﹣a+b+c)(a+b+c)=(b+ a+c )(b﹣a+c )考点:-去括号与添括号.分析:-利用加法的交换律进行填写即可.解答:-解:(﹣a+b+c)(a+b+c)=(b+a+c)(b﹣a+c),故答案为:a+c;a+c.点评:-本题主要加法的交换律,发现等号左右两边的不同是解题的关键.12.当1≤m<3时,化简|m﹣1|﹣|m﹣3|= 2m﹣4 .考点:-去括号与添括号;绝对值.分析:-先根据绝对值的性质把原式化简,再去括号即可.解答:-解:根据绝对值的性质可知,当1≤m<3时,|m﹣1|=m﹣1,|m﹣3|=3﹣m,故|m﹣1|﹣|m﹣3|=(m﹣1)﹣(3﹣m)=2m﹣4.点评:-本题考查绝对值的化简方法和去括号的法则,比较简单.13.在括号内填上适当的项:(a+b﹣c)(a﹣b+c)=.考点:-去括号与添括号.分析:-根据添括号法则添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“﹣”,括号里的各项都改变符号,直接求解.解答:-解:(a+b﹣c)(a﹣b+c)=.故答案为:b﹣c,b﹣c.点评:-此题主要考查了去括号与添括号,根据添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“﹣”,括号里的各项都改变符号.运用这一法则添括号是解题关键.14.不改变多项式3b3﹣2ab2+4a2b﹣a3的值,把后三项放在前面是“﹣”号的括号中,则该式可写成3b3﹣(2ab2﹣4a2b+a3).考点:-去括号与添括号.分析:-本题添了1个括号,且所添的括号前为负号,括号内各项改变符号.解答:-解:根据添括号的法则可知,原式=3b3﹣(2ab2﹣4a2b+a3).故答案是:3b3﹣(2ab2﹣4a2b+a3).点评:-本题考查添括号的方法:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.15.根据添括号法则完成变形:(x+2y﹣3)(x﹣2y+3)=.考点:-去括号与添括号.分析:-根据括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号,即可得出答案.解答:-解:(x+2y﹣3)(x﹣2y+3)=.故答案为:2y﹣3,2y﹣3.点评:-本题考查了添括号,添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.三.解答题(共7小题)16.去括号,并合并同类项:﹣3(2x﹣y)﹣2(4x+y)+2009.考点:-去括号与添括号;合并同类项.分析:-运用乘法的分配律,先把括号前的数字与括号里各项相乘,再根据去括号法则把括号去掉,然后合并同类项,即可得出答案.解答:-解:﹣3(2x﹣y)﹣2(4x+y)+2009=﹣6x+3y﹣8x﹣y+2009=﹣14x+2y+2009.点评:-本题考查了去括号和合并同类项:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号,然后合并.17.把代数式(a2﹣2ab+b2+5)(﹣a2+2ab﹣b2+5)写成(5+m)(5﹣m)的形式,并求出m.考点:-去括号与添括号.分析:-根据式子的特点变形得出,即可得出答案.解答:-解:(a2﹣2ab+b2+5)(﹣a2+2ab﹣b2+5)=即m=a2﹣2ab+b2点评:-本题考查了去括号和添括号法则的应用,题目比较好,难度不大.18.把多项式x4y﹣4xy3+2x2﹣xy﹣1按下列要求添括号:(1)把四次项结合,放在带“+”号的括号里;(2)把二次项相结合,放在带“﹣”号的括号里.考点:-去括号与添括号.分析:-(1)根据添括号法则,把四次项﹣4xy3,放在前面带有“﹢”号的括号里;(2)根据添括号法则,把二次项2x2放在前面带有“﹣”号的括号里.解答:-解:(1)∵把四次项结合,放在带“+”号的括号里,∴x4y﹣4xy3+2x2﹣xy﹣1=x4y+(﹣4xy3)+2x2﹣xy﹣1);(2)∵把二次项相结合,放在带“﹣”号的括号里,∴x4y﹣4xy3+2x2﹣xy﹣1=x4y﹣4xy3﹣(﹣2x2)﹣xy﹣1.点评:-本题考查了添括号的法则,添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.19.去括号,合并同类项(1)﹣3(2s﹣5)+6s;(2)3x﹣;(3)6a2﹣4ab﹣4(2a2+ab);(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)考点:-去括号与添括号;合并同类项.分析:-(1)先去括号,再合并同类项即可;(2)先去小括号,再去中括号,再合并同类项即可;(3)先去括号,再合并同类项即可;(4)先去括号,再合并同类项即可.解答:-解:(1)﹣3(2s﹣5)+6s=﹣6s+15+6s=15;(2)3x﹣=3x﹣=3x﹣5x+x﹣4=﹣x+4;(3)6a2﹣4ab﹣4(2a2+ab)=6a2﹣4ab﹣8a2﹣2ab=﹣2a2﹣6ab;(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣24.点评:-此题考查了整式的运算,用到的知识点是去括号、合并同类项,在去括号时要注意符号的变化和去括号的顺序.20.先去括号、再合并同类项①2(a﹣b+c)﹣3(a+b﹣c)②3a2b﹣2.考点:-去括号与添括号;合并同类项.分析:-根据括号前是正号,去掉括号及正号,括号里的各项都不变,括号前是负号,去掉括号及负号,括号里的各项都变号,可得答案.解答:-解:(1)原式=2a﹣2b+2c﹣3a﹣3b+3c=(2a﹣3a)+(﹣2b﹣3b)+(2c+3c)=﹣a﹣5b+5c;(2)原式=3a2b﹣2(ab2﹣2a2b+4ab2)=3a2b﹣10ab2+4a2b=7a2b﹣10ab2.点评:-本题考查了去括号与添括号,括号前是正号,去掉括号及正号,括号里的各项都不变,括号前是负号,去掉括号及负号,括号里的各项都变号.21.去括号并合并含相同字母的项:(x﹣6)+3(y﹣1)﹣2(﹣2y+6).考点:-去括号与添括号;合并同类项.分析:-本题考查了整式的加减,其一般步骤是去括号,合并同类项,合并同类项法则是把同类项的系数相加减,字母与字母的指数不变.解答:-解:原式=﹣x+10+x﹣3+3y﹣3+4y﹣12,=(﹣x+x)+(3y+4y)﹣12+10﹣3﹣3=7y﹣8.点评:-同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.合并同类项法则是把同类项的系数相加减,字母与字母的指数不变.22.先去括号,后合并同类项:(1)x+;(2);(3)2a﹣(5a﹣3b)+3(2a﹣b);(4)﹣3{﹣3}.考点:-去括号与添括号;合并同类项.分析:-去括号是注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变.解答:-解:(1)x+=x﹣x﹣2x+4y=﹣2x+4y;(2)原式=a﹣a﹣﹣+b2=;(3)2a﹣(5a﹣3b)+3(2a﹣b)=2a﹣5a+3b+6a﹣3b=3a;(4)﹣3{﹣3},=﹣3{9(2x+x2)+9(x﹣x2)+9},=﹣27(2x+x2)﹣27(x﹣x2)﹣27,=﹣54x﹣27x2﹣27x+27x2﹣27,=﹣81x﹣27.点评:-解决本题是要注意去括号时,符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.。

[K12学习]七年级数学上册 3.4 整式的加减 3.4.3 去括号与添括号跟踪训练(含解析)(新版

[K12学习]七年级数学上册 3.4 整式的加减 3.4.3 去括号与添括号跟踪训练(含解析)(新版

去括号与添括号一.选择题(共8小题)1.去括号:﹣(a﹣b)等于()A.a﹣b B.a+b C.﹣a﹣b D.b﹣a2.下面的计算正确的是()A.6a﹣5a=1 B.﹣(a﹣b)=﹣a+b C. a+2a2=3a3D. 2(a+b)=2a+b3.下列运算正确的是()A.﹣2(3x﹣1)=﹣6x﹣1 B.﹣2(3x﹣1)=﹣6x+1 C.﹣2(3x﹣1)=﹣6x﹣2 D.﹣2(3x﹣1)=﹣6x+24.下列各式,去括号正确的是()A.a+(b﹣c)+d=a﹣b+c﹣d B.a﹣(b﹣c+d)=a﹣b﹣ c+dC.a﹣(b﹣c+d)=a﹣b+c﹣d D.a﹣(b﹣c+d)=a﹣b+c+d5.将多项式2a﹣3ab+4b2﹣5b的一次项放在前面带有“+”号的括号里,二次项放在前面带有“﹣”的括号里:以下答案不正确的是()A.2a﹣3ab+4b2﹣5b=+(2a﹣5b)﹣(3ab﹣4b2)B.2a﹣3ab+4b2﹣5b=﹣(﹣4b2+3ab)+(2a ﹣5b)C.2a﹣3ab+4b2﹣5b=+(2a﹣3ab)﹣(5b﹣4b2)D.2a﹣3ab+4b2﹣5b=+(2a﹣5b)﹣(﹣4b2+3ab)6.下列各式中去括号正确的是()A.a2﹣(2a﹣b2+b)=a2﹣2a﹣b2+b B.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣5)=2x2﹣3x+5 D.﹣a3﹣=﹣a3+4a2﹣1+3a7.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A. 1 B.5C.﹣5 D.﹣18.下列各题去括号错误的是()A.x﹣(3y﹣)=x﹣3y+ B.m+(﹣n+a﹣b)=m﹣n+a﹣bC.﹣(4x﹣6y+3)=﹣2x+3y+3 D.(a+b)﹣(﹣c+)=a+b+c﹣二.填空题(共7小题)9.去括号:(a﹣b)﹣(﹣c+d)= _________ .10.去括号填空:﹣= _________ .11.(﹣a+b+c)(a+b+c)=(b+ _________ )(b﹣_________ )12.当1≤m<3时,化简|m﹣1|﹣|m﹣3|= _________ .13.在括号内填上适当的项:(a+b﹣c)(a﹣b+c)=.14.不改变多项式3b3﹣2ab2+4a2b﹣a3的值,把后三项放在前面是“﹣”号的括号中,则该式可写成_________ .15.根据添括号法则完成变形:(x+2y﹣3)(x﹣2y+3)=.三.解答题(共7小题)16.去括号,并合并同类项:﹣3(2x﹣y)﹣2(4x+y)+2009.17.把代数式(a2﹣2ab+b2+5)(﹣a2+2ab﹣b2+5)写成(5+m)(5﹣m)的形式,并求出m.18.把多项式x4y﹣4xy3+2x2﹣xy﹣1按下列要求添括号:(1)把四次项结合,放在带“+”号的括号里;(2)把二次项相结合,放在带“﹣”号的括号里.19.去括号,合并同类项(1)﹣3(2s﹣5)+6s;(2)3x﹣;(3)6a2﹣4ab﹣4(2a2+ab);(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)20.先去括号、再合并同类项①2(a﹣b+c)﹣3(a+b﹣c)②3a2b﹣2.21.去括号并合并含相同字母的项:(x﹣6)+3(y﹣1)﹣2(﹣2y+6).22.先去括号,后合并同类项:(1)x+;(2);(3)2a﹣(5a﹣3b)+3(2a﹣b);(4)﹣3{﹣3}.第三章整式加减3.4.1.3去括号与添括号参考答案与试题解析一.选择题(共8小题)1.去括号:﹣(a﹣b)等于()A.a﹣b B.a+b C.﹣a﹣b D.b﹣a考点:-去括号与添括号.分析:-根据去括号的法则去括号时,不要漏乘括号里的每一项.解答:-解:原式=﹣a﹣(﹣b)=﹣a+b=b﹣a.故选D.点评:-本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.2.下面的计算正确的是()A.6a﹣5a=1 B.﹣(a﹣b)=﹣a+b C.a+2a2=3a3 D. 2(a+b)=2a+b考点:-去括号与添括号;合并同类项.专题:-计算题.分析:-A、合并同类项得到结果,即可作出判断;B、利用去括号法则去括号得到结果,即可作出判断;C、原式为最简的,不能合并;D、利用去括号法则去括号后得到结果,即可作出判断.解答:-解:A、6a﹣5a=a,本选项错误;B、﹣(a﹣b)=﹣a+b,本选项正确;C、a+2a2不是同类项,不能合并,本选项错误;D、2(a+b)=2a+2b,本选项错误.故选B.点评:-此题考查了添括号与去括号,以及合并同类项,熟练掌握法则是解本题的关键.3.下列运算正确的是()A.﹣2(3x﹣1)=﹣6x﹣1 B.﹣2(3x﹣1)=﹣6x+1C.﹣2(3x﹣1)=﹣6x﹣2 D.﹣2(3x﹣1)=﹣6x+2考点:-去括号与添括号.分析:-利用去括号法则,将原式去括号,进而判断即可得出答案即可.解答:-解:A.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x﹣1错误,故此选项错误;B.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x+1错误,故此选项错误;C.∵﹣2(3x﹣1)=﹣6x+2,∴﹣2(3x﹣1)=﹣6x﹣2错误,故此选项错误;D.﹣2(3x﹣1)=﹣6x+2,故此选项正确;故选:D.点评:-此题主要考查了去括号法则,利用去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反得出是解题关键.4.下列各式,去括号正确的是()-A.-a+(b﹣c)+d=a﹣b+c﹣d- B.-a﹣(b﹣c+d)=a﹣b﹣c+d-C.-a﹣(b﹣c+d)=a﹣b+c﹣d- D.-a﹣(b﹣c+d)=a﹣b+c+d考点:-去括号与添括号.分析:-根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.解答:-解:A、a+(b﹣c)+d=a+b﹣c+d,故错误;B、a﹣(b﹣c+d)=a﹣b+c﹣d,故错误;D、a﹣(b﹣c+d)=a﹣b+c﹣d,故错误;只有C符合运算方法,正确.故选C.点评:-本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.5.将多项式2a﹣3ab+4b2﹣5b的一次项放在前面带有“+”号的括号里,二次项放在前面带有“﹣”的括号里:以下答案不正确的是()A.2a﹣3ab+4b2﹣5b=+(2a﹣5b)﹣(3ab﹣4b2) B. 2a﹣3ab+4b2﹣5b=﹣(﹣4b2+3ab)+(2a﹣5b)C.2a﹣3ab+4b2﹣5b=+(2a﹣3ab)﹣(5b﹣4b2) D. 2a﹣3ab+4b2﹣5b=+(2a﹣5b)﹣(﹣4b2+3ab)考点:-去括号与添括号.分析:-根据添括号的方法逐一计算即可.解答:-解:A、2a﹣3ab+4b2﹣5b=+(2a﹣5b)﹣(3ab﹣4b2),正确;B、2a﹣3ab+4b2﹣5b=﹣(﹣4b2+3ab)+(2a﹣5b),正确;C、2a﹣3ab+4b2﹣5b=+(2a﹣3ab)﹣(5b﹣4b2),一次项与二次项放在了同一括号里,错误;D、2a﹣3ab+4b2﹣5b=+(2a﹣5b)﹣(﹣4b2+3ab),正确.故选C.点评:-本题考查添括号的方法:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.6.下列各式中去括号正确的是()A.a2﹣(2a﹣b2+b)=a2﹣2a﹣b2+b B.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣5)=2x2﹣3x+5 D.﹣a3﹣=﹣a3+4a2﹣1+3a考点:-去括号与添括号.分析:-根据去括号法则(括号前是“+”号,去括号时,把括号和它前面的“+”去掉,括号内的各项都不变,括号前是“﹣”号,去括号时,把括号和它前面的“﹣”去掉,括号内的各项都变号)去括号,即可得出答案.解答:-解:A、a2﹣(2a﹣b2+b)=a2﹣2a+b2﹣b,故本选项错误;B、﹣(2x+y)﹣(﹣x2+y2)=﹣2x﹣y+x2﹣y2,故本选项错误;C、2x2﹣3(x﹣5)=2x2﹣3x+15,故本选项错误;D、﹣a3﹣=﹣a3﹣=﹣a3+4a2﹣1+3a,故本选项正确.故选D.点评:-本题考查了去括号法则的应用,注意:①括号前是“+”号,去括号时,把括号和它前面的“+”去掉,括号内的各项都不变,括号前是“﹣”号,去括号时,把括号和它前面的“﹣”去掉,括号内的各项都变号,②m(a+b)=ma+mb,不是等于ma+b.7.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A. 1 B.5 C.﹣5 D.﹣1考点:-去括号与添括号.专题:-计算题.分析:-先把括号去掉,重新组合后再添括号.解答:-解:因为(b+c)﹣(a﹣d)=b+c﹣a+d=(b﹣a)+(c+d)=﹣(a﹣b)+(c+d)…(1),所以把a﹣b=﹣3、c+d=2代入(1)得:原式=﹣(﹣3)+2=5.故选:B.点评:-(1)括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去括号;(2)添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“﹣”,括号里的各项都改变符号.运用这一法则添括号.8.下列各题去括号错误的是()A.x﹣(3y﹣)=x﹣3y+ B.m+(﹣n+a﹣b)=m﹣n+a﹣bC.﹣(4x﹣6y+3)=﹣2x+3y+3 D.(a+b)﹣(﹣c+)=a+b+c﹣考点:-去括号与添括号.分析:-根据去括号与添括号的法则逐一计算即可.解答:-解:A、x﹣(3y﹣)=x﹣3y+,正确;B、m+(﹣n+a﹣b)=m﹣n+a﹣b,正确;C、﹣(4x﹣6y+3)=﹣2x+3y﹣,故错误;D、(a+b)﹣(﹣c+)=a+b+c﹣,正确.故选C.点评:-本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.二.填空题(共7小题)9.去括号:(a﹣b)﹣(﹣c+d)= a﹣b+c﹣d .考点:-去括号与添括号.分析:-根据去括号法则解答.(a﹣b)前是“+”,去括号后,括号里的各项都不改变符号;﹣(﹣c+d)括号前是“﹣”,去括号后,括号里的各项都改变符号.解答:-解:(a﹣b)﹣(﹣c+d)=a﹣b+c﹣d,故填a﹣b+c﹣d.点评:-括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.10.去括号填空:﹣= ﹣a+3b﹣3c .考点:-去括号与添括号.专题:-计算题.分析:-原式去括号即可得到结果.解答:-解:原式=﹣a+3(b﹣c)=﹣a+3b﹣3c.故答案为:﹣a+3b﹣3c点评:-此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.11.(﹣a+b+c)(a+b+c)=(b+ a+c )(b﹣a+c )考点:-去括号与添括号.分析:-利用加法的交换律进行填写即可.解答:-解:(﹣a+b+c)(a+b+c)=(b+a+c)(b﹣a+c),故答案为:a+c;a+c.点评:-本题主要加法的交换律,发现等号左右两边的不同是解题的关键.12.当1≤m<3时,化简|m﹣1|﹣|m﹣3|= 2m﹣4 .考点:-去括号与添括号;绝对值.分析:-先根据绝对值的性质把原式化简,再去括号即可.解答:-解:根据绝对值的性质可知,当1≤m<3时,|m﹣1|=m﹣1,|m﹣3|=3﹣m,故|m﹣1|﹣|m﹣3|=(m﹣1)﹣(3﹣m)=2m﹣4.点评:-本题考查绝对值的化简方法和去括号的法则,比较简单.13.在括号内填上适当的项:(a+b﹣c)(a﹣b+c)=.考点:-去括号与添括号.分析:-根据添括号法则添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“﹣”,括号里的各项都改变符号,直接求解.解答:-解:(a+b﹣c)(a﹣b+c)=.故答案为:b﹣c,b﹣c.点评:-此题主要考查了去括号与添括号,根据添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“﹣”,括号里的各项都改变符号.运用这一法则添括号是解题关键.14.不改变多项式3b3﹣2ab2+4a2b﹣a3的值,把后三项放在前面是“﹣”号的括号中,则该式可写成3b3﹣(2ab2﹣4a2b+a3).考点:-去括号与添括号.分析:-本题添了1个括号,且所添的括号前为负号,括号内各项改变符号.解答:-解:根据添括号的法则可知,原式=3b3﹣(2ab2﹣4a2b+a3).故答案是:3b3﹣(2ab2﹣4a2b+a3).点评:-本题考查添括号的方法:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.15.根据添括号法则完成变形:(x+2y﹣3)(x﹣2y+3)=.考点:-去括号与添括号.分析:-根据括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号,即可得出答案.解答:-解:(x+2y﹣3)(x﹣2y+3)=.故答案为:2y﹣3,2y﹣3.点评:-本题考查了添括号,添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.三.解答题(共7小题)16.去括号,并合并同类项:﹣3(2x﹣y)﹣2(4x+y)+2009.考点:-去括号与添括号;合并同类项.分析:-运用乘法的分配律,先把括号前的数字与括号里各项相乘,再根据去括号法则把括号去掉,然后合并同类项,即可得出答案.解答:-解:﹣3(2x﹣y)﹣2(4x+y)+2009=﹣6x+3y﹣8x﹣y+2009=﹣14x+2y+2009.点评:-本题考查了去括号和合并同类项:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号,然后合并.17.把代数式(a2﹣2ab+b2+5)(﹣a2+2ab﹣b2+5)写成(5+m)(5﹣m)的形式,并求出m.考点:-去括号与添括号.分析:-根据式子的特点变形得出,即可得出答案.解答:-解:(a2﹣2ab+b2+5)(﹣a2+2ab﹣b2+5)=即m=a2﹣2ab+b2点评:-本题考查了去括号和添括号法则的应用,题目比较好,难度不大.18.把多项式x4y﹣4xy3+2x2﹣xy﹣1按下列要求添括号:(1)把四次项结合,放在带“+”号的括号里;(2)把二次项相结合,放在带“﹣”号的括号里.考点:-去括号与添括号.分析:-(1)根据添括号法则,把四次项﹣4xy3,放在前面带有“﹢”号的括号里;(2)根据添括号法则,把二次项2x2放在前面带有“﹣”号的括号里.解答:-解:(1)∵把四次项结合,放在带“+”号的括号里,∴x4y﹣4xy3+2x2﹣xy﹣1=x4y+(﹣4xy3)+2x2﹣xy﹣1);(2)∵把二次项相结合,放在带“﹣”号的括号里,∴x4y﹣4xy3+2x2﹣xy﹣1=x4y﹣4xy3﹣(﹣2x2)﹣xy﹣1.点评:-本题考查了添括号的法则,添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.19.去括号,合并同类项(1)﹣3(2s﹣5)+6s;(2)3x﹣;(3)6a2﹣4ab﹣4(2a2+ab);(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)考点:-去括号与添括号;合并同类项.分析:-(1)先去括号,再合并同类项即可;(2)先去小括号,再去中括号,再合并同类项即可;(3)先去括号,再合并同类项即可;(4)先去括号,再合并同类项即可.解答:-解:(1)﹣3(2s﹣5)+6s=﹣6s+15+6s=15;(2)3x﹣=3x﹣=3x﹣5x+x﹣4=﹣x+4;(3)6a2﹣4ab﹣4(2a2+ab)=6a2﹣4ab﹣8a2﹣2ab=﹣2a2﹣6ab;(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣24.点评:-此题考查了整式的运算,用到的知识点是去括号、合并同类项,在去括号时要注意符号的变化和去括号的顺序.20.先去括号、再合并同类项①2(a﹣b+c)﹣3(a+b﹣c)②3a2b﹣2.考点:-去括号与添括号;合并同类项.分析:-根据括号前是正号,去掉括号及正号,括号里的各项都不变,括号前是负号,去掉括号及负号,括号里的各项都变号,可得答案.解答:-解:(1)原式=2a﹣2b+2c﹣3a﹣3b+3c=(2a﹣3a)+(﹣2b﹣3b)+(2c+3c)=﹣a﹣5b+5c;(2)原式=3a2b﹣2(ab2﹣2a2b+4ab2)=3a2b﹣10ab2+4a2b=7a2b﹣10ab2.点评:-本题考查了去括号与添括号,括号前是正号,去掉括号及正号,括号里的各项都不变,括号前是负号,去掉括号及负号,括号里的各项都变号.21.去括号并合并含相同字母的项:(x﹣6)+3(y﹣1)﹣2(﹣2y+6).考点:-去括号与添括号;合并同类项.分析:-本题考查了整式的加减,其一般步骤是去括号,合并同类项,合并同类项法则是把同类项的系数相加减,字母与字母的指数不变.解答:-解:原式=﹣x+10+x﹣3+3y﹣3+4y﹣12,=(﹣x+x)+(3y+4y)﹣12+10﹣3﹣3=7y﹣8.点评:-同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.合并同类项法则是把同类项的系数相加减,字母与字母的指数不变.22.先去括号,后合并同类项:(1)x+;(2);(3)2a﹣(5a﹣3b)+3(2a﹣b);(4)﹣3{﹣3}.考点:-去括号与添括号;合并同类项.分析:-去括号是注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变.解答:-解:(1)x+=x﹣x﹣2x+4y=﹣2x+4y;(2)原式=a﹣a﹣﹣+b2=;(3)2a﹣(5a﹣3b)+3(2a﹣b)=2a﹣5a+3b+6a﹣3b=3a;(4)﹣3{﹣3},=﹣3{9(2x+x2)+9(x﹣x2)+9},=﹣27(2x+x2)﹣27(x﹣x2)﹣27,=﹣54x﹣27x2﹣27x+27x2﹣27,=﹣81x﹣27.点评:-解决本题是要注意去括号时,符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.。

人教版七年级上第二章整式的加减同步练习题(1)含解析

人教版七年级上第二章整式的加减同步练习题(1)含解析

人教版七年级上第二章整式的加减同步练习题(1)含解析学校:___________姓名:___________班级:___________考号:___________一、填空题1.括号前面是“+”号,去掉括号,括号里的每一项都_______符号;括号前面是“-”号,去掉括号,括号里的每一项都_______符号.2.添括号:(1)222312x x x -+=+(_____); (2)221a a a -+=-(_________); (3)264a b c a -+-=-(_____)2a =+(_____);(4)(3)(3)[x y z x y z x +-+-+-=+(_____)][x -(_____)];(5)22()669()6m n m n m n +--+=+-(_____)9+.3.单项式23xm +1y 2-n 与2y 2x 3的和仍是单项式,则mn =_____.4.一台扫描仪的成本价为n 元,销售价比成本价提高了30%,为尽快打开市场.按销售价的八折优惠出售,则优惠后每台扫描仪的实际售价为______元.5.35a -=,且a 在原点左侧,则=a _________. 6.已知4a b -=,则多项式2211()9()()5()42a b a b a b b a -------的值______.二、单选题7.化简:﹣(﹣2)=( )A .﹣2B .﹣1C .1D .28.下列去括号正确的是( )A .()3236a a --=-B .()3232a a --=-C .()3232a a --=-- D .()3236a a --=-+9.(﹣1)2022的相反数是( )A .﹣1B .2022C .﹣2022D .110.为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100)x -元C .8(100)x -元D .(1008)x -元 11.若A 是一个四次多项式,B 是一个三次多项式,则A B -是( )A .七次多项式B .七次整式C .四次多项式D .四次整式 12.疫情期间,小明去药店买口罩和消毒液(每包口罩单价相同,每瓶消毒液价格相同).若购买20包口罩和15瓶消毒液,则身上的钱还少25元,若购买19包口罩和13瓶消毒液,则他身上的钱会剩下15元,若小明购买16只口罩和7瓶消毒液,则( )A .他身上的钱会剩下135元B .他身上的钱会不足135元C .他身上的钱会剩下105元D .他身上的钱会不足105元三、解答题13.计算下列各题:(1)223x y x y -;(2)222227378337ab a b ab a b ab -+++--.14.先化简,后求值:24x y ﹣[6xy ﹣2(4xy ﹣2)﹣2x y ]+1,其中x =﹣1,y =2.15.如图,化简|a |﹣|b |﹣|c |.参考答案:1. 不改变 改变【解析】略2. 31x -+ 1a - 264b c -+ 32b c -+- 3y z -+ 3y z -+ m n +【分析】根据添括号法则逐一求解即可.【详解】解:(1)()22231231-+=+-+x x x x ;(2)()2211-+=--a a a a ;(3)()()264264232-+-=--+=+-+-a b c a b c a b c ;(4)()()(3)(3)33+-+-+-=+-+--+⎡⎤⎡⎤⎣⎦⎣⎦x y z x y z x y z x y z ;(5)()22()669()69+--+=+-++m n m n m n m n .故答案为:(1)31x -+;(2)1a -;(3)264b c -+,32b c -+-;(4)3y z -+,3y z -+;(5)m n +.【点睛】本题主要考查了添括号法则,熟练掌握添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括到括号里的各项都改变符号是解题的关键. 3.1【分析】根据单项式的和是单项式,可得两个单项式是同类项,根据同类项,可得m 、n 的值,根据代数式求值,可得答案.【详解】解:依题意得:m +1=3,2﹣n =2,m =2,n =0,∴mn =20=1.故答案为:1.【点睛】本题考查了合并同类项,利用单项式的和是单项式得出同类项是解题的关键. 4.1.04n【分析】根据题意可以用代数式表示出优惠后的每台扫描仪的实际售价.【详解】由题意有,优惠后每台扫描仪的售价为:n ×(1+30%)×80%=1.04n ,故答案为:1.04n .【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式. 5.-2【分析】利用数轴及绝对值得出a 的值,再根据a 在原点左侧确定a 的值即可.【详解】∴35a -=,∴a -3=5或a -3=-5,∴a =8或a =-2,∴a 在原点左侧,∴a =-2.故答案为 -2【点睛】本题主要考查了数轴,解题的关键是利用数轴及绝对值得出a 的值.6.20-【分析】先利用整式的加减运算化简,然后整体代入4a b -=求解即可.【详解】解:∴4a b -=, ∴2211()9()()5()42a b a b a b b a ------- ()()2144a b a b =---- 214444=-⨯-⨯ 20=-,故答案为:-20.【点睛】本题主要考查了整式的化简求值,解题的关键在于能够熟练掌握相关知识进行求解.7.D【分析】根据去括号原则去括号即可.【详解】由于括号前是负号,去括号后原括号里各项的符号都要改变,故原式=2.故选D .【点睛】本题考查去括号原则,解决本题的关键是熟练应用去括号原则.8.D【分析】根据去括号法则逐项进行判断即可.【详解】()3236a a --=-+,故D 正确.故选:D .【点睛】本题主要考查了去括号法则,括号前面是正号的把括号和正号去掉,括号里的每一项符号不变,括号前是负号的把括号和负号都去掉,括号里的每一项符号发生改变. 9.A【分析】先求出(﹣1)2022,再根据相反数的定义即可求解.【详解】解:(﹣1)2022=1,1的相反数是﹣1.故选:A .【点睛】本题考查了相反数的定义及有理数的乘方,熟练掌握相反数的定义及-1的偶数次方等于1是解题的关键.10.C【分析】根据题意列求得购买乙种读本()100x -本,根据单价乘以数量即可求解.【详解】解:设购买甲种读本x 本,则购买乙种读本()100x -本,乙种读本的单价为8元/本,则则购买乙种读本的费用为8(100)x -元故选C【点睛】本题考查了列代数式,理解题意是解题的关键.11.D【分析】根据题意,利用整式的加减法则进行判断即可.【详解】解:∴A 是一个四次多项式,B 是一个三次多项式,∴A B -可能是四次多项式,也可能是四次单项式,∴A B -一定是四次整式,故选D .【点睛】本题考查了整式的加减.熟练掌握运算法则是解本题的关键.12.A【分析】设每包口罩x 元,每瓶消毒液y 元,根据小明带的总钱数是不变的,可得到:20x +15y -25=19x +13y +15,整理可得到x +2y =40.小明购买16只口罩和7瓶消毒液会消费16x +7y ,再利用20x +15y -25-(16x +7y )即可表示出小明身上剩下的钱数,代入计算即可.【详解】解:设每包口罩x 元,每瓶消毒液y 元,∴小明带的总钱数是不变的,∴20x +15y -25=19x +13y +15,整理得:x +2y =40.小明购买16只口罩和7瓶消毒液会消费:16x +7y ,∴剩余的钱为:20x +15y -25-(16x +7y )=20x +15y -25-16x -7y=4x +8y -25将x +2y =40代入得:4×40-25=135即小明身上的钱会剩下135元.故选:A【点睛】本题考查了字母表示数,代数式求值,整式加减运算,能够准确分析题意,找到不变量是解决本题的关键.13.(1)22x y -(2)284ab +【分析】(1)根据合并同类项法则计算即可;(2)根据合并同类项法则计算即可.(1)解:原式()22132x y x y =-=-;(2)解:原式()()222222773387384ab ab a b a b ab ab =-+-++-=+.【点睛】本题考查了整式的加减运算,熟练掌握合并同类项时,将系数相加,字母和字母指数不变是解题的关键.14.52x y +2xy ﹣3;3【分析】先去括号,再合并 同类项,即可化简,然后把x 、y 值代入许即可.【详解】解:42x y ﹣[6xy ﹣2(4xy ﹣2)﹣2x y ]+1=24x y ﹣6xy +2(4xy ﹣2)+2x y + 1=42x y ﹣6xy +8xy ﹣4+2x y + 1=25x y +2xy ﹣3,当x =﹣1,y =2时,原式=5×2(1) ×2+2×(﹣1)×2﹣3=10﹣4﹣3=3.【点睛】本题考查整化简求值,熟练掌握整式加减混合运算法则、去括号法则是解题的关键. 15.a +b +c【分析】根据绝对值的含义和求法,化简即可.【详解】解:由数轴可得:a >0,b <0,c <0,∴|a |=a ,|b |=-b ,|c |=-c ,∴原式=a ﹣(﹣b )﹣(﹣c )=a +b +c .【点睛】此题主要考查了数轴上的点的正负性,绝对值的含义和求法,要熟练掌握数轴上的点的正负性以及绝对值的化简方法是解题的关键.。

北京市七年级数学上册第二章《整式的加减》经典题(含答案解析)

北京市七年级数学上册第二章《整式的加减》经典题(含答案解析)

1.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次C解析:C【分析】 首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次. 故选C .此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C.【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7 B.﹣1 C.5 D.11A解析:A【分析】先确定第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;第7次操作,a7=|-7+4|-10=-7;…第2020次操作,a2020=|-7+4|-10=-7.故选:A.【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.4.有一组单项式如下:﹣2x,3x2,﹣4x3,5x4……,则第100个单项式是()A.100x100B.﹣100x100C.101x100D.﹣101x100C解析:C【分析】由单项式的系数,字母x的指数与序数的关系求出第100个单项式为101x100.【详解】由﹣2x,3x2,﹣4x3,5x4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n,字母的指数为n,∴第100个单项式为(﹣1)100(100+1)x100=101x100,故选C.【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.5.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22mn =⎧⎨=⎩,故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( )A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83mab 是同类项,∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩则()()5711n m +-=14-故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.7.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( )A .2018B .2018-C .1009-D .1009C解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解. 【详解】解: 123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.8.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( )A .2B .﹣2C .3D .﹣3D解析:D【分析】先将多项式合并同类型,由不含x 的二次项可列【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,∴6+2m=0,解得m =﹣3,故选:D .【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.9.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D【分析】 利用大正方形的周长减去4个小正方形的周长即可求解.【详解】 解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b -, ∴大正方形的周长与小正方形的周长的差是:2a b +×4-4a b -×4=a+3b. 故选;D.【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.10.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 11.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- C解析:C各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.12.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738B 解析:B【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数.【详解】根据题中的数据可知:左下角的数=上面的数的平方+1∴28165x =+=右下角的值=上面的数×左下角的数+上面的数∴888658528y x =+=⨯+=∴65528593x y +=+=故选:B.【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式.13.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.14.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A 解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.15.下列说法错误的是( )A .23-2x y 的系数是32- B .数字0也是单项式 C .-x π是二次单项式D .23xy π的系数是23πC 解析:C【分析】根据单项式的有关定义逐个进行判断即可.【详解】 A. 23-2x y 的系数是32-,故不符合题意; B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D. 23xy π的系数是23π,故不符合题意. 故选C .【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键.1.如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为__.2【分析】先去括号再根据不含的项列出式子求解即可得【详解】由题意得:解得故答案是:2【点睛】本题考查了去括号多项式中的无关型问题熟练掌握去括号法则是解析:2【分析】先去括号,再根据“不含2x 的项”列出式子求解即可得.【详解】3223242(176)4(2)176x x kx x x k x x +-+-=+--+,由题意得:20k -=,解得2k =,故答案是:2.【点睛】本题考查了去括号、多项式中的无关型问题,熟练掌握去括号法则是解题关键. 2.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为______.-9【分析】根据题中给出的运算法则按照顺序求解即可【详解】解:根据题意得:故答案为-9【点睛】本题考查了有理数的运算理解题意弄清题目给出的运算法则是正确解题的关键解析:-9.【分析】根据题中给出的运算法则按照顺序求解即可.【详解】解:根据题意,得:2131x,2(1)79y .故答案为-9.【点睛】本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键. 3.观察下列图形它们是按一定规律排列的,依照此规律,第 20 个图形共有________________ 个★. 【分析】由排列组成的图形都是三角形找出规律即可求出答案【详解】解:根据规律可知:第一个图形中有1×3=3个★第二个图形中有2×3=6个★第三个图形中有3×3=9个★…第n 个图形有3n 个★∴第20个图解析:60【分析】由排列组成的图形都是三角形,找出规律,即可求出答案.【详解】解:根据规律可知:第一个图形中有1×3=3个★,第二个图形中有2×3=6个★,第三个图形中有3×3=9个★,…第n 个图形有3n 个★,∴第20个图形共有20×3=60个★.故答案为:60.【点睛】解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n 个图形有3n 个★.4.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.31【分析】根据题意找出折叠次的折痕条数的函数解析式再将代入求解即可【详解】折叠次的折痕为;折叠次的折痕为;折叠次的折痕为;……故折叠次的折痕应该为;折叠次将代入折痕为故答案为:31【点睛】本题考查解析:31【分析】根据题意找出折叠n 次的折痕条数的函数解析式,再将5n =代入求解即可.【详解】折叠1次的折痕为1,1121=-;折叠2次的折痕为3,2321=-;折叠3次的折痕为7,3721=-;……故折叠n 次的折痕应该为21n -;折叠5次,将5n =代入,折痕为52131-=故答案为:31.【点睛】本题考查了图形类的规律题,找出折叠n 次的折痕条数的函数解析式是解题的关键. 5.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.7【分析】根据数轴和题目中的式子可以求得c﹣b的值从而可以求得|b﹣c|的值【详解】∵|a﹣c|=10|a﹣d|=12|b﹣d|=9∴c﹣a=10d﹣a=12d﹣b=9∴(c﹣a)﹣(d﹣a)+(d解析:7【分析】根据数轴和题目中的式子可以求得c﹣b的值,从而可以求得|b﹣c|的值.【详解】∵|a﹣c|=10,|a﹣d|=12,|b﹣d|=9,∴c﹣a=10,d﹣a=12,d﹣b=9,∴(c﹣a)﹣(d﹣a)+(d﹣b)=c﹣a﹣d+a+d﹣b=c﹣b=10﹣12+9=7.∵|b﹣c|=c﹣b,∴|b﹣c|=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.6.如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b,共有_____种方式(不考虑投中目标的顺序).2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab﹣b2b时a+b﹣b+2b=a+2b;当投中的目标区域内的单项式为﹣a2a02b时﹣a+2a+0+2b=a+2b故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a、b、﹣b、2b时,a+b﹣b+2b=a+2b;当投中的目标区域内的单项式为﹣a、2a、0、2b时,﹣a+2a+0+2b=a+2b.故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.7.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算. 8.如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.【分析】由长方形的面积减去PQLM 与RKTS 的面积再加上重叠部分面积即可得到结果【详解】S 矩形ABCD=AB•AD=abS 道路面积=ca+cb-c2所以可绿化面积=S 矩形ABCD-S 道路面积=ab-解析:2ab bc ac c --+【分析】由长方形的面积减去PQLM 与RKTS 的面积,再加上重叠部分面积即可得到结果.【详解】S 矩形ABCD =AB•AD=ab ,S 道路面积=ca+cb-c 2,所以可绿化面积=S矩形ABCD-S道路面积=ab-(ca+cb-c2),=ab-ca-cb+c2.故答案为:ab-bc-ac+c2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.9.“a的3倍与b的34的和”用代数式表示为______.【分析】a的3倍表示为3ab的表示为b然后把它们相加即可【详解】根据题意得3a+b;故答案为:3a+b 【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列解析:3 34 a b【分析】a的3倍表示为3a,b的34表示为34b,然后把它们相加即可.【详解】根据题意,得3a+34 b;故答案为:3a+34 b.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写.10.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m+n+p=_________;4【分析】根据约定的方法求出mnp即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.有一长方体形状的物体,它的长,宽,高分别为a ,b ,c(a>b>c),有三种不同的捆扎方式(如图所示的虚线).哪种方式用绳最少?哪种方式用绳最多?说明理由.解析:方式甲用绳最少,方式丙用绳最多.【解析】试题分析:根据长方形的对称性分别得到三种方式所需要的绳子的长度,然后将这三个代数式进行作差比较大小.试题方式甲所用绳长为4a +4b +8c ,方式乙所用绳长为4a +6b +6c ,方式丙所用绳长为6a +6b +4c ,因为a>b>c ,所以方式乙比方式甲多用绳(4a +6b +6c)-(4a +4b +8c)=2b -2c ,方式丙比方式乙多用绳(6a +6b +4c)-(4a +6b +6c)=2a -2c.因此,方式甲用绳最少,方式丙用绳最多.2.若1+2+3+…+n=m ,求(ab n )•(a 2b n ﹣1)…(a n ﹣1b 2)•(a n b )的值.解析:a m b m【解析】试题分析:根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质,(ab n )•(a 2b n ﹣1)…(a n ﹣1b 2)•(a n b )=a 1+2+…n b n+n ﹣1+…+1=a m b m .解:∵1+2+3+…+n=m ,∴(ab n )•(a 2b n ﹣1)…(a n ﹣1b 2)•(a n b ),=a 1+2+...n b n+n ﹣1+ (1)=a m b m考点:单项式乘单项式;同底数幂的乘法.点评:本题考查单项式的乘法法则和同底数幂的乘法的性质.3.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案. 【详解】 解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=. 【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.4. 1+2+3++100⋯=?经过研究,这个问题的一般性结论是()1123n n n 12+++⋯+=+,其中n 是正整数.现在我们来研究一个类似的问题:()122334n n 1⨯+⨯+⨯+⋯+=?观察下面三个特殊的等式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯ 将这三个等式的两边相加,可以得到1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果: 1223341011⨯+⨯+⨯+⋯⨯=① ______()122334n n 1⨯+⨯+⨯+⋯+=② ______(2)探究并计算:()()123234345n n 1n 2⨯⨯+⨯⨯+⨯⨯+⋯+++= ______ (3)请利用(2)的探究结果,直接写出下式的计算结果:123234345101112⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯= ______ .解析:(1)①440,②()()1n n 1n 23++;(2)()()()1n n 1n 2n 34+++;(3)4290 【分析】(1)①根据阅读材料的结论计算即可;②根据阅读材料的结论进行总结;(2)仿照(1)的计算方法进行归纳即可;(3)代入(2)总结的规律进行计算即可.【详解】解:(1)①1×2+2×3+3×4+…10×11=13×10×11×12=440, ②1×2+2×3+3×4+…+n (n+1)=13n (n+1)(n+2), (2)1×2×3=14(1×2×3×4-0×1×2×3), 2×3×4=14(2×3×4×5-1×2×3×4), 3×4×5=14(3×4×5×6-2×3×4×5), 则1×2×3+2×3×4+3×4×5+…+n (n+1)(n+2)=14n (n+1)(n+2)(n+3); (3)123234345101112⨯⨯+⨯⨯+⨯⨯++⨯⨯ =14×10×11×12×13 =4290.【点睛】本题考查了有理数的混合运算、规律型-数字的变化类,弄清题意,得出一般性的规律是解本题的关键.。

七年级数学整式的加减练习及解析

七年级数学整式的加减练习及解析

七年级数学整式的加减练习及解析一、单选题1.已知整式的值为6,则整式2x2-5x+6的值为()A.9B.12C.18D.24【答案】C【解析】观察题中的两个代数式,可以发现,2x2-5x=2(x2-x),因此可整体求出式x2-x的值,然后整体代入即可求出所求的结果.解答:解:∵x2-x=6∴2x2-5x+6=2(x2-x)+6=2×6+6=18,故选C.2.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为A.180B.182C.184D.186【答案】C【解析】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,∵3×5﹣1=14,;5×7﹣3=32;7×9﹣5=58;∴m=13×15﹣11=184.故选C.3.将一些完全相同的正三角形按如图所示规律摆放,第一个图形有1个正三角形,第二个图形有5个正三角形,第三个图形有12个正三角形,…,按此规律排列下去,第六个图形中正三角形的个数是()A.35B.41C.45D.51【答案】D【解析】【分析】观察图形发现:第一个图形有1=1个正三角形,第二个图形有1+2+2=5个正三角形,第三个图有1+2+3+2+4=12个正三角形,第四个图有1+2+3+4+2+4+6=22个正三角形,由此可知第n 个图形中有1+2+3+…+n+2+4+…+2(n-1)=,由此进行计算即可得.【详解】观察图形发现:第一个图形有1=1个正三角形,第二个图形有1+2+2=5个正三角形,第三个图有1+2+3+2+4=12个正三角形,第四个图有1+2+3+4+2+4+6=22个正三角形,…∴第n 个图形中有1+2+3+…+n+2+4+…+2(n-1)=,n=6时,=51,故选D.【点睛】本题考查了规律型——图形的变化类,通过观察所给图形得到找出图形之间的运算规律,利用规律解决问题是关键.4.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8B.﹣8C.﹣12D.12【答案】D【解析】【分析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.【详解】∵2×5﹣1×(﹣2)=12,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=12.故选D.【点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.5.已知当x=1时,2ax2﹣bx的值为﹣1,则当x=﹣2时,ax2+bx的值为()A.2B.﹣2C.5D.﹣5【答案】B【解析】因为当x=1时,2ax2﹣bx的值为﹣1,所以2a﹣b=﹣1,当x=﹣2时,ax2+bx=4a ﹣2b=2(2a﹣b)=﹣2,故选B.6.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1B.4C.2018D.42018【答案】A【解析】【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【详解】若n=13,第1次结果为:3n+1=40,第2次结果是:, 第3次结果为:3n+1=16, 第4次结果为:=1,第5次结果为:4, 第6次结果为:1, …可以看出,从第四次开始,结果就只是1,4两个数轮流出现, 且当次数为偶数时,结果是1;次数是奇数时,结果是4, 而2018次是偶数,因此最后结果是1, 故选A . 【点睛】本题考查了规律题——数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.7.多项式33233234383387x x y x y x x y x y x -+++--的值( ) A . 与x ,y 有关 B . 与x 有关 C . 与y 有关 D . 与x ,y 无关 【答案】D【解析】根据整式的加减—合并同类项,可知33233234383387x x y x y x x y x y x -+++--=0,因此多项式与x 、y 均无关.故选:D.8.一列数,按一定规律排列成﹣1,3,﹣9,27,﹣81,…,从中取出三个相邻的数,若三个数的和为a ,则这三个数中最大的数与最小的数的差为( )A .B .C .D . 【答案】C【解析】解:∵该列数为:﹣1,3,﹣9,27,﹣81,…,∴该列数中第n 个数为﹣(﹣3)n ﹣1(n 为正整数).设该三个相邻数中间的数为x﹣3x ,根据题意得:+x ﹣3x =a ,解得:x =C . 点睛:本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.9.观察下列图形规律,其中第1个图形由6个○组成,第2个图形由14个○组成,第3个图形由24个○组成,…,照此规律下去,则第8个图形○的个数一共是()A.84 B.87 C.104 D.123【答案】C【解析】分析:把每一个图形分为上下两部分,用列举法分别找出这两部分的计算规律.详解:图计算图①1+3+1+1=6图②1+3+5+2+3=14图③1+3+5+7+3+5=24……图⑧1+3+5+7+9+11+13+15+17+8+15=107.故选C.点睛:寻找图形的计数规律,要善于找到切入点,可将问题分成“变”与“不变”两部分来考虑,尤其是抓住不变的部分,以此为基础观察变化部分的规律,关键是观察图形的结构组成,通过列举部分图形,找出其中的变化规律,从而推测出通式.10.下列说法:①若a为任意有理数,则总是正数;②方程是一元一次方程;③若ab>0,a+b<0,则a<0,b<0;④是分数;⑤单项式的系数是,次数是4.其中错误的有()A.1个B.2个C.3个D.4个【答案】C【解析】根据乘方的意义,可知a2≥0,因此a2+1>0,是正数,故①正确;根据一元一次方程是整式方程,故②不正确;根据ab>0,可知a、b同号,再由a+b<0,可知a <0、b<0,故③正确;由于π是无理数,故④不正确;单项式的系数是,故⑤正确.故选:C.11.法国数学家柯西于1813年在拉格朗日、高斯的基础上彻底证明了《费马多边形数定理》,其主要突破在“五边形数”的证明上.如图为前几个“五边形数”的对应图形,请据此推断,第10个“五边形数”应该为(),第2018个“五边形数”的奇偶性为()A.145;偶数B.145;奇数C.176;偶数D.176;奇数【答案】B【解析】【分析】仔细观察所给的图形,找出图形中蕴含的规律,根据所得的规律即可解答.【详解】∵第1个“五边形数”为1,1=×12﹣×1,第2个“五边形数”为5,5=×22﹣×2,第3个“五边形数”为12,12=×32﹣×3,第4个“五边形数”为22,22=×42﹣×4,第5个“五边形数”为35,35=×52﹣×5,…∴第n个“五边形数”为n2﹣n,将n=10代入,得第10个“五边形数”为×102﹣×10=145,当n=2018时,n2=3×2018×1009,是偶数,n=1009是奇数,所以n2﹣n是奇数.故选B.【点睛】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.12.x2+ax﹣y﹣(bx2﹣x+9y+3)的值与x的取值无关,则﹣a+b的值为()A.0 B.﹣1 C.﹣2 D.2【答案】D【解析】根据整式的加减法,去括号合并同类项可得x 2+ax ﹣y ﹣(bx 2﹣x +9y +3)= x 2+ax ﹣y ﹣bx 2+x -9y -3=(1-b )x 2+(a+1)x+(-1-9)y-3,由于值与x 的值无关,可得1-b=0,a+1=0,解得a=-1,b=1,因此可求-a+b=2. 故选:D.点睛:此题主要考查了整式的值与字母无关形的题目,解题关键是明确无关的主要特点是系数为0,然后通过整式的化简,让相关的系数为0即可求解.13.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a , b ()a b >,则()a b -等于( )A . 8B . 7C . 6D . 5 【答案】B【解析】设重叠部分面积为c ,(a-b )可理解为(a+c )-(b+c ),即两个正方形面积的差,所以a-b=(a+c )-(b+c )=16-9=7. 故选:A .点睛:本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.14.如图,点O (0,0),A (0,1)是正方形OAA 1B 的两个顶点,以OA 1对角线为边作正方形OA 1A 2B 1,再以正方形的对角线OA 2作正方形OA 1A 2B 1,…,依此规律,则点A 2017的坐标是( )A . (0,21008)B . (21008,21008)C . (21009,0)D . (21009,-21009) 【答案】B【解析】观察,发现:A(0,1)、A1(1,1),A2(2,0),A3(2,−2),A4(0,−4),A5(−4,−4),A6(−8,0),A7(−8,8),A8(0,16),A9(16,16)…,(24n,24n)(n为自然数).∴A8n+1∵2017=252×8+1,(2252×4,2252×4),即点A2017的坐标是(21008,21008).∴A2017故选B.15.观察下列单项式的排列规律:3x,,,,,,照这样排列第10个单项式应是()A.39x10B.-39 x10C.-43 x10D.43 x10【答案】B【解析】分析:第奇数个单项式系数的符号为正,第偶数个单项式的符号为负,那么第n个单项式可用(﹣1)n+1表示,第一个单项式的系数的绝对值为3,第2个单项式的系数的绝对值为7,那么第n个单项式的系数可用(4n﹣1)表示;第一个单项式除系数外可表示为x,第2个单项式除系数外可表示为x2,第n个单项式除系数外可表示为x n.详解:第n个单项式的符号可用(﹣1)n+1表示;第n个单项式的系数可用(4n﹣1)表示;第n个单项式除系数外可表示为x n,∴第n个单项式表示为(﹣1)n+1(4n﹣1)x n,∴第10个单项式是(﹣1)10+1(4×10﹣1)x10=﹣39x10.故选B.点睛:本题考查了单项式.也考查了数字的变化规律;分别得到符号,系数等的规律是解决本题的关键;得到各个单项式的符号规律是解决本题的易错点.16.萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件元的价格购进了件牛奶;每件元的价格购进了件洗发水,萱萱建议将这两种商品都以元的价格出售,则按萱萱的建议商品卖出后,商店()A.赚钱B.赔钱C.不嫌不赔D.无法确定赚与赔【答案】D【解析】【分析】此题可以先列出商品的总进价的代数式,再列出按萱萱建议卖出后的销售额,然后利用销售额减去总进价即可判断出该商店是否盈利.【详解】由题意得,商品的总进价为,商品卖出后的销售额为,则,因此,当>时,该商店赚钱:当<时,该商店赔钱;当时,该商店不赔不赚.故答案为D.【点睛】本题主要考查列代数式及整数的加减,分类讨论的思想是解题的关键.17.如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知该图案的面积为,小正方形的面积为4,若用,表示小矩形的两边长,请观察图案,指出以下关系式中不正确的是()A. B.C. D.【答案】C【解析】A.因为正方形图案的边长为7,同时还可用来表示,故正确;B.因为正方形图案面积从整体看是,从组合来看,可以是,还可以是,所以有,,即,,所以,即;C.,故是错误的;D.由B可知.故选C.18.现有一列数:a1,a2,a3,a4,…,a n-1,a n(n为正整数),规定a1=2,a2- a1=4,,…,(n≥2),若,则n的值为( ).A.2015B.2016C.2017D.2018【答案】C【解析】分析:根据条件a1=2,a2﹣a1=4,a3﹣a2=6,…,a n﹣a n﹣1=2n(n≥2),求出a2=a1+4=6=2×3,a3=a2+6=12=3×4,a4=a3+8=20=4×5,由此得出a n=n(n+1).根据=﹣化简+++…+=﹣,再解方程﹣=即可求出n的值.详解:∵a1=2,a2﹣a1=4,a3﹣a2=6,…,a n﹣a n﹣1=2n(n≥2),∴a2=a1+4=6=2×3,a3=a2+6=12=3×4,a4=a3+8=20=4×5,…∴a n=n(n+1).∵+++…+=﹣+﹣+﹣+…+﹣=﹣=,∴=﹣,解得:n=2017.故选C.点睛:本题考查了规律型:数字的变化类,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出a n=n(n+1).19.按一定规律排列的一列数:,,,,…,其中第6个数为( )A.B.C.D.【答案】D【解析】【分析】观察可知第n个数分母是n,分子是(n+1)2-1的算术平方根,据此即可得.【详解】根据一列数:,,,,…,可知第n个数分母是n,分子是(n+1)2-1的算术平方根,据此可知:第六个数是=,故答案为:.【点睛】本题考查了规律题——数字的变化类,仔细观察找出这列数的变化规律是解题的关键. 20.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)10的展开式中第三项的系数为()A.2018B.2017C.55D.45【答案】D【解析】【分析】根据图形中的规律即可求出(a+b)10的展开式中第三项的系数.【详解】找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)10第三项系数为1+2+3+…+9=45.故选D.【点睛】本题考查了数字变化规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.21.定义一种运算:,其中是正整数,且,表示非负实数的整数部分,例如,.若,则的值为()A.2015B.4C.2014D.5【答案】B【解析】【分析】根据新定义分别计算出, ,,,,,,,,,,由此可得a的值分别为1、2、3、4、5,且从序号1开始每5个一循环,由于,可得.【详解】,,,,,,,同理可得,,,,,,所以B选项是正确的.【点睛】本题主要考查规律型数字变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况,找出数字的变化规律是解题的关键.22.已知a-7b=-2,则4-2a+14b的值是( ).A.0B.2C.4D.8【答案】D【解析】运用添括号法则,将式子-2a+14b放入带的负号的括号中,即可得到-2(a-7b),再运用整体思想代入求值即可.解:4-2a+14b=4-2(a-7b)=4-2×(-2)=4+4=8.故选D.二、解答题23.已知多项式3+-8与多项式-+2+7的差中,不含有2、的项,求+的值.【答案】3【解析】试题分析:先求出两个多项式的差,再根据题意,不含有x、y,即含x、y项的系数为0,求出m、n的值,再代入求值即可.试题解析:3+-8-(-n+2+7)=3+-8+n-2y-7=(3+n) +(m-2)y-15因为不含,y项所以3+n=0n=-3m-2=0m=2+=(-3)2+2×(-3)=324.你会求的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:(1)由上面的规律我们可以大胆猜想,得到=________利用上面的结论,求(2)的值;(3)求的值.【答案】(1);(2);(3)【解析】分析:(1)根据已知算式得出规律,即可得出答案;(2)先变形,再根据规律得出答案即可;(3)先变形,再根据算式得出即可.详解:(1)(a﹣1)(a2018+a2017+a2016+…+a2+a+1)=a2019﹣1.故答案为:a2019﹣1;(2)22018+22017+22016+…+22+2+1=(2﹣1)×(22018+22017+22016+…+22+2+1)=22019﹣1故答案为:22019﹣1;(3)∵()()∴∴.点睛:本题考查了整式的混合运算的应用,能根据题目中的算式得出规律是解答此题的关键,难度适中.25.a、b、c三个数在数轴上位置如图所示,且|a|=|b|(1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.【答案】(1)|a|=a,|b|=﹣b,|c|=﹣c;(2)﹣a<a<﹣c;(3)﹣2a.【解析】【分析】(1)根据图示可知c<b<0<a,由此根据绝对值的性质即可得答案;(2)根据数轴上点的位置以及绝对值进行比较即可得;(3)根据题意得:a+b=0,a﹣b>0,a+c<0,b﹣c>0,由此进行化简即可得结果.【详解】(1)∵从数轴可知:c<b<0<a,∴|a|=a,|b|=﹣b,|c|=﹣c;(2)∵从数轴可知:c<b<0<a,|c|>|a|,∴﹣a<a<﹣c;(3)根据题意得:a+b=0,a﹣b>0,a+c<0,b﹣c>0,则|a+b|﹣|a﹣b|+|a+c|﹣|b﹣c|=0﹣a+b﹣a﹣c﹣b+c=﹣2a.【点睛】本题考查了数轴、绝对值的化简、有理数大小比较等,读懂数轴、熟练应用相关知识是解题的关键.26.如图,一个点从数轴上的原点开始,先向左移动2 cm到达点A再向左移动3 cm 到达点B,然后向右移动9 cm到达点C.(1)用1个单位长度表示1 cm,请你在数轴上表示出A、B、C三点的位置;(2)把点C 到点A 的距离记为CA ,则CA =____cm ;(3)若点B 以每秒2 cm 的速度向左移动,同时A 、C 点分别以每秒1 cm 、4 cm 的速度向右移动,设移动时间为t 秒,试探索: CA -AB 的值是否会随着t 的变化而改变?请说明理由.【答案】(1)见解析;(2) 6cm;(3)不会.理由见解析. 【解析】(1)在数轴上表示出A ,B ,C 的位置即可;(2)求出CA 的长即可;(3)不变,理由如下:当移动时间为t 秒时,表示出A ,B ,C 表示的数,求出CA-AB 的值即可做出判断. 解:⑴如图所示:⑵CA=6cm⑶不变,理由如下: 当移动时间为 秒时,点A 、B 、C 分别表示的数为 、 、 则CA= , AB= ∵CA -AB= =3 ∴CA -AB 的值不会随着 的变化而改变“点睛”此题考查了整式的加减,熟练掌握运算法则是解题的关键.27.阅读材料:对于任何数,我们规定符号| a c的意义是| a c﹣bc例如: 1| 3=1×4﹣2×3=﹣2(1)按照这个规定,请你计算5| 2-(2)按照这个规定,请你计算当|x +y -4|+(xy+1)2=0时, 1| 1-【答案】(1) 52;(2)6【解析】试题分析:(1)由题意得,新运算是求对角线位置数积的差. (2)先求出x+y,xy 的值,再利用新运算,化简代入求值.解:(1)5|2- (-2)×6=52. (2)由|x+y -4|+(xy +1)2=0得x+y -4=0,∴xy +1=0. x+y =4,∴xy =-1.∴1|1-x +1+3xy +2y =2(x+y )+3xy +1=2×4+3×(-1)+1=6.28.已知m 、x 、y 满足:(1)﹣2ab m 与4ab 3是同类项;(2)(x ﹣5)2+|y ﹣23|=0. 求代数式:2(x 2﹣3y 2)﹣3(2223x y m --)的值. 【答案】239【解析】试题分析:由同类项的定义可得m 的值,由非负数之和为0,非负数分别为0可得出x 、y 的值,代入所求式子中计算即可得到结果. 试题解析:∵﹣2ab m 与4ab 3是同类项,(x ﹣5)2+|y ﹣23|=0, ∴m=3,x=5,y=23, 则原式=2x 2﹣6y 2﹣2x 2+3y 2+3m=﹣3y 2+3m=﹣43+9=239.29.(1)先化简,再求值:5(3a 2b ﹣ab 2)﹣3(ab 2+5a 2b )其中b=(2)已知代数式2x 2+ax ﹣y+6﹣2bx 2+3x ﹣5y ﹣1的值与x 的取值无关,请求出代数式a 3﹣2b 22+3b 2的值.【答案】(1)原式=﹣8ab 2=(2)原式=﹣9. 【解析】试题分析:(1)去括号合并得到最简结果,把a 与b 的值代入计算即可求出值;(2)合并同类项得到最简结果,由结果与x 的值无关确定出a 与b 的值,代入原式计算即可得到结果.试题解析:解:(1)原式=15a 2b ﹣5ab 2﹣3ab 2﹣15a 2b =﹣8ab 2当a b == (2)原式=(2﹣2b )x 2+(a +3)x ﹣6y +5, 由结果与x 的值无关,得到:2﹣2b =0,a +3=0 解得:a =﹣3,b =1. 则原式=﹣9﹣2﹣1+3=﹣9.点睛:本题考查了整式的加减-化简求值,熟练掌握运算法则是解答本题的关键.30.关于x,y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求多项式2m2n+10m-4n+2-2m2n-4m+2n的值.【答案】4【解析】【分析】已知多项式合并后,根据结果不含二次项求出m与n的值,原式合并得到最简结果,将m与n的值代入计算即可求出值.【详解】6mx2+4nxy+2x+2xy-x2+y+4=(6m-1)x2+(4n+2)xy+2x+y+4,∵该多项式不含二次项,∴6m-1=0,4n+2=0,解得:m=,n=,∴2m2n+10m-4n+2-2m2n-4m+2n=6m-2n+2=6×-2×(-)+2=4.【点睛】本题考查了整式的加减-化简求值以及多项式的知识,熟练掌握运算法则是解本题的关键.31.先观察:1﹣=×,1﹣=×,1﹣=×,…(1)探究规律填空:1﹣= ×;(2)计算:(1﹣)•(1﹣)•(1﹣)…(1﹣)【答案】(1),,(2)【解析】试题分析:(1)经过观察、分析可得:;(2)由(1)中所得规律将(2)中每个形如“”的式子分解为“”的形式,再利用乘法的结合律把“互为倒数的两个数结合在一起先乘”就可计算出结果了.试题解析:(1)∵,,∴;(2)原式====.点睛:求解本题有两个关键点:(1)观察、分析所给的式子,找到规律,能把化成的形式;(2)由(1)中所得规律把原式改写为:的形式后,能够发现除了第一个因数“”和最后一个因数“”外,从第二个因数开始,依次每两个因数都是互为倒数的,这样就可利用乘法的结合律简便的算出结果了.32.小亮房间窗户的窗帘如图1所示,它是由两个四分之一圆组成(半径相同)⑴请用代数式表示装饰物的面积:________,用代数式表示窗户能射进阳光的面积是______(结果保留π)⑵当b=1时,求窗户能射进阳光的面积是多少?(取π≈3)⑶小亮又设计了如图2的窗帘(由一个半圆和两个四分之一圆组成,半径相同),请你帮他算一算此时窗户能射进阳光的面积是否更大?如果更大,那么大多少?【答案】(1(2(3)更大了,【解析】试题分析:(122;射进阳光的面积=长方形面积-装饰物面积;将a b=1代入ab2,化简即可;(3)先求出图2中能射进阳光的面积,再减去ab2即可.试题解析:(122, ab2.(2)ab2(3)更大了,窗帘的面积:π2,(ab2)-22故答案为:2(3). 更大了,2.33.化简与求值:(1) 有理数a,b,c在数轴上的位置如图所示,求的値.(2) 已知:,若,求的值.【答案】(1);(2) 20【解析】试题分析:(1)根据a、b、c在数轴的位置,先去绝对值,然后合并求解;(2)原式去括号合并得到最简结果,代入x与y的值,计算即可求出值.试题解析:(1)解:由图可知,c<a<b,|b|<|a|<|c|,原式=(a﹣c)+(a﹣b)=a-c+a-b=2a-b-c.(2)A-2B===.当a=2,b=-1时,则原式==4+16=20.点睛:本题考查了整式的加减和绝对值的性质,解答本题的关键是掌握绝对值的化简和合并同类项法则.34.已知,,求的值,其中,.【答案】-4.【解析】分析:先把式子化为最简,再把,代入后,去括号合并同类项化为最简,最后把x=2,y=-1代入求值即可.详解:,,,,原式 , ,把 , 代入得: .点睛:本题考查了整式的加减-化简求值,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.35.若,求多项式.【答案】4a 2b+2ab 2,原式=0【解析】试题分析:根据非负数的性质得出a 、b 的值,整式化简后,代入a 、b 的值即可得出结论.试题解析:解:由非负数的性质得:2a -4=0,b +4=0,解得:a =2,b =-4. 原式= 222222234236a b ab a b ab ab a b +-+-+=2242a b ab +当a =2,b =-4时,原式=()()22424224⨯⨯-+⨯⨯-=-64+64=0.36.学习整式的乘法时可以发现:用两种不同的方法表示同一个图形的面积,可以得到一个等式,进而可以利用得到的等式解决问题.图1 图2(1)如图1是由边长分别为a ,b 的正方形和长为a 、宽为b 的长方形拼成的大长方形,由图1,可得等式:(a +2b)(a +b)= ;(2)①如图2是由几个小正方形和小长方形拼成的一个边长为a +b +c 的大正方形,用不同的方法表示这个大正方形的面积,得到的等式为 ;②已知a +b +c =11,ab +bc +ac =38,利用①中所得到的等式,求代数式a 2+b 2+c 2的值.【答案】(1)a 2+3ab +2b 2;(2)① (a +b +c)2=a 2+b 2+c 2+2ab +2bc +2ac ;②45 【解析】试题分析:(1)图1是由一个边长为a 的正方形、一个边长为b 的正方形和三个长为a ,宽为b 的长方形组成,所以面积为a 2+3ab +2b 2; (2)①试题解析:图2是由三个边长分别为a 、b 、c 的正方形、两个边长分别为a 、b 的长方形,两个边长分别为a、c的长方形,两个边长分别为b、c的长方形组成,所以等式为(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;②将①的等式变形为(a+b+c)2=a2+b2+c2+2(ab+bc+ac),代入数值即可.(1)a2+3ab+2b2;(2)① (a+b+c)2=a2+b2+c2+2ab+2bc+2ac;②解:由①,得(a+b+c)2=a2+b2+c2+2(ab+bc+ac).因为a+b+c=11,ab+bc+ac=38.所以112=a2+b2+c2+2×38.所以a2+b2+c2=45.故答案为:(1)a2+3ab+2b2;(2)① (a+b+c)2=a2+b2+c2+2ab+2bc+2ac;②45.37.已知x1,x2,x3,…x2016都是不等于0的有理数,若y1y1的值.当x1>0时,y1;当x1<0时,y1﹣1,所以y1=±1(1)若y2y2的值(2)若y3y3的值为;(3)由以上探究猜想,y2016共有个不同的值,在y2016这些不同的值中,最大的值和最小的值的差等于.【答案】(1) ±2或0;(2) ±1或±3;(3)最大值与最小值的差为4032.【解析】(1,,讨论计算即可.(2)方法同上.(3)探究规律后,利用规律解决问题即可.解:(1,=±1,∴y2或0.(2,,=±1,∴y3=±1或±3.故答案为±1或±3,(3)由(1)(2)可知,y1有两个值,y2有三个值,y3有四个值,…,由此规律可知,y2016有2017个值,最大值为2016,最小值为﹣2016,最大值与最小值的差为4032.故答案分别为2017,4032.点睛:本题主要考查找规律.解决此类问题的关键要通过观察分析得出其反映的规律,然后进行归纳即可.38.已知实数a,b满足:,且,求(2017a+++【答案】2018.【解析】试题分析:利用二次根式的定义,求出a,b的值,再利用裂项法求和计算.试题解析:∵20a-≥,2a-≥,∴2a=,21b=,∴0b>,∴1b=,2a=,(2017a+++12018++⨯112018++-点睛:列项法的使用注意:推广:39.已知分式 (1) 化简这个分式;(2) 当a >2时,把分式A 化简结果的分子与分母同时..加上3后得到分式B ,问:分式B 的值较原来分式A 的值是变大了还是变小了?试说明理由.(3) 若A 的值是整数,且a 也为整数,求出符合条件的所有a 值的和.【答案】(1(2)变小了,理由见解析;(3)符合条件的所有a 值的和为11.【解析】分析:(1)分解因式,再通分化简.(2)用作差法比较二者大小关系.(3)先分离常数,再尝试让分子能被分母整除. 详解:(1)A (2)变小了,理由如下:.∵a >2 ∴a -2>0,a+1>00,即A >B(3) 根据题意, 21,2,4a -=±±± 则a =1、0、-2、3、4、6, 又1a ≠ ∴0+(-2)+3+4+6=11 , 即:符合条件的所有a 值的和为11. 点睛:比较大小的方法:(1)作差比较法: 0a b a b ->>; 0a b a b -<⇒< (a b ,可以是数,也可以是(2)作商比较法:若a>0,b>0a>b;若a<0,b<0a<b.40.有一道题目,是一个多项式减去,小强误当成了加法计算,结果得到,正确的结果应该是多少?【答案】.【解析】分析:根据题意求出原来的多项式,列出正确的算式,计算即可得到结果.详解:这个多项式为:所以正确的结果为:.点睛:本题考查了整式的加减运算,熟练掌握运算法则是解本题的关键.41.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣b|+|a+c|.【答案】a﹣c.【解析】试题分析:先根据题意得出a、b、c的取值范围,再得出a+b,a﹣b<,a+c 的正负性,根据绝对值的性质求出各式的绝对值,化简合并即可.试题解析:解:根据题意得:﹣2<c<0,0<a<1,2<b<3,∴a+b>0,a﹣b<0,a+c<0,∴原式=a+b﹣[﹣(a﹣b)]+[﹣(a+c)]=a+b+a﹣b﹣a﹣c=a﹣c.点睛:本题考查了数轴、绝对值以及整式的加减;熟练掌握绝对值的性质得出各式的绝对值是解决问题的关键.42.如图所示,在数轴上A点表示数a,B点表示数b,且a、b满足|2a+6|+|b﹣9|=0(1)点A表示的数为,点B表示的数为;(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在点A、点B之间的数轴上找一点C,使BC=2AC,则C点表示的数为;(3)在(2)的条件下,若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;同一时刻,另一动点Q从点C出发,以1个单位长度/秒速度由C向B运动,终点都为B点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q 运动时间为t 秒.请用含t 的代数式表示:点P 到点A 的距离PA= ,点Q 到点B 的距离QB= ;点P 与点Q 之间的距离 PQ= .【答案】(1)﹣3, 9;(2)1;(3)()()304{ 1248t t t ≤≤<≤ ;8﹣t (0≤t≤8); ()()()4202{2424 848t t t t t t -≤≤-<≤-<≤ .【解析】试题分析:(1)由|2a+6|+|b ﹣9|=0结合“任何一个代数式的绝对值都是非负数”和“两个非负数的和为0,则这两个数都为0”即可求出a 、b 的值;(2)由(1)中的结果可知,AB=12,结合BC=2AC 即可解得BC=8,再结合OB=9即可得到OC=1,且点C 在原点的右边,由此即可得到点C 表示的数为1;(3)由题意结合AB=12,BC=8可知,点P 的运动时间为4秒,点Q 的运动时间为8秒;由此可得点P 到A 的距离需分04t ≤≤和48t <≤两种情况讨论:点Q 到B 的距离为:8-t ;由于在第2秒时,点P 与点Q 重合,第4秒时,点P 得到达终点,因此点P 到点Q 的距离需分02t ≤≤, 24t <≤及48t <≤三种情况讨论. 试题解析:(1)∵|2a+6|+|b ﹣9|=0∴2a+6=0,b ﹣9=0,解得a=﹣3,b=9, ∴点A 表示的数为﹣3,点B 表示的数为9; (2)AB=9﹣(﹣3)=12, ∵BC=2AC , ∴BC=8,AC=4, ∴OC=1,∴C 点表示的数为1;(3)由题意可得:①点P 到点A 的距离PA =()()304{ 1248t t t ≤≤<≤;②点Q 到点B 的距离QB=8﹣t (0≤t≤8);③当0≤t≤ 时,点P 与点Q 之间的距离 PQ=t+4﹣3t=4﹣2t , 当2<t≤4时,点P 与点Q 之间的距离 PQ=3t ﹣t ﹣4=2t ﹣4, 当4<t≤8时,点P 与点Q 之间的距离 PQ=8﹣t.即PQ =()()()4202{2424 848t t t t t t -≤≤-<≤-<≤.点睛:(1)任何代数式的绝对值都是非负数;(2)两个非负数的和为0,则这两个数都为0;(3)在本题第3小题用含“t ”的式子表达P 、Q 间的距离PQ 时,需注意两个动点运动的最长时间为8秒,而点P 在第2秒时追上点Q ,在第4秒时点P 到达终点B 停止运动,点Q 在第8秒时到达终点B ,因此需分三个时间段,即:022448t t t ≤≤<≤<≤,,分别进行讨论.43.先化简,再求值:,其中(2x +4)2+|4﹣6y |=0.【答案】x+y 2,.【解析】试题分析:先去括号,然后再合并同类项,再根据非负数的性质求出x 、y 的值代入进行计算即可.试题解析:原式=x ﹣2x+4x+y 2﹣x+y 2=x+y 2, ∵(2x+4)2+|4﹣6y|=0, ∴x=﹣2,y=, 则原式=﹣1 .【点睛】本题考查了整式的加减运算、非负数的性质等,熟练掌握运算法则是解题的关键.44.已知:关于x 、y 的多项式2x ax y b +-+ 与多项式2363bx x y -+-的和的值与字母x 的取值无关,求代数式.【答案】12【解析】试题分析:关于x 、y 的多项式2x ax y b +-+ 与多项式2363bx x y -+-的和的值与字母x 的取值无关,则将两个代数式相加,合并同类项含有x 的单项式的系数为0,所以得到b 10+=, a-30=, b -1=, a 3=.先将代数式再将a ,b 的值代入即可求得值为12.、由题知: 22x 363ax y b bx x y +-++-+-=()2(b 1)x 353a x y b ++-++-……2分其和的值与字母x 无关 则b 10+=, a-30= 则b -1=, a 3=……2分原式=()222223a 63423ab b a a ab b ⎡⎤-+--+-⎣⎦=222223a 63423ab b a a ab b ⎡⎤-+---+⎣⎦ =()22223a 63323ab b a ab b -+--+=22223a 63323ab b a ab b -+-+- =-4ab当a 3=, b -1= 时,原式=-43(-1)12⨯⨯=45.初一年级学生在 名教师的带领下去公园秋游,公园的门票为每人 元.现有两种优惠方案,甲方案:带队教师免费,学生按 折收费;乙方案:师生都 折收费. 若有 名学生,用代数式表示两种优惠方案各需多少元? 当 时,采用哪种方案优惠? 当 时,采用哪种方案优惠?【答案】(1) 甲16m, 乙: ;(2) 甲方案优惠,理由见解析;(3) 乙方案优惠,理由见解析 【解析】 【分析】根据题意确定两种优惠方案所需的钱数; 把 代入计算,比较即可;把 代入计算,比较即可得到答案. 【详解】解: 甲方案需要的钱数为: , 乙方案需要的钱数为: ; 当 时,乙方案: (元), 甲方案: (元), ∵ , ∴甲方案优惠;。

初中数学七年级上学期整式的加减—去括号与添括号知识讲解及例题解析

初中数学七年级上学期整式的加减—去括号与添括号知识讲解及例题解析

整式的加减(二)—去括号与添括号知识讲解及例题解析 【学习目标】1.掌握去括号与添括号法则,注意变号法则的应用;2. 熟练运用整式的加减运算法则,并进行整式的化简与求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律得到的结论:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号的关系如下:如:()a b c a b c +-+-添括号去括号, ()a b c a b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相减时,减数一定先要用括号括起来.(3)整式加减的最后结果的要求:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.化简m ﹣n ﹣(m+n )的结果是( )A . 0B . 2mC . ﹣2nD . 2m ﹣2n【答案】C【解析】解:原式=m ﹣n ﹣m ﹣n=﹣2n .故选C .【总结升华】解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.类型二、添括号2.按要求把多项式321a b c -+-添上括号:(1)把含a 、b 的项放到前面带有“+”号的括号里,不含a 、b 的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【答案与解析】解:(1)321(32)(1)a b c a b c -+-=---+;(2)321(3)(21)a b c a c b -+-=+-+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.举一反三:【变式】添括号:(1)22()101025()10()25x y x y x y +--+=+-+.(2)()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.【答案】(1)x y +; (2),b c d b c d -+-+ .类型三、整式的加减3. 3243245348x x x x x x -+--+-一个多项式加上得,求这个多项式.【答案与解析】解:在解答此题时应先根据题意列出代数式,注意把加式、和式看作一个整体,用括号括起来,然后再进行计算,在计算过程中找同类项,可以用不同的记号标出各同类项,减少运算的错误.43232(348)(45)x x x x x x --+---+ 4323243348453813.x x x x x x x x x =--+--+-=-+-答:所求多项式为433813x x x -+-.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.举一反三:【变式】化简:(1)15+3(1-x)-(1-x+x 2)+(1-x+x 2-x 3).(2)3x 2y-[2x 2z-(2xyz-x 2z+4x 2y)].(3)-3[(a 2+1)-16(2a 2+a)+13(a-5)]. (4)ab-{4a 2b-[3a 2b-(2ab-a 2b)+3ab]}.【答案】解: (1) 15+3(1-x)-(1-x+x 2)+(1-x+x 2-x 3)=15+3(1-x)-(1-x+x 2)+(1-x+x 2)-x 3=18-3x-x 3.. ……整体合并,巧去括号(2) 3x 2y-[2x 2z-(2xyz-x 2z+4x 2y)]=3x 2y-2x 2z+(2xy-x 2z+4x 2y) ……由外向里,巧去括号=3x 2y-2x 2z+2xyz-x 2z+4x 2y=7x 2y-3x 2z+2xyz. (3) 22113[(1)(2)(5)]63a a a a -+-++- 2213(1)(2)(5)2a a a a =-+++-- 2213352a a a a =--++-+ 21222a a =--+. (4)ab-{4a 2b-[3a 2b-(2ab-a 2b)+3ab]}=ab-4a 2b+3a 2b-2ab+a 2b+3ab ……一举多得,括号全脱=2ab.类型四、化简求值4.先化简,再求值:3x 2y ﹣[2x 2﹣(xy 2﹣3x 2y )﹣4xy 2],其中|x|=2,y=,且xy <0.【思路点拨】原式去括号合并得到最简结果,利用绝对值的代数意义求出x 的值,代入原式计算即可得到结果.【答案与解析】解:原式=3x 2y ﹣2x 2+xy 2﹣3x 2y+4xy 2=5xy 2﹣2x 2,∵|x|=2,y=,且xy <0,∴x=﹣2,y=,则原式=﹣﹣8=﹣. 【总结升华】化简求值题一般采用“一化二代三计算”,此类题最后结果的书写格式一般为:当x=…时,原式=….举一反三:【变式】先化简,再求值:﹣2x 2﹣[3y 2﹣2(x 2﹣y 2)+6],其中x=﹣1,y=﹣.【答案】解:原式=﹣2x 2﹣y 2+x 2﹣y 2﹣3=﹣x 2﹣y 2﹣3,当x=﹣1,y=﹣时,原式=﹣1﹣﹣3=﹣4.5. 已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值.【答案与解析】显然,由条件不能求出a 、b 的值.此时,应采用技巧求值,先进行拆项变形.解:(1)-15a 2+3b 2=-3(5a 2-b 2)=-3[(3a 2+2a 2)+(-4b 2+3b 2)]=-3[(3a 2-4b 2)+(2a 2+3b 2)]=-3×(5+10)=-45;(2)2a 2-14b 2=2(a 2-7b 2)=2[(3a 2-2a 2)+(-4b 2-3b 2)]=2×[(3a 2-4b 2)-(2a 2+3b 2)]=2×(5-10)=-10.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便. 举一反三:【变式】当2m π=时,多项式31am bm ++的值是0,则多项式3145_____2a b ππ++=. 【答案】∵ 3(2)210a b ππ++=, ∴ 338212(4)10a b a b ππππ++=++=,即3142a b ππ+=-. ∴31114555222a b ππ++=-+=. 6. 已知多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,求代数式:22223(2)(4)a ab b a ab b ---++的值.【答案与解析】解:222(363)(1)(3)7(3)x ax y b bx x y b x a x y b +-+--+-=-++-++.由于多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,可知:10b -=,30a +=,即有1,3b a ==-.又2222223(2)(4)74a ab b a ab b a ab b ---++=---,将1,3b a ==-代入可得:22(3)7(3)1418---⨯-⨯-⨯=.【总结升华】本例解题的关键是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.类型五、整式加减运算的应用7.有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n 为正整数)块石棉瓦覆盖的宽度为 ( ) .A .60n 厘米B .50n 厘米C .(50n+10)厘米D .(60n-10)厘米【答案】C.【解析】观察上图,可知n 块石棉瓦重叠的部分有(n-1)处,则n 块石棉瓦覆盖的宽度为:60n-10(n-1)=(50n+10)厘米.【总结升华】求解本题时一定要注意每相邻两块重叠部分的宽都为10厘米这一已知条件,一不小心就可能弄错.举一反三:【变式】如图所示,长方形内有两个相邻的正方形,面积分别为9和a 2(a >0).那么阴影部分的面积为________.【答案】3a-a 2提示:由图形可知阴影部分面积=长方形面积29a --,而长方形的长为3+a ,宽为3,从而使问题获解.。

(必考题)初中七年级数学上册第二章《整式的加减》经典测试题(答案解析)

(必考题)初中七年级数学上册第二章《整式的加减》经典测试题(答案解析)

1.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A—B—C为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A.5次B.6次C.7次D.8次C解析:C【分析】首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次.故选C.此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.2.在代数式a2+1,﹣3,x2﹣2x,π,1x中,是整式的有()A.2个B.3个C.4个D.5个C 解析:C【分析】单项式和多项式统称为整式,分母中含有字母的不是整式.【详解】解:a2+1和 x2﹣2x是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个.故选择C.【点睛】本题考查了整式的定义.3.下列用代数式表示正确的是() A.a是一个数的8倍,则这个数是8aB .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元D解析:D【分析】根据题中叙述列出代数式即可判断.【详解】A 、a 是一个数的8倍,则这个数是8a ,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C 、一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为( 50a -)元,错误,不符合题意;D 、小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元,正确,符合题意;故选:D .【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.4.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A 解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,=2x 2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.5.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B 解析:B【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.6.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .11A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.7.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上C解析:C【分析】 由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.8.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误; 2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.9.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n 不是整式; (3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个B解析:B【分析】 根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错; (3)单项式-x 3y 2的系数是-1,正确;(4)3x 2-y+5xy 2是3次3项式,故错误.故选:B .【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.10.下列关于多项式21ab a b --的说法中,正确的是( )A .该多项式的次数是2B .该多项式是三次三项式C .该多项式的常数项是1D .该多项式的二次项系数是1-B 解析:B【分析】直接利用多项式的相关定义进而分析得出答案.【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误;故选:B .【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.11.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.12.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数A解析:A【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴cd =1,∵m 的绝对值等于1,∴m =±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.15.一个多项式与221a a -+的和是32a -,则这个多项式为( )A .253a a -+B .253a a -+-C .2513a a --D .21a a -+- B 解析:B【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案.【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3,故选B.【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 1.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0 解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值.【详解】 解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =, 故答案为19. 【点睛】 本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0.2.观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31, 9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________.【分析】根据数据所显示的规律可知:第一数列都是9第2数列开始有顺序且都是所对序号的数减去1加号后的数据有顺序且与所在的序号项吻合等号右端是的规律所以第n 个等式(n 为正整数)应为【详解】根据分析:即第解析:109n -【分析】根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是()10?11n -+的规律,所以第n 个等式(n 为正整数)应为()()9110?11n n n -+=-+.【详解】根据分析:即第n 个式子是()()9110?11109n n n n -+=-+=-.故答案为:109n -.【点睛】本题主要考查了数字类规律探索题.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解. 3.已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+4|=−|−2+4|=−2…所以n 是奇数解析:﹣1008【解析】a 2=−|a 1+1|=−|0+1|=−1,a 3=−|a 2+2|=−|−1+2|=−1,a 4=−|a 3+3|=−|−1+3|=−2,a 5=−|a 4+4|=−|−2+4|=−2,…,所以n 是奇数时,a n =−12n -;n 是偶数时,a n =−2n ;a 2016=−20162=−1008. 故答案为-1008. 点睛:此题考查数字的变化规律,根据所给出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x ,再利用它们之间的关系,设出其它未知数,然后列方程.4.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn 的值然后即可得到m+n 的值【详解】解:∵将正偶数按照如下规律进行解析:65【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m 组有m 个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+ (44)44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键. 5.化简:226334x x x x _________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可.【详解】解:226334x x x x 226334xx x x 2(64)(33)x x=2106x x -+,故答案为:2106x x -+.【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 6.合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列) (2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b aba b =_____________________;(按字母b 降幂排列)【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】 (1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.7.如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.8.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+a b a b a b2=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.9.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+3×209=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律.y=,则输入的数x=________________.10.在如图所示的运算流程中,若输出的数3或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x的值而得出结论.【详解】解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=3时,∴3=12x或3=12(x+1).∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.11.用棋子按下列方式摆图形,依照此规律,第n个图形比第()1n-个图形多______枚棋子.…第1个第2个第3个【分析】归纳总结找出第n个图形与第(n-1)个图形中的棋子数相减即可得到结果【详解】解:第1个图形棋子的个数:1;第2个图形1+4;第3个图形1+4+7;第4个图形1+4+7+10;…第n个图形1+解析:32n -【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数,相减即可得到结果.【详解】解:第1个图形棋子的个数:1;第2个图形,1+4;第3个图形,1+4+7;第4个图形,1+4+7+10;…第n 个图形,1+4+7+…+(3n -2);则第n 个图形比第(n-1)个图形多(3n-2)枚棋子.故答案为:3n-2【点睛】此题主要考查了图形的变化类问题,同时还考查了学生通过特例分析从而归纳总结出一般结论的能力.1.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列; (2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-.【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-. 【点睛】 本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.2.化简:(1)()()22224232a b ab ab a b ---;(2)2237(43)2x x x x ⎡⎤----⎣⎦.解析:(1)22105a b ab -;(2)2533x x --【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项即可得到答案.【详解】(1)()()22224232a b ab ab a b ---22224236a b ab ab a b =--+22105a b ab =-.(2)2237(43)2x x x x ⎡⎤----⎣⎦2237(43)2x x x x =-+-+2237432x x x x =-+-+2533x x =--.【点睛】本题主要考查了整式的加减,整式加减的实质就是去括号,合并同类项,一般步骤是:先去括号,然后再合并同类项.3.有这样一道题,计算()()4322433222422x x y x y x x y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么?解析:化简后为32y ,与x 无关. 【分析】原式去括号合并得到最简结果中不含x ,可得出x 的取值对结果没有影响.【详解】解:()()4322433222422x x y x y x x y y x y -----+=43224332224242x x y x y x x y y x y ---+++=32y ,原式化简后为32y ,跟x 的取值没有关系.因此不会影响计算结果.【点睛】本题考查了整式的加减——化简求值,正确的将原式去括号合并同类项是解决此题的关键.4.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。

北师大版七年级数学上册3.4 整式的加减之去括号与添括号 专题练习

北师大版七年级数学上册3.4 整式的加减之去括号与添括号 专题练习

北师大版七年级上册章节复习微专题(去括号与添括号专题练)知识储备:1.去括号法则:(1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项____________________;(2)括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项_____________________.2.添括号法则:(1)所添括号前面是“+”号,括到括号里的各项_____________正负号;(2)所添括号前面是“-”号,括到括号里的各项_____________正负号.一、选择题。

1.下列运算正确的是( )A.-2(3x-1)=-6x-1 B.-2(3x-1)=-6x+1C.-2(3x-1)=-6x-2 D.-2(3x-1)=-6x+22.化简-(a-1)-(-a-2)+3的值是( )A.4 B.6 C.0 D.无法计算3.将(x+1)-(z-y)去括号后应是( )A.x+1-z-y B.x+1+z-yC.x+1+z+y D.x+y-z+14.下列式子中,去括号后得a-b+c的是( )A.a-(b+c) B.-(a-b)+cC.a-(b-c) D.-(a+b)+c5. 若3a-2b+c-d=3a-( )成立,则括号中的式子是( )A.2b+c-d B.2b-c+dC.2b+c+d D.-2b+c-d6.在-2x+x2-5=-( )的括号内填上的代数式是( )A.2x+x2-5 B.-2x+x2+5C.2x-x2-5 D.2x-x2+57.下列添括号正确的是( )A.a2+2ab-b2=a2-(2ab-b2) B.a2-2ab+b2=a2-(2ab+b2) C.a-b-c+d=(a+d)-(b-c) D.a-b-c+d=a-(b+c-d) 8.下列添括号错误的是( )A.a+b-c=a-(-b+c) B.x+2y-3z=2y-(-x+3z) C.a-2b-c-4d=a-c-2(b+4d) D.-x2+5x-6=5x+(-x2-6) 9.下面各式中去括号正确的是( )A.x2-(x-y+2z)=x2-x+y+2zB.x-(-2x+3y-1)=x+2x-3y+1C.3x-[5x-(x-1)]=3x-5x-x+1D.(x-1)-(x2-2)=x-1-x2-210.下列添括号中,正确的个数有( )①a2-b2-(b-a)=(a2-b2)+(a-b)②a-b+c-d=(a-d)-(c-b)③(a+b+c)(a-b-c)=[a+(b+c)][a-(b+c)]④a-b=-(b-a)A.1个 B.2个 C.3个 D.4个二、填空题。

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析1.某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有个水龙头,个抽水马桶漏水。

如果一个关不紧的水龙头一个月漏掉a立方米水,一个抽水马桶一个月漏掉b立方米水,那么一个月造成的水流失量至少是( )立方米.A.6a+2b B.C.D.【答案】C.【解析】因为全市至少有个水龙头,一个关不紧的水龙头一个月漏掉a立方米水,所以全市水龙头一个月造成的水流失量至少是:立方米,全市至少有个抽水马桶漏水,个抽水马桶一个月漏掉b立方米水,所以全市马桶一个月造成的水流失量至少是:立方米,所以一个月造成的水流失量至少是:立方米,所以C正确.【考点】整式的加减.2.先化简,后求值:已知,求代数式的值.【答案】【解析】解:由得,,解得,.将代数式化简得.将,代入得原式.3.在排成每行七天的日历表中取下一个方块(如图).若所有日期数之和为189,则的值为()A.21B.11C.15D.9【答案】A【解析】日历的排列是有一定规律的,在日历表中取下一个3×3方块,当中间的数是的话,它上面的数是,下面的数是,左边的数是,右边的数是,左边最上面的数是,最下面的数是,右边最上面的数是,最下面的数是.若所有日期数之和为189,则,即,解得:,故选A.4.化简关于的代数式.当为何值时,代数式的值是常数?【答案】【解析】解:将去括号,得,合并同类项,得.若代数式的值是常数,则,解得.故当时,代数式的值是常数.5.已知实数,满足,则等于()A.3B.-3C.D.-1【答案】A【解析】根据根号下为非负数及任何数的平方为非负数可判断:x-2=0,y+1=0.x=2,y=-1。

所以x-y=3.选A【考点】整式运算点评:本题难度较低,主要考查学生对实数与整式运算知识点的掌握。

为中考常考题型,要求学生牢固掌握。

6.将n张长度为10厘米的纸条,一张接一张地粘成长纸条,粘合部分的长度都是3厘米,则这张粘合后的长纸条总长是______________厘米.(用含n的代数式表示)【答案】7n+3【解析】由题意可知10n-3(n-0)=7n-3.根据题意显然粘和部分共有(n-1)个,所以10n-3(n-1)=7n+3【考点】代数式的求法点评:本题属于利用代数式的基本形式进行找规律推导分析进而利用基本知识运算7.下列各式计算正确的是 ( )A.B.C.D.【答案】D【解析】A ;B.已经为最简式。

暑期预习七年级数学上册《去括号与添括号》练习题及答案

暑期预习七年级数学上册《去括号与添括号》练习题及答案

(暑假一日一练)七年级数学上册第2章整式的加减2.2.2去括号与添括号习题学校:___________姓名:___________班级:___________一.选择题(共15小题)1.下列去括号正确的是()A.a﹣(b﹣c)=a﹣b﹣c B.x2﹣[﹣(﹣x+y)]=x2﹣x+yC.m﹣2(p﹣q)=m﹣2p+q D.a+(b﹣c﹣2d)=a+b﹣c+2d2.化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n3.下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c4.﹣[a﹣(b﹣c)]去括号正确的是()A.﹣a﹣b+c B.﹣a+b﹣c C.﹣a﹣b﹣c D.﹣a+b+c5.下列计算中正确的是()A.﹣3(a+b)=﹣3a+b B.﹣3(a+b)=﹣3a﹣b C.﹣3(a+b)=﹣3a+3b D.﹣3(a+b)=﹣3a﹣3b6.下列各式中与a﹣b﹣c的值不相等的是()A.a﹣(b+c)B.a﹣(b﹣c)C.(a﹣b)+(﹣c) D.(﹣c)﹣(b﹣a)7.下列去括号的过程(1)a﹣(b﹣c)=a﹣b﹣c;(2)a﹣(b﹣c)=a+b+c;(3)a﹣(b+c)=a﹣b+c;(4)a﹣(b+c)=a﹣b﹣c.其中运算结果错误的个数为()A.1 B.2 C.3 D.48.下列去括号错误的是()A.a﹣(b+c)=a﹣b﹣c B.a+(b﹣c)=a+b﹣c C.2(a﹣b)=2a﹣b D.﹣(a﹣2b)=﹣a+2b9.把a﹣2(b﹣c)去括号正确的是()A.a﹣2b﹣c B.a﹣2b﹣2c C.a+2b﹣2c D.a﹣2b+2c10.下列各式:①a﹣(b﹣c)=a﹣b+c;②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2;③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y;④﹣3(x﹣y)+(a+b)=﹣3x﹣3y+a﹣b由等号左边变到右边变形错误的有()A.1个B.2个C.3个D.4个11.不改变多项式3b3﹣2ab2+4a2b﹣a3的值,把后三项放在前面是“﹣”号的括号中,以下正确的是()A.3b3﹣(2ab2+4a2b﹣a3) B.3b3﹣(2ab2+4a2b+a3)C.3b3﹣(﹣2ab2+4a2b﹣a3)D.3b3﹣(2ab2﹣4a2b+a3)12.下列变形中,不正确的是()A.a﹣b﹣( c﹣d )=a﹣b﹣c﹣d B.a﹣(b﹣c+d )=a﹣b+c﹣dC.a+b﹣(﹣c﹣d )=a+b+c+d D.a+(b+c﹣d )=a+b+c﹣d13.下列各式与代数式﹣b+c 不相等的是()A.﹣(﹣c﹣b)B.﹣b﹣(﹣c)C.+(c﹣b) D.+[﹣(b﹣c)]14.下列等式中成立的是()A.a﹣(b+c)=a﹣b+c B.a+(b+c)=a﹣b+cC.a+b﹣c=a+(b﹣c)D.a﹣b+c=a﹣(b+c)15.﹣[x﹣(y﹣z)]去括号后应得()A.﹣x+y﹣z B.﹣x﹣y+z C.﹣x﹣y﹣z D.﹣x+y+z二.填空题(共10小题)16.去括号a﹣(b﹣2)= .17.化简:﹣[﹣(﹣5)]= .18.化简(2xy)﹣(x+3y)的结果是.19.在括号内填上恰当的项:ax﹣bx﹣ay+by=(ax﹣bx)﹣().20.﹣[a﹣(b﹣c)]去括号应得.21.已知1﹣()=1﹣2x+xy﹣y2,则在括号里填上适当的项应该是.22.把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是.23.在等式的括号内填上恰当的项,x2﹣y2+8y﹣4=x2﹣().24.x2﹣2x+y=x2﹣().25.在计算:A﹣(5x2﹣3x﹣6)时,小明同学将括号前面的“﹣”号抄成了“+”号,得到的运算结果是﹣2x2+3x﹣4,则多项式A是.三.解答题(共4小题)26.观察下列各式:①﹣a+b=﹣(a﹣b);②2﹣3x=﹣(3x﹣2);③5x+30=5(x+6);④﹣x ﹣6=﹣(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1﹣b=﹣2,求﹣1+a2+b+b2的值.27.先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)28.阅读下面材料:计算:1+2+3+4+…+99+100 如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)29.将式子4x+(3x﹣x)=4x+3x﹣x,4x﹣(3x﹣x)=4x﹣3x+x分别反过来,你得到两个怎样的等式?(1)比较你得到的等式,你能总结添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式﹣3x5﹣4x2+3x3﹣2的值,把它的后两项放在:①前面带有“+”号的括号里;②前面带有“﹣”号的括号里.③说出它是几次几项式,并按x的降幂排列.参考答案与试题解析一.选择题(共15小题)1.解:A、a﹣(b﹣c)=a﹣b+c,原式计算错误,故本选项错误;B、x2﹣[﹣(﹣x+y)]=x2﹣x+y,原式计算正确,故本选项正确;C、m﹣2(p﹣q)=m﹣2p+2q,原式计算错误,故本选项错误;D、a+(b﹣c﹣2d)=a+b﹣c﹣2d,原式计算错误,故本选项错误;故选:B.2.解:﹣2(m﹣n)=﹣(2m﹣2n)=﹣2m+2n.故选:D.3.解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选:B.4.解:﹣[a﹣(b﹣c)]=﹣(a﹣b+c)=﹣a+b﹣c,故选:B.5.解:﹣3(a+b)=﹣3a﹣3b,故选:D.6.解:A、a﹣(b+c)=a﹣b﹣c;B、a﹣(b﹣c)=a﹣b+c;C、(a﹣b)+(﹣c)=a﹣b﹣c;D、(﹣c)﹣(b﹣a)=﹣c﹣b+a.故选:B.7.解:(1)a﹣(b﹣c)=a﹣b+c,故此选项错误,符合题意;(2)a﹣(b﹣c)=a﹣b+c,故此选项错误,符合题意;(3)a﹣(b+c)=a﹣b﹣c,故此选项错误,符合题意;(4)a﹣(b+c)=a﹣b﹣c,正确,不合题意.故选:C.8.解:A、a﹣(b+c)=a﹣b﹣c,故本选项不符合题意;B、a+(b﹣c)=a+b﹣c,故本选项不符合题意;C、2(a﹣b)=2a﹣2b,故本选项符合题意;D、﹣(a﹣2b)=﹣a+2b,故本选项不符合题意;故选:C.9.解:a﹣2(b﹣c)=a﹣2b+2c.故选:D.10.解:①a﹣(b﹣c)=a﹣b+c,正确;②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+2y2,故此选项错误;③﹣(a+b)﹣(﹣x+y)=﹣a﹣b+x﹣y,故此选项错误;④﹣3(x﹣y)+(a+b)=﹣3x+3y+a+b,故此选项错误;故选:C.11.解:因为3b3﹣2ab2+4a2b﹣a3=3b3﹣(2ab2﹣4a2b+a3);故选:D.12.解:A、a﹣b﹣( c﹣d )=a﹣b﹣c+d,此选项错误;B、a﹣(b﹣c+d )=a﹣b+c﹣d,此选项正确;C、a+b﹣(﹣c﹣d )=a+b+c+d,此选项正确;D、a+(b+c﹣d )=a+b+c﹣d,此选项正确;故选:A.13.解:因为﹣(﹣c﹣b)=c+b,与﹣b+c不相等,故选项A正确;﹣b﹣(﹣c)=﹣b+c,与﹣b+c相等,故选项B错误;+(c﹣b)=c﹣b,与﹣b+c相等,故选项C错误;+[﹣(b﹣c)]=﹣(b﹣c)=﹣b+c,与﹣b+c相等,故选项D错误;故选:A.14.解:A、应为a﹣(b+c)=a﹣b﹣c,故本选项错误;B、应为a+(b+c)=a+b+c,故本选项错误;C、a+b﹣c=a+(b﹣c),正确D、应为a﹣b+c=a﹣(b﹣c),故本选项错误.故选:C.15.解:﹣[x﹣(y﹣z)]=﹣(x﹣y+z)=﹣x+y﹣z.故选:A.二.填空题(共10小题)16.解:原式=a﹣b+2.故答案为:a﹣b+2.17.解:﹣[﹣(﹣5)]=﹣5.故答案为:﹣5.18.解:原式=2xy﹣x﹣3y故答案为:2xy﹣x﹣3y.19.解:ax﹣bx﹣ay+by=(ax﹣bx)﹣( ay﹣by).故答案是:ay﹣by.20.解:原式=﹣a+(b﹣c)=﹣a+b﹣c.故答案为:﹣a+b﹣c.21.解:1﹣(1﹣2x+xy﹣y2)=1﹣1+2x﹣xy+y2=2x﹣xy+y2,故答案为:2x﹣xy+y2.22.解:把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是a﹣(3b ﹣c+2d).故答案为:a﹣(3b﹣c+2d).23.解:x2﹣y2+8y﹣4=x2﹣(y2﹣8y+4).故答案为:y2﹣8y+4.24.解:根据添括号的法则可知,x2﹣2x+y=x2﹣(2x﹣y),故答案为:2x﹣y.25.解:根据题意得:A=(﹣2x2+3x﹣4)﹣(5x2﹣3x﹣6)=﹣2x2+3x﹣4﹣5x2+3x+6=﹣7x2+6x+2,故答案为:﹣7x2+6x+2.三.解答题(共4小题)26.解:∵a2+b2=5,1﹣b=﹣2,∴﹣1+a2+b+b2=﹣(1﹣b)+(a2+b2)=﹣(﹣2)+5=7.27.解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.28.解:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.29.解:(1)将式子4x+(3x﹣x)=4x+3x﹣x,4x﹣(3x﹣x)=4x﹣3x+x分别反过来,得到4x+3x﹣x=4x+(3x﹣x),4x﹣3x+x=4x﹣(3x﹣x),添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号;(2)①﹣3x5﹣4x2+3x3﹣2=﹣3x3﹣4x2+(3x3﹣2);②﹣3x5﹣4x2+3x3﹣2=﹣3x3﹣4x2﹣(﹣3x3+2);③它是五次四项式,按x的降幂排列是﹣3x5+3x3﹣4x2﹣2.。

华东师大版七年级数学上册第3章整式的加减第4节整式的加减3去括号与添括号习题(附答案)

华东师大版七年级数学上册第3章整式的加减第4节整式的加减3去括号与添括号习题(附答案)

【归纳整合】去括号时,括号前有负数相乘,可以运用去括号 法则将括号内的项都改变符号,再与负数的绝对值相乘;也可 以直接运用乘法分配律将负数与括号内各项相乘,注意不能漏 乘.
3.化简: 1 (2x-4y)+2y=_______. 2
【解析】原式=x-2y+2y=x.
答案:x
4.化简-{-[-(5x-4y)]}的结果是________. 【解析】-{-[-(5x-4y)]}=-[-(-5x+4y)] =-(5x-4y)=-5x+4y. 答案:-5x+4y
2.不改变多项式3b3-2ab2+4a2b-a3的值,把后三项放在前面是 “-”号的括号中,以下正确的是( ) A.3b3-(2ab2+4a2b-a3) B.3b3-(2ab2+4a2b+a3) C.3b3-(-2ab2+4a2b-a3) D.3b3-(2ab2-4a2b+a3) 【解析】选D.依据添括号法则,后三项放在前面是“-”号的括 号中,都要改变正负号,所以3b3-2ab2+4a2b-a3=3b3(2ab2-4a2b+a3).
7.按要求把多项式x3-5x2-4x+9添上括号. (1)把它放在前面带有“+”号的括号里. (2)把它放在前面带有“-”号的括号里. (3)把后两项放在前面带有“-”号的括号里. (4)把后三项放在前面带有“-”号的括号里. 【解析】(1)x3-5x2-4x+9=+(x3-5x2-4x+9). (2)x3-5x2-4x+9 =-(-x3+5x2+4x-9). (3)x3-5x2-4x+9=x3-5x2-(4x-9). (4)x3-5x2-4x+9=x3-(5x2+4x-9).

(人教版)上海七年级数学上册第二章《整式的加减》经典习题(答案解析)

(人教版)上海七年级数学上册第二章《整式的加减》经典习题(答案解析)

1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ). A .4 B .8 C .±4 D .±8D解析:D 【分析】根据单项式的定义可得8mx y 和36nx y 是同类项,因此可得参数m 、n ,代入计算即可.【详解】解:由8mx y 与36nx y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( ) A .(1-15%)(1+20%)a 元 B .(1-15%)20%a 元C .(1+15%)(1-20%)a元 D .(1+20%)15%a 元A解析:A 【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1-15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可. 【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1-15%)(1+20%)a 元. 故选:A . 【点睛】本题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键. 3.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( ) A .2x 2﹣5x ﹣1 B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A解析:A 【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案. 【详解】由题意得:5x 2+4x−1−(3x 2+9x), =5x 2+4x−1−3x 2−9x , =2x 2−5x−1. 故答案选A.本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算. 4.若 3x m y 3 与﹣2x 2y n 是同类项,则( ) A .m=1,n=1 B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B解析:B 【分析】根据同类项是字母相同且相同字母的指数也相,可得答案. 【详解】33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的. 【点睛】本题考查了同类项,利用了同类项的定义.5.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( ) A .1 B .2C .3D .4D解析:D 【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可. 【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4, ∴a ,b ,c ,d 四个数的和是4, 故选:D . 【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 6.下列变形中,正确的是( ) A .()x z y x z y --=-- B .如果22x y -=-,那么x y = C .()x y z x y z -+=+- D .如果||||x y =,那么x y = B解析:B 【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可. 【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.7.下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ D解析:D 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确. 故选:D 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.8.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2C .3D .﹣3D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.9.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .2022A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断. 【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503; 当4x+2=2022时,x=505,则x-1=504; 由图可知每行有9个数, ∵504÷9=56,可以除尽故504为某行的最后一位.表格如下: 496 497 498 499 500 501 502 503 504 505 506507508509510511512513故选A. 【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程. 10.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B =C .A B <D .无法确定A解析:A 【分析】作差进行比较即可. 【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6) =x 2-5x +2- x 2+5x +6 =8>0, 所以A >B . 故选A . 【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .11.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b+元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C 【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数 【详解】根据题意列得:20(-2-23020302222a b a b a b a a b aa b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b ) =10b-10a+15a-15b =5a-5b ,则这次买卖中,张师傅赚5(a-b )元. 故选C . 【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.12.下列各对单项式中,属于同类项的是( ) A .ab -与4abc B .213x y 与212xy C .0与3-D .3与a C解析:C 【分析】根据同类项的定义逐个判断即可. 【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项; D .3与a 不是同类项. 故选C . 【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.13.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可. 【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5, 故选:A . 【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 14.下列说法错误的是( ) A .23-2x y 的系数是32-B .数字0也是单项式C .-x π是二次单项式D .23xy π的系数是23πC 解析:C 【分析】根据单项式的有关定义逐个进行判断即可. 【详解】A. 23-2x y 的系数是32-,故不符合题意;B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D.23xy π的系数是23π,故不符合题意. 故选C . 【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键. 15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( ) A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D 【解析】 【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数. 【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数. 故选D.此题考查多项式,解题关键在于掌握其定义.1.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m的值应是_______.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m的值.2.如图,阴影部分的面积用整式表示为_________.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x 2+3x +6. 故答案为x 2+3x +6 【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7 【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案. 【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌, A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7. 【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 5.观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点, 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12 631 【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论. 【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…, 即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点. 第20个图形共有4+2×3+3×3+…+19×3+20×3 =4+3×(2+3+…+19+20) =4+3×209 =4+627 =631(个). 故答案为:12;631. 【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 6.观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n个式子为2n-1a n,∴第8个式子为:27a8=128a8,故答案为:128a8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.7.一列数a1,a2,a3…满足条件a1=12,a n=111na--(n≥2,且n为整数),则a2019=_____.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a2,a3,a4,a5,a6,观察发现3次一个循环,所以a2019=a3.【详解】a1=12,a2=111-2=2,a3=11-2=﹣1,a4=11=1--12(),a5=111-2=2,a6=11-2=﹣1…观察发现,3次一个循环,∴2019÷3=673,∴a2019=a3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.8.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n个图形中有______个三角形(用含n的式子表示)【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.9.已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a 由于k≠0先将式子左右同时除以(-4k )再移项系数化1即可表示出a 【详解】∵k≠0∴原式两边同时除以(-4x )得∴∴故答案为【点睛】本题考查的是代数式的表示 解析:2248b k k+ 【分析】将已给的式子作恒等式进行变形表示a ,由于k≠0,先将式子左右同时除以(-4k ),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x )得,224b k a k=-- ∴224b a k k=+, ∴2224828b k b k a k k+=+=,故答案为2248b k k+. 【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.10.仅当b =______,c =______时,325x y 与23b c x y 是同类项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档