材料力学第九章 压杆稳定 答案
材料力学习题册答案第章压杆稳定
第九章压杆稳定之阳早格格创做一、采用题1、一理念匀称直杆受轴背压力P=P Q时处于直线仄稳状态.正在其受到一微弱横背搞扰力后爆收微弱蜿蜒变形,若此时排除搞扰力,则压杆<A).A、蜿蜒变形消得,回复直线形状;B、蜿蜒变形缩小,不克不迭回复直线形状;C、微直状态稳定;D、蜿蜒变形继启删大.2、一细少压杆当轴背力P=P Q时爆收得稳而处于微直仄稳状态,此时若排除压力P,则压杆的微直变形<C)A、实足消得B、有所慢战C、脆持稳定D、继启删大3、压杆属于细少杆,中少杆仍旧短细杆,是根据压杆的<D)去推断的.A、少度B、横截里尺寸C、临界应力D、柔度4、压杆的柔度集结天反映了压杆的< A )对付临界应力的效率.A、少度,拘束条件,截里尺寸战形状;B、资料,少度战拘束条件;C、资料,拘束条件,截里尺寸战形状;D、资料,少度,截里尺寸战形状;5、图示四根压杆的资料与横截里均相共,试推断哪一根最简单得稳.问案:<a )6、二端铰支的圆截里压杆,少1m,直径50mm.其柔度为 ( C >A.60;B.;C.80;D.507、正在横截里积等其余条件均相共的条件下,压杆采与图<D)所示截里形状,其宁静性最佳.8、细少压杆的<A),则其临界应力σ越大.A、弹性模量E越大或者柔度λ越小;B、弹性模量E越大或者柔度λ越大;C、弹性模量E越小或者柔度λ越大;D、弹性模量E越小或者柔度λ越小;9、欧推公式适用的条件是,压杆的柔度<C)AC10、正在资料相共的条件下,随着柔度的删大<C)A、细少杆的临界应力是减小的,中少杆不是;B、中少杆的临界应力是减小的,细少杆不是;C、细少杆战中少杆的临界应力均是减小的;D、细少杆战中少杆的临界应力均不是减小的;11、二根资料战柔度皆相共的压杆<A)A. 临界应力一定相等,临界压力纷歧定相等;B. 临界应力纷歧定相等,临界压力一定相等;C. 临界应力战临界压力一定相等;D. 临界应力战临界压力纷歧定相等;12、正在下列有闭压杆临界应力σe的论断中,<D)是精确的.A、细少杆的σe值与杆的资料无闭;B、中少杆的σe 值与杆的柔度无闭;C、中少杆的σe值与杆的资料无闭;D、细短杆的σe 值与杆的柔度无闭;13、细少杆启受轴背压力P的效率,其临界压力与<C )无闭.A、杆的材量B、杆的少度C、杆启受压力的大小D、杆的横截里形状战尺寸二、估计题1、有一少l=300 mm,截里宽b=6 mm、下h=10 mm的压杆.二端铰交,压杆资料为Q235钢,E=200 GPa,试估计压杆的临界应力战临界力.解:<1)供惯性半径i对付于矩形截里,如果得稳必正在刚刚度较小的仄里内爆收,故应供最小惯性半径<2)供柔度λλ=μl/i,μ=1,故λ=1×300/1.732=519>λp=100<3)用欧推公式估计临界应力<4)估计临界力F cr =σcr ×A =65.8×6×10=3948 N=3.95 kN2、一根二端铰支钢杆,所受最大压力KN P 8.47=.其直径mm d 45=,少度mm l 703=.钢材的E =210GPa ,p σ=280MPa ,2.432=λ.估计临界压力的公式有:(a> 欧推公式;(b> 直线公式cr σλ(MPa>.试 <1)推断此压杆的典型;<2)供此杆的临界压力;解:<1) 1=μ8621==PE σπλ5.624===d lilμμλ由于12λλλ<<,是中柔度杆. <2)cr σλMPa3、活塞杆<可瞅成是一端牢固、一端自由),用硅钢造成,其直径d=40mm ,中伸部分的最大少度l =1m ,弹性模量E=210Gpa ,1001=λ.试<1)推断此压杆的典型;<2)决定活塞杆的临界载荷. 解:瞅成是一端牢固、一端自由.此时2=μ,而,所以,.故属于大柔度杆-用大柔度杆临界应力公式估计.4、托架如图所示,正在横杆端面D 处受到P=30kN 的力效率.已知斜撑杆AB 二端柱形拘束<柱形较销钉笔直于托架仄里),为空心圆截里,中径D=50mm 、内径d=36mm ,资料为A3钢,E=210GPa 、p σ=200MPa 、s σ.若宁静仄安系数n w =2,试校杆AB 解 应用仄稳条件可有A3压杆的处事仄安系数BA压杆的处事仄安系数小于确定的宁静仄安系数,故不妨仄安处事.5、如图所示的结构中,梁AB为No.14一般热轧工字钢,CD为圆截里直杆,其直径为d=20mm,二者资料均为Q235、D.强度仄安.解:正在给定的结构中公有二个构件:梁AB,启受推伸与蜿蜒的推拢效率,属于强度问题;杆CD,启受压缩荷载,属宁静问题.现分别校核如下.(1> 大梁AB的强度校核.大梁AB正在截里C处的直矩最大,该处横截里为伤害截里,其上的直矩战轴力分别为由型钢表查得14号一般热轧工字钢的由此得到(2> 校核压杆CD的宁静性.由仄稳圆程供得压杆CD的轴背压力为果为是圆截里杆,故惯性半径为那标明,压杆CD为细少杆,故需采与式(9-7>估计其临界应力,有于是,压杆的处事仄安果数为那一截止证明,压杆的宁静性是仄安的.上述二项估计截止标明,所有结构的强度战宁静性皆是仄安的.6、一强度等第为TC13的圆紧木,少6m ,中径为300mm ,其强度许用应力为10MPa.现将圆木用去当做起沉机用的扒杆,试估计圆木所能启受的许可压力值.解:正在图示仄里内,若扒杆正在轴背压力的效率下得稳,则杆的轴线将直成半个正弦波,少度系数可与为1μ=.于是,其柔度为根据80λ=,供得木压杆的宁静果数为 进而可得圆木所能启受的许可压力为62[][]0.398(1010)(0.3)281.34F A ϕσπ==⨯⨯⨯⨯=(kN>如果扒杆的上端正在笔直于纸里的目标并不所有拘束,则杆正在笔直于纸里的仄里内得稳时,只可视为下端牢固而上端自由,即2μ=.于是有供得62[][]0.109(1010)(0.3)774F A ϕσπ==⨯⨯⨯⨯=(kN>隐然,圆木动做扒杆使用时,所能启受的许可压力应为77 kN ,而不是281.3 kN.7、 如图所示,一端牢固另一端自由的细少压杆,其杆少l = 2m ,截里形状为矩形,b = 20 mm 、h = 45 mm ,资料的弹性模量E = 200GPa .试估计该压杆的临界力.若把截里改为b = h =30 mm ,而脆持少度稳定,则该压杆的临界力又为多大?解:<一)、当b=20mm 、h=45mm 时 <1)估计压杆的柔度22000692.82012li μλ⨯===>123c λ=(所以是大柔度杆,可应用欧推公式> (2>估计截里的惯性矩由前述可知,该压杆必正在xy 仄里内得稳,故估计惯性矩 <3)估计临界力μ=2,果此临界力为<二)、当截里改为b = h = 30mm 时<1)估计压杆的柔度所以是大柔度杆,可应用欧推公式>(2>估计截里的惯性矩 代进欧推公式,可得从以上二种情况分解,其横截里里积相等,支启条件也相共,然而是,估计得到的临界力后者大于前者.可睹正在资料用量相共的条件下,采用妥当的截里形式不妨普及细少压杆的临界力.8、 图所示为二端铰支的圆形截里受压杆,用Q235钢造成,资料模量E=200Gpa ,伸服面应力σs =240MPa d=40mm ,试分别估计底下二种<1)杆少l =1.5m ;<2)杆少l =0.5m. 解:<1)估计杆少l 二端铰支果此 μ=1惯性半径(所以是大柔度杆,可应用欧推公式> <2)估计杆少lμ=1,i =10mm压杆为中细杆,其临界力为感动土木0906班王锦涛、刘元章共教! 申明:所有资料为自己支集整治,仅限部分教习使用,勿搞商业用途. 申明:所有资料为自己支集整治,仅限部分教习使用,勿搞商业用途.。
材料力学简明教程(景荣春)课后答案第九章
解 设各杆与铅垂线夹角为 θ ,则由平衡的各杆的受力
130
3FN cosθ = F , FN =
设钢管材料为 Q235,则
F F 2 .5 5 F = ⋅ = = 0.417 F 3 cos θ 3 2 12
= 269 > λp D2 + d 2 30 2 + 22 2 × 10 −3 π 2 EI π 3 E (D 4 − d 4 ) π 3 × 210 × 10 9 × (30 2 − 22 2 )× 10 −12 Fcr = = = = 9.37 kN 2 64 × 2.5 2 (μl )2 64(μl ) Fcr F 1 1 9.37 × 10 3 [F ] = = × = × = 7.49 kN 0.417 0.417 [n]st 0.417 3 i = =
2
127
比值差不多时较有利。 9-8 从稳定性的角度考虑,一般压杆截面的周边取圆形较为合理,但可以是空心或实 心的。如规定压杆横截面面积相同,则: (1) 从强度方面看,它们有无区别?为什么? (2) 从稳定性方面看,哪一种截面形式较为合理?为什么? (3) 如果空心圆形截面较合理的话,是否其内、外半径越大越好? 答 (1) 从强度方面看,它们无区别。因为 σ = F / A 。 (2) 从稳定性方面看,空心截面形式较为合理,因空心截面惯性矩较大。 (3) 如果空心圆形截面较合理的话,其内、外半径不是越大越好,因为在面积一定的情 况下,内、外半径太大了会造成薄壁失稳。 9-9 如何进行压杆的合理设计? 答 (1) 选择合理的截面形状; (2) 改变压杆的约束条件; (3)合理选择材料。 9-10 满足强度条件的等截面压杆是否满足稳定性条件?满足稳定性条件的压杆是否 满足强度条件?为什么? 答 (1) 因为强度条件是 σ < [σ ] =
材料力学答案- 压杆稳定
15-1 两端为球铰的压杆,当它的横截面为图示各种不同形状时,试问杆件会在哪个平面内失去稳定(即在失稳时,杆的截面绕哪一根轴转动)?解:(a),(b),(e)任意方向转动,(c),(d),(f)绕图示Z 轴转动。
15-2 图示各圆截面压杆,横截面积及材料都相同,直径d =1.6cm ,杆材A 3钢的弹性模量E =200MPa ,各杆长度及支承形式如图示,试求其中最大的与最小的临界力之值。
解:(a) 柔度: 2301500.4λ⨯== 相当长度:20.30.6l m μ=⨯=(b) 柔度: 1501250.4λ⨯== 相当长度:10.50.5l m μ=⨯=(c) 柔度: 0.770122.50.4λ⨯== 相当长度:0.70.70.49l m μ=⨯=(d) 柔度: 0.590112.50.4λ⨯== 相当长度:0.50.90.45l m μ=⨯=(e) 柔度: 145112.50.4λ⨯== 相当长度:10.450.45l m μ=⨯=由E=200Gpa 及各柔度值看出:各压杆的临界力可用欧拉公式计算。
即:()22cr EIF l πμ=各压杆的EJ 均相同,故相当长度最大的压杆(a)临界力最小,压杆(d)与(e)的临界力最大,分别为:()2948222320010 1.610640.617.6410cr EFF l N πππμ-⨯⨯⨯⨯⨯===⨯()2948222320010 1.610640.4531.3010cr EIF l Nπππμ-⨯⨯⨯⨯⨯===⨯15-3 某种钢材P σ=230MPa ,s σ=274MPa ,E =200GPa ,直线公式λσ22.1338-=cr ,试计算该材料压杆的P λ及S λ值,并绘制1500≤≤λ范围内的临界应力总图。
解:92.633827452.5p s s a λπσλ===--===15-4 6120型柴油机挺杆为45钢制成的空心圆截面杆,其外径和内径分别为,12mm 和10mm ,杆长为383mm ,两端为铰支座,材料的E =210GPa ,P σ=288MPa ,试求此挺杆的临界力cr F 。
第九章压杆稳定答案
i - . D 2 d 2 / 4 = 52 2 442 / 4mm = 0.017mm第九章压杆稳定1、图示铰接杆系ABC 由两根具有相同截面和同样材料的细长杆所组成。
若由于杆件在平面ABC 内失稳而引起破坏,试确定荷载 F 为最大时的二角(假设0 —岂㊁)。
解:由平衡条件二 Fy = 0, F NAB = F COSd二 F x - 0, F NBC - F sin T 使F 为最大值条件使杆AB 、BC 的内力同 时达到各自的临界荷载。
设 AC 间的距离为I , AB 、BC 杆的临界荷载分别为H 2EI 兀 2EI F NAB= 7T = 7S —5 F NBC 二 2EI 二 2EI由以上两式得2、一承受轴向压力的两端铰支的空心圆管,外径 D 二52mm ,内径 d 二 44mm ,I 二 950mm 。
材料的二 1600MPa ,二 p 二1200MPa ,E = 210GPa 。
试求此杆的临界压力和临界应力。
支承可视为两端铰支,故 J =1,BC (I cos 。
f二 41.6 解:2 9 ■: 210 10 \ 1200 106回转半径为44斜撑杆得柔度■ - l. i =1 0.95/0.017 =55.9因■ ■ !,为大柔度杆,故可用欧拉公式计算临界荷载,临界压力为F cr 和临界 应力二cr 分别为:29 : .•4 4 _.2 二2 210 109 0.0524 -0.0444F cr ' -3 64 2 N =402KN(H ) (1x0.95) ”-心 匹=666 MPaA3、蒸汽机车的连杆如图所示,截面为工字型,材料为 Q235钢,连 杆所受最大轴向压力为465kN 。
连杆在xy 平面内发生弯曲,两端可视 为铰支,在xz 平面内发生弯曲,两端可视为固定。
试确定工作安全系 数。
|3100解连杆横截面的几何特性:2 2 A =[ 14>9.6- (9.6-1.4) >8.5] cm =64.7cm4I y=407 cm *yLI z=1780 cm4i y = |厂A = ,407 64.7 = 2.51cmi z = l z A = .1780 64.7 = 5.24cmQ235钢的「f%2E 「200 109 200 10—99.3a —0's 304 —240■■■■2 57.1b 1.12 在xy 平面内弯曲时连杆的柔度在xz 平面内弯曲时连杆的柔度y =0.5 3.1/0.0251 =61.8「1所以在计算两个方向上产生弯曲时的临界荷载,都要用经验公式,并且只须计算在柔度较大 的方向上产生弯曲时的临界荷载 F c 「二 a-b y A -丨304-1.12 61.8106 64.7 10*N=1520kN工作安全系数 n = F cr / F = 1520/465 = 3.274、油缸柱塞如图所示。
2020年材料力学习题册答案-第9章 压杆稳定
作者:非成败作品编号:92032155GZ5702241547853215475102时间:2020.12.13第九章压杆稳定一、选择题1、一理想均匀直杆受轴向压力P=P Q时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。
A、弯曲变形消失,恢复直线形状;B、弯曲变形减少,不能恢复直线形状;C、微弯状态不变;D、弯曲变形继续增大。
2、一细长压杆当轴向力P=P Q时发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形( C )A、完全消失B、有所缓和C、保持不变D、继续增大3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。
A、长度B、横截面尺寸C、临界应力D、柔度4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。
A、长度,约束条件,截面尺寸和形状;B、材料,长度和约束条件;C、材料,约束条件,截面尺寸和形状;D、材料,长度,截面尺寸和形状;5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m,直径50mm。
其柔度为 ( C )A.60;B.66.7;C.80;D.507、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。
8、细长压杆的( A ),则其临界应力σ越大。
A 、弹性模量E 越大或柔度λ越小;B 、弹性模量E 越大或柔度λ越大;C 、弹性模量E 越小或柔度λ越大;D 、弹性模量E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C )A 、λ≤、λ≤C 、λ≥π D、λ≥10、在材料相同的条件下,随着柔度的增大( C )A 、细长杆的临界应力是减小的,中长杆不是;B 、中长杆的临界应力是减小的,细长杆不是;C 、细长杆和中长杆的临界应力均是减小的;D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A )A. 临界应力一定相等,临界压力不一定相等;B. 临界应力不一定相等,临界压力一定相等;C. 临界应力和临界压力一定相等;D. 临界应力和临界压力不一定相等;12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。
《材料力学》第9章压杆稳定习题解
v
MM
e'kkx
esin
(1coskx)
v
PP
crcr
M
e
边界条件:③xL;v0:0(1coskL)
P
cr
,1coskL0
Mቤተ መጻሕፍቲ ባይዱ
'esin
④x0v0:0kkLsinkL0
P
cr
以上两式均要求:kL2n,(n0,1,3,......)
5
2
L
。故有:
k
2
2
(0.5L)
2
P
cr
EI
其最小解是:kL2,或
Pcr
2
EI
min
2
(2.l)
?为什么?并由此判断压杆长因数是否可能大于2。
2
螺旋千斤顶(图c)的底座对丝杆(起顶杆)的稳定性有无影响?校核丝杆稳定性时,
把它看作下端固定(固定于底座上)、上端自由、长度为l的压杆是否偏于安全?
解:临界力与压杆两端的支承情况有关。因为(a)的下支座不同于(b)的下支座,所以它们的
度系数。
(a)l155m
(b)l0.774.9m
(c)l0.594.5m
(d)l224m
(e)l188m
(f)l0.753.5m(下段);l0.552.5m(上段)
故图e所示杆
F最小,图f所示杆Fcr最大。
cr
[习题9-3]图a,b所示的两细长杆均与基础刚性连接,但第一根杆(图a)的基础放在弹性
地基上,第二根杆(图b)的基础放在刚性地基上。试问两杆的临界力是否均为
失稳时整体在面内弯曲,则1,2两杆组成一组合截面。
(c)两根立柱一起作为下端固定而上端自由的体系在面外失稳
第九章压杆的稳定习题
第九章压杆的稳定习题第九章 压杆的稳定习题一、填空题1、对于大柔度杆,用 计算临界压力;对于中柔度杆,用 计算临界压力2、对于大柔度杆,用来计算临界压力的欧拉公式为 ;对于中柔度杆,用来计算临界压力的经验公式为 。
3、求临界应力的公式22cr Eλπσ=。
式中的λ称为压杆的 ,根据λ数值由大 到小, 把压杆具体分为 , 和 。
二、计算题1、如图有一截面为圆形的大柔度压杆,杆长2.5m ,截面直径为40mm 。
杆的一端固定,一端铰支,材料的弹性模量E =210G pa 。
试求杆的临界压力P cr 。
2、如图所示,某液压作动筒的活塞杆,长度l =1800mm ,直径d =60mm ,承受轴向载荷F =120kN,可认为两端铰支。
活塞杆材料的弹性模量E =210Gpa ,λp =100。
若规定稳定安全系数[n st ]=3,试对活塞杆的稳定性进行校核。
图图3、图示托架中杆AB的直径d=40mm,长度l=800mm,两端可视为铰支,材料是Q235钢。
材料的弹性模量E=210Gpa。
(1)试按杆AB的稳定条件求托架的临界压力F cr。
(2)若已知实际载荷F=70kN,稳定安全系数[n st]=2,问此托架是否安全。
(注:Q235钢,a=310Mpa b=1.14Mpa λp=100 λs=60)图4、如图一截面为12×20cm2的矩形木柱为大柔度杆,杆长L=4m,在最小刚度平面内弯曲时,长度系数μ=1,木材的弹性模量E=10Gpa,试求木柱的临界压力。
图5、如图一横截面为圆的大柔度杆,横截面直径d=16cm,杆长L=5m,材料的弹性模量E=210Gpa。
杆的两端铰支,长度系数μ=1。
试求杆的临界压力P cr。
图6、某型柴油机的挺杆为大柔度压杆,该挺杆长为l =257mm,圆形横截面的直径d =8mm 。
所用钢材的E =210 GPa 。
试求该挺杆的临界力。
(提示:挺杆的两端可简化为铰支座)7、某轧钢车间使用的螺旋推钢机的示意图如图所示。
压杆稳定习题及答案
压杆稳定习题及答案【篇一:材料力学习题册答案-第9章压杆稳定】xt>一、选择题1、一理想均匀直杆受轴向压力p=pq时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( a )。
a、弯曲变形消失,恢复直线形状;b、弯曲变形减少,不能恢复直线形状; c、微弯状态不变; d、弯曲变形继续增大。
2、一细长压杆当轴向力p=pq时发生失稳而处于微弯平衡状态,此时若解除压力p,则压杆的微弯变形( c )a、完全消失b、有所缓和c、保持不变d、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( d)来判断的。
a、长度b、横截面尺寸c、临界应力d、柔度 4、压杆的柔度集中地反映了压杆的( a)对临界应力的影响。
a、长度,约束条件,截面尺寸和形状;b、材料,长度和约束条件;c、材料,约束条件,截面尺寸和形状;d、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m,直径50mm。
其柔度为 ( c )a.60;b.66.7;c.80;d.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( d )所示截面形状,其稳定性最好。
≤?≥?- 1 -10、在材料相同的条件下,随着柔度的增大( c)a、细长杆的临界应力是减小的,中长杆不是;b、中长杆的临界应力是减小的,细长杆不是; c、细长杆和中长杆的临界应力均是减小的; d、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( a )a. 临界应力一定相等,临界压力不一定相等;b. 临界应力不一定相等,临界压力一定相等;c. 临界应力和临界压力一定相等;d. 临界应力和临界压力不一定相等;a、杆的材质b、杆的长度c、杆承受压力的大小d、杆的横截面形状和尺寸二、计算题1、有一长l=300 mm,截面宽b=6 mm、高h=10 mm的压杆。
上海理工材料力学习题解答(压杆稳定)
. 某型柴油机的挺杆长为l =257 mm ,圆形横截面的直径d =8 mm 。
所用钢材的E =210 GPa ,σp =240 MPa 。
挺杆所受的最大压力P = kN 。
规定n st =2~5。
试校核挺杆的稳定性。
解:(1) 求挺杆的柔度挺杆的横截面为圆形,两端可简化为铰支座,μ=1,i =d /4 计算柔度91614410.257128.50.0082101092.924010P ll id Eμμλλππσλλ⨯⨯====⨯===⨯∴挺杆是细长压杆,使用欧拉公式计算临界压力 (2) 校核挺杆的稳定性()()4410422910220.008 2.0110 646421010 2.0110 6.3110.257cr d I m EI P KNl ππππμ--⨯===⨯⨯⨯⨯⨯===⨯工作安全系数max 6.313.591.76cr P n P === 所以挺杆满足稳定性要求。
. 图示蒸汽机活塞杆AB 所受压力为P =120 kN ,l =1.8 m ,截面为圆形d =75 mm 。
材料为Q275钢,E =210 GPa ,s =240 MP 。
规定n st =8。
试校核活塞杆的稳定性。
解:(1) 求柔度极限值9162101092.924010PEλπσ⨯===⨯ 压杆的柔度11 1.8960.075/4liμλλ⨯====压杆是大柔度杆 (2) 压杆的临界压力()()44642296220.075 1.55310 646421010 1.55310993 1 1.8cr d I m EI P kNl ππππμ--⨯===⨯⨯⨯⨯⨯===⨯BAPPlp(3) 压杆的稳定性9938.275120cr st P n n P ===压杆稳定。
10.6. 三根圆截面压杆,直径均为d =160 mm 材料为Q235钢,E =200 GPa ,p =200 MPa ,s =240 MPa 。
三杆均为两端铰支,长度分别为l 1、l 2和l 3,且l 1=2l 2=4l 3=5m 。
第九章_压杆稳定
第 1 页/共 2 页9-5 未失稳失,轴向压缩 T F L L ∆=∆TEA F TL L EAFL L l l T F αα=⇒=∆=∆, 临界状态 kN 3.109)5.0(22cr ==L EIF π由cr F F =得,温升C EALEI T l ︒==2.29422απ 9-8 由铰B 平衡,22BC AB F F F +=,ABBC F F =θtan F 最大时,AB F 与BC F 均达到临界值2222)sin ()cos (βπβπAC EI F AC EI F BC AB ==, )arctan(cot cot tan 22βθβθ==⇒, 9-10 柔度临界值 p2p σπλE = (1)5.72p =λ,(2)8.65p =λ,(3)6.73p =λ 9-12 AB 与BC 均为两力杆,由铰B 平衡可得 F F BC 75=(压) 柔度 m m 320m 5.215.216=====i l i l,,,其中μμλ 稳定因素 06.028002==λϕ稳定许用应力 MPa 6.0][][st ==σϕσ st ][MPa 58.0σσ<==AF BC ,满意稳定性条件。
9-15 组合压杆的临界力cr F 为杆BC 与AB 临界力的最小值柔度临界值 1002==PP E σπλ P ACAC P BC BC i AC i BC λλλλ>=====1047.0100,大柔度杆,由欧拉公式N 1094.0)7.0(N 1004.1622622⨯==⨯==AC EIF BC EIF AC BC ππ,N 1094.06cr ⨯==⇒AC F F许用压力 kN 376][stcr ==n F F ⎪⎪⎭⎫ ⎝⎛======kN 416MPa 8.82][MPa 1.207BC kN 376MPa 6.76][MPa 4.191AC st cr st cr F F ,,:,,:σσσσ 9-17 杆AC ,强度许用应力 MPa 118][st ==n σσ 最大弯矩 26132bh W F M B ==, 最大应力 kN 6.95][41][2max =≤⇒≤=bh F W M B σσσ 杆CD ,柔度P iCD λλ>==200,大柔度杆 由欧拉公式 MPa 3.4922cr ==λπσE 稳定许用应力 MPa 4.16][st cr st ==n σσ 压力 F F CD 31=应力 kN 5.15][3][st st =≤⇒≤=A F AF CD σσσ 结构的许可荷载 kN 5.15][=F。
材料力学习题册答案-第9章压杆稳定
材料力学习题册答案-第9章压杆稳定第九章压杆稳定一、选择题1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。
A 、弯曲变形消失,恢复直线形状;B 、弯曲变形减少,不能恢复直线形状;C 、微弯状态不变;D 、弯曲变形继续增大。
2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C )A 、完全消失B 、有所缓和C 、保持不变D 、继续增大3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。
A 、长度B 、横截面尺寸C 、临界应力D 、柔度4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。
A 、长度,约束条件,截面尺寸和形状;B 、材料,长度和约束条件;C 、材料,约束条件,截面尺寸和形状;D 、材料,长度,截面尺寸和形状;5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m ,直径50mm 。
其柔度为 ( C )A.60;B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。
8、细长压杆的( A ),则其临界应力σ越大。
A 、弹性模量E 越大或柔度λ越小;B 、弹性模量E 越大或柔度λ越大;C 、弹性模量E 越小或柔度λ越大;D 、弹性模量E 越小或柔度λ越小;9、欧拉公式适用的条件是,压杆的柔度( C )A 、λ≤ PEπσ B 、λ≤sEπσC 、λ≥ P Eπσ D 、λ≥sEπσ10、在材料相同的条件下,随着柔度的增大( C )A 、细长杆的临界应力是减小的,中长杆不是;B 、中长杆的临界应力是减小的,细长杆不是;C 、细长杆和中长杆的临界应力均是减小的;D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A )A. 临界应力一定相等,临界压力不一定相等;B. 临界应力不一定相等,临界压力一定相等;C. 临界应力和临界压力一定相等;D. 临界应力和临界压力不一定相等;12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。
材料力学第9章 压杆稳定(土木)
2.1922年冬天下大雪,美国华盛 . 年冬天下大雪, 年冬天下大雪 顿尼克尔卜克尔剧院由于屋顶结 构中的一根压杆超载失稳,造成 构中的一根压杆超载失稳, 一根压杆超载失稳 剧院倒塌, 余人。 剧院倒塌,死98人,伤100余人。 人 余人
3.2000年10月25日 . 年 月 日 上午10时 分 上午 时30分,在南京 电视台演播中心演播厅 屋顶的浇筑混凝土施工 顶的浇筑混凝土施工 中,因脚手架失稳,造 脚手架失稳, 成演播厅屋顶模板倒塌, 成演播厅屋顶模板倒塌, 死5人,伤35人。 人 人
欧拉公式与精确解曲线 精确解曲线
F =1.152F 时,
cr
δ ≈ 0.3l
理想受压直杆 非理想受压直杆
y
适用条件: 适用条件: •理想压杆(轴线为直线,压力与 理想压杆(轴线为直线, 理想压杆 轴线重合,材料均匀) 轴线重合,材料均匀) •线弹性,小变形 线弹性, 线弹性 •两端为铰支座 两端为铰支座
hb3 Iz = = 32cm 4 12
µl
iz =
Iz 32 = = 1.155cm A 4× 6
x
h
µ z = 0.5,
0.5 × 2 λz = = = 86.6 −2 iz 1.155 ×10
A3钢的λs= 61.6, λs<λ< λp,属于中 钢的 , 长压杆稳定问题。 长压杆稳定问题。 由表9-2查得 由表 查得: 查得
挠曲线的近似微分方程 挠曲线的近似微分方程
d w M =− dx EI
2
2
d w Fw =− 2 dx EI
引入记号
2
F w′′ + w = 0 EI
F k = EI
2
w′′ + k w = 0
刘鸿文《材料力学》(第5版)课后习题(压杆稳定)【圣才出品】
解:根据公式计算得: 挺杆横截面面积: 截面的惯性半径:
1 / 28
圣才电子书
十万种考研考证电子书、题库视频学习平 台
则挺杆柔度:
因此,使用欧拉公式计算挺杆的临界压力
压杆的工作安全因数:
规定的稳定安全因数为 nst 3 ~ 5 ,所以挺杆满足稳定要求。
9.3 图 9-1 所示蒸汽机的活塞杆 AB,所受的压力 F=120 kN,l=180 cm,横截面 为圆形,直径 d=7.5 cm。材料为 Q255 钢,E=210 GPa,σP=240 MPa。规定 nst=8,试校核活塞杆的稳定性。
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第 9 章 压杆稳定
9.1 某型柴油机的挺杆长度 l=25.7 cm,圆形横截面的直径 d=8 mm,钢材的 E=210 GPa,σP=240 MPa。挺杆所受最大压力 F=1.76 kN。规定的稳定安全因数 nst=2~5。试校核挺杆的稳定性。
6 / 28
圣才电子书
nst=3,试求许可载荷 F。
十万种考研考证电子书、题库视频学习平 台
图 9-6 解:由于支架的对称性,三根杆所承受的压力相等,即当三根杆同时达到临界值时,
支架开始失稳。任取一根杆进行研究,设其受力为 F ' 。
又该杆的惯性半径:
则其柔度: 由此可知其为大柔度杆,故由欧拉公式计算其临界压力:
其稳定性。
图 9-3
解:对于 Q235 钢, E 200GPa, s 240MPa, p 200MPa ,则有:
4 / 28
圣才电子书
十万种考研考证电子书、题库视频学习平 台
。
又查表得 a 304MPa,b 1.12MPa ,则
材料力学压杆稳定答案
9-1(9-2)图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f所示杆在中间支承处不能转动)?解:对于材料和截面相同的压杆,它们能承受的压力与成反比,此处,为与约束情况有关的长度系数。
(a)=1×5=5m(b)=0.7×7=4.9m(c)=0.5×9=4.5m(d)=2×2=4m(e)=1×8=8m(f)=0.7×5=3.5m故图e所示杆最小,图f所示杆最大。
返回9-2(9-5) 长5m的10号工字钢,在温度为时安装在两个固定支座之间,这时杆不受力。
已知钢的线膨胀系数。
试问当温度升高至多少度时,杆将丧失稳定?解:返回9-3(9-6) 两根直径为d的立柱,上、下端分别与强劲的顶、底块刚性连接,如图所示。
试根据杆端的约束条件,分析在总压力F作用下,立柱可能产生的几种失稳形态下的挠曲线形状,分别写出对应的总压力F之临界值的算式(按细长杆考虑),确定最小临界力的算式。
解:在总压力F作用下,立柱微弯时可能有下列三种情况:(a)每根立柱作为两端固定的压杆分别失稳:(b)两根立柱一起作为下端固定而上端自由的体系在自身平面内失稳失稳时整体在面内弯曲,则1,2两杆组成一组合截面。
(c)两根立柱一起作为下端固定而上端自由的体系在面外失稳故面外失稳时最小=。
返回9-4(9-7)图示结构ABCD由三根直径均为d的圆截面钢杆组成,在点B铰支,而在点A和点C固定,D为铰接点,。
若结构由于杆件在平面ABCD内弹性失稳而丧失承载能力,试确定作用于结点D处的荷载F的临界值。
解:杆DB为两端铰支,杆DA及DC为一端铰支一端固定,选取。
此结构为超静定结构,当杆DB失稳时结构仍能继续承载,直到杆AD及DC也失稳时整个结构才丧失承载能力,故返回9-5(9-9) 下端固定、上端铰支、长m的压杆,由两根10号槽钢焊接而成,如图所示,并符合钢结构设计规范中实腹式b类截面中心受压杆的要求。
孙训方材料力学09压杆稳定
B
11
材 料 力 学 x
Fcr
Fcr M(x)=Fcr w m w B m x y
l m
m x
B y
m-m 截面的弯矩
M ( x) Fcr w
材 料 力 学
杆的挠曲线近似微分方程
EIw M ( x) Fcr w (a)
''
Fcr M(x)=Fcr w m x m
令 得
Fcr k EI
材 料 力 学
(2)横截面对某一形心主惯性轴的惯性矩 I
若杆端在各个方向的约束情况相同(如球形铰等),则 I 应取最小的形心主惯性矩. 取 Iy 、Iz 中小的一个计算临界力。 若杆端在各个方向的约束情况不同(如柱 形铰),应分别计算杆在不同方向失稳时的临 x y z
界压力。 I 为其相应中性轴的惯性矩。
π 2 EI Fcr ( l )2
l—相当长度
—长度因数
材 料 力 学
π 2 EI Fcr 2 ( l )
讨 论 (1)相当长度 l 的物理意义 压杆失稳时,挠曲线上两拐点间的长度就是压杆的相当 长度 l 。
l是各种支承条件下,细长压杆失稳时,挠曲线中相当
于半波正弦曲线的一段长度。
材 料 力 学
解:
E p π 100 σp
压杆 = 1
i
I A
π( D d ) 1 2 2 64 D d π( D 2 d 2 ) 4 4
4 4
lmin
l
i
4l D2 d 2
2
p 100
2
100 0.05 0.04 1.6m 41
y yl
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 压杆稳定
一、什么是压杆稳定?
二、临界压力的计算方法?
三、压杆的稳定性条件?
四、一根两端铰支钢杆,所受最大压力KN P 8.47=。
其直径mm d 45=,长度mm l 703=。
钢材的E =210GPa ,p σ=280MPa ,2.432=λ。
计算临界压力的公式有:(a) 欧拉公式;(b) 直线公式cr σ=461-2.568λ(MPa)。
试:(1)判断此压杆的类型;(2)求此杆的临界压力。
解:(1) 1=μ 86
21==P E σπλ 5.624
===d l i
l μμλ 由于12λλλ<<,是中柔度杆。
(2)MPa cr 301568.2461=-=λσ
kN A P cr cr 478==σ
四、图示四根压杆的材料、截面均相同,它们在纸面内失稳的先后次序为?
六、图示托架各杆均以圆柱形铰链
联接和支承,BC 杆直径d =40mm ,
材料为A 3钢,压杆的大柔度限值
λ1=100,λ2=60。
试判定压杆BC 的类型和该杆临界应力的计算公式。
(14分)
解 惯性半径为 104
===d A I i z mm (4分)
柔度为 83.80==i
l μλ (4分) 属于中长杆,用经验公式计算临界应力,即 λσb a cr -= (6分)。