发展战略-现代交流伺服系统技术和市场发展综述 精品
现代交流伺服系统技术和市场发展综述
1 .交流伺服系统基本性能和控制
方法
在交流伺服系统 中,电动机的类型 有永磁同步交流伺服电机 ( MS 和感 P M) 应异步交流伺服 电机( 。前者具备十 I M)
( 和利时电机)华中数控、 、 广数、 南京埃斯
顿、 J 电机厂等。其中华中数控、 兰' t 1 广数 等主要关注在数控机特性, 目前普遍应用的是基于永磁 电机动态解 耦数学模型的矢量控制方法, 这是现代伺
二 技术发展方 向
现代交流伺服系统,经历了从模拟 到数字化的转变,数字控制环已无处不 在, 比如换相、 电流、 速度和位置控制; 采 用新型功率半导体器件、高性能D P S 加 F GA P 、以及伺服专用模块( 比如 I 推出 R
节, 发展了无位置传感器技术(e s r s S n ol s e
者虽然结构坚固、制造简单、价格低廉,
但是在特性上和效率上存在差距, 只在大 功率场合得到重视 本文将重点讨论永 磁同步交流伺服系统。
交流伺服系统的性能指标可 以从调
C nr1 ot ) 。至今, o 在商品化的产品中, 采
维普资讯
—
誊劲控制及饲照 步进电动规
fE ^TU RE
现代交流伺服系统技术 和市场发展综述
王健
一
关键词 :伺服 系统 技术发展 市场状况
王健先生, 北京和利 时电机技术有限公司。
概述
方面国产产品、 包括部分台湾产品和世界 先进水平相比差距较大。
到 士O0 mj以内:动态响应方面, .1/ n r 通 常衡量的指标是系统最高响应频率, 即给
尽管这方面的工作早就在进行,但
伺服控制系统课程论文
伺服控制系统课程作业现代伺服系统综述指导教师:学生:学号:专业:班级:完成日期:摘要在自动控制系统中,把输出量能够以一定准确度跟随输入量的变化而变化的系统称为伺服系统。
伺服系统也叫位置随动系统,以精确运动控制和力能输出为目的,综合运用机电能量变换与驱动控制技术、检测技术、自动控制技术、计算机控制技术等,实现精确驱动与系统控制。
伺服系统主要包括电机和驱动器两部分,广泛用于航空、航天、国防及工业自动化等自动控制领域。
伺服系统按其驱动元件划分有步进式伺服系统、直流电动机伺服系统和交流电动机伺服系统。
随着微处理器技术、大功率高性能半导体功率器件技术、电机永磁材料制造工艺的发展及电力电子、控制理论的应用,交流电动机伺服系统近年来获得了迅速发展,广泛用于工业生产的各个领域,如数控机床的进给驱动和工业机器人的伺服驱动等。
因此,在相当大的范围内,交流电动机伺服系统取代了步进电动机与直流电动机伺服系统,时至目前,具备了宽调速范围、高稳速精度、快速动态响应及四象限运行等良好的技术性能,其动、静态特性已完全可与直流伺服系统相媲美,已成为伺服系统的主流。
关键词:伺服系统自动控制驱动元件1 伺服系统的发展阶段伺服系统的发展与它的驱动元件——伺服电动机的不同发展阶段相联系,并结合老师在第一章所讲的伺服系统分类的知识,伺服电动机至今经历了三个主要的发展阶段。
(1)第一个发展阶段(20世纪60年代以前):步进电动机开环伺服系统;伺服系统的驱动电机为步进电动机或功率步进电动机,位置控制为开环系统。
步进电机是一种将电脉冲转化为角位移的执行机构,两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72°、0.36°;步进电机存在一些缺点:在低速时易出现低频振动现象;一般不具有过载能力;步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转现象,停止时转速过高易出现过冲现象。
伺服技术的应用前景和解决方案
伺服技术的应用前景和解决方案伺服技术是一种用于控制和驱动运动提供精确位置和速度控制的技术。
它在许多行业中有着广泛的应用,并具有巨大的发展前景。
本文将讨论伺服技术的应用前景以及解决方案。
一、伺服技术的应用前景1. 工业自动化领域伺服技术在工业自动化领域中有着重要的应用前景。
伺服驱动器和伺服电机的高精度定位和运动控制特性,使得它们能够广泛应用于自动化设备,如机床、印刷设备、包装机械等。
随着工业自动化需求的增加,伺服技术的应用前景也在逐渐扩大。
2. 机器人领域伺服技术对于机器人领域的应用也具有巨大的前景。
伺服驱动器和伺服电机的高速、高精度运动控制能力,可以实现机器人的灵活、精确的动作,提高机器人的工作效率和精度。
此外,伺服技术还可以结合传感器和视觉系统,实现机器人的感知和智能化,进一步拓展机器人应用领域。
3. 新能源领域随着新能源行业的快速发展,伺服技术在新能源设备中的应用前景十分广阔。
例如,风力发电机组中的角度调节系统、太阳能光伏跟踪器中的方位调节系统等,都需要伺服技术来实现精确的位置和角度控制,提高能源设备的效率和可靠性。
二、伺服技术的解决方案1. 选型和集成在应用伺服技术时,选型和集成是关键。
首先,需要根据具体的应用需求选择合适的伺服驱动器和伺服电机;其次,需要与其他设备和系统进行集成,实现整体的自动化控制。
选型和集成的成功与否直接影响到伺服系统的性能和稳定性。
2. 精确控制算法伺服技术的精确控制算法是实现高精度运动控制的重要因素。
通过优化控制算法,可以提高伺服系统对于位置和速度的控制精度,降低能耗,提高系统的稳定性和响应速度。
3. 传感器和反馈系统伺服系统的准确反馈是实现精确控制的基础。
传感器和反馈系统可以实时获取伺服电机的位置、速度和扭矩等参数,反馈给控制系统进行补偿控制。
选择合适的传感器和反馈系统,能够提高伺服系统的控制精度和稳定性。
4. 故障检测和维护为了确保伺服系统的长期稳定运行,需要进行故障检测和维护。
中国伺服系统前景分析
中国伺服系统前景分析一、伺服行业产业链“伺服”—词源于希腊语“奴隶”的意思。
人们想把“伺服机构”当个得心应手的驯服工具,服从控制信号的要求而动作。
在讯号来到之前,转子静止不动;讯号来到之后,转子立即转动;当讯号消失,转子能即时自行停转。
由于它的“伺服”性能,因此而得名——伺服系统。
1.工作原理伺服控制是对机器装备的精确定位、速度等运动要素进行控制的统称。
伺服控制系统主要由控制器和伺服传动单元组成,通过机械零部件传导到负载端。
伺服系统(或称伺服产品)通常包括伺服驱动器(指令装臵)、伺服电机、伺服反馈装臵(编码器)三个部分。
2.下游应用伺服系统主要应用于对定位精度和运转速度控制要求较高的制造领域,在精密制造和柔性制造中有着不可替代的作用,目前已广泛应用于机床、包装、纺织电子、塑料、医疗、印刷、橡胶、食品等行业,并逐步在风电、新能源汽车等新兴行业得到推广,应用领域的不断拓展将进一步推动伺服系统市场的增长。
2020年伺服系统下游应用占比最高的电子及半导体、机床和工业机器人,总和占比为37%左右,其中占比最高的为电子及半导体行业,占比16%。
就增速情况而言,电子及半导体行业也远远高于下游其他行业,2020年市场规模增长率为36%左右,远超全行业平均增速18%。
2020年中国私服系统主要下游应用需求变动情况二、伺服系统市场容量随着社会的不断发展和进步,伺服系统在工业发展中的作用愈加明显。
高速加工技术和以高速、高精度为基础的其他技术的发展,推动了伺服系统的快速发展。
我国伺服系统市场规模自2015年起整体表现为增长趋势,2020年中国伺服电机系统市场规模为164.4亿元,同比2019年增长18.3%。
三、伺服系统竞争格局我国国产伺服系统企业发展迅速,发展国产替代率逐年升高。
过去中国大陆伺服系统主要来源于日本等地的大量进口,占比最高的是松下、安川等。
经过十来年的发展,2020年的现在,国内从事伺服系统的供应商超过300家,国产品牌近12年持续采取定制化与低价策略馋食外资品牌份额,2020年中国伺服系统市场份额占比最高仍然主要是日本等外资企业,但是国产企业占比大幅度增高,其中代表汇川2020年市场占比10%。
伺服行业
伺服电机应用行业总结现代交流伺服系统最早被应用到宇航和军事领域,比如火炮、雷达控制。
逐渐进入到工业领域和民用领域。
工业应用主要包括高精度数控机床、机器人和其他广义的数控机械,比如纺织机械、印刷机械、包装机械、医疗设备、半导体设备、邮政机械、冶金机械、自动化流水线、各种专用设备等。
其中伺服用量最大的行业依次是:机床、食品包装、纺织、电子半导体、塑料、印刷和橡胶机械,合计超过75%。
在数控机床中使用永磁无刷伺服电机代替步进电机做进给已经成为标准,部分高端产品开始采用永磁交流直线伺服系统。
在主轴传动中采用高速永磁交流伺服取代异步变频驱动来提高效率和速度也成为热点•无轴(电子轴)传动技术在印刷机上应用,也是目前全球印刷企业和机械制造商的焦点。
无轴传动就是用多个单独的伺服电机取代传统的机械传动链,伺服驱动器之间依靠高速现场总线进行联系,通过软件保证各伺服轴对内部的虚拟数字电子轴保持严格同步。
采用无轴传动技术为印刷机的生产制造、为印刷业服务革命带来了最佳解决方案,目前欧洲50%的凹印机采用了无轴技术,日本也有30%以上采用。
其他采用无轴传动的机械包括卷筒纸印刷机、柔印机、上光机、烫金机、模切机等各类印刷设备。
这一领域最顶级的伺服控制解决方案提供商是来自德国的博世力士乐、伦茨、日本的住友和奥地利的贝加莱。
国内目前仅有北人和松德等个别厂家进行无轴传动印刷机的开发,部分规格的性能指标接近国际水平,但是其采用的电子轴传动伺服系统和套准控制系统均来自日本和欧洲,国内相关伺服厂家还鲜有涉足。
国产伺服和控制系统要达到这个领域的要求,需要顶级的技术水平和对这个行业的透彻理解,看来还有漫长的路要走。
•包装设备上,采用伺服控制可以提高单位时间的产量、提高资源利用率、增加品种适应性和提高产品质量,因此交流伺服在包装机械上的广泛使用只是时间问题。
采用数字伺服技术的电子齿轮和电子凸轮将代替传统机械部件,随着价格的下降,成本也逐渐接近纯机械的方案。
数控进给伺服系统与驱动电机的发展及趋势
盛发展 的时代 ,由于直流电动机具有优 良的调速性 能, 很多高性能驱动装置采用了直流 电动机 , 伺服 系 统 的位置 控制 , 由开环 系统 发 展为 闭环 系统 。 也 直 流伺 服 的工作 原 理 ,是 建立 在 电磁力 定 律 基 础 上 。与 电磁 转矩 相 关 的 , 互 相独 立 的两个 变 量 主 是 磁通与 电枢电流 ,它们 分别控制励磁 电流与电枢 电 流, 可方便地进行转矩与转速控制。另一方面从控制 角度看 , 直流伺服的控制 , 是一个单输入单输出的单 变量控制系统 , 经典控制理论完全适用于这种系统。 因此 , 直流伺服 系统控制简单 , 调速性能优异 , 在数 控机床的进给驱动中, 曾占据着主导地位 。 然而 , 从实际运行考虑 , 直流伺 服电动机引入了 机械换向装置。 其成本高 , 障多 , 故 维护 困难 , 经常因 碳刷产生的火花而影响生产 ,并对其他设备产 生电 磁 干 扰 。同时机 械换 向器 的换 向能 力 , 限制 了 电动机 的容量和速度。电动机的电枢在转子上 , 使得电动机 效 率 低 , 热 差 。为 了改 善 换 向能力 , 小 电枢 的漏 散 减 感 , 子 变得 短 粗 , 响 了系统 的动 态性 能 。 转 影 23 第 三 个发 展 阶段 . 2 世纪 8 年代至今 , 0 0 属第三发展阶段 。 这一阶段是 以机电一体化时代为背景的 ,由于 伺服 电动机结构及其永磁材料和控制技术 的突破性 进展 , 出现 了无刷直流伺服 电动机 ( 方波驱动 )交流 , 伺 服 电动机 ( 弦波 驱 动 ) 正 等种 种新 型 的 电动机 。 针对直流 电动机 的缺陷 , 如果将其做 “ 翻外 ” 里 的处理 , 即把 电 驱 绕组 装 在 定 子 、 子 为永 磁 部 分 , 转 由转子轴上的编码器测 出磁极位置 ,就构成了永磁 无刷 电动机 , 同时随着矢量控制方法 的实用化 , 使交 流伺服系统具有 良好的伺服特性。其宽调速范围、 高 稳速精度 、快速动态响应及四象限运行等 良好的技
台达伺服进军“高、精、专”
李经理表示,在 B 系列伺服以后 ,中达 还将推 出台
达更高级 的伺服产 品 ,这款伺服初 步定为 C系列伺服 ,
将主要应用于多轴 运动控制领域 。台达将把技术指 标提 到更高水平 ,向着高速 高精度、低速 高扭 力等特性方面
发展 ,使伺服 驱动 高功 能化 。此外 ,对运 动控制 、多 轴控制 、闭环控制这些 方面的产品将会 增加 一些控 制功
动化产品领域的主打产 品之一, 台达伺服系统近年来发展 迅速 。 0 5 , 2 0 年 为了进一步满足用户 的需要 , 中达人不断
理 、位置三 合一模式设计 ,而其他 伺服 是这三 种模式分
开 。此 外 ,它还 有 定位 功能 ,这对 于 客户 而言 ,是 一
开拓 , 向简 中求高 、 中求精 , 继A 简 在 系列交流伺服系统
B系列伺服
达在伺服领域 所取得的成绩还不错 , 达到 了预期 目标 。 无 论是从市场 的接受度 , 还是用户的使用效果等方面来看 ,
都获得 了广 泛 的认可 。 据悉 , 中达在 机电 自动化领域发展迅速 , 涉及面广 ,
但从产 品 自
身 的 技 术 指
标 来看 ,该 产 品稳 定性 强 ,市场 的 需求挺 高 。其最 大
是销售业绩都取得 了令人 瞩 目的成绩。 中达如何取得这些
的设 计 ,更 加方便 了客户架 构成本更低 的控 制方 案。
李 经 理
还指 出, B系 列 伺 服 是 20 0 5年下 半
成绩 ?在新的一年中, 他们又有哪些 新的计划 ?中达伺服
数控产品经理李文建先生 ( 以下简称 “ 李经理 ”, ) 一举解
整合资 源 细 分市场 把握 行业新 方 向
2024年伺服驱动器行业市场研究分析报告
一、概述伺服驱动器是一种用于控制伺服电机的设备,广泛应用于机械加工、自动化生产线等领域。
伺服驱动器的出现使得精密运动控制成为可能,提高了工业自动化的水平,对于生产效率和质量的提升起到了重要的作用。
本报告对2024年伺服驱动器行业市场进行了调研,并进行了详细分析。
二、市场规模根据调研数据显示,2024年伺服驱动器行业市场规模为XX亿元,相比上一年增长了XX%。
伺服驱动器市场规模的增长主要受益于工业自动化需求的提升和技术的进步。
三、市场竞争格局目前,伺服驱动器市场竞争激烈,主要的竞争者包括ABB、西门子、施耐德电气等知名企业。
这些企业在技术实力、产品品质、售后服务等方面具有较高的竞争力。
四、市场驱动因素1.工业自动化需求的增加:随着工业自动化的不断推进,对伺服驱动器的需求也在增加,特别是在机械加工、自动化生产线等领域。
2.技术的进步:伺服驱动器技术不断创新,实现了更高的精度、更稳定的运行和更好的控制性能,提高了产品的竞争力。
3.政策支持:政府对于高端装备制造业的支持力度增加,为伺服驱动器行业提供了更好的发展环境。
五、市场前景展望根据市场分析,未来几年伺服驱动器行业有望继续保持稳定增长。
1.自动化需求的持续增加:随着工业自动化水平的提升,对伺服驱动器的需求将持续增加。
2.产品技术的不断创新:伺服驱动器企业将持续进行技术研发,推出更先进的产品,满足市场需求。
3.政策支持力度的加大:政府对于高端装备制造业的支持将进一步加大,为伺服驱动器行业提供更好的发展机会。
综上所述,2024年伺服驱动器行业市场保持了良好的发展态势,市场规模持续增长,市场竞争格局激烈,但市场前景依然乐观。
伺服驱动器企业应注重产品技术创新和提升服务质量,以保持在市场竞争中的优势地位,进一步拓展市场份额。
2023年伺服系统行业市场规模分析
2023年伺服系统行业市场规模分析伺服系统是指能够控制运动过程的自动控制系统,广泛应用于机械、电气、电子、光学等各个领域。
随着全球经济的发展以及技术的不断进步,伺服系统行业越来越受到人们的关注和重视。
根据市场调研机构的数据显示,全球伺服系统市场规模不断扩大,预计在未来几年内仍将保持稳定和持续增长的趋势。
1. 全球伺服系统市场规模据市场研究公司预测,2019年,全球伺服系统市场规模约为58.76亿美元,并预计到2027年将达到81.59亿美元,年复合增长率为3.8%。
其中,亚太地区是全球最大的伺服系统市场之一,占据了市场的近50%的份额,其次是欧洲和北美市场。
2. 行业市场规模分析伺服系统行业可划分为几大类,包括细分为伺服电机、伺服驱动器、控制器和传感器等。
根据产品形式和应用领域的不同,市场规模有所不同。
2.1 伺服驱动器市场规模:由于伺服驱动器是伺服系统的核心部件之一,因此占据了伺服系统市场的大部分份额。
伺服驱动器市场的规模已经近年来不断增加,预计到2027年将达到30.73亿美元左右。
2.2 伺服电机市场规模:伺服电机在机械、汽车、航空航天、医疗设备、通讯设备等领域中得到广泛应用,目前市场规模大约为32.47亿美元。
随着电机技术不断更新换代,市场规模将继续增长。
2.3 控制器市场规模:控制器的主要作用是将运动控制器与电动机控制器连接,形成一个完整的伺服系统,市场规模大约为6.72亿美元左右。
2.4 传感器市场规模:伺服系统需要精准的运动控制,传感器负责感知和反馈位置、速度和力矩等参数,因此是伺服系统中不可或缺的一部分。
目前伺服传感器市场规模大约为3.24亿美元左右。
3. 市场趋势与前景伺服系统市场是一个比较成熟的市场,但是随着技术的不断革新和应用领域的扩大,市场仍然具有增长潜力。
未来几年,伺服系统市场将受益于人工智能技术的应用、自动化技术的推广和不断增长的中等收入人群数量。
目前,亚太地区是全球伺服系统市场发展最快的地区之一,未来亚太地区伺服系统市场增长仍有望继续稳定增长。
伺服电机综述
伺服电机综述luqingsong@摘要:文章对伺服电机及其工作原理进行了简要介绍,并介绍了伺服控制系统同时分析了国内外伺服电机的研究现状。
关键词:伺服电机伺服系统研究现状1伺服电机简介伺服电机(servo motor)是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。
伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。
伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。
分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。
[1]2伺服电机工作原理伺服电机在控制系统的控制下,实现相应的动作,其相应的命令就是输入的电压信号,一般由单片机提供,有几伏电压到几千伏电压驱动的伺服电机,伺服电机通过接受到的电压信号,识别信号的占空比,从而实现伺服电机的转速的输出控制,伺服电机把输入的电压信号转换为伺服电机的转矩,其占空比比较大,时间常数相应比较小,能够快速的响应,其归根结底则是根据输入的信号电平转化为伺服电机电机轴的角位移或者角速度输出,达到信号旋转驱动后面负载的元器件的功能,其作为一个动力驱动源,应用很广泛。
伺服电机一般度较小,现今使用的多为交流伺服电机,交流伺服电机有着优良的特性,体积小,执行相应时间小,其功率值的调动范围很大,相对于交流伺服电机而言直流伺服电机体积比较大,其执行的精度虽高,但在成本和实用下,性能比远远低于交流伺服电机。
现如今,工业企业等大小的实验,均采用的是交流伺服电机,交流伺服电机分为同步交流伺服电机和异步交流伺服电机。
交流伺服电机采用的是单片机输入的PWM脉宽数,执行相应的反应动作,交流伺服电机通过接收到的PWM脉宽数,执行电机的主轴输出轴的转速的控制。
2024年伺服系统市场需求分析
4.节能环保:伺服系统制造商致力于开发节能环保的产品,减少能耗和环境污染。
市场竞争态势
目前,伺服系统市场竞争激烈,国内外众多制造商和供应商争相进入。在国际市场上,日本、德国和美国的伺服系统制造商具有较强的实力和技术优势。在国内市场上,伺服系统制造商之间竞争也日趋激烈,技术创新和产品质量成为竞争的关键。
伺服系统市场的规模与工业自动化领域的发展紧密相关。近年来,随着工业4.0的推进和制造业的智能化升级,伺服系统市场呈现出稳定增长的趋势。根据市场研究机构的数据,截至2020年,全球伺服系统市场规模约为100亿美元,预计到2025年将增至150亿美元。
应用行业
伺服系统广泛应用于各个行业,包括制造业、机床、半导体设备、自动化设备等领域。在制造业中,伺服系统常用于精密机械加工、包装线、材料搬运等工艺中,实现产品生产和装配的高精度控制。在机床行业中,伺服系统在数控机床中被广泛采用,提高了机床的加工精度和效率。在半导体设备领域,伺服系统用于芯片的制造和测试过程中,保障了产品质量和生产效率。此外,伺服系统还应用于物流传送设备、机器人、自动灌装设备等自动化设备中。
结论
伺服系统市场随着工业自动化的发展呈现出较好的增长态势。制造业的智能化升级和技术进步将进一步推动伺服系统市场的发展。制造商和供应商应密切关注市场需求和技术趋势,加强技术研发和产品创新,提升产品质量和竞争力。应用方需根据自身需求选择合适的伺服系统,提高生产效率和产品质量。随着工业自动化的不断深入,伺服系统市场前景广阔,具有较大的发展潜力。
2024
引言
伺服系统是一种广泛应用于工业自动化领域的控制系统,通过对电机的定位和速度控制,实现对机械系统的精确控制。伺服系统在制造、机械加工、半导体生产等领域具有广泛的应用。
《企业发展战略研究文献综述3400字》
企业发展战略研究国内外文献综述1.1国内研究现状20世纪80年代以后,中国的企业的管理层从外国企业家身上接触到了非常先进的战略管理理念。
从此,中国的战略管理研究逐渐发展起来。
李婧(2007)通过理论研究和案例研究方法,分析战略整合要素模型,结合协同理论。
结论是共生性并购后公司想要通过战略整合实现战略协同作用。
在战略整合过程中,他们必须紧密结合协同作用,不断提高核心发展力。
刘乐铮(2012)将通过使用价值链模型分析跨国公司整合的价值链。
通过价值链结构这个工具可让我们更好地了解公司参与经济活动的过程。
他主要通过分析中国目前的状况,研究为何中国公司处于价值链的低端部分。
结论是要克服这一低级困境,公司和政府必须共同努力,公司通过提高创新能力,扩大市场影响力和品牌影响力。
林毅夫、陈斌开(2017)认为企业发展战略是企业以未来为基点,为寻求和维持持久竞争优势而做出的有关全局的、科学的重大筹划和谋略,是一个企业在市场竞争中占有主动权和谋求大发展、大跨越的关键。
每一个企业都应该根据自身的特点和优势,把未来的生存与发展作为制定战略的出发点和落脚点。
何燕(2017)以YS公司并购SJ公司为例子,从三个方面对合并和收购的整合进行了有效地分析。
结论是只有通过系统的、有效的制度整合、资源整合和文化融合,从能最终保障战略实施的成功。
项保华(2017)认为战略就是抓关键、迎机会、避陷阱,必须认清形势,不同情境有不同的做法。
集团战略的重点在于:开放心态、积极探索、扎根市场、专注创新、淡定取舍、与时俱进。
范志刚、吴晓波(2018)指出联合战略具体又可分为横向联合和纵向联合战略。
横向联合战略就是根据中小企业发展的客观需要,通过与其他企业建立协作关系,改变中小企业在竞争中的不利地位,弥补资源不足的一种主动性选择,纵向联合战略包括企业进人到产品销售或深加工领域的前向一体化战略和企业进人到原材料供应领域的后向一体化战略。
而中小企业可采用依附型战略,与产品销售领域中的大企业建立紧密的协作关系,定向地给大企业提供产品,通过大企业的发展壮大而获得生存和发展。
现代高性能永磁交流伺服系统综述——永磁电机篇
2 . B e i j i n g E — C u b e T e c h n o l o g i e s C o . ,L t d . ,B e i i f n g 1 0 0 0 8 5 ,C h i n a )
Ab s t r a c t :Mo d e m h i g h — p e r f o r ma n c e AC s e r v o s y s t e ms a r e c o mp o s e d o f t h r e e p a r t s :d i r v e c o n t r o l l e r ,p e r ma — n e n t ma g n e t mo t o r a n d s e n s o r ,t h e p a p e r ma i n l y i n t r o d u c e d t h e h i g h - p e f r o m a r n c e AC s e r v o mo t o r .On t h e b a s i s o f t h e a n a l y s i s o f t h e c o n c e p t ,d e v e l o p me n t c o u r s e ,t e c h n i c l a s i t u a t i o n nd a t h e a p p l i c a t i o n f o r mo d e m h i g h — p e f r o m a r n c e AC s e r v o mo t o r .i n t r o d u c e d s e p a r a t e l y t h e s t r u c t u r e c h a r a c t e is r t i c o f r o t o r a n d s t a t o r or f t h e r a r e — e a r t h AC s e r v o mo t o r ;d i s c u s s e d he t c h ra a c t e is r t i c,h a r mo n i c a n d c o g g i n g t o r q u e o f f r a c t i o n a l — s l o t a n d c o n c e n t r a t e d w i n d i n g AC s e r v o mo t o r ;me a n w h i l e b ie r f i n t r o d u c e d t h e mu l t i — p h a s e A C s e r v o mo t o r ,P M l i n e - r a AC s e r v o mo t o r a n d o t h e r P M s e r v o mo t o r ;f i n a l l y,a i mi n g a t t h e v a r i o u s a s p e c t s p a r t i c u l a i r t y o f P M AC s e r v o mo t o r i n t h e h i g h — p e f r o m a r n c e,v a i r e d - f r e q u e n c y,r e l i a b i l i t y a n d s y s t e m d e s i g n, a n ly a z e d i t s d e s i n g
伺服电机的发展前景
伺服电机的发展前景伺服电机的发展前景自20世纪80年代以来,随着现代电机技术、现代电力电子技术、微电子技术、控制技术及计算机技术等支撑技术的快速发展,交流伺服控制技术的发展得以极大的迈进,使得先前困扰着交流伺服系统的电机控制复杂、调速性能差等问题取得了突破性的进展,交流伺服系统的性能日渐提高,价格趋于合理,使得交流伺服系统取代直流伺服系统尤其是在高精度、高性能要求的伺服驱动领域成了现代电伺服驱动系统的一个发展趋势。
交流伺服电动机的现状随着数控技术的迅速发展,伺服系统的作用与要求越显突出,交流伺服电动机的应用也越来越为广泛。
针对直流电动机的缺陷,如果将其里外作相应的调整处理,即把电驱绕组装在定子、转子为永磁部分,由转子轴上的编码器测出磁极位置,就构成了永磁无刷电动机,同时随着矢量控制方法的实用化,使交流伺服系统具有良好的伺服特性,其宽调速范围、高稳速精度、快速动态响应及四象限运行等良好的技术性能,使其动、静态特性已完全可与直流伺服系统相媲美。
同时可实现弱磁高速控制,拓宽了系统的调速范围,适应了高性能伺服驱动的要求。
目前,在机床进给伺服中采用的主要是永磁同步交流伺服系统,有三种类型:模拟形式、数字形式和软件形式。
模拟伺服用途单一,只接收模拟信号,位置控制通常由上位机实现。
数字伺服可实现一机多用,如做速度、力矩、位置控制。
可接收模拟指令和脉冲指令,各种参数均以数字方式设定,稳定性好。
具有较丰富的自诊断、报警功能。
软件伺服是基于微处理器的全数字伺服系统。
其将各种控制方式和不同规格、功率的伺服电机的监控程序以软件实现。
交流伺服电动机的发展方向1. 交流化伺服技术将继续迅速地由DC伺服系统转向AC伺服系统。
从目前国际市场的情况看,几乎所有的新产品都是AC伺服系统。
在工业发达国家,AC伺服电机的市场占有率已经超过80%。
在国内生产AC伺服电机的厂家也越来越多,正在逐步地超过生产DC伺服电机的厂家。
可以预见,在不远的将来,除了在某些微型电机领域之外,AC伺服电机将完全取代DC伺服电机。
谈工业控制电气伺服驱动技术及其发展
的低速性 能 , 并可实 现弱磁 高速控制 , 了系统 的调 拓宽
速范 围 , 应 了高性 能伺 服 驱动 的要 求 。随着 永磁 材 适 料 性能 的大 幅度提 高 和价 格 的 降低 , 在 工业 生产 自 其 动化领域 中的应用 将 越来 越广 泛 , 目前 已成为 交流 伺
服 系统 的主 流 。感应式 异步 电动机 交流伺服 系统 由于
二个 阶段 是 直 流伺 服 电动 机 的诞 生 和 全 盛 发 展 的时 代, 由于直 流 电动机 具有优 良的调速性 能 , 多高性 能 很 驱 动装置采 用 了直流 电动机 , 服 系统 的位 置 控制 也 伺 由开环 系统 发展成 为闭环 系统 。在数控 机床 的应用 领
伺服 系统 在技术 上 已趋 于完 全成 熟 , 备 了十分优 良 具
动控制系统 。伺 服 的主要 任 务是 按 控制 命令 的要求 , 对 功率进行放 大 、 变换 与调控等 处理 , 驱动装 置输 出 使
的力距 、 速度 和位 置 控制 得 非 常灵 活方 便 。伺 服 系统 是 具有反 馈 的 闭环 自动 控 制 系 统 。它 由位 置 检 测部
设备 的性能 和工作可靠性 、 经济性 , 与所用伺 服驱 动 均
高, 近年来 国 内外 发 展 了多 种伺 服驱 动 技术 。 电气伺
服技术应用广 泛 , 主要原 因是控 制方便灵 活 , 容易 获得 驱动能源 , 没有 公害污 染 , 维护也 比较容 易 。特别 是 随 着电子技术 和计 算 机 软件 技术 的发展 , 为 电气 伺服 它 技术的发展 提供 了广 阔的前景 。
感 应式 异步 电动 机结 构坚 固, 造容 易 , 制 价格低 廉 , 因 而具有很好 的发展前 景 , 表 了将 来伺服技 术 的方 向 。 代 但 由于该系统 采用 矢量 变换 控 制 , 相对 永磁 同步 电动 机伺 服系统来说 控 制 比较 复杂 , 而且 电机低 速运 行 时
现代伺服系统综述
定的功能。
2 . 1驱动执行环节 。伺服 系统 按其驱动 执行元件划分 ,有步进式伺服 系统 、直流电 动机伺服系统 、交流电动机伺服 系统 。在闭 环或半 闭环控制的伺服系统中 。 主要采用直 流伺服电动机 、 交流伺服 电动机或伺服阀控 制的液压伺 服马达作为执行元件 。 液压伺服 马达主要用 在负载较大 的大型伺服系统 中, 在中 、 小型伺服系统中 , 则 多数采用直流或 交流伺服电动机。近年来 ,由于交流伺服技 术 的发展 , 使交流伺服电动机可 以获得 与直 流伺服 电动机相近的优 良性能 , 而且交流伺 服 电动机无 电刷磨 损问题 ,维修方便 ,随着 价格 的逐年降低 , 正在得到越来越广泛 的应
I 引 言
伺 服系统也 叫位置随动系统 , 以精确运 动控制和力能输 出为 目的 , 综合运用机ቤተ መጻሕፍቲ ባይዱ能 量变换与驱动控制技术 、 检测技术 、自动控 制技术、计算机控制技术等 ,实现精确驱动 与系统控制。 它 的根本任务是实现执行机械 对位置指令 的准确跟踪 。 伺服系统主要包括 电机和驱动器两部分 , 广泛用 于航空 、 航天 、 国防及 工业 自 动化等 自动控制领域。随着电
用。
具有 基本智 能的信息家电设备 , 例如可以帮 助清洁工作 的机器人 、 可供娱乐的电子机械 宠物等等。这些结合机械、电子 、通讯 、控 制、 信息技术融合装置 的核心部分就是 具有 网络界面的伺 服系统控制器。 随着网络通讯技术 的进步 , 采用实时网 络通讯技术的伺 服系统也随之发展。目前已 有 多种采用 不 同通 讯协议 的分布 式运 动控 制系统 ,如 S E R C O S 、R e a l - T i m e E t h e m e t 、 R e a l - T i m e C A N b u s 。 应用 高速 网络技术于分 布式伺服系统有许多优点 , 诸如更灵活 的系 统应用 、 更佳 的系统整合控制效 果等等 。以 太 网在运 动控制 领域应 用 的最 大障碍 是其 如何克服在实时 性能上天生 的缺陷 。 保障确 定性所需 的额外硬件成本 , 星型网络拓扑 的 局 限性 及特定 的实施 是否能提 供互操 作性 的问题 。F i r e Wi r e ( 1 E E E 一 1 3 9 4 ) 作为运动控 制联 网协 议 的基 础 ,其 拥 护 者 已经设 立 I E E E 一 1 3 9 4 标准 ,内建确定性 的 F i r e Wi r e 标 准芯片集 支持实时应用 。 D S P 是一种具有强大计算能力的微处理 器。但值得注意的是 , 单芯片微控器已广泛 应用于工业控制领域 但 近年来 ,已发展出 特别针对伺服 电机控制 的单芯片 D S P 控制 器 ,例 如 德 州 仪 器 的 T M S 3 2 0 F 2 4 x x、 T M S 3 2 0 F 2 8 1 2 等等 , 不仅计算性能强大、具
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代交流伺服系统技术和市场发展综述(时光科技有限公司华南办事处刘孙亮)摘要:本文首先从历史的角度介绍了现代交流伺服系统从电机控制的大家族中脱颖而出的过程,并从技术和市场两个方面展示了当今交流伺服系统的发展状况,重点放在国内外市场、技术、产品和厂商竞争策略的对比上,希望给关心中国交流伺服产业成长的人们一个全景式扫描。
概述1.历史的角度看电机发展1800 年伏特发明电池,是电气出现的开端,电动机的诞生和发展在这之后可以分成几个阶段。
从1820 年一直到整个19 世纪末叶,发现了电磁现象以及相关的各种法则,诞生了交流电机的原型,并确立了电机的工业运用。
从20 世纪开始一直到1970 年代,是电动机的成长和成熟期,有刷直流电机、感应电动机、同步电动机和步进电动机等各种电机相继诞生,半导体驱动技术和电子控制概念引入,带来变频驱动的实用化。
从1970年代到20 世纪末期,计算技术的飞跃发展为发展高性能驱动带来了机会,随着设计、评价、测量、控制、功率半导体、轴承、磁性材料、绝缘材料、制造加工技术的不断进步,电动机本体经历了轻量化、小型化、高效化、高力矩输出、低噪音振动、高可靠、低成本等一系列变革,相应的驱动和控制装置也更加智能化和程序化。
进入21 世纪,在以多媒体和互联网为特征的信息时代,电动机和驱动装置继续发挥支撑作用,向节约资源、环境友好、高效节能运行的方向发展。
永磁无刷直流电机(Brushless DC Motor)就是随着永磁材料技术、半导体技术和控制技术的发展而出现的一种新型电机。
无刷直流电机诞生于20 世纪50 年代,并在60 年代开始用于宇航事业和军事装备,80 年代以后,出现了价格较低的钕铁硼永磁,研发重点逐步推广到工业、民用设备和消费电子产业。
本质上,无刷直流电机是根据转子位置反馈信息采用电子换相运行的交流永磁同步电机,与有刷直流电机相比具有一系列优势,近年得到了迅速发展,在许多领域的竞争中不断取代直流电机和异步电动机。
进入90 年代之后,永磁电机向大功率、高功能和微型化发展,出现了单机容量超过1000KW,最高转速超过300000rpm,最低转速低于0.01rpm,最小体积只有0.8x1.2mm 的品种。
实际上,永磁无刷直流电机和本文重点论述的永磁交流伺服电机都属于交流永磁同步电机。
按照反电动势波形和驱动电流的波形,可以将永磁同步电机分为方波驱动和正弦波驱动型,前者就是我们常说的无刷直流电机,后者又称为永磁同步交流伺服电机,主要用于伺服控制的场合。
那么,伺服是什么含义呢?伺服控制的基本性能如何衡量呢?2.交流伺服概念引入、基本性能和控制方法伺服来自英文单词Servo,指系统跟随外部指令进行人们所期望的运动,运动要素包括位置、速度和力矩。
伺服系统的发展经历了从液压、气动到电气的过程,而电气伺服系统包括伺服电机、反馈装置和控制器。
在20 世纪60 年代,最早是直流电机作为主要执行部件,在70 年代以后,交流伺服电机的性价比不断提高,逐渐取代直流电机成为伺服系统的主导执行电机。
控制器的功能是完成伺服系统的闭环控制,包括力矩、速度和位置等。
我们通常说的伺服驱动器已经包括了控制器的基本功能和功率放大部分。
虽然采用功率步进电机直接驱动的开环伺服系统曾经在90 年代的所谓经济型数控领域获得广泛使用,但是迅速被交流伺服所取代。
进入21 世纪,交流伺服系统越来越成熟,市场呈现快速多元化发展,国内外众多品牌进入市场竞争。
目前交流伺服技术已成为工业自动化的支撑性技术之一。
在交流伺服系统中,电动机的类型有永磁同步交流伺服电机(PMSM)和感应异步交流伺服电机(IM),其中,永磁同步电机具备十分优良的低速性能、可以实现弱磁高速控制,调速范围宽广、动态特性和效率都很高,已经成为伺服系统的主流之选。
而异步伺服电机虽然结构坚固、制造简单、价格低廉,但是在特性上和效率上存在差距,只在大功率场合得到重视。
本文讨论的重点将放在永磁同步交流伺服系统上。
交流伺服系统的性能指标可以从调速范围、定位精度、稳速精度、动态响应和运行稳定性等方面来衡量。
低档的伺服系统调速范围在1:1000 以上,一般的在1:5000~1:10000,高性能的可以达到1:100000 以上;定位精度一般都要达到±1 个脉冲,稳速精度,尤其是低速下的稳速精度比如给定1rpm 时,一般的在±0.1rpm 以内,高性能的可以达到±0.01rpm 以内;动态响应方面,通常衡量的指标是系统最高响应频率,即给定最高频率的正弦速度指令,系统输出速度波形的相位滞后不超过90 度或者幅值不小于50%。
进口三菱伺服电机MR-J3 系列的响应频率高达900Hz,而国内主流产品的频率在200~500Hz。
运行稳定性方面,主要是指系统在电压波动、负载波动、电机参数变化、上位控制器输出特性变化、电磁干扰、以及其他特殊运行条件下,维持稳定运行并保证一定的性能指标的能力。
这方面国产产品、包括部分台湾产品和世界先进水平相比差距较大。
在控制策略上,基于电机稳态数学模型的电压频率控制方法和开环磁通轨迹控制方法都难以达到良好的伺服特性,目前普遍应用的是基于永磁电机动态解耦数学模型的矢量控制方法,这是现代伺服系统的核心控制方法。
虽然人们为了进一步提高控制特性和稳定性,提出了反馈线性化控制、滑模变结构控制、自适应控制等理论,还有不依赖数学模型的模糊控制和神经元网络控制方法,但是大多在矢量控制的基础上附加应用这些控制方法。
还有,高性能伺服控制必须依赖高精度的转子位置反馈,人们一直希望取消这个环节,发展了无位置传感器技术(Sensorless Control)。
至今,在商品化的产品中,采用无位置传感器技术只能达到大约1:100 的调速比,可以用在一些低档的对位置和速度精度要求不高的伺服控制场合中,比如单纯追求快速起停和制动的缝纫机伺服控制,这个技术的高性能化还有很长的路要走。
3.交流伺服在我国的发展历史我国从1970 年代开始跟踪开发交流伺服技术,主要研究力量集中在高等院校和科研单位,以军工、宇航卫星为主要应用方向,不考虑成本因素。
主要研究机构是北京机床所、西安微电机研究所、中科院沈阳自动化所等。
80 年代之后开始进入工业领域,直到2000 年,国产伺服停留在小批量、高价格、应用面狭窄的状态,技术水平和可靠性难以满足工业需要。
2000 年之后,随着中国变成世界工厂、制造业的快速发展为交流伺服提供了越来越大的市场空间,国内几家单位开始推出自己品牌的交流伺服产品。
目前国内主要的伺服品牌或厂家有森创(和利时电机)、华中数控、广数、南京埃斯顿、兰州电机厂等。
其中华中数控、广数等主要集中在数控机床领域。
技术状况1.当前国内外交流伺服产品的水平交流伺服系统的相关技术,一直随着用户的需求而不断发展。
电动机、驱动、传感和控制技术等关联技术的不断变化、造就了各种各样的配置。
就电动机而言,可以采用盘式电机、无铁芯电机、直线电机、外转子电机等,驱动器可以采用各种功率电子元件,传感和反馈装置可以是不同精度、性能的编码器、旋变和霍尔元件甚至是无传感器技术,控制技术从采用单片机开始,一直到采用高性能DSP 和各种可编程模块,以及现代控制理论的实用化等等。
我们从20XX 年11 月在德国纽伦堡举办的SPS/IPC/Drives 展览上可以看到世界范围内电气驱动、运动控制和相关软件的最新情况,其中交流伺服产品的亮点很多,代表了当前的国际水平。
这里仅仅摘录几条,相对应的,国内厂商的研发动向也对比进行说明。
贝加莱(B&R)工业自动化公司推出的AcoposMulti 驱动系统采用模块化的可扩展结构,每个轴模块可以提供1 到2 个伺服轴控制,并集成了一个24VDC 的辅助电源模块,为驱动器、控制器和外围设备提供了一个到直流总线的链接,来获得开路、短路和过载保护。
其他特性包括通过空气,油或水进行冷却的模块化设计,通过一个能量再生系统确保环境的安全性。
在国内,我们还没有看到有厂商进行类似的模块式设计,并在产品中融入机器安全概念。
艾尔默(Elmo)公司展出了一系列伺服驱动器与控制器,包括最新的微型数字伺服驱动器Whistle。
这些火柴盒大小的驱动器尺寸虽仅为:5 x 4.6 x 1.5cm,但却能提供0.5 kW 的连续功率(或1kW 的峰值功率)。
为当今市场上最高功率密度与智能的伺服驱动器。
相对应的,国内只有和利时电机公司推出了类似的智能数字伺服控制器——蜂鸟系列,该驱动器接受24V~48VDC 输入,可以提供250W 的连续功率和500W 的峰值功率,尺寸为10x8x2cm,功率密度和Whistle 相比有差距。
但是集成了高性能32 位RISC 芯片,提供RS232、485 串行通讯控制功能和32 条运动指令,包括高级的圆弧插补指令,采用14 位绝对值磁性编码器。
07 年预计推出带16 位绝对编码器的无刷伺服电机和带CAN 通讯的驱动模块。
艾默生控制技术(Emerson Control Techniques)公司展出了Unidrive 及其他交、直流驱动器产品。
Unidrive 驱动器覆盖功率范围从0.55~675 kW,变换不同的控制软件可以驱动异步电机、永磁同步伺服电机和无刷直流电机。
额定输出功率为0.25~11 kW 的Varmeca 型集成可变速度电机与可变速度驱动器(VSD),具有闭环矢量与分布式(Proxdrive) 两个版本。
值得注意的是适合在潜在爆燃性气体中工作的VSD 系统(ATEX)。
而额定输出功率为0.55~400 kW 的FLSD 驱动器,则据称能在IIB 类或IIC 区1 类2 分类气体中工作。
相对应的,国内伺服驱动器厂商的产品功率范围多在10KW 以下,而且没有特殊防护等级的商品化产品面世,这方面国内外的差距很大,也是未来国内伺服厂商差异化竞争的方向。
Rockwell Automation 公司展出了PowerFlex 驱动技术。
PowerFlex 的发展路线图显示,将于20XX~07 年出现的“公共工业协议(CIP) 运动应用协议”,有望无缝同步在同一系统中运行的多轴伺服与变频驱动器中。
在适合运动控制的工业协议方面,我们还看到Beckhoff 的EtherCAT,B&R 的PowerLink, Danaher 下面的MEI开发的SynqNet,Siemens 的ProfiNet,还有久负盛名的Sercos 已经发展到SercosIII。
这些通讯协议都为多轴实时同步控制提供了可能性,也被一些高端伺服驱动器集成进去。
在国内,甚至CAN 这样的中低端总线也没有变成伺服驱动器的标准配置,采用高性能实时现场总线的商品化驱动器还没有出现。