短路电流计算6不对称短路电流计算
35kv线路短路电流计算公式

35kv线路短路电流计算公式35kV线路短路电流计算公式引言:35kV线路是一种高压输电线路,其短路电流是指在线路发生故障时,电流流过故障点的大小。
准确计算35kV线路的短路电流对于线路的设计、运行和维护至关重要。
本文将介绍35kV线路短路电流的计算公式及其相关内容。
一、35kV线路短路电流的定义短路电流是指在电力系统中,当电路发生故障时,电流从电源到达故障点的电流值。
短路电流的大小决定了电路故障时的电压和电流水平,对电力设备的选择、保护和运行有着重要影响。
二、35kV线路短路电流计算公式35kV线路的短路电流计算公式可以根据电路参数和故障类型来进行推导。
以下是常用的两种计算公式:1. 对称短路电流计算公式对称短路电流是指电路发生对称故障时的短路电流,通常包括三相短路故障和两相短路故障。
对称短路电流计算公式如下:Isc = U / (√3 * Z)其中,Isc为对称短路电流,U为电压,Z为电路阻抗。
2. 不对称短路电流计算公式不对称短路电流是指电路发生不对称故障时的短路电流,通常包括单相接地故障和两相短路故障。
不对称短路电流计算公式如下:Isc = U / Z其中,Isc为不对称短路电流,U为电压,Z为电路阻抗。
三、35kV线路短路电流计算步骤根据以上的短路电流计算公式,我们可以按照以下步骤来计算35kV 线路的短路电流:1. 确定故障类型:根据实际情况确定故障类型,是对称故障还是不对称故障。
2. 收集电路参数:收集35kV线路的电压和电路阻抗参数,包括电源电压、线路长度、线路材料等。
3. 计算短路电流:根据故障类型和电路参数,利用相应的短路电流计算公式进行计算。
4. 分析计算结果:得到短路电流数值后,需要对结果进行分析,判断是否符合线路设计要求,是否会对设备产生过大的负荷,从而选择合适的保护装置。
四、35kV线路短路电流计算的影响因素35kV线路的短路电流受到多种因素的影响,以下是一些常见的影响因素:1. 电源电压:电源电压的大小直接影响短路电流的大小,电压越高,短路电流越大。
低压系统短路电流的计算

低压系统短路电流的计算一、低压系统短路电流的定义低压系统短路电流是指在电力系统中出现短路故障时,电路中的电流急剧增大,达到最大值的电流。
通常情况下,短路电流可以分为对称电流和不对称电流。
对称电流是指短路电流的三个相位之间的电流幅值相等,相位角相差120度,是对称的。
而不对称电流是指短路电流的三个相位之间的电流幅值和相位角不相等,是不对称的。
二、低压系统短路电流的计算方法1.全电气法全电气法是通过全部的电气参数来计算短路电流的方法,可以精确计算短路电流的大小和波形。
其计算步骤如下:(1) 短路电流的基本公式为:Isc=U/Z,其中Isc为短路电流,U为电压,Z为总阻抗。
(2)计算电源电压:U=Un*1.05,其中Un为额定电压。
(3)计算负荷侧电压:Uf=Un*1.05*UF,其中Un为额定电压,UF为负荷变压器的变比。
(4)计算变压器阻抗:Zt=(Zp*左箭头Uf^2)/P,其中Zp为变压器的阻抗,左箭头表示反箭头。
(5)计算线路阻抗:Zl=Rl+左箭头Xl,其中Rl为线路的电阻,Xl为线路的电抗。
(6)计算电压降:∆U=左箭头Uf*Zt/(Zt+Zl),其中左箭头Uf为电压的发生器。
(7)计算短路电流:Isc=∆U/(Zt+Zl),其中∆U为电压降。
(8)计算短路电流的对称分量。
2.阻抗法阻抗法是通过系统的等值视为许多等效电阻串联来计算短路电流的方法,简化了计算过程。
其计算步骤如下:(1)确定总接线方式:单相式、三相四线式、三相三线式。
(2)计算设备的最小对称短路容量。
(3)计算电阻和电抗的等效值。
(4)确定短路发生位置,选择发生最大短路的点。
三、低压系统短路电流的影响因素1.电源容量:电源的容量越大,短路电流也越大。
2.发电机励磁特性:励磁特性的增加将使短路电流增大。
3.电源内阻:电源内阻越小,短路电流越大。
4.电源电压:电源电压的升高将使短路电流增大。
5.发电机的发电能力:发电机的发电能力和同步电机、逆功率保护的设备容量成正比,其短路电流也将增加。
6-7不对称短路计算概述

1. 单相接地短路(a相)
相量边界条件
U a Ib
= 0
=
0
Ic = 0
U a = U a1 + U a2 + U a0 = 0 Ib = a 2 Ia1 + aIa2 + Ia0 = 0 Ic = aIa1 + a 2 Ia2 + Ia0 = 0
序量边界条件
U a1
+ Ua2
=
j
X 2Σ X 0Σ X 2Σ + X 0Σ
Ia1
3. 两相接地短路(b、c相)
短路电流绝对值
I
= (1.1)
k
I=b
Ic =
3
1
−
(
X
X0Σ X2Σ 0Σ + X2Σ
)2
I
a1
非故障相电压、故障相电流
= Ua 3= Ua1
j3
X2Σ X0Σ X2Σ + X0Σ
Ia1
Ib
=
a 2 Ia1
+ aIa2
=1 + a 2U a2
+ U a0 + U a0
= =
j[(a 2 − a) X 2Σ j[(a − a 2 ) X 2Σ
+ +
(a (a
2 −1) X 0Σ ]Ia1 −1) X 0Σ ]Ia1
2. 两相短路(b、c相)
相量边界条件
Ia1 + Ia2 + Ia0 = 0 a2Ia1 + aIa2 + Ia0 = −(aIa1 + a2Ia2 + Ia0 ) a2Ua1 + aUa2 + Ua0 = aUa1 + a2Ua2 + Ua0
第3册第讲义六章短路电流计算

X2
X1
U
2 j2
U
2 j1
• 已知电力系统短路容量的有名值,换算到基准 电压级,可按下式
Xs
U
2 j
S
'' S
以上各元件的标幺值和有名值的换算公式均列在 指导书的表6-1-2中。
电路元件阻抗标幺值和有名值的换算公式
序 号`
元件名称
1 同步电机(同步发电机或电动机)
2 变压器
3 电抗器
标幺值
有名值(Ω )
• 电流标幺值与容量标幺值相同,即
I* S*
元件参数的换算
1.标幺值
• 当我们提出某元件的阻抗标幺值时,一定要 指明它的基准容量,否则就没有意义了。同 步电机、变压器和电抗器样本上给出的标幺 值,是以他们的额定容量为基准的。
• 在三相电力系统中,电路元件电抗的标幺值 X*可用下式表示
X X* X j
X
'' *d
X
'' d
%
•
100
Sj Sr
变压器 已知变压器的阻抗电压百分比 Uk%,则按(3)式换算,得:
Z*T
UK% 100
当电阻值允许不计时
•
Sj Sr
X *T
UK% • Sj 100 Sr
电抗器 已知电抗器的百分电抗值Xk%,则按 (2)式换算,得:
X *K
XK % •Ur 100 Ir
• Ij Uj
这里为什么不按(3)式来换算,因为电抗器在 电路内起限流作用,需要较准确地计算,另 外也可能会用高一级额定电压电抗器,例如 10kv电抗器用于6kv系统,因此要用额定电压 而不用平均电压来计算。
• 已知元件电抗的有名值,换算到以基准容量的 电抗标幺值,可用下式计算
不对称短路电流计算

X
1
U 0 jI0 X 0
(4.6.8)
18
不对称短路的分析计算
➢ 单相接地短路 ➢ 两相短路 ➢ 两相接地短路
19
1.单相(A相)接地短路
故障处的边界条件为
A
B
用对称分量表示为
C
化简可得
(4.6.9)
U A 0 IA
IB IC 0
(a) jX1∑
IA1
20
不对称短路的分析计算
变压器的绕组接线形式 变压器零序电抗
Y0,d Y0,y
X0=XⅠ+XⅡ X0= ∞
Y0,y0
X0=XⅠ+XⅡ+XL0 X0= ∞
备注
变压器副边至少有 一个负载的中性点 接地 变压器副边没有负 载的中性点接地
13
不对称短路的序网络图
利用对称分量法分析不对称短路时,首先必 须根据电力系统的接线、中性点接地情况等原始 资料绘制出正序、负序、零序的序网络图。
IA IA1 IA2 IA0
3IA1
3E1 j( X 1 X 2 X 0 )
(4.6.11)
22
1.单相(A相)接地短路
电压和电流的各序分量, 也可直接应用复合序网来求 得。 复合序网:根据故障处各分 量之间的关系,将各序网络 在故障端口联接起来所构成 的网络。
与单相短路相对应的复 合序网示于图4.6.3(b)。
U 1 U 2
E1 jI2
jI1 X2
X
1
U 0 jI0 X 0
IA1 IA2 U A1 U
A2
IA0UA00
(4.6.8) (4.6.16)
28
B
C
不对称短路的分析计算 IA 0 IB IC
不同短路类型的短路电流计算

不同短路类型的短路电流计算一、前言在电路中,短路是指电路中两个相互连接的节点之间出现低阻抗路径,导致电流过大,可能造成电路故障、设备损坏甚至火灾等严重后果。
因此,对于不同短路类型的短路电流计算具有重要意义。
本文将介绍几种常见的短路类型以及相应的短路电流计算方法。
二、对称短路对称短路是指电路中出现相对称的短路故障,即短路故障点对称于电源点。
对于对称短路,我们可以采用阻抗法来计算短路电流。
阻抗法的基本原理是将电路中的各个元件转化为相应的阻抗,然后根据电路的拓扑结构和对称性来计算短路电流。
三、非对称短路非对称短路是指电路中出现不对称的短路故障,即短路故障点不对称于电源点。
对于非对称短路,我们可以采用对称分量法来计算短路电流。
对称分量法的基本原理是将非对称短路电流分解为正序分量、负序分量和零序分量,然后分别计算各个分量的短路电流,最后求和得到总的短路电流。
四、单相接地短路单相接地短路是指电路中出现单相电源与地之间的短路故障。
对于单相接地短路,我们可以采用等值电路法来计算短路电流。
等值电路法的基本原理是将单相接地短路抽象为等效电路,然后计算等效电路中的短路电流。
在计算中需要考虑短路接地点的接地电阻、设备的阻抗等因素。
五、两相短路两相短路是指电路中出现两相之间的短路故障。
对于两相短路,我们可以采用对称分量法或者等值电路法来计算短路电流。
具体选择哪种方法取决于电路的具体情况和计算的复杂程度。
对称分量法适用于对称的两相短路,而等值电路法适用于不对称的两相短路。
六、三相短路三相短路是指电路中同时出现三相之间的短路故障。
对于三相短路,我们可以采用对称分量法或者等值电路法来计算短路电流。
同样地,具体选择哪种方法取决于电路的具体情况和计算的复杂程度。
对称分量法适用于对称的三相短路,而等值电路法适用于不对称的三相短路。
七、总结不同短路类型的短路电流计算方法各有特点,需要根据具体情况选择合适的方法进行计算。
在实际工程中,为了保证电路的安全运行,需要对短路电流进行合理评估,并采取相应的保护措施,以防止短路故障带来的不良后果。
工作用发电厂短路电流计算

电力系统各种元件电抗值的计算通常我们在计算短路电流时,首先要求出短路点前各供电元件的相对电抗值,为此先要绘出供电系统图,并假设有关的短路点。
供电系统中供电元件通常包括发电机、变压器、电抗器及架空线路(包括电缆线路)等。
目前,一般用户都不直接由发电机供电,而是接自电力系统,因此也常把电力系统当作一个“元件”来看待。
常用电气设备标么值和有名值计算公式: 1、系统电抗的计算:系统电抗,百兆为1,容量增减,电抗反比。
本句话的意思是当系统短路容量为100MV A 时,系统电抗数值为1;当系统短路容量不为100MV A ,而是更大或更小时,电抗数值应反比而变。
例如当系统短路容量为200MV A 时,电抗便是0.5(100/200=0.5); 当系统短路容量为50MV A 时,电抗便是2(100/50=2),系统容量为“∞”,则100/∞=0,所以其电抗为0。
依据一般计算短路电流书中所介绍的,均换算到100MV A 基准容量条件下的相对电抗公式而编出的(以下均同),即S X j *=式中:Sj 为基准容量取100MV A 、S 为系统容量(MV A)。
2、发电机、电动机、调相机的计算: 标么值:ϕcos /100%""*e j d d P S X X ⨯= 有名值:ϕcos /100%""e j d d P U X X ⨯=X d %为次暂去电抗百分值,3、变压器电抗的计算: 标么值:e jd d S S U X ⨯=100%""*有名值:ee S U U X 2d d 100%⨯= U d %为短路电压百分值低压侧有两个分裂绕组的双绕组变压器的计算则用:()4K 1U X f 2-d12-1+=()ej 2-1f 1S S X 4K 1X ⨯⨯-=ej 2-1f 21S S X K 21X X ⨯⨯⨯== 不分裂绕组的三双绕组变压器则的计算用: ()e j 3-23-12-11S S X X X 21X ⨯-+=()e j 2-13-23-12S S X X X 21X ⨯-+= ()ej 3-23-12-11S S X X X 21X ⨯-+=4、电抗器电抗的计算: 标么值:2k "*k U 3U 100%j j e e S I X X ⨯⎪⎪⎭⎫ ⎝⎛⨯= 有名值:e eK S U X X 2k 100%⨯= X K %为百分电抗值,I e 单位为KA 5、架空线路及电缆线路电抗值的计算:标么值:2jj U S X X ⨯=* 有名值:dcs dac das D rDX ⋅⋅==3 789.0lg145.0 r 导线半径 D 为三相导线间的平均距(cm )(基准定量Sj=100MV A)第五节 网络简化短路电流计算在电力工程的设计过程中占有极其重要的地位,在短路电流计算中,当绘制出正、负序及零序阻抗图后就需要进行网络化简,在采用网络化简求解复杂网络的短路电流时,网络化简就是很重要的一步,需要掌握一些基本的方法和公式。
【变电站各电压等级不对称短路电流的计算1500字(论文)】

变电站各电压等级不对称短路电流的计算X l∗=x(0)×L×S B U BX1(0)=X2(0)=X3(0)=X4(0)=0.45×149.25×1002302=0.127X5(0)=X6(0)=X7(0)=X8(0)=0.45×97.25×1001152=0.331X220(0)=X A(0)+X1(0)||X2(0)||X3(0)||X4(0)=0.25+14×0.127=0.28X110(0)=X B(0)+X5(0)||X6(0)||X7(0)||X8(0)=0.5+14×0.331=0.581.1 220kV侧不对称短路电流计算图6- 1 K1点短路正序网络图图6- 2 K1点短路负序网络图图6- 3 K1点短路零序网络图等值电抗X∑(0)=X220(0)||(X110(0)+X T1(0)+X T2(0))=0.193X∑(1)=X∑(2)=X220||X15=0.1826||0.3122=0.115(1)K1点发生单相接地短路时:X Δ=X ∑(2)+X ∑(0)=0.193+0.115=0.308图6- 4 K1点单相接地短路转移电抗计算转移电抗: X A1(1)=X 220A +X △+X 220A ×X △X 15=0.1826+0.308+0.1823×0.3080.3122=0.670X B1(1)=X 15+X △+X 15×X △X 220A =0.3122+0.308+0.3122×0.3080.1826=1.147计算电抗:系统A :X caA1(1)=0.670×1300100=8.71 系统B :X caB1(1)=1.147×1000100=11.47各支路短路电流:当X ca∗>3.45时,认为系统无限大 系统A :I A (1)(1)=18.17×3.263=0.374 (kA) 系统B :I B(1)(1)=111.47×2.510=0.219 (kA)K1总短路电流:I K1(1)=M (I A (1)(1)+I B(1)(1))=3×(0.219+0.374)=1.778 (kA)(2)K1点发生两相短路时:X Δ=X ∑(2)=0.115图6- 5 K1点两相短路转移电抗计算转移电抗:X A1(2)=X 220A +X △+X 220A ×X △X 15=0.1826+0.115+0.1823×0.1150.3122=0.364X B1(2)=X 15+X △+X 15×X △X 220A =0.3122+0.115+0.3122×0.1150.1826=0.6238计算电抗:系统A :X caA1(2)=0.364×1300100=4.732 系统B :X caB1(2)=0.6238×1000100=6.238各支路短路电流:当X ca∗>3.45时,认为系统无限大 系统A :I A (1)(2)=14.732×3.263=0.689 (kA) 系统B :I B(1)(2)=16.238×2.510=0.402 (kA)K1总短路电流:I K1(2)=M (I A (1)(2)+I B(1)(2))=√3×(0.689+0.402)=1.891 (kA) (3)K1点发生两相短路接地时:X Δ=X ∑(2)×X ∑(0)X ∑(2)+X ∑(0)=0.115×0.1930.115+0.193=0.072图6- 6 K1点两相短路接地转移电抗计算转移电抗: X A1(1,1)=X 220A +X △+X 220A ×X △X 15=0.1826+0.072+0.1823×0.0720.3122=0.29X B1(1,1)=X 15+X △+X 15×X △X 220A =0.3122+0.072+0.3122×0.0720.1826=0.507计算电抗:系统A :X caA1(1,1)=0.29×1300100=3.77系统B :X caB1(1,1)=0.507×1000100=5.07各支路短路电流:当X ca∗>3.45时,认为系统无限大 系统A :I A (1)(1,1)=13.77×3.263=0.866 (kA) 系统B :I B(1)(1,1)=15.07×2.510=0.495 (kA)M =√3×√1−X ∑(2)×X ∑(0)(X ∑(2)+X ∑(0))2=1.516K1总短路电流:I K1(1,1)=M (I A (1)(1,1)+I B(1)(1,1))=1.516×(0.866+0.495)=2.06(kA)1.2 110kV 侧不对称短路电流计算图6- 7 K2点短路正序阻抗图图6- 8 K2点短路负序阻抗图图6- 9 K2点短路零序阻抗图等值电抗X ∑(0)=X 110(0)||(X 220(0)+X T1(0)+X T2(0))=0.206X ∑(1)=X ∑(2)=X 110||X 16=0.2735||0.2213=0.122(1) K2点发生单相接地短路时:X Δ=X ∑(2)+X ∑(0)=0.206+0.122=0.328图6- 10 K2点单相接地短路转移电抗计算转移电抗:X A2(1)=X 16+X △+X 16×X △X 110B =0.2735+0.328+0.2735×0.3280.2213=1.01X B2(1)=X 110B +X △+X 110B ×X △X 16=0.2213+0.328+0.2213×0.3280.2735=0.815计算电抗:系统A :X caA2(1)=1.01×1300100=13.13 系统B :X caB2(1)=0.815×1000100=8.15各支路短路电流:当X ca∗>3.45时,认为系统无限大 系统A :I A (1)(1)=113.13×6.527=0.497 (kA) 系统B :I B(1)(1)=18.15×5.020=0.615 (kA)K2总短路电流:I K2(1)=M (I A (1)(1)+I B(1)(1))=3×(0.479+0.615)=3.34 (kA) (2)K2点发生两相短路时:X Δ=X ∑(2)=0.122图6- 11 K2点两相短路转移电抗计算转移电抗:X A2(2)=X 16+X △+X 16×X △X 110B =0.2735+0.122+0.2735×0.1220.2213=0.546X B2(2)=X 110B +X △+X 110B ×X △X 16=0.2213+0.122+0.2213×0.1220.2735=0.442计算电抗:系统A :X caA2(2)=0.546×1300100=7.098 系统B :X caB2(2)=0.442×1000100=4.42各支路短路电流:当X ca∗>3.45时,认为系统无限大 系统A :I A (1)(2)=17.098×6.527=0.92 (kA) 系统B :I B(1)(2)=14.42×5.020=1.14 (kA)K2总短路电流:I K2(2)=M (I A (1)(2)+I B(1)(2))=√3×(0.92+1.14)=3.55 (kA) (3)K2点发生两相短路接地时:X Δ=X ∑(2)×X ∑(0)X ∑(2)+X ∑(0)=0.206×0.1220.206+0.122=0.0766图6- 12 K2点两相短路接地转移电抗计算转移电抗:X A2(1,1)=X 16+X △+X 16×X △X 110B =0.2735+0.0766+0.2735×0.07660.2213=0.445X B2(1,1)=X 110B +X △+X 110B ×X △X 16=0.2213+0.0766+0.2213×0.07660.2735=0.3599计算电抗:系统A :X caA2(1,1)=0.445×1300100=5.785 系统B :X caB2(1,1)=0.3599×1000100=3.599各支路短路电流:当X ca∗>3.45时,认为系统无限大 系统A :I A (1)(1,1)=15.785×6.527=1.12 (kA) 系统B :I B(1)(1,1)=13.599×5.020=1.39 (kA)M =√3×√1−X ∑(2)×X ∑(0)(X ∑(2)+X ∑(0))2=1.516K2总短路电流:I K2(1,1)=M (I A (1)(1,1)+I B(1)(1,1))=1.516×(1.12+1.39)=3.825 (kA)1.3 10kV 侧不对称短路电流计算图6- 13 K3点短路正序阻抗图图6- 14 K3点短路负序阻抗图4等值电抗X∑(1)=X∑(2)=(X110+X T2)||(X220+X T1)=0.266X∑(0)=∞(2)K3点发生单相接地短路时:XΔ=X∑(2)+X∑(0)=∞计算转移电抗:X A3(1)=∞X B3(1)=∞计算电抗:系统A :X caA3(1)=∞ 系统B :X caB3(1)=∞ 各支路短路电流:系统A :I A (1)(1,1)=0 系统B :I B(1)(1,1)=0K3总短路电流:I K3(1)=M (I A (1)(1)+I B(1)(1))=3(0+0)=0(kA) (2)K3点发生两相短路时:X Δ=X ∑(2)=0.266图6- 15 K3点两相短路转移电抗计算转移电抗:X A3(2)=X 19+X △+X 19×X △X 20=0.427+0.266+0.427×0.2660.515=0.913 X B3(2)=X 20+X △+X 20×X △X 19=0.515+0.266+0.515×0.2660.427=1.1018计算电抗:系统A :X caA3(2)=0.913×1300100=11.869 系统B :X caB3(2)=1.1018×1000100=11.018各支路短路电流:当X ca∗>3.45时,认为系统无限大 系统A :I A (1)(2)=111.869×71.48=6.022 (kA) 系统B :I B(1)(2)=111.018×54.99=4.99 (kA)K3总短路电流:I K2(2)=M (I A (1)(2)+I B(1)(2))=√3×(6.022+4.99)=19.075(kA)(3)K3点发生两相短路接地时:X Δ=X ∑(2)×X ∑(0)X ∑(2)+X ∑(0)=0.266×∞0.266+∞=0.266图6- 16 K3点两相短路接地转移电抗计算转移电抗:X A3(1,1)=X 19+X △+X 19×X △X 20=0.427+0.266+0.427×0.2660.515=0.913X B3(1,1)=X 20+X △+X 20×X △X 19=0.515+0.266+0.515×0.2660.427=1.1018计算电抗:系统A :X caA3(1,1)=0.913×1300100=11.869 系统B :X caB3(1,1)=1.1018×1000100=11.018各支路短路电流:当X ca∗>3.45时,认为系统无限大 系统A :I A (1)(1,1)=111.869×71.48=6.022 (kA) 系统B :I B(1)(1,1)=111.018×54.99=4.99 (kA)M =√3×√1−X ∑(2)×X ∑(0)(X ∑(2)+X ∑(0))2=√3K3总短路电流:I K3(1,1)=M (I A (1)(1,1)+I B(1)(1,1))=√3×(6.022+4.99)=19.075(kA)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 0
3 1
南京师范大学电气工程系
对称分量法的应用
IB1 IB 2
2 IA1 , IC1 IA1 IA2 , IC 2 2 IA2
IA0 IB0 IC 0
IA1
IA1 IA2
IA0
1 3
1 1 1
IBA 2
1
2
IA IB
1 IC
IA2
IC 0IB 0 IA0
南京师范大学电气工程系
不对称短路的序网络图
利用对称分量法分析不对称短路时,首先必 须根据电力系统的接线、中性点接地情况等原始 资料绘制出正序、负序、零序的序网络图。
各序网络中存在各自的电压和电流以及相应 的各序电抗。由于各序网络都是三相对称的,且 独立满足基尔霍夫定律和欧姆定律,因此可以用 单线图来表示。
1
U0 jI0 X 0
(4.6.8)
(4.6.9)
得
IA1
E1 j( X1 X 2 X 0 )
南京师范大学电气工程系
(4.6.10)
不对称短路的分析计算
4.6 不对称短路电流计算
对称分量法的应用 短路回路各元件的序电抗 不对称短路的序网络图 不对称短路的分析计算 正序等效定则
南京师范大学电气工程系
对称分量法的应用
任何一个三相不对称的系统都可分解成三相对称 的三个分量系统,即正序、负序和零序分量系统。 对于每一个相序分量来说,都能独立地满足电路 的欧姆定律和基尔霍夫定律,从而把不对称短路计 算问题转化成各个相序下的对称电路的计算问题。
南京师范大学电气工程系
不对称短路的序网络图
各序网络的示意图
X1 I1
E1
U1
X2 I2 U2
X0 I0 U0
(a)
(b)
图4.6.2 序网络图 (a)正序网络;(b)负序网络;(c)零序网络
(c)
南京师范大学电气工程系
不对称短路的序网络图
1.正序网络 正序网络就是通常计算对称短路用的等值网络。 正序网是有源网络。
南京师范大学电气工程系
短路回路各元件的序电抗
在短路电流实用计算中,一般可认为变压器的零序激磁 电抗Xμ(0)=∞,则变压器的零序电抗可以根据下表求取。
变压器的绕组接线形式 变压器零序电抗
Y0,d Y0,y
X0=XⅠ+XⅡ X0= ∞
Y0,y0
X0=XⅠ+XⅡ+XL0 X0= ∞
备注
变压器副边至少有 一个负载的中性点 接地 变压器副边没有负 载的中性点接地
对称分量法的应用
其逆变换为
I ABC S 1 I A120
式中:S-1称为对称分量反变换矩阵
1 1 1
S
1
1 3
2
2
1 1
南京师范大学电气工程系
短路回路各元件的序电抗
所谓元件的序电抗,是指元件流过某序电流 时,由该序电流所产生的电压降和该序电流的比 值。 1.正序电抗
在计算三相短路电流时,所用的各元件电抗 就是正序电抗值。
南京师范大学电气工程系
对称分量法的应用
例如:有三相不对称的相量 IA 、IB 、IC ,可将其进 行如下分解(以下标1、2、0分别表示各相的正、负、
零三序对称分量):
式中:
IA1 IA2
IA0
1 3
1 1 1
2
1
2
IA IB
1 IC
e j120 cos120 j sin120 1 j 3
零序网是无源网络。
南京师范大学电气工程系
不对称短路的序网络图
三序网络的电压方程如下式所示:
U1 U2
E1 jI1 X jI2 X 2
1
U0 jI0 X 0
(4.6.8)
南京师范大学电气工程系
不对称短路的分析计算
➢ 单相接地短路 ➢ 两相短路 ➢ 两相接地短路
南京师范大学电气工程系
1.单相(A相)接地短路
故障处的边界条件为
用对称分量表示为
A B C
IA
化简可得
(4.6.9)
南京师范大学电气工程系
IB IC 0 (a) jX1∑
IA1
UA 0
不对称短路的分析计算
1.单相(A相)接地短路
联立求解方程组(4.6.8)及(4.6.9)
U1 U2
E1 jI1 X jI2 X 2
短路回路各元件的序电抗
3.零序电抗 三相零序电流大小相等相位相同,所以在三相
系统中零序电流的流通情况与发电机及变压器的中 性点接地方式有关。 在中性点不接地系统中,零序电流不能形成通路, 元件的零序阻抗可看成无穷大。
南京师范大学电气工程系
短路回路各元件的序电抗
中性点接地系统中各元件的零序电抗 (1)架空线、电缆的零序电抗计算比较复杂,与
南京师范大学电气工程系
短路回路各元件的序电抗
2.负序电抗 凡是静止的三相对称结构的设备,如架空线、
变压器、电抗器等,其负序电抗等于正序电抗, 即X2=X1。
对于旋转的发电机等元件,其负序电抗不等 于正序电抗,X2≠X1,通常可以查表4.6.1取近 似值进行计算。
南京师范大学电气工程系
南京师范大学电气工程系
2.负序网络 负序电流能流通的元件与正序电流相同,因此负序
网与正序网结构相同。所不同的是,其中各元件电抗应 为负序电抗。
负序网是无源网络。
南京师范大学电气工程系
不对称短路的序网络图
3.零序网络 在三相系统中零序电流的流通情况与发电机及变
压器的中性点接地方式有密切关系。在绘制零序等值 网络时,可假设在故障端口施加零序电势,产生零序 电流,观察零序电流的流通情况,凡是零序电流流通 的元件均应包含在零序网中,体现为零序电抗。
线路的敷设方式有关,通常可取表4.6.1中的数据。 (2)同步机的定子三相绕组在空间位置完全对称
时,零序电抗为零,但实际上定子绕组不可能完全对 称,一般取X0=(0.15~0.6)X"d。
南京师范大学电气工程系
短路回路各元件的序电抗
(3)变压器的零序电抗与变压器结构及其绕组的接 法有关。 当零序电压加在三角形或中性点不接地的星形侧, 在绕组中无零序电流,因此X0= ∞。 当零序电压加在中性点接地的星形侧时,随着另一 侧绕组的接法的不同,零序电流在各个绕组中的分布情 况也不同。
IB2
IC1
IB1
IC 2
(a)
(b)
(c)
图4.6.1 三相相量的对称分量 (a)正南序京分师量范;大(学b电)负气序工分程量系;(c)零序分量
对称分20 SI ABC
式中:S称为对称分量变化矩阵
(4.6.4)
1
S
1 3
1 1
2
1
2
1
南京师范大学电气工程系