随机变量的分布列和期望

合集下载

概率论第三章部分习题解答

概率论第三章部分习题解答

ydxdy.
定理1 cov(X ,Y ) E( XY ) E( X )E(Y )
定理2 若X与Y 独立,则:covX ,Y 0. 逆命题不成立。
注 设X与Y是任两个随机变量,
10
D( X Y ) D( X ) D(Y ) 2cov(X ,Y )
2、X与Y 的相关系数
定义 R( X ,Y ) cov( X ,Y )
EX
xf
xdx
1
二、二维随机变量的数学期望
(1)设二维离散随机变量(X,Y)的联合概率函数为p(xi , yj),则
随机变量X及Y 的数学期望分别定义如下:
EX xi p xi , y j , EY y j p xi , y j .
i j
ji
即: EX xi pX xi , EY y j pY y j .
第三章 随机变量的数字特征
(一)基本内容 一、一维随机变量的数学期望
定义1:设X是一离散型随机变量,其分布列为:
X x1 x2 xi
P p( x1 ) p( x2 )p( xi )
则随机变量X 的数学期望为: EX xi pxi
i
定义2:设X是一连续型随机变量,其分布密度为 f x,
则随机变量X的数学期望为
i
j
假定级数是绝对收敛的.
(2)设二维连续随机变量(X,Y)的联合概率密度为f(x, y),则
随机变量X及Y 的数学期望分别定义如下:
EX
xf
x,
ydxdy,
EY
yf x, ydxdy.
即:EX
xf X x dx,
EY
yfY y dy.
2
假定积分是绝对收敛的.

随机变量的分布列、期望、方差

随机变量的分布列、期望、方差

„ „
P
1 1 3

4
2 1 3 3
3
5
2 3
4
1 ⑷ ~ B 5, ,
k
∴ P=( =k)=C5 ( ) ·( ) 其中 k 0,1,2,3,4,5. ∴所求 的分布列是

1 3
k
2 3
5-k

0
32 243
1
80 243
2
80 243
【典例解析】
考点一:随机变量的分布列
例 1. 袋子中有 1 个白球和 2 个红球. ⑴ 每次取 1 个球,不放回,直到取到白球为止.求取球次数 的分布列.
2
2013 年高考第一轮复习资—理科数学 ⑵ 每次取 1 个球,放回,直到取到白球为止.求取球次数 的分布列. ⑶ 每次取 1 个球,放回,直到取到白球为止,但抽取次数不超过 5 次.求取球次数 的分布列. ⑷ 每次取 1 个球,放回,共取 5 次.求取到白球次数 的分布列. 解: ⑴ 1,2,3.

1
1 3
2
1 3
3
1 3
P
⑵ 每次取到白球的概率是 ,不取到白球的概率是 2 , 所求的分布列是
3
1 3

P ⑶

1 1 3 2 2 1 3 3
3
2 2 1 3 3 3
2 1 3 3
2
3
2 1 3 3
2
„ „
n
2 3
n 1

1 3
P 1 P 2 1 1 , 1 3 A3
1 A2 1 1 , 2 1 1 A A3 2 3 1

随机变量的分布列 期望与方差

随机变量的分布列  期望与方差

随机变量的分布列 期望与方差1、 设随机变量的分布如下:求常数k 的值2、设随机变量ξ的概率分布为====a k a ak P k 则为常数,,2,1,,5)( ξ . 3、设某批产品合格率为43,不合格率为41,现对该产品进行测试,设第ξ次首次测到正品,则P (ξ=3)等于( )A .)43()41(223⨯C B .)41()43(223⨯C C .)43()41(2⨯ D .)41()43(2⨯4、设随机变量ξ只可能取5,6,7,……,16这12个值,且取每个值的概率均相同,则P (ξ≥9)= ;P (6<ξ≤14)= .5、设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则P (ξ=0)等于_______。

6、袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________.7、从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数。

(1)求ξ的分布列; (2)求“所选3人中女生人数1≤ξ”的概率。

8、罐中有5个红球,3个白球,从中每次任取一球后放入一个红球,直到取到红球为止用ξ表示抽取次数,求ξ的分布列,并计算P (1<ξ≤3)9、某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的概率分布列和数学期望。

10、一批零件中有九个合格品,三个次品安装机器时,从这批零件中随机抽取,取出的是废品则不放回,求在第一次取到合格品之前取到废品数ξ的分布列和期望。

11、在10件产品中,有3件一等品,4件二等品,3件三等品。

从这10件产品中任取3件,求:(I)取出的3件产品中一等品件数X的分布列和数学期望(II)取出的3件产品中一等品件数多于二等品件数的概率。

离散型随机变量分布列期望及方差

离散型随机变量分布列期望及方差

离散型随机变量分布列、期望及方差高三数学徐建勋2010-1-30教学目标:1、理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性2、理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题教学重点:(1)离散型随机变量及其分布列(2)条件概率及事件的独立性(3)离散型随机变量的期望与方差教学难点:离散型随机变量及其分布列及其两个基本性质教学过程:【知识梳理】1、随机变量的概念如果随机试验的结果可以用一个变量X表示,并且X是随着试验的结果的不同而变化的,那么这样的变量X叫随机变量,随机变量常用希腊字母X、Y、…表示。

如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.2、离散型随机变量的分布列设离散型随机变量X可能取得的值为,X取得每一个值的概率为,则称表为离散型随机变量X的概率分布,或称为离散型随机变量X的分布列.离散型随机变量X的分布列的性质:(1)(2)一般的,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。

3、二点分布如果随机变量X的分布列为,其中,则称离散型随机变量X服从参数为的二点分布.4、超几何分布一般的,设有总数为N件的两类物品,其中一类有n件,从所有物品中任取M件(M ≤N),这M件中所含这类物品的件数X是一个离散型随机变量,它取值为m时的概率为我们称离散型随机变量X的这种形式的概率分布为超几何分布,也称X服从参数为N,M,n的超几何分布.5、条件概率一般地,设A,B为两个事件,且,在事件A发生的条件下,事件B发生的条件概率记为6、独立重复试验一般地,在相同条件下,重复地做n次试验称为n次独立重复试验.在n次独立重复试验中,事件A恰好发生k次的概率为,,1,2,…,n,其中p是一次试验中该事件发生的概率。

7、二项分布若将事件A发生的次数设为X ,事件A不发生的概率设为,那么在n次独立重复试验中,事件A恰好发生k次的概率是(其中k = 0,1,2,…,n),于是得到X的分布列:则称这样的离散型随机变量X服从参数为n,p的二项分布,记为。

高三数学下册《随机变量和数学期望》教案、教学设计

高三数学下册《随机变量和数学期望》教案、教学设计
-计算该随机变量的分布列、数学期望和方差。
-撰写一份小组报告,阐述研究过程、结果及意义。
4.写一篇学习心得,要求学生反思本节课的学习内容,包括以下要点:
-随机变量和数学期望在实际问题中的应用。
-学习过程中遇到的困难和解决方法。
-对随机变量和数学期望的理解,以及如何将其运用到生活中。
作业要求:
1.学生需按时完成作业,保持作业整洁、字迹清晰。
五、作业布置
为了巩固学生对随机变量和数学期望的理解,以及提升他们解决实际问题的能力,特布置以下作业:
1.请学生完成教材第chapter页的习题,包括以下题目:
-第1题:理解随机变量的概念,并能正确表示给定随机现象的随机变量。
-第2题:根据实际情境,推导并分析随机变量的分布列。
-第3题:计算给定随机变量的数学期望,并解释其物理意义。
高三数学下册《随机变量和数学期望》教案、教学设计
一、教学目标
(一)知识与技能
1.理解随机变量的概念,掌握离散型随机变量及其分布列的性质,能正确运用随机变量描述实际问题。
2.掌握数学期望的定义,理解数学期望的物理意义,能运用数学期望计算随机变量的平均取值。
3.学会运用方差描述随机变量的取值波动程度,理解方差的性质和意义,能计算简单随机变量的方差。
2.教学过程:
(1)教师引导:通过本节课的学习,我们知道随机变量是用来描述随机现象的数学模型,分布列反映了随机变量取值的概率分布,而数学期望和方差则分别反映了随机变量取值的集中趋势和波动程度。
(2)学生分享:邀请学生分享他们在学习过程中的心得体会,以及如何运用所学知识解决实际问题。
(3)教师总结:强调本节课的重点和难点,鼓励学生在课后继续巩固所学知识,为后续学习打下基础。

离散型随机变量的分布列及其期望与方差

离散型随机变量的分布列及其期望与方差

离散型随机变量的分布列及其期望与方差题组一:1、已知随机变量X 的分布列为P (X=i )=a i 2(i=1,2,3),则P (X=2)= .2、设离散型随机变量X 的概率分布为求:(1)2X+1的概率分布;(2)|X-1|的概率分布.3、设ξ是一个离散型随机变量,其概率分布为则q 的值为 .4、设离散型随机变量ξ的分布列P (ξ=5k )=ak ,k=1,2,3,4,5. (1)求常数a 的值;(2)求P (ξ≥53);(3)求P (101<ξ<107).题组二:1、若某一射手射击所得环数X 的概率分布如下:则此射手“射击一次命中环数X≥7”的概率是 .2、一批产品共50件,其中5件次品,45件合格品,从这批产品中任意抽两件,其中出现次品的概率是 .3、某人共有5发子弹,他射击一次命中目标的概率为,击中目标就停止射击,则此人射击次数为5的概率为 .4、设随机变量X~B(6,21),则P(X=3)= .5、某同学有2盒笔芯,每盒有25支,使用时从任意一盒中取出一支。

经过一段时间后,发现一盒已经用完了,则另一盒恰好剩下5只的概率是 .6、甲、乙两人各进行一次射击,如果两人击中目标的概率都是,计算:(1)两人都击中目标的概率;(2)其中恰有一人击中目标的概率;(3)至少有一人击中目标的概率.7、已知P(AB)=103,P(A)=53,则P (B|A)= .8、市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是 . 9、1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少(2)从2号箱取出红球的概率是多少10、甲、乙两人参加一次考试,已知在备选的10道试题中,甲能答对其中6题,乙能答对其中8题.若规定每次考试分别都从这10题中随机抽出3题进行测试,至少答对2题算合格.(1)分别求甲、乙两人考试合格的概率;(2)求甲、乙两人至少有一人合格的概率.11、有甲、乙、丙、丁四名网球运动员,通过对过去战绩的统计,在一场比赛中,甲对乙、丙、丁取胜的概率分别为,,.(1)若甲乙之间进行三场比赛,求甲恰好胜两场的概率;(2)若四名运动员每两人之间进行一场比赛,求甲恰好胜两场的概率;(3)若四名运动员每两人之间进行一场比赛,设甲获胜场次为ξ,求随机变量ξ的概率分布.12、已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为31,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一粒种子,假定某次试验种子发芽,则称该次试验是成功的,如果种子没有发芽,则称该次试验是失败的.(1)第一个小组做三次试验,求至少两次试验成功的概率;(2)第二个小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.13、甲、乙两人进行投篮比赛,两人各投3球,谁投进的球数多谁获胜,已知每次投篮甲投进的概率为54,乙投进的概率为21,求:(1)甲投进2球且乙投进1球的概率;(2)在甲第一次投篮未投进的条件下甲最终获胜的概率.题组三:1、一袋中装有编号为1,2,3,4,5,6的6个大小相同的球,现从中随机取出3个球,以X 表示取出的最大号码.(1)求X 的概率分布;(2)求X >4的概率.2、袋中有3个白球,3个红球和5个黑球.从中抽取3个球,若取得1个白球得1分,取得1个红球扣1分,取得1个黑球得0分.求所得分数ξ的概率分布.3、从装有6个白球、4个黑球和2个黄球的箱中随机地取出两个球,规定每取出一个黑球赢2元,而每取出一个白球输1元,取出黄球无输赢,以X表示赢得的钱数,则随机变量X可以取哪些值求X的概率分布.4、甲、乙两人轮流投篮直至某人投中为止,已知甲投篮每次投中的概率为,乙每次投篮投中的概率为,各次投篮互不影响.设甲投篮的次数为ξ,若乙先投,且两人投篮次数之和不超过4次,求ξ的概率分布.5、某校高三年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中的男生人数,求X的概率分布.6、一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是31.(1)设X为这名学生在途中遇到红灯的次数,求X的分布列;(2)设Y为这名学生在首次停车前经过的路口数,求Y的概率分布;(3)求这名学生在途中至少遇到一次红灯的概率.题组四:1、设一随机试验的结果只有A和A,且P(A)=p,令随机变量X=⎩⎨⎧不出现出现AA1,则D(X)= .2、设ξ~B(n,p),若有E(ξ)=12,D(ξ)=4,则n、p的值分别为 .3、已知ξ的分布列为ξ=-1,0,1,对应P=21,61,31,且设η=2ξ+1,则η的期望是 .4、随机变量ξ的概率分布如下:其中a,b,c成等差数列.若E(ξ)=31,则D(ξ)的值是 .5、设15000件产品中有1000件次品,从中抽取150件检查则查得次品数的数学期望为 .6、有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽取3张卡片,则这3张卡片上的数学这和的数学期望为 .7、编号1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是X.(1)求随机变量X的概率分布;(2)求随机变量X的数学期望和方差.8、某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次,令X表示甲、乙两人摸球后获得的奖金总额.求:(1)X的概率分布;(2)X的均值.9、甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为21与p,且乙投球2次均未命中的概率为161.(1)求乙投球的命中率p;(2)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的概率分布和数学期望.10、某地区的一个季节下雨天的概率是,气象台预报天气的准确率为.某厂生产的产品当天怕雨,若下雨而不做处理,每天会损失 3 000元,若对当天产品作防雨处理,可使产品不受损失,费用是每天500元.(1)若该厂任其自然不作防雨处理,写出每天损失ξ的概率分布,并求其平均值;(2)若该厂完全按气象预报作防雨处理,以η表示每天的损失,写出η的概率分布.计算η的平均值,并说明按气象预报作防雨处理是否是正确的选择11、有甲、乙两个建材厂,都想投标参加某重点建设项目,为了对重点建设项目负责,政府到两建材厂抽样检查,他们从中各取等量的样品检查它们的抗拉强度指数如下:其中ξ和η分别表示甲、乙两厂材料的抗拉强度,在使用时要求抗拉强度不低于120的条件下,比较甲、乙两厂材料哪一种稳定性较好.。

高考数学 题型通关21讲第7讲 分布列与数学期望(解析版)

高考数学 题型通关21讲第7讲 分布列与数学期望(解析版)

第7讲 分布列与数学期望高考预测一:求概率及随机变量的分布列的基本类型 类型一:利用古典概型求概率1.10月1日,某品牌的两款最新手机(记为W 型号,T 型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在10月1日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到如表(Ⅰ)若在10月1日当天,从A ,B 这两个手机店售出的新款手机中分别随机抽取1部,求抽取的2部手机中至少有1部为W 型号手机的概率;(Ⅱ)现从这5个手机店中任选3个举行促销活动,用X 表示其中W 型号手机销量超过T 型号手机销量的手机店的个数,求随机变量X 的分布列和数学期望;(Ⅲ)经测算,W 型号手机的销售成本η(百元)与销量ξ(部)满足关系34ηξ=+.若表中W 型号手机销量的方差20(0)S m m =>,试给出表中5个手机店的W 型号手机销售成本的方差2S 的值.(用m 表示,结论不要求证明)【解析】解:()I 设事件1M 为从A 店售出的手机中随机抽取1部手机,抽取的手机为W 型号手机, 设事件2M 为从A 店售出的手机中随机抽取1部手机,抽取的手机为W 型号手机, 则事件1M ,2M 相互独立,且161()6123P M ==+,262()695P M ==+, ∴抽取的2部手机中至少有1部为W 型号手机的概率为13221233535355P =⨯+⨯+⨯=.()II 由表格可知W 型号手机销售量超过T 型号手机的店有2个,故X 的可能取值有0,1,2.且33351(0)10C P X C ===,1223353(1)5C C P X C ===,2123353(2)10C C P X C ===. X ∴的分布列为:数学期望为1336()012105105E X =⨯+⨯+⨯=.20()()III D s m ξ==,34ηξ=+,2()9()9S D D m ηξ∴===.2.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望()E ξ;(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)【解析】解:(1)由图知:在50名服药患者中,有15名患者指标y 的值小于60, 答:从服药的50名患者中随机选出一人,此人指标小于60的概率为:1535010p ==. (2)由图知:A 、C 两人指标x 的值大于1.7,而B 、D 两人则小于1.7,可知在四人中随机选项出的2人中指标x 的值大于1.7的人数ξ的可能取值为0,1,2, 2411(0)6P C ξ===, 1122242(1)3C C P C ξ===,2411(2)6P C ξ===, ξ∴的分布列如下:答:121()0121636E ξ=⨯+⨯+⨯=.(3)答:由图知100名患者中服药者指标y 数据的方差比未服药者指标y 数据的方差大.3.已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和数学期望.【解析】解:(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,则P (A )1123252332010A A A ⨯===; (2)X 的可能取值为200,300,400,222521(200)2010A P X A ====,311232323562323(300)6010A C C A P X A ++⨯⨯====, 133(400)1(200)(300)110105P X P X P X ==-=-==--=; 所以X的分布列为:数学期望为13320030040035010105EX =⨯+⨯+⨯=. 类型二:利用相互独立事件的概率乘法公式和互斥事件概率加法公式求概率 4.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“1k ξ=”表示第k 类电影得到人们喜欢.“0k ξ=”表示第k 类电影没有得到人们喜欢(1k =,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.【解析】解:(Ⅰ)设事件A 表示“从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影”,总的电影部数为140503002008005102000+++++=部, 第四类电影中获得好评的电影有:2000.2550⨯=部,∴从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的频率为:P (A )500.0252000==. (Ⅱ)设事件B 表示“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”, 第四类获得好评的有:2000.2550⨯=部, 第五类获得好评的有:8000.2160⨯=部,则从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率:P (B )50(800160)(20050)1600.35200800⨯-+-⨯==⨯.(Ⅲ)由题意知,定义随机变量如下:0,1,k k k ξ⎧=⎨⎩第类电影没有得到人们喜欢第类电影得到人们喜欢,则k ξ服从两点分布,则六类电影的分布列及方差计算如下: 第一类电影:1()10.400.60.4E ξ=⨯+⨯=,221()(10.4)0.4(00.4)0.60.24D ξ=-⨯+-⨯=.第二类电影:2()10.200.80.2E ξ=⨯+⨯=,222()(10.2)0.2(00.2)0.80.16D ξ=-⨯+-⨯=.第三类电影:3()10.1500.850.15E ξ=⨯+⨯=,223()(10.15)0.15(00.15)0.850.1275D ξ=-⨯+-⨯=.第四类电影:4()10.2500.750.25E ξ=⨯+⨯=,224()(10.25)0.25(00.25)0.750.1875D ξ=-⨯+-⨯=.第五类电影:5()10.200.80.2E ξ=⨯+⨯=,225()(10.2)0.2(00.2)0.80.16D ξ=-⨯+-⨯=.第六类电影:6()10.100.90.1E ξ=⨯+⨯=,225()(10.1)0.1(00.1)0.90.09D ξ=-⨯+-⨯=.∴方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系为:632541D D D D D D ξξξξξξ<<=<<.5.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)设甲同学上学期间的三天中7:30之前到校的天数为X ,求0X =,1X =,2X =,3X =时的概率(0)P X =,(1)P X =,(2)P X =,(3)P X =.(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【解析】解:(1)321(0)(1)327P X ==-=,123222(1)(1)339P X C ==-=, 223224(2)()(1)339P X C ==-=,33328(3)()327P X C ===. (2)设乙同学上学期间的三天中在7:30之前到校的天数为Y , 则1(0)(0)27P Y P X ====,2(1)(1)9P Y P X ====, 4(2)(2)9P Y P X ====,8(3)(3)27P Y P X ====, 418220()(2)(0)(3)(1)927279243P M P X P Y P X P Y ∴===+===⨯+⨯=. 类型三:利用条件概率公式求概率6.如图所示,质点P 在正方形ABCD 的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点P 从A 点出发,规则如下:当正方体上底面出现的数字是1,质点P 前进一步(如由A 到)B ;当正方体上底面出现的数字是2,质点P 前两步(如由A 到)C ,当正方体上底面出现的数字是3,质点P 前进三步(如由A 到)D .在质点P 转一圈之前连续投掷,若超过一圈,则投掷终止.(1)求点P 恰好返回到A 点的概率;(2)在点P 转一圈恰能返回到A 点的所有结果中,用随机变量ξ表示点P 恰能返回到A 点的投掷次数,求ξ的分布列及数学期望.【解析】解:(1)投掷一次正方体玩具,因每个数字在上底面出现是等可能的,故其概率12163P ==. 易知只投掷一次不可能返回到A 点.①若投掷两次质点P 就恰好能返回到A 点,则上底面出现的两个数字,应依次为:(1,3)、(3,1)、(2,2)三种结果,其概率为2211()333P =⨯=.②若投掷三次质点P 恰能返回到A 点,则上底面出现的三个数字,应依次为:(1,1,2)、(1,2,1)、(2,1,1)三种结果,其概率为3311()339P =⨯=. ③若投掷四次质点P 恰能返回到A 点,则上底面出现的四个数字应依次为:(1,1,1,1),其概率为4411()381P ==.所以,质点P 恰好返回到A 点的概率为:23411137398181P P P P =++=++=.(2)由(1)知,质点P 转一圈恰能返回到A 点的所有结果共有以上问题中的7种情况, 且ξ的可能取值为2,3,4.则1273(2)373781P ξ===,199(3)373781P ξ===,1181(4)373781P ξ===,故ξ的分布列为:所以,27918523437373737E ξ=⨯+⨯+⨯=.7.根据以往的经验,某工程施工期间的降水量X (单位:)mm 对工期的影响如下表:300700X <700900X <9002610历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9,求: ()I 工期延误天数Y 的均值与方差;(Ⅱ)在降水量X 至少是300的条件下,工期延误不超过6天的概率.【解析】()I 由题意,(300)0.3P X <=,(300700)(700)(300)0.70.30.4P X P X P X <=<-<=-=,(700900)(900)(700)0.90.70.2P X P X P X <=<-<=-=,(900)10.90.1P X =-=Y 的分布列为()00.320.460.2100.13E Y ∴=⨯+⨯+⨯+⨯=2222()(03)0.3(23)0.4(63)0.2(103)0.19.8D Y =-⨯+-⨯+-⨯+-⨯=∴工期延误天数Y 的均值为3,方差为9.8;(Ⅱ)(300)1(300)0.7P X P X =-<=,(300900)(900)(300)0.90.30.6P X P X P X <=<-<=-= 由条件概率可得(300900)0.66(6|300)(300)0.77P X P Y X P X <===.类型四:利用统计图表中的数据求概率8.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:C)︒有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】解:(1)由题意知X 的可能取值为200,300,500,216(200)0.290P X +===,36(300)0.490P X ===, 2574(500)0.490P X ++===, X ∴的分布列为:(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,∴只需考虑200500n ,当300500n 时,若最高气温不低于25,则642Y n n n =-=;若最高气温位于区间[20,25),则63002(300)412002Y n n n =⨯+--=-; 若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-, 20.4(12002)0.4(8002)0.26400.4EY n n n n ∴=⨯+-⨯+-⨯=-,当200300n 时,若最高气温不低于20,则642Y n n n =-=,若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-, 2(0.40.4)(8002)0.2160 1.2EY n n n ∴=⨯++-⨯=+.300n ∴=时,Y 的数学期望达到最大值,最大值为520元.9.某贫困地区共有1500户居民,其中平原地区1050户,山区450户.为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元).(1)应收集多少户山区家庭的样本数据?(2)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为(0,0.5],(0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3].如果将频率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;(3)样本数据中,有5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?附:2() n ad bcK-=++++2)k【解析】解:(1)由已知可得每户居民被抽取的概率为0.1,故应收集手机4500.145⨯=户山区家庭的样本数据.(2)由直方图可知该地区2017年家庭年收入超过1.5万元的概率约为(0.5000.3000.100)0.50.45++⨯=.(3)样本数据中,年收入超过2万元的户数为(0.3000.100)0.515030+⨯⨯=户.而样本数据中,有5户山区家庭的年收入超过2万元,故列联表如下:所以2150(2540580)2003.175 2.706 301201054563K⨯-⨯==≈>⨯⨯⨯,∴有90%的把握认为“该地区2017年家庭年收入与地区有关”.高考预测二:超几何分布和二项分布类型一:超几何分布10.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中分别抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ()i 用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望;()ii 设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.【解析】解:(Ⅰ)单位甲、乙、丙三个部门的员工人数分别为24,16,16.人数比为:3:2:2, 从中抽取7人现,应从甲、乙、丙三个部门的员工中分别抽取3,2,2人.(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ()i 用X 表示抽取的3人中睡眠不足的员工人数,随机变量X 的取值为:0,1,2,3,34337()k kC C P X k C -⋅==,0k =,1,2,3. 所以随机变量的分布列为:随机变量X 的数学期望11218412()0123353535357E X =⨯+⨯+⨯+⨯=; ()ii 设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,设事件B 为:抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人,事件C 为抽取的3人中, 睡眠充足的员工有2人,睡眠不足的员工有1人, 则:A BC =,且P (B )(2)P X ==,P (C )(1)P X ==,故P (A )6()(2)(1)7P B C P X P X ===+==. 所以事件A 发生的概率:67. 11. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物. 2.5PM 日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.石景山古城地区2013年2月6日至15日每天的 2.5PM 监测数据如茎叶图所示.(1)小陈在此期间的某天曾经来此地旅游,求当天 2.5PM 日均监测数据未超标的概率;(2)从所给10天的数据中任意抽取三天数据,记ξ表示抽到 2.5PM 监测数据超标的天数,求ξ的分布列及期望.【解析】解:(1)记“当天 2.5PM 日均监测数据未超标”为事件A , 因为有24+天 2.5PM 日均值在75微克/立方米以下, 故P (A )243105+==. (2)ξ的可能值为0,1,2,3.由茎叶图可知:空气质量为一级的有2天,空气质量为二级的有4天,只有这6天空气质量不超标,而其余4天都超标.363101(0)6C P C ξ===,21643101(1)2C C P C ξ===,12643103(2)10C C P C ξ===,343101(3)30C P C ξ===.ξ的分布列如下表:1131601236210305E ξ∴=⨯+⨯+⨯+⨯=.类型二:二项分布12.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中或一等奖的次数为X ,求X 的分布列、数学期望和方差.【解析】解:(1)设顾客抽奖1次能中奖的概率为P .116511101037111010C C P C C =-=-=,(2)设该顾客在一次抽奖中获一等奖的概率为1P ,1145112101015C C P C C ==, 故而1?(3,)5X B .3464(0)()5125P X ∴===,1231448(1)()55125P X C ===, 2231412(2)()55125P X C ===,311(3)()5125P X ===. 故X 的分布列为数学期望13()355E X ==,方差1412()35525D X ==. 13.近年来,空气质量成为人们越来越关注的话题,空气质量指数(,)AirQualityIndex AQI 是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.环保部门记录了2017年某月哈尔滨市10天的AQI 的茎叶图如下:(1)利用该样本估计该地本月空气质量优良(100)AQI 的天数;(按这个月总共30天计算) (2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究,求抽取的2天中至少有一天空气质量是优的概率;(3)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.【解析】解:(1)从茎叶图中可发现该样本中空气质量优的天数为2,空气质量良的天数为4,故该样本中空气质量优良的频率为63105=,从而估计该月空气质量优良的天数为330185⨯=(2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究, 基本事件总数2615n C ==,抽取的2天中至少有一天空气质量是优的对立事件是抽取的2天中至少有一天空气质量都不是优,∴抽取的2天中至少有一天空气质量是优的概率:2426315C p C =-=.(3)由(1)估计某天空气质量优良的概率为35,ξ∴的所有可能取值为0,1,2,3,且3~(3,)5B ξ,328(0)()5125P ξ===, 1233236(1)()55125P C ξ===, 2233254(2)()55125P C ξ===, 3327(3)()5125P ξ===, 故ξ的分布列为:3~(3,)5B ξ,33 1.85E ξ=⨯=.高考预测三:概率与其他知识点交汇 类型一:以其他知识为载体14.已知正四棱锥PABCD 的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制); 若这两条棱所在的直线平行,则0ξ=;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制). (1)求(0)P ξ=的值;(2)求随机变量ξ的分布列及数学期望()E ξ.【解析】解:(1)根据题意,该四棱锥的四个侧面均为等边三角形,底面为正方形,PAC ∆,PBD ∆为等腰直角三角形.ξ的可能取值为:0,3π,2π, 在这个正四棱锥的8条棱中任取两条基本事件总数2828n C ==种情况, 当0ξ=时有2种,当3πξ=时有342420⨯+⨯=种,当2πξ=时有246+=种.21(0)2814P ξ∴===. (2)21(0)2814P ξ===. 205()3287P πξ===, 63()22814P πξ===.随机变量ξ的分布列如下表:15329()0143721484E πππξ=⨯+⨯+⨯=. 15.从集合{1M =,2,3,4,5,6,7,8,9}中抽取三个不同的元素构成子集1{a ,2a ,3}a . (1)求对任意的i 和(1j i =,2,3,1j =,2,3,)i j ≠满足||2i j a a -的概率;(2)若1a ,2a ,3a 成等差数列,设其公差为(0)ξξ>,求随机变量ξ的分布列与数学期望()E ξ.【解析】解:(1)由题意知基本事件数为3984C =,而满足条件||2i j a a -,即取出的元素不相邻,则用插空法有3735C =种,故所求事件的概率为3558412P ==; (2)分析1a ,2a ,3a 成等差数列的情况:1ξ=的情况有7种:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},{7,8,9}, 2ξ=的情况有5种:{1,3,5},{2,4,6},{3,5,7},{4,6,8},{5,7,9}. 3ξ=的情况有3种:{1,4,7},{2,5,8},{3,6,9}.4ξ=的情况有1种:{1,5,9}.故ξ的分布列如下:所以753115()1234161615168E ξ=⨯+⨯+⨯+⨯=. 类型二:构造递推关系求概率问题16.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0i p i =,1,⋯,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11(1i i i i p ap bp cp i -+=++=,2,⋯,7),其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. ()i 证明:1{}(0i i p p i +-=,1,2,⋯,7)为等比数列; ()ii 求4p ,并根据4p 的值解释这种试验方案的合理性.【解析】(1)解:X 的所有可能取值为1-,0,1.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--,(1)(1)P X αβ==-,X ∴的分布列为:(2)()i 证明:0.5α=,0.8β=,∴由(1)得,0.4a =,0.5b =,0.1c =.因此110.40.50.1(1i i i i p p p p i -+=++=,2,⋯,7),故110.1()0.4()i i i i p p p p +--=-,即11()4()i i i i p p p p +--=-,又1010p p p -=≠,1{}(0i i p p i +∴-=,1,2,⋯,7)为公比为4,首项为1p 的等比数列;()ii 解:由()i 可得,881887761001(14)41()()()143p p p p p p p p p p --=-+-+⋯+-+==-,81p =,18341p ∴=-, 444332*********()()()()3257p p p p p p p p p p p -∴=-+-+-+-+==. 4p 表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理. 17.从原点出发的某质点M ,按向量(0,1)a =移动的概率为23,按向量(0,2)b =移动的概率为13,设M 可到达点(0,)(1n n =,2,3,)⋯的概率为n P . (1)求1P 和2P 的值;(2)求证:2111()3n n n n P P P P +++-=--;(3)求n P 的表达式.【解析】解:(1)123P =,22217()339P =+= (2)证明:M 点到达点(0,2)n +有两种情况 ①从点(0,1)n +按向量(0,1)a =移动 ②从点(0,)n 按向量(0,2)b =移动∴212133n n n P P P ++=+ ∴2111()3n n n n P P P P +++-=-- 问题得证.(3)数列1{}n n P P +-是以21P P -为首项,13-为公比的等比数列 1111211111()()()()3933n n n n n P P P P --++-=--=-=- 11()3n n n P P -∴-=-又因为111221()()()n n n n n P P P P P P P P ----=-+-+⋯+-12111()()()333n n -=-+-+⋯+-111[1()]123n -=-- 11n n P P P P ∴=-+∴113()434n n P =⨯-+. 类型三:利用导数研究概率问题18.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为(01)p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()()f p f p 的最大值点0p (即()f p 取最大值时对应的p 的值).(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值,已知每件产品的检验费用为3元,若有不合格品进入用户手中,则工厂要对每件不合格品支付28元的赔偿费用 ()i 若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用之和记为X 求()E X ; ()ii 以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解析】解:(1)记20件产品中恰有2件不合格品的概率为()f p ,则221820()(1)f p C p p =-,2182172172020()[2(1)18(1)]2(1)(110)f p C p p p p C p p p ∴'=---=--,令()0f p '=,得0.1p =, 当(0,0.1)p ∈时,()0f p '>, 当(0.1,1)p ∈时,()0f p '<, f ∴()p 的最大值点00.1p =.(2)()i 由(1)知0.1p =,令Y 表示余下的180件产品中的不合格品数,依题意知~(180,0.1)Y B ,20328X Y =⨯+,即6028X Y =+,()(6028)6028()60281800.1564E X E Y E Y ∴=+=+=+⨯⨯=. ()ii 如果对余下的产品作检验,由这一箱产品所需要的检验费为600元, ()564600E X =<,∴应该对余下的产品不进行检验.19.某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品.检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测.设每个水果为不合格品的概率都为(01)p p <<,且各个水果是否为不合格品相互独立.(Ⅰ)记10个水果中恰有2个不合格品的概率为()f p ,求()f p 取最大值时p 的值0p ;(Ⅱ)现对一箱水果检验了10个,结果恰有2个不合格,以(Ⅰ)中确定的0p 作为p 的值.已知每个水果的检测费用为1.5元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付a 元的赔偿费用(*)a N ∈.(ⅰ)若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为X ,求EX ; (ⅱ)以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验?【解析】解:(Ⅰ)记10个水果中恰有2个不合格的概率为()f p ,则22810()(1)f p C p p =-,282710()[2(1)8(1)]f p C p p p p ∴'=---,由()0f p '=,得0.2p =.且当(0,0.2)p ∈时()0f p '>,当(0.2,1)p ∈时,()0f p '<,()f p ∴的最大值点00.2p =.(Ⅱ)由(Ⅰ)知00.2p =.(ⅰ)令Y 表示余下的70个水果中的不合格数,依题意~(70,0.2)Y B ,10 1.515X aY aY =⨯+=+. ()(15)15()15700.21514E X E aY aE Y a a ∴=+=+=+⨯⨯=+.(ⅱ)如果对余下的水果作检验,则这箱水果的检验费为120元, 由1514120a +>,得1057.514a >=,且*a N ∈, ∴当种植基地要对每个不合格水果支付的赔偿费用至少为8元时,将促使种植基地对这箱余下的所有水果作检验.高考预测三:决策问题20.某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购买机器时,可以额外购买这种零件作为备件,每个300元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得到下面柱状图.以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X 的分布列;(2)若要求()0.5P X n ,试确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【解析】解:(1)每台机器更换的易损零件数为8,9,10,11,记事件1A 为第一台机器3年内换掉7i +个零件(1i =,2,3,4),记事件1B 为第二台机器3年内换掉7i +个零件(1i =,2,3,4),由题知134134()()()()()()0.2P A P A P A P B P B P B ======,22()()0.4P A P B ==,则X 的可能的取值为16,17,18,19,20,21,22,11(16)()()0.20.20.04P X P A P B ===⨯=;1221(17)()()()()0.20.40.40.20.16P X P A P B P A P B ==+=⨯+⨯=;132231(18)()()()()()()0.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=;14233241(19)()()()()()()()()0.20.20.20.20.40.20.20.40.24P X P A P B P A P B P A P B P A P B ==+++=⨯+⨯+⨯+⨯=;243342(20)()()()()()()0.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=;3443(21)()()()()0.20.20.20.20.08P X P A P B P A P B ==+=⨯+⨯=;44(22)()()0.20.20.04P X P A P B ===⨯=.从而X 的分布列为(2)要()0.5P x n ,0.040.160.240.5++<,0.040.160.240.240.5+++,则n 的最小值为19;(3)购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用,当19n =时,费用的期望为193005000.210000.0815000.045940⨯+⨯+⨯+⨯=元,当20n =时,费用的期望为203005000.0810000.046080⨯+⨯+⨯=元,若要费用最少,所以应选用19n =.高考预测四:正态分布21.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:)cm .根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得16119.9716i i x x ===∑,0.212s =≈,其中i x 为抽取的第i 个零件的尺寸,1i =,2,⋯,16. 用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.9974P Z μσμσ-<<+=,160.99740.9592≈,0.09.【解析】解:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此,16(1)1(0)10.99740.0408P X P X =-==-≈;(2)由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=, 由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外, 因此需对当天的生产过程进行检查,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22, 剩下数据的平均数为1(169.979.22)10.0215⨯-=, 因此μ的估计值为10.02,162221160.212169.971591.134i i x ==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22, 剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈. 因此σ0.09.22.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图频率分布直方图:(1)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s①利用该正态分布,求(187.8212.2)P Z <<②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用 ①的结果,求EX 附:6 2.44≈,若2~(,)z n μσ,则()0.6826p Z μσμσ-<<+=,(22)0.9544p Z μσμσ-<<+=.【解析】解:(1)抽取产品的质量指标值的样本平均数为:1700.021800.091900.222000.332100.242200.082300.02200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,样本方差2s 分别为:2222222(30)0.02(20)0.09(10)0.2200.33100.24200.08300.02150s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯=. (Ⅱ)()i 由(Ⅰ)知~(200,150)Z N ,从而(187.8212.2)(20012.220012.2)0.6826P Z P Z <<=-<<+=;()ii 由()i 知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知~(100,0.6826)X B ,所以1000.682668.26EX =⨯=.。

求随机变量期望的四种方法

求随机变量期望的四种方法

Pபைடு நூலகம்(ξ = 4)
=
1-
5 9
×5 9
= 20, 81
P (ξ = 6) = 1 - 5 × 1 - 5 ×1
9
9
= 16. 81
∴随机变量 ξ的分布列为
ξ
2
4
6
5
20
16
P
9
81
81
故 Eξ = 2 ×5 + 4 ×20 + 6 ×16 = 266.
9
81
81 81
点评 本题不是单独考虑一局 , 而是把
= 2.
由题意可知 η = 2 300 - 100ξ,
∴Eη = 2 300 - 100Eξ
= 2 300 - 200 = 2 100 (元 ) .
说明 本题在求 η的数学期望时 , 就是
根据运算性质利用 Eξ求得 ,简化了计算过程.
三 、将事件分解
随机变量的期望具有性质 E (ξ±η) = Eξ ±Eη(ξ,η独立 ) ,利用该性质可把所求期望分 解为几个易求的相互独立的事件的期望和 , 达到简化解题的效果.
B
3, 2 3
, Eη = np = 3 ×2 3
= 2.
二 、运用期望性质
即利用期望的性质求期望 , 所用到的性 质主要有 : Ec = c, E ( kξ+ b) = kEξ+ b. 其中 ξ为随机变量 , k, b, c为常数.
例 3 某商场为刺激消费 ,拟按以下方案 进行促销 :顾客每消费 500元便得到抽奖券一
由已知得 ξ = 2, 3, 4, 注意到各事件之间 的独立性与互斥性 ,可得
P (ξ = 2) = P (A1B 1 ) + P (A1 A2 )

离散型随机变量、分布列、数学期望、方差

离散型随机变量、分布列、数学期望、方差

离散型随机变量、分布列、数学期望、方差:一、框架第一方面:离散型随机变量及其分布列1. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。

常用大写英文字母X 、Y 等或希腊字母ξ、η等表示。

2.分布列:设离散型随机变量ξ可能取得值为: x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表ξx 1x 2…x i…P P 1 P 2 … P i …为随机变量ξ的分布列 3. 分布列的两个性质:⑴P i ≥0,i =1,2,… ⑵P 1+P 2+…=1.常用性质来判断所求随机变量的分布列是否正确!第二方面:条件概率、事件的独立性、独立重复试验、二项分布与超几何分布1. 相互独立事件:如果事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。

①如果事件A 、B 是相互独立事件,那么,A 与_B 、_A 与B 、_A 与_B 都是相互独立事件②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。

我们把两个事件A 、B 同时发生记作A·B ,则有P (A·B )= P (A )·P (B )推广:如果事件A 1,A 2,…A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。

即:P (A 1·A 2·…·A n )= P (A 1)·P (A 2)·…·P(A n )★相互独立事件A ,B 有关的概率的计算公式如下表:事件A ,B 相互独立 概率计算公式 A ,B 同时发生 P (AB )=P (A )P (B )A ,B 同时不发生 P (A -B -)=P (A -)P (B -)=[1-P (A )][1-P (B )]=1-P (A )-P (B )+P (A )P (B ) A ,B 至少有一个不发生 P =1-P (AB )=1-P (A )P (B )A ,B 至少有一个发生 P =1-P (A -B -)=1-P (A -)P (B -)=P (A )+P (B )-P (A )P (B )A ,B 恰有一个发生P =P (A B -+A -B )=P (A )P (B -)+P (A -)P (B )=P (A )+P (B )-2P (A )P (B )2.条件概率:称)()()|(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的概率。

高中数学概率与统计知识点总结

高中数学概率与统计知识点总结

概率与统计一、概率及随机变量的分布列、期望与方差(一)概率及其计算1.几个互斥事件和事件概率的加法公式①如果事件A 与事件B 互斥,则()P A B =()()P A P B +.推广:如果事件1A ,2A ,…,n A 两两互斥(彼此互斥),那么事件12n A A A +++发生的概率,等于这n 个事件分别发生的概率的和,即()12n P A A A +++=()()()12n P A P A P A ++.②若事件B 与事件A 互为对立事件,则()P A =()1P B -. 2.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.(二)随机变量的分布列、期望与方差1. 常用的离散型随机变量的分布列(1)二项分布如果随机变量X 的可能取值为0,1,2,…,n ,且X 取值的概率()P X k ==C k k n kn p q-(其中0,1,2,,,1k n q p ==-),其随机变量分布列为X 0 1 …k…nP0C nnp q111C n np q-…C k k n knp q-…0C n n n p q则称X 服从二项分布,记为(),X B n p ~.(2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为C C C k n kM N Mn N--()0,10,1,2,,2,,k m =,其中{}min ,m M n =,且n N …,M N …,n ,M ,*N ÎN .此时称随机变量X 的分布列为超几何分布列,称随机变量X 服从超几何分布.2.条件概率及相互独立事件同时发生的概率 I.条件概率条件概率一般地,设A ,B 为两个事件,且()0P A >,称()()()P ABP B A P A=为事件A 发生的条件下,事件B 发生的条件概率.在古典概型中,若用()n A 表示事件A 中基本事件的个数,则()()()()()n AB P AB P B A n A P A ==. II .相互独立事件相互独立事件(1)若,A B 相互独立.则()P AB =()()P A P B .(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. III .独立重复试验与二项分布独立重复试验与二项分布在n 次独立重复试验中,事件A 发生k 次的概率为(每次试验中事件A 发生的概率为p)()C 1n kkknp p --,事件A 发生的次数是一个随机变量X ,其分布列为()01)2()C 1(n kk knP X k k n p p -===-¼,,,,,此时称随机变量X 服从二项分布. 学科*网3.离散型随机变量的数学期望(均值)与方差 (1)若离散型随机变量X 的概率分布列为的概率分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n则称EX =1122i i n n x p x p x p x p ++++¼+¼为随机变量X 的均值或数学期望. (2)若Y aX b =+,则EY =aEX b +,)(D aX b +=2a DX (3)若()X B n p ~,,则EX np =.()(1)D X np p -=. 4.正态分布(1)正态曲线的性质:正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,它关于直线x m =对称;③曲线在x m=处达到峰值12πs;④曲线与x 轴之间的面积为1;⑤当s 一定时,曲线的位置由m 确定,曲线随着m 的变化而沿x 轴平移,⑥当m 一定时,曲线的形状由s 确定,s 越小,曲线越“瘦高”,表示总体的分布越集中;s 越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)服从正态分布的变量在三个特殊区间内取值的概率服从正态分布的变量在三个特殊区间内取值的概率 ①0().6826P X m s m s -<+=…;②2209().544P X m s m s -<+=…; ③3309().974P X m s m s -<+=…. 二、统计与统计案例 (一)抽样方法 1.简单随机抽样设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本()n N …,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,最常用的简单随机抽样的方法:抽签法和随机数表法.最常用的简单随机抽样的方法:抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.的样本.(1)先将总体的N 个个体编号.(2)确定分段间隔k ,对编号进行分段,当Nn是整数时,取N k n =.如果遇到Nn不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除得总体中剩余的个体数能被样本容量整除(3)在第1段用简单随机抽样确定第一个个体编号()l l k ….(4)按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号()l k +,再加k 得到第3个个体编号()2l k +,依次进行下去,直到获取整个样本.直到获取整个样本.3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.分层抽样的应用范围:当总体是由差异明显的几个部分组成的,往往选用分层抽样.层抽样.注:注:不论哪种抽样方法不论哪种抽样方法,总体中的每一个个体入样的概率是相同的. (二)统计图表的含义 1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距和组数.(3)将数据分组.(4)列频率分布表.列频率分布表. (5)画频率分布直方图.画频率分布直方图. (三)样本的数字特征1.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.出现次数最多的数据叫做这组数据的众数.2.中位数:将一组数据按大小依次排列,把处在中间位置的一个数据(或中间两个数据的平均数)叫做这组数据的中位数叫做这组数据的中位数3.平均数:样本数据的算术平均数,即x =()121n x x x n+++.4.方差:()()()2222121n s x x x x x x n éù=-+-++-êúëû(n x 是样本数据,n 是样本容量,x 是样本平均数).5.标准差:()()()222121ns x x x x x x n éù=-+-++-êúëû.(四)线性回归直线方程 1.两个变量的线性相关(1)如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫回归直线.(2)从散点图上看,如果点分布在从左下角到右上角的区域内,那么两个变量的这种相关关系称为正相关;如果点分布在从左上角到右下角的区域内,那么两个变量的这种相关关系称为负相关. (3)相关系数相关系数r =ååå===----ni nj jini i i y y x x y y x x 11221)()())((,当0r >时,表示两个变量正相关;当0r <时,表示两个变量负相关.r 的绝对值越接近1,表示两个变量的线性相关性越强;r 的绝对值越接近0,表示两个变量的线性相关性越弱.通常当r 的绝对值大于0.75时,便认为两个变量具有很强的线性相关关系.当1r =时,两个变量在回归直线上两个变量在回归直线上 2.回归直线方程 (1)通过求21()ni i i Qy x a b ==--å的最小值而得出回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.该式取最小值时的a ,b 的值即分别为aˆ,b ˆ. (2)两个具有线性相关关系的变量的一组数据:11(,)x y ,22(,)x y ,…,()n n x y ,,其回归方程为a x b y ˆˆˆ+=,则1122211()()ˆ()ˆˆnn i i i i i i n ni ii i x x y y x y nx yb x x x nxa y bx ====ì---×ï==ïí--ïï=-ïîåååå.注:样本点的中心(),x y 一定在回归直线上. (3)相关系数22121ˆ()1()n i ii ni i y yR y y ==-å=--å.2R 越大,说明残差平方和越小,即模型的拟合效果越好;2R 越小,残差平方和越大,即模型的拟合效果越差.在线性回归模型中,2R表示解释变量对于预报变量变化的贡献率,2R 越接近于1,表示回归的效果越好. (六)独立性检验(1)变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.像这样的变量称为分类变量.(2)像下表所示列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y ,它们的可能取值分别为12(,)x x 和12(,)y y ,其样本频数列联表(称为22´列联表)为表)为y 1 y 2 总计总计x 1 a b a b + x 2 cdc d +总计a c +b d +a b c d +++构造一个随机变量()()()()()22n ad bc K a b c d a c b d -=++++ ,其中n a b c d =+++为样本容量.确定临界值0k ,如果2K 的观测值0k k …,就认为“两个分类变量之间有关系”;否则就认为“两个分类变量之间没有关系”.。

2.3 离散型随机变量的分布列及其期望

2.3 离散型随机变量的分布列及其期望

2.3 离散型随机变量的分布列及其期望基础梳理1.离散型随机变量的分布列(1)随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X,Y,ξ,η等表示.(2)离散型随机变量对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.(3)分布列设离散型随机变量X可能取得值为x1,x2,…,x i,…x n,X取每一个值x i(i=1,2,…,n)的概率为P(X=x i)=p i,则称表X x1x2…x i…x nP p1p2…p i…p n为随机变量X的概率分布列,简称X的分布列.(4)分布列的两个性质①p i≥0,i=1,2,…,n;②p1+p2+…+p n=_1_.2.两点分布如果随机变量X的分布列为X 10P p q其中0<p<1,q=1-p,则称离散型随机变量X服从参数为p的两点分布.3.超几何分布列在含有M件次品数的N件产品中,任取n件,其中含有X件次品数,则事件{X=k}发生的概率为:P(X=k)=C k M C n-kN-MC n N(k=0,1,2,…,m),其中m=min{M,n},且n≤N,M≤N,n、M、N∈N*,则称分布列X 01…mP C0M·C n-0N-MC n NC1M C n-1N-MC n N…C m M C n-mN-MC n N为超几何分布列.4.二项分布在n 次独立重复试验中,设事件A 发生的次数为k ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 5.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n基础训练1.抛掷均匀硬币一次,随机变量为( ).A .出现正面的次数B .出现正面或反面的次数C .掷硬币的次数D .出现正、反面次数之和2.如果X 是一个离散型随机变量,那么下列命题中假命题是( ). A .X 取每个可能值的概率是非负实数 B .X 取所有可能值的概率之和为1C .X 取某2个可能值的概率等于分别取其中每个值的概率之和D .X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值 或 ,它反映了离散型随机变量取值的 .(2)方差称D (X )=∑i =1n[x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均 ,其算术平方根D (X )为随机变量X 的标准差.数学期望 平均水平 偏离程度3.已知随机变量X 的分布列为:P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于( ). A.316 B.14 C.116 D.5164.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为( ). A .25 B .10 C .7 D .65.设某运动员投篮投中的概率为P =0.3,则一次投篮时投中次数的分布列是________. 6.小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ).A.49B.29C.427D.227由统计数据求离散型随机变量的分布列【例1】某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:投资成功 投资失败 192次8次则该公司一年后估计可获收益的期望是________.(1)可设出随机变量Y ,并确定随机变量的所有可能取值作为第一行数据;(2)由统计数据利用事件发生的频率近似地表示该事件的概率作为第二行数据.由统计数据得到分布列可帮助我们更好理解分布列的作用和意义.【训练1】某射手进行射击训练,假设每次射击击中目标的概率为35,且各次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列【例2】►某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A 饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.求离散型随机变量的分布列,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.而超几何分布就是此类问题中的一种.【训练2】着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望E(ξ).【例3】►(某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=112,则随机变量X的数学期望E(X)=________.本题考查了相互独立事件同时发生的概率求法以及分布列,期望的相关知识,公式应用,计算准确是解题的关键.【训练3】某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是12.同样也假定D受A、B和C感染的概率都是13.在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).【例4】►一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1 3.(1)设X为这名学生在途中遇到红灯的次数,求X的分布列;(2)设Y为这名学生在首次停车前经过的路口数,求Y的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.独立重复试验是相互独立事件的特例(概率公式也是如此),就像对立事件是互斥事件的特例一样,只要有“恰好”字样的用独立重复试验的概率公式计算更简单,就像有“至少”或“至多”字样的题用对立事件的概率公式计算更简单一样.【训练4】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X为3人中参加过培训的人数,求X的分布列.巩固提升1、设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.,则同一工作日至少3人需使用设备的概率为______________;2、甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6、0.5、0.4,能通过面试的概率分别是0.6、0.6、0.75.(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)求经过两次考试后,至少有一人被该高校预录取的概率.3.某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.4.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列、数学期望和方差.。

离散型随机变量的分布列、期望与方差

离散型随机变量的分布列、期望与方差

=2.752.
学例2 (2008·广东卷)随机抽取某厂的某种
产品200件,经质检,其中有一等品126件、 二等品50件、三等品20件、次品4件.已知生 产1件一、二、三等品获得的利润分别为6万 元、2万元、1万元,而1件次品亏损2万元.设 1件产品的利润为ξ(单位:万元).
(1)求ξ的分布列;
(2)求1件产品的平均利润(即ξ的数学期望);
ξ
0
1

M
P
C C 0 n0 M NM
C C 1 n1 M NM
CNn
CNn

C C m nm M NM
CNn
为⑦超几何分布列.如果随机变量ξ的分布列为超
几何分布列,则称随机变量ξ服从超几何分布.
3.离散型随机变量的分布列的性质 ⑧ Pi≥0,P1+P2+…+Pi+…=1 (i=1,2,3,…) . 4.离散型随机变量的均值 若离散型随机变量ξ的分布列为:
是随机变量的特征数,期望反映了随 机变量的平均取值,方差与标准差都 反映了随机变量取值的稳定与波动、 集中与离散的程度.在进行决策时,一 般先根据期望值的大小来决定,当期 望值相同或相差不大时,再去利用方 差决策.
备选题
某工厂每月生产某种产品三件,经检测发 现,工厂生产该产品的合格率为45.已知生产 一件合格品能盈利25万元,生产一件次品将 亏损10万元.假设该产品任何两件之间合格与 否相互之间没有影响.
设随机变量ξ表示在取得合格品以前
已取出的不合格品数,则ξ=0,1,2,3,
可得P(ξ=0)=
9 12
,
P(ξ=1)=
3× 9
12 11
=
9 44
,

高中数学离散型随机变量分布列、期望与方差

高中数学离散型随机变量分布列、期望与方差

离散型随机变量——分布列、期望与方差从近几年高考试题看,离散型随机变量的期望与方差涉及到的试题背景有:①产品检验问题;②射击,投篮问题;③选题、选课,做题,考试问题;④试验,游戏,竞赛,研究性问题;⑤旅游,交通问题;⑥摸球球问题;⑦取卡片,数字和入座问题;⑧信息,投资,路线问题;⑨与概率分布直方图关联问题;⑩综合函数、方程、数列、不等式、导数、线性规划等知识问题着重考查分析问题和解决问题的能力。

一、离散型随机变量的分布列、期望与方差1.离散型随机变量及其分布列: (1)离散型随机变量:如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,这样的变量X 叫做一个随机变量.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. (2)离散型随机变量的特点:①结果的可数性;②结果的未知性。

(3)离散型随机变量的分布列:设离散型随机变量X 所有可能的取值为i x ,与i x 对应的概率为i p (1,2,,)i n =,则下表:称为离散型随机变量X 的概率分布,或称为离散型随机变量X 的分布列. (4)离散型随机变量的分布列的性质:①0i p >(1,2,,)i n =;②11nii p==∑(1,2,,)i n =.③(P ξ≥1)()()k k k x P x P x ξξ+==+=+⋅⋅⋅ 2.离散型随机变量的数学期望:(1)定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x , 这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++,叫做这个离散型随机变量X 的均值或数学期望(简称期望).(2)离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平.3.离散型随机变量的方差:(1)定义:一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这 些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-叫做这个离散型随机变量X 的方差.(2)离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小 (离散程度).(3)()D X的算术平方根叫做离散型随机变量X 的标准差,它也是一个衡量离散 型随机变量波动大小的量.4.随机变量aX b +的期望与方差:①()()E aX b aE X b +=+;②2()().D aX b a D X +=二、条件概率与事件的独立性:1.条件概率:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件 概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =). 2.事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两 个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯,并且上式中任意多个事 件i A 换成其对立事件后等式仍成立.三、几类典型的概率分布:1.两点分布:如果随机变量X 的分布列为其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布.注:①两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验, 所以这种分布又称为伯努利分布. ②();().E X p D X np ==2.超几何分布:一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件 ()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个),称离散型随机变量X 的这 种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.记为:(,,)X H N M n .注:();ME X n N=2()()()(1)n N n N M M D X N N --=-. 3.二项分布:(1)定义:如果每次试验,只有两个可能的结果A 及A ,且事件A 发生的概率相同(p ). 那么重复地做n 次试验,各次试验的结果相互独立,这种试验称为n 次独立重复试验.在n 次试验中,事件A 恰好发生k 次的概率为:()C (1)kk n k n n P k p p -=-(0,1,,)k n =.(2)二项分布:若将事件A 发生的次数为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n k n P X k p q-==, 其中0,1,2,,k n =,于是得到X 的分布列:由于表中第二行恰好是二项展开式00111()C C C C n n n kk n k n n n n n n q p p q p q p q p q --+=++++各对应项的值,所以称这样的离散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p . (3)二项分布的均值与方差:若~(,)X B n p ,则()E X np =,()D x npq =(1)q p =-.4.几何分布:(1)定义:在独立重复试验中,某事件第一次发生时,所作试验的次数X 也是一个正 整数的离散型随机变量.“X k =”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()k p A p =,()1,k p A p =- 那么112311231()()()()()()()(1)k k k k k P X k P A A A A A P A P A P A P A P A p p ---====-.(0,1,2,k =…);于是得到随机变量ξ的概率分布如下:记作(,),Xg k p(2)若(,),X g k p 则1()E X p =;21()pD X p-=(1)q p =-. 5.正态分布(1)概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上 面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则 这条曲线称为X 的概率密度曲线.(2)曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. (2)正态分布:①定义:如果随机现象是由一些互相独立的偶然因素所引起的, 而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作 用,则表示这样的随机现象的随机变量的概率分布近似服从正态分 布.服从正态分布的随机变量叫做正态随机变量,简称正态变量. ②正态变量概率密度曲线的函数表达式为 22()2()x f x μσ--=,x ∈R , 其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差. 期望为μ、标准差为σ的正态分布通常记作:2(,)XN μσ.③正态变量的概率密度函数的图象叫做正态曲线.④标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑤正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是 68.3%,95.4%,99.7%.⑥正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是 0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.⑦若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函 数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数,()()x P x μξφσ-<=.离散型随机变量——分布列、期望与方差考点1.产品检验问题:例1.已知甲盒子内有3个正品元件和4个次品元件,乙盒子内有5个正品元件和4个次品 元件,现从两个盒子内各取出2个元件,试求(1)取得的4个元件均为正品的概率; (2)取得正品元件个数ε的数学期望.例2.某车间在三天内,每天生产10件某产品,其中第一天,第二天分别生产出了1件、 2件次品,而质检部每天要从生产的10件产品中随意抽取4件进行检查,若发现有次品, 则当天的产品不能通过.(1)求第一天通过检查的概率;(2)求前两天全部通过检查的概率;(2)若厂内对车间生产的产品采用记分制:两天全不通过检查得0分,通过1天、 2天分别得1分、2分.求该车间在这两天内得分的数学期望.考点2.比赛问题:例3.,A B 两队进行篮球决赛,共五局比赛,先胜三局者夺冠,且比赛结束。

11随机变量的分布列、期望和方差

11随机变量的分布列、期望和方差
[142,146)
[146,150)
[150,154)
[154,158)
人数
5
8
10
22
33
20
11
6
5
(1)列出样本的频率分布表(含累积频率);
(2)画出频率分布直方图;
(3)根据累积频率分布,估计小于134的数据约占多少百分比.
解:(1)样本的频率分布表与累积频率表如下:
区间
[122,126)
[126,130)
例10在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一张彩票的合理价格是多少元?
解:设一张彩票中奖额为随机变量ξ,显然ξ所有可能取的值为0,5,25,100。依题
意,可得ξ的分布列为
ξ
0
5
25
100
P
答:一张彩票的合理价格是0.2元.
分层抽样法,系统抽样法 分层抽样法,简单随机抽样法
系求得,则 .
3.设有 个样本 ,其标准差为 ,另有 个样本 ,且
,其标准差为 ,则下列关系正确的是(B)
4.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为(B)
DξB=(100-125)2×0.1+(110-125)2×0.2+(130-125)2×0.1+(145-125)2×0.2=165.
所以,DξA< DξB.因此,A种钢筋质量较好。
例10学们身边常遇到的现实问题,比如福利彩票、足球彩票、奥运彩票等等.一般来说,出台各种彩票,政府要从中收取一部分资金用于公共福利事业,同时也要考虑工作人员的工资等问题.本题的“不考虑获利”的意思是指:所收资金全部用于奖品方面的费用。

一个随机变量的分布列及数学期望的计算

一个随机变量的分布列及数学期望的计算
c:: + : 一 … + ::’ C -: + ::: c: + ? C :一 + : : m
… + :: + ::: c:: C:一 C::+ ::: .
义 直接 验 证 . 别 地 , r 特 当 =m 时 ,
() 5
( +1 次 取 到 的 是 白球 ” 因为 是 “ 放 回地 ” 球 , 常 采 k ) , 无 取 通 用 排 列 计 数 模 式 , 的 分 布 列 为




次 ( ) , 反 复使 用 ( ) , 到 7式 再 6式 得
比 较 ( ) 和 ( ) 可 以得 出结 论 : 无 放 回 地 逐 个 取 k 1式 2式 “
∑ k2 -= : + : + : ‘ c: c_ 。 c一 C- c: - - L m 7 +: 。
C :. ::

个 球 ” “ 次 性 取 出 k个 球 ” 与 一 的概 率 相 同 , 即可 以采 用 组 合
计 数模 式 . 要 注 意 的是 无 论 采 用 哪 种 计 数 模 式 , 计 算 样 需 在 本 点 总 数 和 有 利 事 件 数 时 必 须 采 用 相 同的 计 数 模 式 . 对 上述 结 果 进 一 步 进 行 化 简 , 到 得
E ) ( =∑ k( =) PX =∑ k

() 4
计 算 上 式 的 关 键 也 是 难 点 在 于 计 算 求 和 表 达
式 ∑ c: . :
下 面 通 过 一 个 简 单 常 用 的组 合 恒 等 式 来 计 算 .
进 行 和 式 分 解 、 用 对 称 性 、 件 数 学 期 望 等 技 巧 往 往 可 使 利 条 数 学 期 望 的计 算 分 外 简 捷 . 文 讨 论 一 个 重 要 的 离 散 型 随 本 机 变 量 的 分 布 列 及 其 数 学 期 望 的计 算 方 法 . 例 一个 口袋 中有 m 个 红 球 , I —m) 白球 , 放 回 ( t 个 无

第7讲 分布列与数学期望(解析版)

第7讲 分布列与数学期望(解析版)

第7讲分布列与数学期望(解析版)第7讲分布列与数学期望(解析版)在统计学中,分布列与数学期望是常用的分析工具。

它们能够帮助我们理解随机变量的分布和特征。

本文将对分布列与数学期望进行解析,并探讨它们在实际问题中的应用。

一、分布列分布列是用来描述离散型随机变量的概率分布的一种方式。

对于一个具体的随机变量X,其可能取到的数值通常是有限个或可数个。

我们可以列出每个数值对应的概率,形成一张分布列。

分布列通常以表格的形式呈现,其中包括随机变量的取值和对应的概率。

举个例子,假设随机变量X表示投掷一个骰子后的点数。

在这种情况下,X可以取到1、2、3、4、5、6这六个数值。

我们可以计算出每个数值对应的概率,得到如下的分布列:| X | 1 | 2 | 3 | 4 | 5 | 6 ||-------|-------|-------|-------|-------|-------|-------|| P(X) | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 |通过分布列,我们可以清晰地看到每个点数出现的概率是相等的。

除了离散型随机变量外,连续型随机变量也可以通过分布列进行描述。

连续型随机变量的分布列变成了概率密度函数,其中表示为概率的数值变为密度。

二、数学期望数学期望是随机变量的平均值,在概率论中有着重要的意义。

数学期望反映了随机变量取值的中心位置。

对于离散型随机变量X,其数学期望E(X)定义为:E(X) = ∑(x·P(X=x))其中,x表示随机变量X的取值,P(X=x)表示该取值的概率。

以前述的投骰子问题为例,我们可以计算出随机变量X的数学期望:E(X) = (1/6)·1 + (1/6)·2 + (1/6)·3 + (1/6)·4 + (1/6)·5 + (1/6)·6= 3.5可以看出,投骰子问题中,骰子点数的数学期望是3.5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机变量的分布列和期望
1.已知离散型随机变量X 的分布列为
X
2 3 P
35
310 110
则X 的数学期望EX =( )A .32 B .2 C .5
2
D .3
2.如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,
记它的涂油漆面数为X ,则X 的均值为()E X =( ) A .
126
125
B .
65
C .
168
125
D .
7
5
3.运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙
89
90
91
88
92
则成绩较为稳定(4设非零常数d 是等差数列12319,,,,x x x x L
的公差,随机变量ξ等可能地取值12319,,,,x x x x L ,则方差_______D ξ=
5.某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为
2
3
,中将可以获得2分;方案乙的中奖率为
2
5
,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?
6.甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各
局中双方获胜的概率均为
1
,2
各局比赛的结果相互独立,第局甲当裁判.(I)求第4局甲当裁判的概率;(II)X 表示前4局中乙当裁判的次数,求X 的数学期望.
7.现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(I)求张同学至少取到1道乙类题的概率;
(II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是3
5
,答对每道乙类题的概率都是4
5
,且各题答对与否相互独立.用X 表示张同学答对题的个数,求X 的分布列和数学期望.
8.设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.
(1)当1,2,3===c b a 时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若9
5
,35==ηηD E ,求.::c b a
9.经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500元,未售出的产品,每t 亏损300元.根据历
史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润.(Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望.
/频率组距0.010
0.0150.0200.0250.030
100110120130140150需求量/x t
10.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是
1
2
外,其
余每局比赛甲队获胜的概率都是2
3
,假设各局比赛结果相互独立.(Ⅰ)分别求甲队以3:0,3:1,3:2胜利的概率;(Ⅱ)若
比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求乙队得分X 的分布列及数学期望.
11.一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.
12.在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须
彼此独立地在选票上选3名歌手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手. (Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率; (Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和, 求X的分布列和数学期望.。

相关文档
最新文档