01-+导论——管理运筹学课件PPT

合集下载

最新整理管理运筹学第一章.ppt

最新整理管理运筹学第一章.ppt
装机容量为世界第二位,仅次于美国。2009年将全部建 成三峡水电站。三峡电站安装26台700MW水轮发电机组, 预留增加6台700MW机组的可能性,为世界上最大的电站。
西电东送,南北互供,逐步实现全国联网的格局。能源主 要集中于西部地区,负荷主要集中在东部地区。
本章教学内容:
能源开发与有效利用;水力和火力发电厂的生产原理与过 程;风力和太阳能发电、以及其他新能源的发电的原理。
三、混合式水电站
混合式水电站:建坝集中部分水头又用引水系统,共同 集中水头,具有坝式和引水式两方面的特点。
梯级水电站:为合理地分段开发利用水能。在河段上建 若干水电站,一个接一个,采用不同的类型。
四、抽水蓄能式水电站
特殊形式的水电站。电力系统内负荷处于低谷时,利用网 内富余的电能,采用机组为电动机运行方式,将低水池的水 抽送到高水池,能量蓄存在高水池中。在电力系统高峰负荷 时,机组改为发电机运行方式,将高水池的水能用来发电
河床式: 如葛洲坝水电站 坝后式:我国水电站采用最多的一种,如三峡水电站。
河床式水电站示意图
二、引水式水电站 河流多弯曲或河道坡降较陡,修筑较短的引水明渠或隧道
集中水头,用引水管把水引入河段下游的水电站。还可以利 用相邻两条河流的高程差,进行跨河流引水发电。
引水式电厂的引水系统
引水式水电站示意图
抽水蓄能电站既是电源又是负荷,是系统内唯一的削峰填 谷电源,具有调频、调相、负荷备用、事故备用的功能。
抽水蓄能式水电站(发电)
抽水蓄能式水电站(蓄能)
五、水电站的主要动力设备 主要由挡水建筑物、泄水建筑物、排沙设施、发电引水系 统、发电系统以及其他引水设施和过坝设施等组成。 主要动力设备——水轮机。能转换成旋转机械能的水力原 动机。 按照水流作用于水轮机转轮时的能量转换方式:

运筹学课件PPT课件

运筹学课件PPT课件

整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。

管理运筹学全套ppt课件

管理运筹学全套ppt课件
线性规划模型
设置变量:生产Ⅰ 产品x1个, Ⅱ产品 x2个
目标函数是利润最大化:
maz x5x 0 110x20
资源是有限的,第一个限制是设备台时 的限制:
x1x2 300
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
线性规划模型
建模型如下:设生产Ⅰ 产品x1件, Ⅱ产品 x2件。
max z 50 x1 100 x 2 (1)
x1 x 2 300
s
.t
.
2 x
x1 x 2 2 250
400 (2)
x1 , x 2 0
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
线性规划模型
第二个限制是原材料A的限制: 2x1x2 400
第三个限制是原材料B的限制:
x2 250
显然,产量不可能为负数:
x1,x2 0
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
考核方法
平时成绩占20%,每位同学的初始成绩都 是60分(按100分为满分计算)。
每次作业交上加1分,不交不加不减,拷 贝别人作业一次扣2分。
运筹学的体系和发展历史
二次世界大战中,英美科学家研究如何 有效运用雷达,研究船队遇到袭击如何 减少损失,以及如何使用深水炸弹等紧 迫问题。

运筹学PPT完整版

运筹学PPT完整版

Page 4
运筹学的主要内容
数学规划(线性规划、整数规划、目标规划、 数学规划(线性规划、整数规划、目标规划、动态 规划等) 规划等) 图论 存储论 排队论 对策论 排序与统筹方法 决策分析
Page 5
本课程的教材及参考书
选用教材 《运筹学基础及应用》胡运权主编 哈工大出版社 运筹学基础及应用》 参考教材 《运筹学教程》胡运权主编 (第2版)清华出版社 运筹学教程》
线性规划问题的数学模型
约束方程的转换:由不等式转换为等式。 约束方程的转换:由不等式转换为等式。
Page 23
∑a x
ij
j
≤ bi
∑a
ij
x j + xn+i = bi
称为松弛变量
xn+i ≥ 0
∑a x
ij
j
≥ bi
∑a x
ij
j
− xn+i = bi
称为剩余变量
xn+i ≥ 0
变量x
j
≤ 0 的变换
线性规划问题的数学模型
(2)如何化标准形式 目标函数的转换
Page 22
则可将目标函数乘以( 1), 如果是求极小值即 min z = ∑ c j x j ,则可将目标函数乘以(-1), 可化为求极大值问题。 可化为求极大值问题。 即
max z ′ = − z = −∑ c j x j
也就是: 可得到上式。 也就是:令 z ′ = − z ,可得到上式。 变量的变换 若存在取值无约束的变量 x j ,可令 x j = x′j − x′j′ 其中: 其中:x ′j , x ′j′ ≥ 0
运筹学在工商管理中的应用涉及几个方面: 运筹学在工商管理中的应用涉及几个方面:

管理运筹学ppt课件

管理运筹学ppt课件

最小生成树问题
要点一
总结词
最小生成树问题是网络优化中的另一类重要问题,旨在寻 找一个子图,该子图包含图中所有节点且边的总权重最小 。
要点二
详细描述
最小生成树问题是网络优化中的另一类重要问题。在一个 加权图中,我们希望找到一个子图,该子图包含图中所有 节点且边的总权重最小。这个子图被称为最小生成树。 Kruskal算法和Prim算法是最著名的最小生成树问题的求 解方法。这些算法可以帮助我们在加权图中找到一个最小 生成树,从而在实际应用中实现最小成本的网络设计或路 由选择。
决策变量
整数规划的决策变量是整数类型的变量,用于表 示决策结果。
ABCD
约束条件
整数规划的约束条件可以是等式或不等式,例如 资源限制、时间限制等。
整数约束
整数规划的约束条件要求决策变量取整数值,以 确保问题的可行解是整数解。
整数规划的求解方法
枚举法
枚举法是一种暴力求解方法,通 过列举所有可能的决策变量组合 来找到最优解。
约束条件
非线性规划的约束条件可以是等式或不等式, 限制决策变量的取值范围。
决策变量
非线性规划的决策变量可以是连续的或离散的,根据问题的具体情况而定。
非线性规划的求解方法
梯度法
通过计算目标函数的梯度,逐步逼近最优解。
牛顿法
利用目标函数的二阶导数信息,迭代逼近最优解。
拟牛顿法
通过构造一个近似于目标函数的二次函数,迭代 逼近最优解。
07 决策分析
决策分析的基本概念
决策分析
指在面临多种可能的选择时,基于一 定的目标,通过分析、比较和评估,
选择最优方案的过程。
决策要素
包括决策者、决策对象、决策信息、 决策目标、决策方案和决策评价。

《管理运筹学》课件 第1章《绪论》

《管理运筹学》课件 第1章《绪论》
对于运筹学目前尚没有一个统一的确切的定义。
性质: 1、英国运筹学学会的定义是: 2、美国运筹学学会的定义是: 3、德国的科学辞典上定义为: 4、我国运筹学研究工作者认为:
(数学百科全书)
特点:系统性、强调定量性、交叉性、应用性与 实践性。
1、系统性。运筹学研究问题是从系统的观点出发,研究 全局性的问题,研究综合优化的规律。是系统工程的主要 依据。 2、强调定量性。引进数学研究方法。运筹学是一门以数 学为主要工具,寻求各种最优方案的学科。 3、跨学科性。由有关的各种专家组成的小组综合应用多 种学科的知识来解决实际问题是运筹学饮用的成败及应用 的广泛程度的关键。
4、重视实际应用。在运筹学术界,有许多人强调运筹学 的实用性和对研究结果的“执行”。把“执行”看成运筹 学工作中的重要组成部分。
5、理论和应用的发展相互促进为。运筹学的各个分支, 都是实际问题的需要或以一定的实际问题背景逐渐发展起 来的。初期一些老的学科方面的专家对运筹学做出了贡献。 随后新的人才逐渐涌现,新的理论逐渐出现。
问题与练习 1. 什么是运筹学?特点有哪些? 2. 决策有几个步骤,请列出。 3. 定性决策和定量决策的异同之处。 4. 建立模型练习 5. 熟悉Microsoft Excel
谢 谢
四、解决问题与制定决策(
Problem solving & Decision making)
解决问题一般包括以下7步 1、明确问题、定义问题 2、确定备选方案 3、制定准则 4、评价备选方案 5、选择一种备选方案 6、实施 7、分析结果、检验是否达到预期效果。
制定决策是由解决问题的前5步构成
例如:设你失业在家,希望找到一个工作,经过努力, 有三家公司答应录用你。单准则决策、多准则决策。

第1章 绪论《管理运筹学》PPT课件

第1章 绪论《管理运筹学》PPT课件
非可控输入既可以是非常明确的,也可以是不确定的 、变化的。
如果一个模型的非可控输入都是已知的、不可变的, 这样的模型称为确定模型。
如果一个模型的非可控输入是不确定的、变化的,这 样的模型就称为随机模型或概率模型。
本书主要研究确定型数学模型。
1.2 运筹学问题的求解过程
了解模型的相关概念之后,下一个问题就是如何将一 个现实问题转化为数学模型,也就是建模过程。既然运筹 学模型的几个要素是:目标函数,约束条件(包括自然约 束和强加约束),决策变量。那么根据我们要解决的问题 ,只要我们经常问自己下面这些问题,一个模型的框架是 不难建立的。
1.2 运筹学问题的求解过程
1.2.1 从现实系统到理论模型:模型建立
模型是现实世界的抽象化反映。运筹学的实质在于建 立和使用模型来解决实际问题。尽管模型的具体结构和形 式总是与要解决的问题相联系,但在这里将抛弃模型在外 表上的差别,从最广泛的角度抽象出它们的共性。模型在 某种意义上说是客观事物的简化与抽象,是研究者经过思 维抽象后用文字、图表、符号、关系式以及实体模样对客 观事物的描述。
第1章 绪论
“运筹于帷幄之中,决胜于千里之外”。运筹学 将科学的方法、技术和工具应用到经济管理、工程设计 等领域,以便为人们提供最佳的解决方案。
在这一章里,首先介绍运筹学的基本概况,包括 运筹学的历史和发展,运筹学的性质和特点,运筹学研 究的主要内容和以后的发展趋势。然后从运筹学问题解 决过程的角度,依次介绍建模、求解和实际应用时应该 注意的一些问题,使初学者对运筹学概念和方法有初步 的认识。
我们需要什么目标? 通过调节哪些因素可以使得我们达到这一目标? 调节的因素是变动的吗? 要与实际情况相符合有什么 限制条件吗? 在实现目标的过程中,有哪些约束条件? 这样建立的模型是相对完备的吗?

《管理运筹学》课件

《管理运筹学》课件
目标函数
目标函数是最大化或最小化的函数,通常表示为$f(x) = c_1x_1 + c_2x_2 + ... + c_nx_n$。
约束条件
约束条件是决策变量必须满足的条件,通常表示为$a_1x_1 + a_2x_2 + ... + a_nx_n leq b$或$a_1x_1 + a_2x_2 + ... + a_nx_n
PART 05
动态规划
动态规划的基本概念
动态规划是一种通过将原问 题分解为相互重叠的子问题 ,并存储子问题的解以避免
重复计算的方法。
它是一种优化策略,适用于 多阶段决策问题,其中每个 阶段的决策都会影响后续阶
段的决策。
动态规划的基本思想是将一 个复杂的问题分解为若干个 相互重叠的子问题,并逐个 求解子问题,以获得原问题 的最优解。
对偶算法
对偶算法是一种基于对偶理论的求解线性规划问题的算法,其基本思想是通过构造对偶问题来求解原问题。对偶算法 可以在某些情况下比单纯形法更高效,尤其是在处理大规模问题时。
内点法
内点法是一种求解线性规划问题的迭代算法,其基本思想是通过不断逼近问题的最优解来寻找最优解。 内点法在处理大规模问题时非常有效,因为它可以利用问题的结构来加速收敛速度。
= b$。
线性规划的数学模型
• 线性规划的数学模型由决策变量 、目标函数和约束条件组成,可 以表示为
线性规划的数学模型01Βιβλιοθήκη $begin{aligned}
02
text{maximize} & f(x) = c_1x_1 + c_2x_2 + ... + c_nx_n
03

运筹学基础教学课件PPT

运筹学基础教学课件PPT

都江堰水利工程
Page 4
川西太守李冰 父子主持修建, 其目标是利用 岷江上游的水 资源灌溉川西 平原,追求的 效益还有防洪 与航运。其总 体构思是系统 思想的杰出运 用
北宋丁谓主持修复皇宫
Page 5
例2、北宋丁谓主持修复皇宫 面临的问题:木材、石材、 砖瓦等建筑材料如何取得?
修建如何进行?
大街 开封 皇宫
2、策略集
策 略:在对策中,局中人在整个决策过程中针对一系 列行动制定的完整行动方案。
策略集:每个局中人策略的全体集合。 局 势:每个局中人从自己的策略集合中选择一个策
略,构成一个局势。
3、赢得函数
利用全部局势集合上的一个实值函数,来描述 每个局势完结后局中人的得失的报酬数值。
对策的分类
Page 23
目标函数: 约束条件:1原材料的限制 2工时的限制 3座椅的限制 4非负限制 数学模型:
图解法
x2
1000
5x1+2.5x2≤2500
x1=400
800
Z=2600
600
400
Z=1800
Page 20
max Z=4x1+3x2
2x1 2x2 1600 5x1x1420.05x2 2500 x1 0、x2 0
线平衡率 秒表法/PTS
动作和方法研究
动改法
成本控制 设施规划
双手操作法 人机配合法
物流分析
防错法
PMP体系
PAC体系
系统设计
……
工作抽样法 流程程序法
五五法 其它
1工程学 2人机学(人因工程学) 3材料学 4管理学 5统计学 6运筹学 7系统工程学 8材料力学 9工程力学 10物流与设施规划

运筹学PPT完整版

运筹学PPT完整版
怎样辨别一个模型是线性规划模型? 其特征是: (1)问题的目标函数是多个决策变量的线性函数, 通常是求最大值或最小值; (2)问题的约束条件是一组多个决策变量的线性不 等式或等式。
线性规划问题的数学模型
3. 建模条件
(1) 优化条件:问题所要达到的目标能用线型函数描述,且 能够用极值
(max 或 min)来表示;
1978年11月,在成都召开了全国数学年会,对运筹学的理论 与应用研究进行了一次检阅,1980年4月在山东济南正式成立了 “中国数学会运筹学会”,1984年在上海召开了“中国数学会运 筹学会第二届代表大会暨学术交流会”,并将学会改名为“中国 运筹学会”。
运筹学的发展趋势
绪论
成熟的学科分支向纵深发展 新的研究领域产生 与新的技术结合 与其他学科的结合加强 传统优化观念不断变化
“运作研究(Operational Research)小组”: 解决复杂的战略和战术问题。例如:
1. 如何合理运用雷达有效地对付德军德空 袭
2. 对商船如何进行编队护航,使船队遭受 德国潜艇攻击时损失最少;
3. 在各种情况下如何调整反潜深水炸弹的 爆炸深度,才能增加对德国潜艇的杀伤 力等。
绪论
在生产管理方面的应用,最早是1939年前苏联的康特洛为奇提 出了生产组织与计划中的线性规划问题,并给出解乘数法的求解方 法,出版了第一部关于线性规划的著作《生产组织与计划中的数学 方法》。
线性规划问题的数学模型
5. 线性规划数学模型的一般形式
目标函数: max (min) z c1 x1 c2 x2 cn xn
a11 x1 a12 x2 a1n xn ( ) b1
约束条件:
am1 x1 am2 x2 amn xn ( ) bm

运筹学PPT完整版

运筹学PPT完整版

运筹学在工商管理中的应用
Interface上发表的部分获奖项目
组织 联合航空公司 Citgo石油公司 AT&T 标准品牌公司 法国国家铁路公司 应用 在满足乘客需求的前提下,以最低成本进 行订票及机场工作班次安排 优化炼油程序及产品供应、配送和营销 优化商业用户的电话销售中心选址 控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量 效果
运筹学
( Operations Research )
绪论
本章主要内容: (1)运筹学简述 (2)运筹学的主要内容 (3)本课程的教材及参考书 (4)本课程的特点和要求
(5)本课程授课方式与考核
(6)运筹学在工商管理中的应用
运筹学简述
运筹学(Operations Research)
Page 3
系统工程的最重要的理论基础之一,在美国有人把运 筹学称之为管理科学(Management Science)。运筹学所研究 的问题,可简单地归结为一句话:
学科总成绩
Page 8
平时成绩 (40%)
期末成绩 (60%)
课堂考勤 (50%)
平时作业 (50%)
运筹学在工商管理中的应用
运筹学在工商管理中的应用涉及几个方面:
1. 2. 3. 4.
Page 9
生产计划
运输问题
人事管理 库存管理
5.
6.
市场营销
财务和会计
另外,还应用于设备维修、更新和可靠性分析,项目的选择 与评价,工程优化设计等。
Page 13
(1)当任务或目标确定后,如何统筹兼顾,合理安排,用 最少的资源 (如资金、设备、原标材料、人工、时间等) 去完成确定的任务或目标 (2)在一定的资源条件限制下,如何组织安排生产获得最 好的经济效益(如产品量最多 、利润最大.)

管理运筹学课件

管理运筹学课件
层次分析法
将多目标问题分解为若干层次,逐层进行分析和比较 ,确定各目标的优先级。
进化算法
借鉴生物进化原理,通过种群进化、基因交叉、变异 等操作,寻找多目标问题的非劣解集。
多目标规划的应用案例
生产计划问题
在生产过程中,需要平衡产量、成本、交货期等多个目标 ,通过多目标规划进行优化。
ห้องสมุดไป่ตู้
01
金融投资组合
投资者需要在风险和收益之间进行权衡 ,通过多目标规划选择最优的投资组合 。
02
03
城市交通规划
城市交通规划需要考虑交通流量、道 路建设成本、环境影响等多个目标, 通过多目标规划进行优化。
06
动态规划
动态规划的基本概念
1
动态规划是一种通过将原问题分解为相互重叠的 子问题,并存储子问题的解以避免重复计算的方 法。
2
它是一种优化技术,用于解决多阶段决策问题, 其中每个阶段的决策都会影响后续阶段的决策。
02
线性规划
线性规划的基本概念
01
线性规划是一种数学优化技术,用于在有限资源约 束下最大化或最小化线性目标函数。
02
它通过建立和解决线性等式或不等式约束下的优化 问题,来找到最优解决方案。
03
线性规划问题具有可加性、齐次性和凸性的特点。
线性规划的求解方法
单纯形法
单纯形法是解决线性规划问题的 经典算法,通过迭代过程逐步改 进可行解,直到找到最优解。
管理运筹学主要研究如何运用定量方 法对组织中的各种资源进行最优配置 和有效利用,以实现组织的目标和战 略。
管理运筹学的应用领域
01
生产与运作管理
涉及生产计划、调度、质量控制等 方面的优化问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
Max. ci xi i 1
n
s.t.
ai xi b
i 1
xi 0,1,i 1,..., n
四、旅行商问题
Min. dij xij i j n
s.t. xij 1,i 1,..., n j 1
n
xij 1, j 1,..., n
i 1
xij s 1,2 s n 2, s 1,...,n
点→面 第八章 网络规划
确定性→不确定性
第九章 不确定规划
制造系统→服务系统
第十章 服务系统规划
数学模型→仿真模型
第十一章 管理模拟 定量→定量+定性
第十二章 管理博弈 技术→技术+艺术
第十三章 管理决策
市场销售 生产计划 资本运营 库存管理 运输问题 财政和会计 人事管理
设备维修和更新 项目评价和选择 工程优化设计 计算机信息系统 城市管理 发展战略
第 j个零售商,其对第 k种货物的需求量为 B jk , j 1,..., n, k 1,..., l 第 i个供货商到第 j个零售商的单位运输成本为 Cij 决策变量为第i 个供货商向第 j个零售商供应第k 种货物数量为 xijk
则该决策问题可以用数学模型表示为:
Min. s.t.
mn
l
的需求量为 q j , j 1,..., n 。现规划设立m 个配送网点,第i 个网点的 容量为 ci ,i 1,..., m,试确定网点的地理位置,合理规划物流网络的结 构与布局,使物流成本最低。
设第i 个网点的地理位置坐标为 xi , yi ,i 1,..., m ,
第i 个网点为第j 个客户配送货物量为 zij ,i 1,..., m, j 1,..., n。
Cij xijk
i1 j 1
k 1
n
xijk Aik , i 1,..., m; k 1,..., l
j 1
m
xijk B jk , j 1,..., n; k 1,..., l
i 1
xijk 0,i 1,..., m; j 1,..., n; k 1,..., l
三、背包问题
管理运筹学
第一章 导论
第一节:管理实践中的决策问题 第二节:决策问题与管理技术 第三节:管理运筹学的定位与工作程序 第四节:管理运筹学的内容体系及其内在
现代管理实践中遇到的众多决策问题最终都可以归结为优化问题,在物 流工程与管理以及交通运输规划与管理等领域
一、设施选址问题
设有n个客户,第j个客户的地理位置坐标为 a j ,bj ,该客户对某种货物
某物流网络系统由多个批发商向多个零售商提供多种货物所组成。各 批发商的供货能力及其地理位置、各零售商的需求量及其地理位置已 知,试确定各批发商每种货物的供货范围和相应的供货量,使整个物 流网络运输成本最低。
设第i 个供货商,其第k 种货物的供应能力为 Aik ,i 1,..., m, k 1,..., l,
70 60 50 40 30 20 10
0 统计
网络计划
排队论
动态规划
从不使用 有时使用 经常使用

筹 学
90

80


70


60
使 用
50
情 况
40

30
机 抽
20

10

0

统计
网络计划
排队论
动态规划
(
)%
从不使用 有时使用 经常使用
据美劳工局1992年统计预测:
运 筹
运筹学应用分析人员需求从1990 年到2005年的增长百分比预测为 73%,增长速度排到各项职业的前三
i, js
xij 0,1,i, j 1,..., n,i j
一、决策问题的构成要素
决策变量 目标函数
x x1, x2,...,xn T
f x
约束条件 gx 0
一般表示为
z f x Opt.(min. or max)
s.t. g j x 0, j 1,..., m
x x1, x2 ,...,xn T , x
定量分析的必要性: 当决策问题所达到的精确程度不能满足需求时需要借助
定量分析; 当决策问题十分庞大,以至于凭直观观察不全面时,需
要借助定量分析来深化认识; 当决策问题深刻到观察不透,掌握不住其规律时,必须
借助量化指标去探知其深层次的规律
一、管理运筹学的产生与发展
名称的由来
Operation Research 运筹帷幄 “史记” 操作研究
则该问题用数学模型表示为:
m n
Min.
zij xi a j 2 yi b j 2
i1 j 1
n
s.t.
zij ci , i 1,..., m
j 1
m
zij q j , j 1,..., n
i 1
zij 0,i 1,..., m; j 1,..., n
二、运输规划问题
理论飞快发展,形成许多分支:数学规划、 图与网络、排队论、存储论、对策论、决策 论等。
1959年成立国际运筹学联合会。我国1980年 成立运筹学会,1982年加入国际运筹学联合 会。
二、 管理运筹学的定位
基础数学曲线
应用数学曲线
基础数学
应用基础
应用方法
应用数学
数学应用
数学应用
管理运筹学
三、 管理运筹学的工作程序
发展历程
(OR)


























运筹学(Operational Research)产生于20世纪 30年代末,主要研究解决短期的和战术性的 问题。
二战后,以兰德公司(Rand)为代表,着重 研究战略性问题。
60年代,相继在工业、农业、经济和社会问 题各领域都得到应用。
二、决策问题的解决途径
启发式规则
定性分析 定量分析
定性分析: 认识论、方法论
定量分析: 模型、算法
决策问题
启发式规则: 直觉、经验
决策环境
三、定性与定量管理技术之比较
定性分析凭借直观、经验、教训、以及细微的观察与辨 析,其工具是认识论、方法论。局限性以下三个方面:
宽泛而欠深刻 抽象而欠严格 模糊而难以把握
问题分析
数据处理
数学建模 约束处理
建模准备 建模假设 建模分析 建模检验
算法设计 精确解算法 近似解算法
程序设计 结果分析 辅助实施





理运筹学来自的内•

导 论






第二章 线性规划
线性→非线性
第五章 非线性规划
静态→动态
第六章 动态规划
第三章 整数规划 第四章 目标规划
第七章 存储规划
相关文档
最新文档