八年级数学教学设计
八年级数学二次根式教学设计6篇
八年级数学二次根式教学设计6篇二次根式的混合运算(1)教学目的:会进行二次根式的加减、乘混合运算。
重点:二次根式的加减乘混合运算。
难点:运算法则的综合运用。
关键:掌握混合运算顺序和步骤。
教学过程:复习提问:1.叙述二次根式加减法的两个步骤。
2.填空:当a≥0,b≥0时,;3.叙述单项式乘以多项式运算顺序;4.叙述多项式乘以多项式的运算法则。
二次根式的乘法:(a≥0,b≥0)二次根式的除法:(a≥0,b>0)新课:形如的式子,表示什么?a需要满足什么条件?根据平方根的定义,当a≥0时,表示a的算术平方根,是一个非负数,它的平方等于a;当a16.1第一课时二次根式的概念教学目标:1、解决实际问题,体会学习二次根式是实际的需要。
2、通过二次根式概念的学习,经历观察、概括的思维过程,理解二次根式的概念。
3、通过二次根式概念的建立,理解二次根式中被开方数中字母的取值范围。
教学重点:二次根式概念的理解。
教学难点:二次根式概念的理解。
教学方法:自主学习问题启发相结合。
教学手段:多媒体课件、学案。
教学过程:一、复习1、式子(﹣3)2中,-3叫2叫2、求数4,5,10,49,0的平方根和算术平方根,4的立方根是3、-4有没有算术平方根?我们已经学习了平方根和算术平方根的定义,引进了一个新的符号word/media/image1_1.png。
今天我们学习一个和前面的算术平方根有关的知识:二次根式2、探究定义1、观察:完成课本第二页“思考”的内容。
观察word/media/image2_1.png,word/media/image3_1.png,word/media/image4_1.png,word/media/image5_1.png这些式子在形式上有什么共同特点?2、思考:(1)都含有word/media/image1_1.png(2)被开方数都是非负数(S表示面积,h是高度。
)。
3、归纳:二次根式的定义形如word/media/image6_1.png(a≥0)的式子叫作二次根式,根号下的数叫作被开方数。
八年级数学单元整体教学设计
八年级数学单元整体教学设计本教学设计是针对八年级数学单元进行整体规划和布置,旨在提高学生数学知识和解决问题的能力。
教学内容包括有理数、代数式、方程与不等式、图形的计算等。
一、教学目标1.学生能够掌握有理数的四则运算、分数的运算法则,以及分数的化简与比较等基本概念和方法。
2.学生能够运用代数式的概念和方法解决实际问题,理解和应用一元一次方程和不等式的解法。
3.学生能够观察和描述图形的性质和特征,掌握图形的计算方法,理解和应用平面图形的基本定理和公式。
二、教学内容1.有理数2.代数式3.方程与不等式4.图形的计算三、教学方法1.探究式教学2.讲解与练习相结合的教学方法3.互动式教学4.实验与演示相结合的教学方法四、教学手段1.课件2.教学视频3.教材4.电子白板五、教学过程安排1.有理数(1)有理数的概念和分类(2)有理数的加减法和乘法(3)有理数的除法和分数的运算法则(4)分数的化简与比较2.代数式(1)代数式的概念与转化(2)代数式的加减法和乘法(3)解一元一次方程和不等式的方法(4)应用代数式解决实际问题3.方程与不等式(1)一元一次方程的概念和解法(2)一元一次不等式的概念和解法(3)解决实际问题中的方程和不等式 4.图形的计算(1)平面图形的性质和分类(2)平面图形的计算方法(3)平面图形的基本定理和公式(4)解决实际问题中的平面图形计算六、教学评价1.课上练习2.小组讨论3.期末考试4.作业七、教学反思本教学设计将有理数、代数式、方程与不等式、图形的计算等内容有机结合,既注重学生的理论知识的学习,又强调学生能够将所学知识应用于实际生活和解决实际问题,提高学生的数学素养和解决问题的能力。
教学方法灵活多样,充分调动学生的积极性和主动性,实现了课堂教学的效果。
教学评价方式多样化,能够全面反映学生的学习情况和掌握程度。
在今后的教学中,应注重巩固和拓展学生的知识,加强实践教学和综合素养培养。
八年级数学优质课一等奖教学设计3篇
第1篇教学设计作为一位杰出的老师,很有必要精心设计一份教案,教案是备课向课堂教学转化的关节点。
那要怎么写好教案呢?下面是小编帮大家整理的菱形人教版数学八年级上册教案,仅供参考,希望能够帮助到大家。
一、教学目的:1、掌握菱形概念,知道菱形与平行四边形的关系;2、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积;3、通过运用菱形知识解决具体问题,提高分析能力和观察能力;4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想;二、重点、难点1、教学重点:菱形的性质1、2;2、教学难点:菱形的性质及菱形知识的综合应用;三、例题的意图分析本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材P108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题、此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识;四、课堂引入1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2、(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念;《18、2、2菱形》课时练习含答案;5、在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是( )A、矩形B、菱形C、正方形D、梯形答案:B知识点:等边三角形的性质;菱形的判定解析:解答:用两个边长为a的等边三角形拼成的四边形,它的四条边长都为a,根据菱形的定义四边相等的四边形是菱形、根据题意得,拼成的四边形四边相等,则是菱形、故选B、分析:此题主要考查了等边三角形的性质,菱形的定义、6、用两个边长为a的等边三角形纸片拼成的四边形是( )A、等腰梯形B、正方形C、矩形D、菱形答案:D知识点:等边三角形的性质;菱形的`判定解析:解答:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形、由题意可得:得到的四边形的四条边相等,即是菱形、故选D、分析:本题利用了菱形的概念:四边相等的四边形是菱形、《菱形的性质与判定》练习题一选择题:1、下列四边形中不一定为菱形的是( )A、对角线相等的平行四边形B、每条对角线平分一组对角的四边形C、对角线互相垂直的平行四边形D、用两个全等的等边三角形拼成的四边形2、下列说法中正确的是( )A、四边相等的四边形是菱形B、一组对边相等,另一组对边平行的四边形是菱形C、对角线互相垂直的四边形是菱形D、对角线互相平分的四边形是菱形3、若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )A、菱形B、对角线互相垂直的四边形C、矩形D、对角线相等的四边形第2篇教学设计1、教材分析(1)知识结构(2)重点、难点分析本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.本节内容的.难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.2、教法建议本节课教学模式主要采用“学生主体性学习”的教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人. 具体说明如下:(1)参与探索发现,领略知识形成过程学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”. 然后学生完成证明,找一名学生的证明过程,进行投影总结. 最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理. 这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.(2)采用“类比”的学习方法,获取逆定理线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.(3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.第3篇教学设计一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。
八年级数学教案(最新6篇)
八年级数学教案(最新6篇)八年级数学教案篇一一、教学目标①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。
②理解整式除法的算理,发展有条理的思考及表达能力。
二、教学重点与难点重点:整式除法的运算法则及其运用。
难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。
三、教学准备卡片及多媒体课件。
四、教学设计(一)情境引入教科书第161页问题:木星的质量约为1。
90×1024吨,地球的质量约为5。
98×1021吨,你知道木星的质量约为地球质量的多少倍吗?重点研究算式(1。
90×1024)÷(5。
98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。
注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。
(二)探究新知(1)计算(1。
90×1024)÷(5。
98×1021),说说你计算的根据是什么?(2)你能利用(1)中的方法计算下列各式吗?8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。
(3)你能根据(2)说说单项式除以单项式的运算法则吗?注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。
单项式的。
除法法则的推导,应按从具体到一般的步骤进行。
探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。
在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。
重视算理算法的渗透是新课标所强调的。
(三)归纳法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
八年级上册数学教案(6篇)
八年级上册数学教案(6篇)八年级上册数学教案(篇1)一、学生起点分析通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.本节课的教学目标是:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;三、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:想一想⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.算一算已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方,并提出问题:是整数(或分数)吗?2.剪剪拼拼把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:议一议→释一释→忆一忆→找一找议一议:已知,请问:① 可能是整数吗?② 可能是分数吗?释一释:释1.满足的为什么不是整数?释2.满足的为什么不是分数?忆一忆:让学生回顾“有理数”概念,既然不是整数也不是分数,那么一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础找一找:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:画一画1→画一画2→仿一仿→赛一赛画一画1:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段2.长度不是有理数的线段画一画2:在右2的正方形网格中画出四个三角形(右1) 2.三边长都是有理数2.只有两边长是有理数3.只有一边长是有理数4.三边长都不是有理数仿一仿:例:在数轴上表示满足的解:(右2)仿:在数轴上表示满足的赛一赛:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗? 3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.第六环节:布置作业习题2.1六、教学设计反思(一)生活是数学的源泉,兴趣是学习的动力大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.八年级上册数学教案(篇2)教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入问题牵引请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2._2-4=()();3._2-2_y+y2=()2.师生共识把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究问题牵引(1)下列各式从左到右的变形是否为因式分解:①(_+1)(_-1)=_2-1;②a2-1+b2=(a+1)(a-1)+b2;③7_-7=7(_-1).(2)在下列括号里,填上适当的项,使等式成立.①9_2(______)+y2=(3_+y)(_______);②_2-4_y+(_______)=(_-_______)2.四、随堂练习,巩固深化课本练习.探研时空计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知复习交流下列从左到右的变形是否是因式分解,为什么?(1)2_2+4=2(_2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)_2+4_y-y2=_(_+4y)-y2;(4)m(_+y)=m_+my;(5)_2-2_y+y2=(_-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式4_2-_和_y2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.教师归纳我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4_2-_中的公因式是_,在_y2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法教师提问多项式4_2-8_6,16a3b2-4a3b2-8ab4各项的公因式是什么?师生共识提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学例1把-4_2yz-12_y2z+4_yz分解因式.解:-4_2yz-12_y2z+4_yz=-(4_2yz+12_y2z-4_yz)=-4_yz(_+3y-1)例2分解因式,3a2(_-y)3-4b2(y-_)2思路点拨观察所给多项式可以找出公因式(y-_)2或(_-y)2,于是有两种变形,(_-y)3=-(y-_)3和(_-y)2=(y -_)2,从而得到下面两种分解方法.解法1:3a2(_-y)3-4b2(y-_)2=-3a2(y-_)3-4b2(y-_)2=-[(y-_)23a2(y-_)+4b2(y-_)2]=-(y-_)2 [3a2(y-_)+4b2]=-(y-_)2(3a2y-3a2_+4b2)解法2:3a2(_-y)3-4b2(y-_)2=(_-y)23a2(_-y)-4b2(_-y)2=(_-y)2 [3a2(_-y)-4b2]=(_-y)2(3a2_-3a2y-4b2)例3用简便的方法计算:0.84×12+12×0.6-0.44×12.教师活动引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.教师活动在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.探研时空利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知问题牵引请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).学生活动动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.教师活动引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.学生活动从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).教师活动引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学例1把下列各式分解因式:(投影显示或板书)(1)_2-9y2;(2)16_4-y4;(3)12a2_2-27b2y2;(4)(_+2y)2-(_-3y)2;(5)m2(16_-y)+n2(y-16_).思路点拨在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.教师活动启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.学生活动分四人小组,合作探究.解:(1)_2-9y2=(_+3y)(_-3y);(2)16_4-y4=(4_2+y2)(4_2-y2)=(4_2+y2)(2_+y)(2_-y);(3)12a2_2-27b2y2=3(4a2_2-9b2y2)=3(2a_+3by)(2a_-3by);(4)(_+2y)2-(_-3y)2=[(_+2y)+(_-3y)][(_+2y)-(_-3y)] =5y(2_-y);(5)m2(16_-y)+n2(y-16_)=(16_-y)(m2-n2)=(16_-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.探研时空1.求证:当n是正整数时,n3-n的值一定是6的倍数. 2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力. 2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知问题牵引1.分解因式:(1)-9_2+4y2;(2)(_+3y)2-(_-3y)2;(3) _2-0.01y2.八年级上册数学教案(篇3)一、创设情景,明确目标多媒体展示:内角三兄弟之争在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?二、自主学习,指向目标学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标三角形的内角和活动一:见教材P11“探究”.展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理.小组讨论:有没有不同的证明方法?反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程.三角形三个内角的和等于180°.针对训练:见《学生用书》相应部分三角形内角和定理的应用活动二:见教材P12例1展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?小组讨论:三角形的内角和在解题时,如何灵活应用?反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.本节学习的数学知识是:三角形的内角和是180°.2.三角形内角和定理的证明思路是什么?3.数学思想是转化、数形结合.《三角形综合应用》精讲精练1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A.1个B.2个C.3个D.4个2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )A.5B.6C.7D.103.下列五种说法:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有________(填序号).《11.2与三角形有关的角》同步测试4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状.为什么?(3)如图③,在Rt△ABC和Rt△DBE 中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?八年级上册数学教案(篇4)单元(章)主题第三章直棱柱任课教师与班级本课(节)课题3.1 认识直棱柱第 1 课时 / 共课时教学目标(含重点、难点)及设置依据教学目标1、了解多面体、直棱柱的有关概念.2、会认直棱柱的侧棱、侧面、底面.3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.教学重点与难点教学重点:直棱柱的有关概念.教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型教学过程内容与环节预设、简明设计意图二度备课(即时反思与纠正)一、创设情景,引入新课师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的立体图形呢?析:学生很容易回答出更多的答案。
初二人教版数学教学设计(精选12篇)
初二人教版数学教学设计〔精选12篇〕篇1:初二人教版数学教学工作总结本学期来,我担任八年级二班的数学老师,在教学期间认真备课、上课、听课、评课,及时修改作业、讲评作业,做好课后辅导工作,广泛涉猎各种知识,不断进步自己的业务程度,充实自己的头脑,严格要求学生,尊重学生,使学生学有所得,不断进步,并顺利完成教育教学任务。
一、坚持认真备课备课中我不仅备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。
每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学反思。
二、努力增强我的上课技能进步教学质量,使讲解明晰化,条理化,准确化,情感化,生动化,做到线索明晰,层次清楚,言简意赅,深化浅出。
在课堂上特别注意调动学生的积极性,加强师生交流,充分表达学生的主作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习才能,让各个层次的学生都得到进步。
如今学生普遍反映喜欢上数学课,就连以前极讨厌数学的学生都乐于上课了。
三、与同事交流,虚心请教其他老师在教学上,有疑必问。
在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听老师的课,做到边听边讲,学习别人的优点,克制自己的缺乏,并常常邀请其他老师来听课,征求他们的意见,改良工作。
四、完善修改作业布置作业做到精读精练。
有针对性,有层次性。
为了做到这点,我常常上网、书店等地去搜集资料,对各种辅助资料进展挑选,力求每一次练习都起到最大的效果。
同时对学生的作业修改及时、认真,分析^p 并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进展透切的评讲,并针对有关情况及时改良教学方法,做到有的放矢。
八年级数学上册《角边角》教案、教学设计
5.个性化作业:
a.根据学生的课堂表现和作业完成情况,为每位学生量身定制一份作业,针对其薄弱环节进行巩固。
b.鼓励学生自主选题,进行深入研究,培养其探究精神和自主学习能力。
作业布置要求:
1.请同学们按时完成作业,保持字迹工整,注重格式规范。
2.培养学生的空间观念和几何直观,提高学生对几何图形的认识和分析能力。
3.培养学生的观察能力和动手操作能力,激发学生学习数学的兴趣。
4.培养学生勇于探究、善于思考的品质,提高学生解决问题的能力。
5.通过几何知识的学习,引导学生认识到数学在生活中的重要性,培养学生的应用意识。
二、学情分析
八年级的学生已经具备了一定的数学基础,对几何图形有了初步的认识,但在角的认知和运用方面仍需加强。在此阶段,学生对角的定义、分类及性质的理解尚不深刻,角的计算和证明问题对他们来说存在一定难度。此外,学生在空间观念、几何直观和分析能力方面发展不均衡,部分学生对几何学习的兴趣和积极性有待提高。因此,在教学过程中,教师应关注以下几点:
1.注重基础知识的教学,巩固学生对角的定义、分类及性质的理解。
2.结合学生的实际水平,设计具有梯度的问题,引导学生逐步掌握角的计算和证明方法。
3.创设有趣的生活情境,激发学生的学习兴趣,提高学生对几何学习的积极性。
4.针对学生个体差异,实施差异化教学,关注每个学生的成长和进步。
5.加强课堂互动,鼓励学生提问、表达观点,培养学生的思考能力和交流能力。
2.遇到问题主动与同学、老师讨论,积极寻求解决办法。
3.家长协助监督,关注学生的学习进度,鼓励孩子克服困难,不断进步。
五、作业布置
为了巩固学生对《角边角》知识点的掌握,提高学生的实际应用能力,特布置以下作业:
八年级数学上册《同底数幂的乘法》教案、教学设计
在教学过程中,教师要关注学生的学习状态,及时调整教学策略,确保教学目标的有效达成。同时,注重培养学生的数学思维和解决问题的能力,使他们在掌握知识的同时,形成良好的情感态度和价值观。
二、学情分析
八年级的学生已经具备了一定的数学基础,掌握了基本的代数运算,对于幂的概念和性质也有了一定的了解。在此基础上,他们对于同底数幂的乘法这一知识点,虽然可能尚未系统地学习,但在日常生活和前一阶段的学习中,可能已经隐约接触过类似的问题。因此,在本章节的教学中,教师需要充分调动学生的已有知识经验,引导他们发现同底数幂乘法规律,并能够灵活运用。
3.实践应用题:请同学们从生活中寻找一个与同底数幂乘法相关的实例,将其转化为数学问题,并运用所学知识进行解答。例如,可以探讨细胞分裂、人口增长等实际问题。通过这样的实践应用,让同学们深刻体会数学与生活的紧密联系。
4.小组合作题:以小组为单位,共同探讨和研究以下问题:同底数幂乘法规律在解决哪些类型的问题时具有优势?请举例说明。要求每个小组整理出至少三个典型例题,并在下节课上进行分享。
4.分层教学,关注个体差异:
针对不同学生的学习需求,设计难易程度不同的练习题,使每个学生都能在原有基础上得到提高。同时,关注学困生,提供个别辅导,帮助他们克服学习困难。
5.拓展延伸,提高能力:
通过拓展题目的设置,让学生将同底数幂的乘法运用到解决实际问题中,提高他们分析问题和解决问题的能力。
6.评价反思,促进成长:
在教学过程中,注重过程性评价,关注学生在课堂上的表现。课后,鼓励学生进行自我反思,总结学习收获,培养他们的自主学习能力。
7.跨学科整合,提高综合素质:
结合其他学科知识,如生物、地理等,设计综合性的问题,让学生运用同底数幂的乘法知识解决实际问题,提高他们的综合素质。
八年级数学教案:《平行四边形》(最新7篇)
八年级数学教案:《平行四边形》(最新7篇)平行四边形教案篇一课型:新授课。
教学分析:本节课是在学生已经认识长方形、正方形的基础上进行教学。
重点是让学生通过亲自观察、动手测量、比较掌握长方形、正方形的特点,初步认识平行四边形。
教学目标:(一)知识与技能:引导学生观察长方形、正方形的边、角的特点,认识长方形和正方形的共性及各自的特性。
会在方格纸上画长方形、正方形,并认识平行四边形。
(二)过程与方法:学生通过观察比较、动手操作、交流合作等活动发现长方形和正方形的特点,积累感性认识,初步认识平行四边形。
(三)情感态度价值观:培养学生积极参与的学习品质,使学生获得成功的`体验,感受教学与日常生活的密切联系,树立学好数学的信心。
教学策略:创设情景、动手实践、交流合作。
教具学具:多媒体课件、长方形、正方形、格子纸、三角板。
教学流程:一、创设情景,提出问题。
今天,我们的好朋友智慧星要带领大家到图形王国去参观。
参观之前提一个小小的要求,请你仔细观察、多动脑筋。
(多媒体演示图片)你能说出这些事物中你认识的图形吗?(抽出长方形、正方形。
引出课题)二、协作探索,研究问题。
1、教学长方形、正方形。
(1)多媒体出示长方形、正方形:请大家仔细观察他们各有几条边,几个角?(2)教学对边的概念:在生活中我们把两个人面对面叫做对面,在长方形中上下两条边我们把它们叫做对边、左右两条边也叫对边。
(多媒体演示)(3)小组合作研究长方形、正方形的特点。
下面请大家利用你手中的工具量一量、折一折、比一比,和组内同学说一说。
长方形的对边和正方形的边有什么特点,角有什么特点?(4)指名汇报,并演示自己发现的过程。
共同总结:长方形和正方形都是四条边围成的图形,它们都是四边形,它们的每个角都是直角,长方形的对边相等,正方形的四条边都相等。
(5)在方格纸上画出长方形、正方形2、教学平行四边形。
(1)多媒体演示:在生活中我们还会看到这样一些图形,它们是长方形吗?是正方形吗?我们把这样的四边形叫做平行四边形。
八年级《一次函数》教学设计(5篇)
八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。
你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。
八年级数学优质课一等奖教学设计6篇
第4篇教学设计教学内容:人教版《义务教育课程标准实验教科书·数学(二年级上册)》第五单元“观察物体”第二课时(第68页内容)教学目标:1、知识目标:使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。
2、能力目标:发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美。
3、情感、态度、价值观:通过探究活动,激发学生学习的热情,培养主动探究的能力;让学生感受对称图形的美,学会欣赏数学美。
教学重点:理解对称图形的概念,能正确找、画对称轴。
教学难点:准确找对称轴。
教学具准备:1、教具:图片、剪刀、彩纸、课件2、学具:蝴蝶几何图片、剪刀、白纸教学过程:一创设情境、激趣感知课件出示动画呈现:在绿草如茵的草地上,对称的房子、蝴蝶、蜻蜓、树叶、花朵……,一片迷人的景色。
师:谁来说说蝴蝶和蜻蜓怎么说?蜻蜓说:“:蝴蝶姐姐,你为什么总是绕着我飞呀?”蝴蝶说:“你不知道吧!在图形王国里我们都是对称图形呢!”蜻蜓说:“我才不信呢!”师:你们想知道对称图形的那些知识?生1:什么样的图形是对称图形?生2:对称图形有什么特点?[设计理念:充分体现了“数学来源于生活,又服务于生活”的理念,让学生感受对称图形的美,提出问题。
]二师生互动、探究新知(一)教学对称图形现在请同学们认真观察这些图形(出示对称和不对称图形,如下图),看看有什么发现?生1:我发现蝴蝶的左右两边是一样的。
生2:我发现年年有鱼的纸花的左右两边是不一样的。
生3:我发现京剧脸谱的左右两边是一样的。
让学生动手折一折、比一比、画一画,蜻蜓、树叶、蝴蝶、京剧脸谱的实物图共同的特点。
[设计理念:教学对称图形,引导学生仔细观察、动手折一折、比一比、画一画,在观察发现的基础上进行分类。
当学生分出对称与不对称的两类图形后,再次引导观察发现。
使学生在探索中学习新知,亲历探索过程。
]小结:同学们观察得真仔细,图形左右两边的形状完全相同的,我们就说这些图形是对称图形。
初中数学优秀教学设计(多篇汇编)
初中数学优秀教学设计初中数学优秀教学设计1一、教材分析本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
二、设计思想本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。
因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。
通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
三、教学目标:(一)知识技能目标:1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:1、通过探究同类项定义、合并同类项的'方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
四、教学重、难点:合并同类项五、教学关键:同类项的概念六、教学准备:教师:1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。
(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。
八年级数学上册《认识不等式》教案、教学设计
3.学生在运用不等式性质进行变形和求解时,可能会出现错误,需要教师耐心指导,帮助学生发现并纠正错误。
4.针对不同学生的学习程度和接受能力,教师应分层设计教学活动,让每个学生都能在原有基础上得到提高。
三、教学重难点和教学设想
5.反思日记:
-学生撰写反思日记,总结本节课学习不等式的收获和感受,以及在学习过程中遇到的困难和解决办法。
-教师通过阅读学生的反思日记,了解学生的学习情况,为下一步教学提供参考。
2.培养学生勇于尝试、克服困难的意志品质,让学生在解决不等式问题的过程中,体验成功带来的喜悦。
3.引导学生认识到不等式在现实生活中的广泛应用,培养学生的应用意识,使数学成为学生解决实际问题的有力工具。
4.通过对不等式的学习,让学生认识到事物之间的差异和联系,培养学生的辩证思维和批判性思维。
二、学情分析
八年级数学上册《认识不等式》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生理解不等式的概念,掌握不等式的表示方法,包括符号表示和文字表述,并能够正确书写。
2.使学生掌握不等式的性质,如加法性质、乘法性质等,并能够运用这些性质进行不等式的变形。
3.培养学生解决实际问题时,能够正确列出不等式,并运用不等式的性质进行分析和解决问题的能力。
八年级的学生已经具备了一定的数学基础,对数的概念、运算性质等方面有较好的掌握。在此基础上,学生对不等式的学习具备了一定的基础,但可能对不等式的理解和应用仍存在困难。因此,在教学过程中,教师应充分关注以下几点:
1.学生对不等式概念的理解程度,部分学生可能对“不等”这一概念较为陌生,需要通过具体实例和形象比喻来帮助学生理解。
八年级数学上册《积的乘方》教案、教学设计
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法:
1.引导学生通过观察、分析、归纳、总结等思维活动,发现积的乘方的规律,培养学生的观察能力和逻辑思维能力。
2.创设实际问题情境,引导学生运用积的乘方解决具体问题,让学生在实际操作中掌握积的乘方的应用方法,提高学生的实践操作能力。
八年级数学上册《积的乘方》教案、教学设计
一、教学目标
(一)知识与技能
1.掌握积的乘方的定义,理解积的乘方实质上是乘法的多次重复,能够准确地表示出来。
2.学会运用积的乘方法则,解决实际问题,如计算较大数字的乘方,简化计算过程,提高计算效率。
3.能够运用积的乘方性质进行因式分解,解决一些多项式的简化问题,为后续学习打下基础。
-采用小组合作学习,促进学生之间的交流与合作,培养学生的团队协作能力和表达能力。
-通过讲解、示范、提问等方式,及时解答学生在学习过程中遇到的问题,帮助学生突破重难点。
4.教学巩固:
-设计综合性的习题,让学生综合运用积的乘方知识,巩固所学内容。
-开展课堂小结活动,引导学生总结积的乘方的性质和应用方法,加深学生对知识点的理解。
4.个性化作业:
-根据学生的个体差异,提供不同难度的个性化作业,让每个学生都能在适合自己的层面上得到提高。
-教师关注学生在作业中的表现,及时给予指导和鼓励,提高学生的自信心和自主学习能力。
5.反思总结:
-要求学生撰写学习心得,反思自己在学习积的乘方过程中的收获和困惑。
-通过反思,引导学生培养自我评价和调整学习策略的能力,为后续学习打下坚实基础。
三、教学重难点和教学设想
(一)教学重难点
八年级数学上册《数据的离散程度》教案、教学设计
1.知识梳理:回顾本节课所学内容,让学生复述离散程度的定义、计算方法及应用。
2.方法总结:总结如何根据实际问题选择合适的统计量来分析数据的离散程度。
3.情感态度:强调数据分析在现实生活中的重要性,激发学生学习数学的兴趣和热情。
4.课后作业:布置与课堂内容相关的作业,巩固所学知识,提高学生的实际操作能力。
2.设计循序渐进的计算练习,引导学生掌握方差和标准差的计算方法,并培养他们的细心和耐心;
3.加强实际案例的分析,让学生学会如何运用数据离散程度分析结果来解决实际问题,提高他们的实践能力。
三、教学重难点和教学设想
(一)教学重点
1.离散程度的定义及其在实际问题中的应用;
2.极差、方差和标准差的计算方法;
3.教师点评:针对学生的讨论,给予积极的评价和指导,强调各个统计量在实际应用中的注意事项。
(四)课堂练习,500字
1.练习设计:设计具有实际背景的练习题,让学生独立完成,巩固所学知识。
2.练习指导:在学生练习过程中,进行巡回指导,解答学生的疑问。
3.练习反馈:对学生的练习结果进行及时反馈,指出错误原因,指导正确解题方法。
2.分步骤讲解,突破计算难关
-对于方差和标准差的计算,设计分步骤的讲解和练习,让学生逐步掌握计算方法,克服计算难点。
3.小组合作,促进交流与思考
-将学生分成小组,进行讨论和交流,共同完成案例分析。这样既能培养学生的合作意识,又能帮助他们从不同角度思考问题。
4.创设实践环节,提高实际操作能力
-设计实际案例,让学生运用所学知识进行分析,提高他们解决实际问题的能力。
1.对离散程度的概念理解不够透彻,难以将其与实际情境联系起来;
2.方差和标准差的计算步骤较为繁琐,容易出错,需要加强练习;
八年级数学教案(集锦15篇)
八年级数学教案(集锦15篇)八年级数学教案1菱形学习目标(学习重点):1.经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;2.运用菱形的识别方法进行有关推理.补充例题:例1. 如图,在△ABC中,AD是△ABC的角平分线。
DE∥AC交AB 于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.例2.如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.四边形AFCE是菱形吗?说明理由.例3.如图, ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点(1)试说明四边形AECG是平行四边形;(2)若AB=4cm,BC=3cm,求线段EF的长;(3)当矩形两边AB、BC具备怎样的关系时,四边形AECG是菱形.课后续助:一、填空题1.如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形2.如图,D、E、F分别是△ABC的边BC、CA、AB上的点,且DE∥BA,DF∥ CA(1)要使四边形AFDE是菱形,则要增加条件______________________(2)要使四边形AFDE是矩形,则要增加条件______________________二、解答题1.如图,在□ABCD中,若2,判断□ABCD是矩形还是菱形?并说明理由。
2.如图 ,平行四边形A BCD的`两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5.(1) AC,BD互相垂直吗?为什么?(2) 四边形ABCD是菱形吗?3.如图,在□ABCD中,已知ADAB,ABC的平分线交AD于E,EF ∥AB交BC于F,试问:四边形ABFE是菱形吗?请说明理由。
4.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.⑴求证:ABF≌⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.八年级数学教案2学习重点:函数的概念及确定自变量的取值范围。
人教版八年级数学下册教案(3篇)
人教版八年级数学下册教案(3篇)人教版八年级数学下册教案篇一1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?通过讨论得到矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)例1(补充)下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的。
四边形是矩形;(×)(2)有四个角是直角的四边形是矩形;(√)(3)四个角都相等的四边形是矩形;(√)(4)对角线相等的四边形是矩形;(×)(5)对角线相等且互相垂直的四边形是矩形;(×)(6)对角线互相平分且相等的四边形是矩形;(√)(7)对角线相等,且有一个角是直角的四边形是矩形;(×)(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)(9)两组对边分别平行,且对角线相等的四边形是矩形.(√)指出:(l)所给四边形添加的条件不满足三个的肯定不是矩形;(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.例2(补充)已知abcd的对角线ac、bd相交于点o,△aob 是等边三角形,ab=4cm,求这个平行四边形的面积.分析:首先根据△aob是等边三角形及平行四边形对角线互相平分的性质判定出abcd是矩形,再利用勾股定理计算边长,从而得到面积值.解:∵ 四边形abcd是平行四边形,∴ao=ac,bo=bd.∵ ao=bo,∴ ac=bd.∴ abcd是矩形(对角线相等的平行四边形是矩形).在rt△abc中,∵ ab=4cm,ac=2ao=8cm,∴bc=(cm).例3(补充)已知:如图(1),abcd的四个内角的平分线分别相交于点e,f,g,h.求证:四边形efgh是矩形.分析:要证四边形efgh是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明人教版八年级数学下册教案篇二1.理解掌握分式的四则混合运算的顺序。
人教八年级下册数学教案五篇
人教八年级下册数学教案五篇在我们的教学当中可能会发现有些学生对数学有厌学心理,所以我们的教学设计就要激发通过性们对数学的兴趣,降低数学学习的难度。
下面是小编整理的人教八年级下册数学教案5篇,欢迎大家阅读分享借鉴,希望大家喜欢,也希望对大家有所帮助。
人教八年级下册数学教案1教学目标1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。
3.培养学生分析能力,发展学生的空间概念。
教学重难点掌握长方体和正方体表面积的计算方法。
教学工具长方体、正方体纸盒,剪刀,投影仪教学过程【复习导入】1.什么是长方体的长、宽、高?什么是正方体的棱长?2.指出长方体纸盒的长、宽、高,并说出长方体的特征。
指出正方体的棱长,并说出正方体的特征。
【新课讲授】1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。
请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。
让学生分别沿着正方体的棱剪开。
得到右面正方体展开图。
(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?观察后,小组议一议。
引导学生总结长方体的表面积概念。
长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
八年级上册数学教案简单(精选6篇)
八年级上册数学教案简单(精选6篇)八年级上册数学教案简单篇1教学建议知识结构重难点分析本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.教法建议1.对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解教学设计示例一、教学目标1.掌握中位线的概念和三角形中位线定理2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力5.通过一题多解,培养学生对数学的兴趣二、教学设计画图测量,猜想讨论,启发引导.三、重点、难点1.教学重点:三角形中位线的概论与三角形中位线性质.2.教学难点:三角形中位线定理的证明.四、课时安排1课时五、教具学具准备投影仪、胶片、常用画图工具六、教学步骤【复习提问】1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).2.说明定理的证明思路.3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明?分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证,只要即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.4.什么叫三角形中线?(以上复习用投影仪打出)【引入新课】1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.(结合三角形中线的定义,让学生明确两者区别,可做一练习,在中,画出中线、中位线)2.三角形中位线性质了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.如图所示,DE是的一条中位线,如果过D作,交AC于,那么根据平行线等分线段定理推论2,得是AC的中点,可见与DE重合,所以.由此得到:三角形中位线平行于第三边.同样,过D作,且DEFC,所以DE.因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的.方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).(l)延长DE到F,使,连结CF,由可得ADFC.(2)延长DE到F,使,利用对角线互相平分的四边形是平行四边形,可得ADFC.(3)过点C作,与DE延长线交于F,通过证可得ADFC.上面通过三种不同方法得出ADFC,再由得BDFC,所以四边形DBCF是平行四边形,DFBC,又因DE,所以DE.(证明过程略)例求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.(由学生根据命题,说出已知、求证)已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA 的中点.求证:四边形EFGH是平行四边形.‘分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.证明:连结AC.∴(三角形中位线定理).同理,∴GHEF∴四边形EFGH是平行四边形.【小结】1.三角形中位线及三角形中位线与三角形中线的区别.2.三角形中位线定理及证明思路.七、布置作业教材P188中1(2)、4、7八年级上册数学教案简单篇2一、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.1 平方根( 2 )
教学目标:
(一) 知识与技能
1.了解平方根的概念、开平方的概念.
2.明确算术平方根与平方根的区别与联系.
3.进一步明确平方与开方是互为逆运算.
(二)能力训练
加强概念形成过程的教学,让学生不仅掌握概念,而且知晓它的理论数据,.培养学生的求同和求异思维。
(三)情感与价值观
通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神。
教学重点:
1.了解平方根、开平方的概念.
2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.
3.了解平方根与算术平方根的区别与联系.
教学难点:
1.平方根与算术平方根的区别与联系.
2.负数没有平方根,即负数不能进行开平方运算的原因.
教学方法:
讨论比较法.
即主要靠大家讨论得出结论,同时对相似的概念进行比较.这样不仅能正确区分这些概念而且进一步掌握概念。
教学过程:
一·.创设问题情境,引入新课
上节课我们学习了算术平方根的概念,性质.知道若一个正数x的平方等于a,即x2=a.则x叫a的算术平方根,记作
x=
,而且也是非负数,比如正数22=4,则2叫4的算术平方根,4叫2的平方,但是(-2)2=4,则-2叫4的什么根呢?下面我们就来讨论这个问题.
二·合作探究
1.平方根、开平方的概念
[师]请大家先思考两个问题.
(1)9的算术平方根是3,也就是说,3的平方是9,还有其他的数,它的平方也是9吗?
(2)平方等于的数有几个?平方等于0.64的数呢?
[生]-3的平方也是9.
的平方是,-的平方也是,即平方等于的数有两个.
[生]平方等于9的数有两个,平方等于的数有两个,由此可知平方等于0.64的数也有两个.
[师]根据上一节课的内容,我们知道了是9的算术平方根,是的算术平方根,那么-3,-叫9、的什么根呢?请大家认真看书后回答.
[生]-3,-分别叫9、的平方根.
[师]那是不是说3叫9的算术平方根,-3也叫9的算术平方根,即9的算术平方根有一个是3,另一个是-3呢?
[生]不对.根据平方根的定义,一般地,如果一个数x的平方等于a,即
x2=a,那么这个x就叫a的平方根(square root),也叫二次方根,3和-3的平方都等于9,由定义可知3和-3都是9的平方根,即9的平方根有两个3和-3,9的算术平方根只有一个是3.
[师]由平方根和算术平方根的定义,大家能否找出它们有什么相同和不同之处呢?请分小组讨论后选代表回答.
[生]平方根的定义中是有一个数x的平方等于a,则x叫a的平方根,x 没有肯定是正数还是负数或零;而算术平方根的定义中是有一个正数x的平方等于a,则x叫a的算术平方根,这里的x只能是正数.由此看来都有x2=a,这是它们的相同之处,而x的要求不同,这是它们的不同之处.
[师]这位同学分析判断能力特棒,下面我再详细作一总结.
平方根与算术平方根的联系与区别
联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.
(2)存在条件相同:平方根和算术平方根都是只有非负数才有. (3)0的平方根,算术平方根都是0.
区别:
(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根”.
(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.
(3)表示法不同:正数a的平方根表示为±,正数a的算术平方根表示为.
(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个.
[师]什么叫开平方呢?
[生]求一个数a的平方根的运算,叫开平方(extraction of square root),其中a叫被开方数.
[师]我们共学了几种运算呢,这几种运算之间有怎样的联系呢?请大家讨论后回答.
[生]我们共学了加、减、乘、除、乘方、开方六种运算.加与减互为逆运算,乘与除互为逆运算,乘方与开方互为逆运算.
2.平方根的性质
[师]请大家思考以下问题.
(1)一个正数有几个平方根.
(2)0有几个平方根?
(3)负数呢?
[生]第一个问题在前面已作过讨论,一个正数9有两个平方根3和-3;
因为只有零的平方为零,所以0有一个平方根是零.
因为任何数的平方都不是负数,所以负数没有平方根,例如-3没有平方根.
[师]太精彩了.一个正数有两个平方根,且它们互为相反数;0有一个平方根是0,负数没有平方根.
3.讲解例题
[例]求下列各数的平方根.
(1)81;(2);(3)0.0004;(4)(-25)2;(5)11.
4.想一想(1)()2等于多少?()2等于多少?
(2)()2等于多少?
(3)对于正数a,()2等于多少?
三·应用新知
(一)随堂练习
1.求下列各数的平方根
1.21,0,8,,441,196,10-4
2.填空
(1)25的平方根是_________;
(2)=_________;
(3)()2=_________.
(二)补充练习1.判断下列各数是否有平方根?并说明理由.
(1)(-3)2;(2)0;(3)-0.01;(4)-52;(5)-a2;(6)a2-2a+2
2.求下列各数的平方根.
(1)144;(2)0.01;(3)2;(4)(-13)2;(5)-(-4)3
四·课堂小结
本节课学了如下内容.
1.平方根的概念.
2.平方根的性质.
3.平方根与算术平方根的区别与联系.
4.求某些非负数的算术平方根和平方根.
五·布置作业
习题13.1
六·探究: 1.对于任意数a,一定等于a吗?
2.中的被开方数a在什么情况下有意义,
()2等于什么?
解:因为任意数的平方都是非负数,也就是非负数才有平方根,所以被开方数a必须是正数或零,即非负数时有意义. 所以()2=a(a≥0)板书设计:
§ 13.1平方根(二)
一、平方根的定义;平方根的性质;
平方根与算术;
平方根的区别与联系.
二、例题讲解
三、练习
四、小结
五、作业。