立式气液分离器设计算表
立式气液分离器设计算表
物 料
设 计
进
N1
混合-气相 混合-液相
停留时间
出
N2 气相 N3 液相
流 量 kg/h 2754.0 246000.0
2754.0 246000.0
进料量为
操 作
进
N1
混合-气相 混合-液相
停留时间
QL= ρL=
189.2 m3/h 1300.0 kg/m3
恢复默认
完整性: 合理性1: 合理性2:
◆长径比偏 大◆液:相流量
/
11.1 持液量偏大
◆建议减少停留时间
或改为卧式罐
D=
2500
H1=
450
m m
HL= mm
7014
m m
N3 液相
调试
QV= ρV=
4269.8 m3/h 0.6 kg/m3
蓝色 为输
L= 8300 mm NOTE
TYP. 管 口
立式气-液分离器工艺计算 已经破解了vba密码
已经破解了其中的表格锁定
气相 N2
H3=
300
m m
N1
H2=
150
m m
混合进料
WV= 5508.0 kg/h WL= 246000.0 kg/h
QV= QL=
4269.8 m3/h 189.2 m3/h
┈┈┈┈┈┈┈┈┈┈┈
◆结构不合理 5 2
0 0% 0
恢复默认 隐 藏
整 合:
结构不合理
5
整 合:
0
整 合:
◆长径比偏大:
类型:
结构不合理 设计分析:
分析1:分析 2:3段来自流 量密度 尺寸
kg/h
气液重力分离器计算软件
本套公式根据GB50350-2005 6.2中立式重力分离器 和 石油化工 设备设计手册 第八篇第五部分直立式气液分离器 编辑
参数名称
符号
数据
单位
气体流量 操作温度 气体临界温度 操作压力 液体密度 气体密度 气体粘度 气体临界压力 液体流量 QL(m3/min) 液体滞留时间 t(min)
密度 kg/m3 1.169 0.694 1.613 2.416 2.327 1.784 1.13 1.895 1.222 1.138 0.081 1.385 2.407 2.327 3.387 0.648 0.814 3.021 1.13 1.785 1.292 0.081 1.808
动力粘度 μPa·s 18.448 10.093 22.624 7.406 8.163 14.932 17.649
15.91
0.00002055
109.69
0.000008915
4.507
0.000008146
气体压缩因子表
对比压力 =ቤተ መጻሕፍቲ ባይዱ对比温度 =
4.971 1.769 1.52 1.972 2.515 2.375 2.051 2.637 3.378 2.813 4.839 2.505 3.215 3.704 1.612 3.569 1.644 5.24 1.715 1.731 1.787 1.827 5.937 7.913 1.384 3.44 1.767 4.317
(qvTZ)/(PWoK1) 972266.8734
计算过程 请勿改动
[4gdL(ρL-ρG)]/3ρ Gf
0.075598609
(ρL-ρG)/ρG 332.3333333
E 液体区(m) 9.8984E-05
立式气液分离器计算
Issued :Date:2000m3/hour 50Kg/hour 0.75Kg/m31.25127E-05Pa*s1000Kg/m3Or2.00E-04m1.7391m/s20.84860.8814m/s10.56642.8132m/s33.724510.5664μm100-350μm液滴直径d 200.001<Re<1000沉降速度U t 2 Re计算Stoke 定律立式重力气液分离器计算Vertical Gravity Gas Liquid Separator Caculation项目说明:1 基础数据 Basic Data 液体密度ρl 液体介质名称 最终确定Re液体流量W Ver-1气体介质名称水蒸气气体黏度μg 冷凝水气体流量Q 气体密度ρg 沉降速度U t Allen 定律沉降速度U t Re牛顿定律1000<Re<100000FALSEReReFALSE0.001<Re<1TRUE2.8132m/s550.00mm 0.55m1.2601.52m/s圆整650.00mm10min 35.08mm圆整36.00mm0.02m 35hour 960.53m圆整961.00mm36.51m/s139.21mm 圆整150.00mm150mm 25m/s3.5 入口管管径d1气体在入口管内流速U≤ρl *U 2≤1000 Pa2-8hour 3.6 出口管管径封头容积V1标准椭圆封头V=0.131D 3H 4被分离液体停留时间t 入口管底部至最高液面高度H2150-200mm3.3 液位计可视高度H 3液位计可视范围内液体量控制时间t 5-10min 最终沉降速度U tH 3D min501.273 汽液分离器结构计算0.8-1.2mm 3.1 汽液分离器直径D系数C H 13.2 气相段高度H 1气体在出口管内流速U g ≤圆整入口管管径d 13.4 液相段直边高度H 4168.24mm 圆整200.00mm1m/s 133.01mm圆整150.00mm数据输入数据输出出气管管径d 2液体在出口管内流速U l ≤0.5-1.5出液管管径d 3进口Inlet气体出口Gas outlet液体出口Liquid outletH 1H 2LGH 4H 3650.00150961.00650.00DN 200.00DN 150.00DN 150.00Φ550.00。
气-液分离器设计[1]
目次1 总则1.1 目的1.2 范围1.3 编制本标准的依据2 立式和卧式重力分离器设计2.1应用范围2.2 立式重力分离器的尺寸设计2.3 卧式重力分离器的尺寸设计2.4 立式分离器(重力式)计算举例2.5附图3 立式和卧式丝网分离器设计3.1 应用范围 3.2 立式丝网分离器的尺寸设计3.3 卧式丝网分离器的尺寸设计3.4 计算举例3.5 附图4 符号说明1 总则1.1 目的本标准适用于工艺设计人员对两种类型的气液分离器设计,即立式、卧式重力分离器设计和立式、卧式丝网分离器设计。
并在填写石油化工装置的气液分离器数据表时使用。
1.2 范围本标准适用于国内所有化工和石油化工装置中的气-液分离器的工程设计。
1.3 编制本标准的依据:化学工程学会《工艺系统工程设计技术规定》HG/T20570.8-1995第8篇气液分离器设计。
2 立式和卧式重力分离器设计2.1 应用范围2.1.1 重力分离器适用于分离液滴直径大于200μm的气液分离。
2.1.2 为提高分离效率,应尽量避免直接在重力分离器前设置阀件、加料及引起物料的转向。
2.1.3 液体量较多,在高液面和低液面间的停留时间在6~9min,应采用卧式重力分离器。
2.1.4 液体量较少,液面高度不是由停留时间来确定,而是通过各个调节点间的最小距离100mm来加以限制的,应采用立式重力分离器。
2.2 立式重力分离器的尺寸设计2.2.1 分离器内的气速2.2.1.1 近似估算法(2.2.11)式中Vt浮动(沉降)流速,m/s;ρL、ρG液体密度和气体密度,kg/m3;KS系数d*=200μm时,KS=0.0512;d*=350μm时,KS=0.0675。
近似估算法是根据分离器内的物料流动过程,假设Re=130,由图2.5.11查得相应的阻力系数CW=1,此系数包含在Ks系数内,Ks按式(2.2.11)选取。
由式(2.2.11)计算出浮动(沉降)流速(Vt),再设定一个气体流速(ue),即作为分离器内的气速,但ue值应小于Vt。
立式气液分离器
(1)筒体材料选择Q235-C,筒体内径 mm,厚度6mm,高度1500mm。
(2)封头材料选择Q235-C,选用标准椭圆形封头,内径500mm、厚度6mm、高度150mm、直边高度25mm。
(3)法兰材料选择20#钢,选用带颈对焊法兰。
(4)支座材料选用Q235-B,选用腿式支座B系列。
(5)筒体水压试验压力2.1875MPa,水压试验合格,经校核,法兰和支腿均满足要求。
关键词:立式气液分离器;结构设计;强度校核
Thedesignofvertical heavy energy liquid separator
(4)立式离心气液分离器
离心气液分离器主要是指气液旋流分离,是利用离心力来分离气流中的液滴。因离心力能达到重力数十倍甚至更多,故它比重力分离的效率要高。虽没有过滤分离效率高,但其具备停留时间短、设备体积小、易安装、操作灵活、运行稳定、无易损件、维护方便等优点,成为广泛研究的气液分离方式。其主要结构类型有管柱式、旋流板式、螺旋式、轴流式等 。
1.1立式气液分离器
气液分离器经过专业人员几十年的努力研究,该技术已基本成熟。各种立式气液分离器都有很大的进展。如立式气液分离器当前研究的重点是研制高效的内部填料以提高其分离效率;立式惯性气液分离器当前研究的重点是克服阻力等。当今主要研究方向是将立式气液分离器基本类型进行组合,得到新型的气液分离器 。
1.2本课题研究内容及目的
本课题研究内容是立式气液分离器的结构优化,工艺条件下管路尺寸、法兰及附件的设计。
(1)立式气液分离器采用重力沉降的原理分离气液两相混合物,结构采用内压筒体与丝网捕雾器组合。
立式重力气液分离器的工艺设计
size of st ruct ure
一般认为 ,气相段高度 H1 (直边段) 与气
液分离器直径相当即可 ,即
H1 = (018~112) D
(12)
气体入口流速较高时 ,气相段高度相应取
上限值 。
3 液相段高度的确定
气液分离器的液相段高度由被分离液体
在气液分离器中的停留时间决定 。
当连续排出气液分离器中的液体时 ,可将
5~10min 的液体量控制在液位计的可视范围
液相段直边高度 ,m ; t —被分离液体的停留时
间 ,可根据需要定为 2~8h 。
设计计算的立式重力气液分离器简图如
图 1 所示 。
图 1 立式重力气液分离器简图
4 接管尺寸
4. 1 入口管管径和高度的确定 入口尺寸不小于入口管接管直径 ,较低的
入口位置有利于气液分离 。
一般认为 ρG U 2 ≤1000Ρa
求出液滴的沉降速度 U t (等于气体流速 U ) 后 ,可用下式计算气液分离器的最小直径 :
D min
=
1818
( V) Ut
1/
2
(9)
式中 Dmin —气 液 分 离 器 的 最 小 直 径 , mm ;
V —气体流量 (操作状态下) ,m3/ h ; U t —同前
实际上 ,在一般化工过程的立式气液分离
器中 ,气液相对运动大多数处于过渡区 ,此时 ,
如要 U ≤U t ,根据式 (6) 求 U t ,而
U
=
π 4
V D2 ·3600
则
π
4
V D2 ·3600
≤017805
(ρL - ρG) 01714 d11143 ρL 01286μ≈01429
立式气液分离器计算
Issued :Date:2000m3/hour 50Kg/hour 0.75Kg/m31.25127E-05Pa*s1000Kg/m3Or2.00E-04m1.7391m/s20.84860.8814m/s10.56642.8132m/s33.724510.5664μm100-350μm液滴直径d 200.001<Re<1000沉降速度U t 2 Re计算Stoke 定律立式重力气液分离器计算Vertical Gravity Gas Liquid Separator Caculation项目说明:1 基础数据 Basic Data 液体密度ρl 液体介质名称 最终确定Re液体流量W Ver-1气体介质名称水蒸气气体黏度μg 冷凝水气体流量Q 气体密度ρg 沉降速度U t Allen 定律沉降速度U t Re牛顿定律1000<Re<100000FALSEReReFALSE0.001<Re<1TRUE2.8132m/s550.00mm 0.55m1.2601.52m/s圆整650.00mm10min 35.08mm圆整36.00mm0.02m 35hour 960.53m圆整961.00mm36.51m/s139.21mm 圆整150.00mm150mm 25m/s3.5 入口管管径d1气体在入口管内流速U≤ρl *U 2≤1000 Pa2-8hour 3.6 出口管管径封头容积V1标准椭圆封头V=0.131D 3H 4被分离液体停留时间t 入口管底部至最高液面高度H2150-200mm3.3 液位计可视高度H 3液位计可视范围内液体量控制时间t 5-10min 最终沉降速度U tH 3D min501.273 汽液分离器结构计算0.8-1.2mm 3.1 汽液分离器直径D系数C H 13.2 气相段高度H 1气体在出口管内流速U g ≤圆整入口管管径d 13.4 液相段直边高度H 4168.24mm 圆整200.00mm1m/s 133.01mm圆整150.00mm数据输入数据输出出气管管径d 2液体在出口管内流速U l ≤0.5-1.5出液管管径d 3进口Inlet气体出口Gas outlet液体出口Liquid outletH 1H 2LGH 4H 3650.00150961.00650.00DN 200.00DN 150.00DN 150.00Φ550.00。
气-液分离器设计
4
SLDI 233A14-98
得 ALA = Ab + 2A1 = 0.107 + 2 × 0.4 = 0.289
ATOT
ATOT
3.14
查图2.5.1—5得 hLA = 0.333,从最低液位经2min后得到液面高度为 DT
hLA = 0.333 × DT = 0.333× 2000 = 666mm(hLA即是图中h)
2
SLDI 233A14-98
a) 入口接管
两相入口接管的直径应符合式(2.2.2—3)要求。
式中
ρG uP2 <1000Pa
(2.2.2—3)
up——接管内流速,m/s; рG——气体密度,kg/m3。
由此导出
式中
DP>3.34×10-3(VG+VL)0.5
ρ
0. 25 G
(2.2.2—4)
VG、VL——分别为气体与液体体积流量,m3/h; DP——接管直径,m。
低液位(LL)与高液位(HL)之间的距离,采用式(2.2.2—2)计算
式中
HL
=
VLt 47.1D2
(2.2.2—2)
HL——液体高度,m;
t——停留时间,min;
D——容器直径,m; VL——液体体积流量,m3/h。
气、液
图2.2.2 立式重力分离器 停留时间(t)以及釜底容积的确定,受许多因素影响。这些因素包括上、下游设备的工艺要求以及停 车时塔板上的持液量。当液体量较小时,规定各控制点之间的液体高度最小距离为100mm。表示为:LL(低 液位)-100mm-LA(低液位报警)-100mm-NL(正常液位)-100mm-HA(高液位报警)-100mm-HL(高液位)。 2.2.2.3 接管直径
立式气液分离器设计算表
QL= ρ L=
0.2 m3/h 892.0 kg/m3
── 设计参数及细节调整(操作分析时输入无效)── KS=(W L/W V)×(ρV/ρL)0.5 KV=exp(A+BKS+CKS2+DKS3+EKS4+FKS5) 设计取计算值或 0.40 ,两者取小 UVmax=KV×((ρL-ρV)/ρV)0.5 85 %×UVmax UVDsn= AVmin=QV/UVmax Dmin=(4×AVmin/π)0.5 mm 以 150 mm圆整 AV=(πD2/4) 约为 51% UVmax 分离良好 UV=QV/AV 设定 QLB=QL×tB 0.5 ×D3 QLC=(π/12)× HL=(QLB-QLC)/AVmin mm 低液位设计值: 100 mm 高液位设计值: 450 150 150 300 mm L'=五段高度 H1 H2 HS H3 ) (设定值: HL 圆整后增量: 50 mm圆整 50 以 0 0 3 ≤ L/D ≤ 5 为合理标准 恢复默认 隐 以
重新计算
%设计流量 0.0 0.0 0.0 0.0 min NOTE
操作分 结 束
恢复默认 隐 藏
操作分析: 整合: 3段 整合: 结构合理 整合:
1
QV= ρV=
322.6 m3/h 4.7 kg/m3
蓝色为输入框,其他部分自动计算
mm TYP. L= 1800 mm mm 管 口 进 设 计 出 N1 物 料 流 量 kg/h 1500.0 150.0 1500.0 150.0
mm
混合-气相 混合-液相 停留时间 N2 气相 N3 液相 进料量为 混合-气相 N1 混合-液相 停留时间
18 mm
液相
调 试
计算过程 气-液分离: 1、 分离因子 分离常数 操作分离常数 最大气相流速 操作气相流速 2、 气相流通面积 筒体直径 ↓ 圆 整 实际流通面积 实际气相流速 3、 缓冲时间 存液容积 底部封头容积 最大液相高度 操作液相高度 4、 筒体长度 ↓ 圆 整 5、 长径比 KS 0.0072 KV 0.2643 KVDsn 0.2643 UVmax 1.113 m/s UVDsn 0.946 m/s Avmin 0.095 m2 Dmin 348 mm D AV UV tB QLB QLC HL L' L L/D 450 0.159 0.563 1 0.003 0.000 18 600 1750 1750 4.0 L/D合理 mm m2 m/s min m3 m3 mm mm mm 1800 mm
立式分离器计算书
中国天辰 化学工程公司
立式分离器计算书
(条件表 7)
编 制 校 核 审 核
最高液面高度 h4,mm 1200
分离器直筒段 汽液混合物入口最小 实取汽液混合物入口 反算液体停留时间,s 总高度H,mm 管径Dmin,mm 管径D,mm 4400 501 700 6.3
位号
V8301
设备名称 闪蒸槽
设备内径(mm)
2200
设备高度(mm)
2400
1、操作气速的确定 液泛气速(即极限气速)Uf计算:Uf=K((ρ L-ρ G)/ρ G)^0.5,m/s 操作气速ug=0.5~0.8uf, m/s 液滴密度ρ L(kg/m3) 进口气体密度ρ G(kg/m3) 1142 0.29 系数K 0.107 Uf m/s 6.75 操作气速ug m/s 2.02
2、处理气体所需的流通直径D1=1000(4Qv/π /ug)^0.5 mm Qv m3/s 3.53885 D1 mm 1871 选用型式 上装式 选用丝网过滤器DN mm 2000
3、立式分离器其它尺寸计算 QL m /h 2150.23
3
丝网支撑至上端 气体入口至丝网 气体入口至最高液 焊缝高度h1,mm 支撑高度h2,mm 面高度h3,mm 200 2000 1000
2、处理气体所需的流通直径D1=1000(4Qv/π /ug)^0.5 mm Qv m /s 7.00701
3பைடு நூலகம்
D1 mm 2100
分离器尺寸计算word版本
分离器尺寸计算1.1.1分离器尺寸计算选用SMSM气/液分离器,进入高效分离器的气体体积流量为1795m3/h (工况下),按照壳牌高效分离器的设计标准,SMSM气/液分离器的直径计算如下:已知:,:,所以气体处理能力标准:由于,由壳牌分离器设计规范查表可知,取=0.186,取分离器直径为1100mm,最多选择29个旋流管。
分离器高度按照壳牌公司提供的方法进行计算,见图4.16、表4.6表4.6 分离器直径及涡流管个数的确定表D ,m 涡流管个数*m ax Q ,m³/s m ax ,m/s0.21 1 0.0064 0.1850.45 4 0.0256 0.161 0.50 5 0.0320 0.163 0.65 9 0.0576 0.174 0.70 12 0.0768 0.200 0.85 16 0.102 0.180 0.90 21 0.134 0.211 0.95 24 0.154 0.217 1.05 29 0.186 0.214 1.10 32 0.205 0.216 1.15 37 0.237 0.228 1.20 44 0.282 0.249 1.30 520.3330.251项目 高度,m 项目 高度,mX 1 0.5 X 5 0.22 X 2 0.32 X 6 0.165 X 3 0.3 D 1.1 X 40.1 h1.2综上所述,DY 气田干气脱汞方案闪蒸气处理工艺中,选用壳牌SMSM 高效分离器,分离器的直径为1200mm ,高度为3200mm 。
1.2 MEG 再生塔C-2201(1)和凝析油稳定塔C-2301分别对MEG 再生塔和凝析油稳定塔进行选型并对塔径和高度进行计算。
1.2.1 MEG 再生塔和凝析油稳定塔基础数据MEG 再生塔和凝析油稳定塔均选用整装填料塔,填料采用金属板波纹填料250Y 型,该种填料具有生产能力大,分离效率高,压力降小,操作弹性大,持液量小等优点。
气液分离器设计计算
气液分离通常分为三个阶段: 第一个阶段为
预分离,即利用气体中所夹带液体的动量使大的
液滴与入口挡板碰撞,然后利用液滴自重沉降下
来,从而将气液分成以气体为主和以液体为主的
两个部分; 第二个阶段为二次分离,即使较小液
滴利用重力分离; 第三个阶段为除雾,小的液滴
在捕雾器处聚集成较大的液滴,然后靠重力实现
气液的分离。
计算总横截面积:
AT = πD2 /4
2011,21( 5)
冯 宇 气液分离器设计计算
21
利用表 2 计算低液位高度或采用:
HLLL = 0. 5D + 7
( in)
此处 D 的单位是 ft 并圆整。如果 D ≤4',则
HLLL = 9in。 ( 6) 利用表 3 通过 HLLL / D 得到 ALLL / AT 并计
( 3) 选取停留时间并计算持液量:
VH = THQL
( ft3 )
( 4) 如果不规定波动体积,则选取缓冲时间
后计算波动体积:
VS = TSQL
( ft3 )
( 5) 取得 L / D 的初估值[2],并且初步计算分
离器直径:
D=
(
4 0.
( VH 6π (
+ VS) L /D)
)
1 /3
( ft,圆整到最接近的 0. 5ft)
( ft3 / min)
并选取停留时间并计算持液量:
VH = THQL
( ft3 )
( 4) 如果不规定波动体积,则选取缓冲时间
后计算波动体积:
VS = TsQL
( ft3 )
低液位高度的选取,见表 2。
表 2 低液位高度选取表
(完整word版)气液分离器选型
7.8气液分离器7.8.1概述气液分离器的作用是将气液两相通过重力的作用进行气液的分离。
7.8.2设计步骤(1) 立式丝网分离器的尺寸设计 1) 气体流速(G u )的确定气体流速对分离效率是一个重要因素。
如果流速太大,气体在丝网的上部将把液滴破碎,并带出丝网,形成“液泛”状态,如果气速太低,由于达不到湍流状态,使许多液滴穿过丝网而没有与网接触,降低了丝网的效率。
气速对分离效率的影响见下图:图7-69 分离效率与气速的关系图2) 计算方法G u 5.0)(GG L G K ρρρ-= 式中G u 为与丝网自由横截面积相关的气体流速,s m / L ρ、G ρ为分别为液体和气体的密度,3/m kgG K 为常数,通常107.0=G K 3) 尺寸设计丝网的直径为5.0)(0188.0GG G u V D = 式中 G u 为丝网自由截面积上的气体流速,s m / G D 为丝网直径,m 其余符号意义同前。
由于安装的原因(如支承环约为mm 1070/50⨯),容器直径须比丝网直径至少大l00mm,由图2.5.1-2可以快速求出丝网直径)(G D 4) 高度容器高度分为气体空间高度和液体高度(指设备的圆柱体部分)。
低液位(LL )和高液位(HL )之间的距离由下式计算:21.47DtV H L L = 式中D —容器直径,m ; L V —液体流量,h m /3; t —停留时间,min ;L H —低液位和高液位之间的距离,m ;液体的停留时间(以分计)是用邻近控制点之间的停留时间来表示的,停留时间应根据工艺操作要求确定。
气体空间高度的尺寸见下图所示。
丝网直径与容器直径有很大差别时,尺寸数据要从分离的角度来确定。
图7-70 立式丝网分离器5) 接管直径① 入口管径两相混合物的人口接管的直径应符合下式要求 Pa u GL G 15002<ρ 式中GL u ——接管内两相流速,s m /; G ρ——气相密度,3/m kg ; 由此导出25.05.03)(1002.3GG L p V V D ρ⨯+⨯⨯>-式中p D ——接管直径,m ;L V ——液体体积流量,h m /3; G V ——气体体积流量,h m /3; 其余符号意义同前。
分离器尺寸计算
1.1.1 分离器尺寸计算选用SMSM 气/液分离器,进入高效分离器的气体体积流量为1795m 3/h (工况下),按照壳牌高效分离器的设计标准,SMSM 气/液分离器的直径计算如下:已知:错误!未找到引用源。
,:错误!未找到引用源。
,错误!未找到引用源。
所以气体处理能力标准:由于错误!未找到引用源。
,由壳牌分离器设计规范查表可知,取错误!未找到引用源。
=0.186,错误!未找到引用源。
取分离器直径为1100mm ,最多选择29个旋流管。
分离器高度按照壳牌公司提供的方法进行计算,见图4.16、表4.6表4.6 分离器直径及涡流管个数的确定表D ,m 涡流管个数*m ax Q ,m³/s m ax ,m/s0.2110.00640.1850.45 4 0.0256 0.1610.50 5 0.0320 0.1630.65 9 0.0576 0.1740.70 12 0.0768 0.2000.85 16 0.102 0.1800.90 21 0.134 0.2110.95 24 0.154 0.2171.05 29 0.186 0.2141.10 32 0.205 0.2161.15 37 0.237 0.2281.20 44 0.282 0.2491.30 52 0.333 0.251表4.7 高效分离器高度计算表项目高度,m 项目高度,mX10.5 X50.22X20.32 X60.165X30.3 D 1.1X40.1 h 1.2综上所述,DY气田干气脱汞方案闪蒸气处理工艺中,选用壳牌SMSM高效分离器,分离器的直径为1200mm,高度为3200mm。
1.2MEG再生塔C-2201(1)和凝析油稳定塔C-2301分别对MEG再生塔和凝析油稳定塔进行选型并对塔径和高度进行计算。
1.2.1MEG再生塔和凝析油稳定塔基础数据MEG再生塔和凝析油稳定塔均选用整装填料塔,填料采用金属板波纹填料250Y型,该种填料具有生产能力大,分离效率高,压力降小,操作弹性大,持液量小等优点。
分离器尺寸计算
1.1.1分离器尺寸计算选用SMSM 气/液分离器,进入高效分离器的气体体积流量为 1795mVh (工况 下),按照壳牌高效分离器的设计标准,SMS 气/液分离器的直径计算如下:已知: ^-「口小,: 九「懺炖2「, %十「叫九所以] 阳・皿Q 乩二Qtr 论如訂他一衍)=亠 ;需一皿 二吠阳气体处理能力标准:由于 I 「亍^氐:,由壳牌分离器设计规范查表可知,取 ;=,取分离器直径为1100mm 最多选择29个旋流管分离器高度按照壳牌公司提供的方法进行计算,见图、表Kv-Q.ISD j^^dKOaminia)IK2=dL^0 02rL瓷1-05皿扎s < Q 爲J5D 蠢/幻=0.25耐号=> =0,1862^4^0.25*344二 0.974mJ 0JSG* 4D™ = Jft214«3d4—lA07m at llOOmm表分离器直径及涡流管个数的确定表表高效分离器高度计算表综上所述,DY气田干气脱汞方案闪蒸气处理工艺中,选用壳牌SMSM高效分离器,分离器的直径为1200mm高度为3200mm1.2 MEG!生塔C-2201(1)和凝析油稳定塔C-2301分别对MEG?生塔和凝析油稳定塔进行选型并对塔径和高度进行计算。
1.2.1 MEGI生塔和凝析油稳定塔基础数据MEG再生塔和凝析油稳定塔均选用整装填料塔,填料采用金属板波纹填料250Y型,该种填料具有生产能力大,分离效率高,压力降小,操作弹性大,持液量小等优点。
250丫型填料主要性能参数见表。
型填料主要性能参数表表生塔塔径计算基础数据表MEG稳定塔只有提馏段,第八塔板汽相负荷较大,作为脱丙丁烷塔的基础数据, 如表所示。
表凝析油稳定塔计算塔径的基础数据填料塔的直径分别按精馏段和提馏段计算,取较大者为填料段直径。
泛点速度计算公式:塔内径计算公式为:0. 20.291 1.75 1 14G实际操作气速为泛点速度的68%~75%故取实际操作气速为泛点速度的70%U G U GF0. 723600由表中数据带入以上公式:= m/s u G =s由第二块板计算得:u GD T =由第六块板计算得:u G=s u G =sD T =由以上计算结果可知,MEG!生塔采用等径填料塔,直径选为350mm 考虑气体处理量120%勺弹性范围,根据模拟结果校核MEG!生塔最大气动能因子,在第六块塔板处具有最大气动能因子。
立式气液分离器设计表(带液位指示)
用于1、2、3、4、5、1、2、3、校核输入1、2、3、结果分析按钮1、2、3、4、5、6、注意参考1、估算进出管口尺寸。
操作分析:改变进料量、密度、停留时间HG/T 20570.8-95 气-液分离器设计功能2、4为不可逆操作,不能通过撤消返回上一立式气-液分离器工艺计算查表或取值输入修改设定值已知进料气液相流量及密度,求算分离器估算正常操作最高液位,供液位控制参考设计分析:改变进料量、密度、停留时间随意插入和删除行、列、单元格或修改[调试][隐藏]:展开或隐藏计算及设定细[重新计算]:清空设计计算输入的全部工[结束]:清空上一步输入的操作校核数据[恢复默认]:将框内设计参数恢复为默认 在开始设计计算后可以随时(部分手动框选定后有提示(部分自动框选定后有提示 必须在设计计算结束、并且[操作分析]:锁定分离罐尺寸,供输入操计算结果输入提示2、Rules of Thumb for Chemical Engineers3、Drum/Tank Design意见反馈ch留时间,考察给定分离器分离效果,分析操作条件之间的相互约束及器设计通过撤消返回上一步;分离器内径、筒体长度及各段尺寸。
制参考。
留时间,考察分离器尺寸、型式变化趋势。
、只读单元格,均有可能导致计算程序或功能按钮失效设定细节全部工艺数据及设计参数核数据,结束操作分析为默认数值以随时执行有提示)有提示)、并且圆整尺寸后再执行输入操作数据,进行分析neers见反馈 chem_zb@约束及影响。
立式气液分离器设计计算
UVDsn=
85 %×UVmax
AVmin=QV/UVmax
Dmin=(4×AVmin/π)0.5
以AV=(15π0Dm圆2/m整4) UV=QV/AV 约为
51% UVmax 分离良好
设定
QLB=QL×tB
QLC=(π/12)×
0.5 ×D3
高值LH'L=液:=五位(段设Q高L计B-度QLC)/AmVmm4in50低液1位50设计150
100 mm 300 mm
(设定值:
以
50
mm 圆整
HL
H1 H2 HS 圆整后增量:
0
H3 ) 50 0
以 3 ≤ L/D ≤
5 为合理标准
恢复默认 隐
完整性: 合理性1: 合理性2:
类型:
操作分析:
分析1:
分析 2:
3段
流 量
密度 尺寸
kg/h
m3/h kg/m3 mm
立式气-液分离器工艺计算 已经破解了vba密码
已经破解了其中的表格锁定
气相 N2
H3=
300
m m
N1
H2=
150
m m
混合进料
WV= WL=
1500.0 kg/h 150.0 kg/h
QV= QL=
322.6 m3/h 0.2 m3/h
H1=
1182
m m
┈┈┈┈┈┈┈┈┈┈┈
操作分析: 1 1
◆约 为操作5量1%适 中,
允许气速 分离良好
D=
HL= 450 mm
N3
18
m m
液相
调试
计算过程
气-液分离: 1、 分离因子 分离常数 操作分离常数 最大气相流速 操作气相流速 2、 气相流通面积 筒体直径 ↓ 圆 整 实际流通面积 实际气相流速 3、 缓冲时间 存液容积 底部封头容积 最大液相高度 操作液相高度 4、 筒体长度 ↓ 圆 整 5、 长径比
气液分离器设计计算
项 目
带 捕 雾 器 的分 离 器
条件
l≤ P1≤ 15
15≤P1≤4o
40≤ P1≤5500
K值
K =0.1821+0.0029P +
0.0460 In(P)
K =0.35
K:0.430—0.023 ln(P)
0≤ P2≤ 1500
气液分离器依据重力沉 降原理 ,采用 《油气 集输设 计 规范 》 GB 50350—2005及 《分 离 器规 范》 SY/T 0515—2007进行 计算 和 选 取 ,并 以 以下 假设为基础 :①悬 浮物 的运动速率 为常数 ;②分 离器 内不 发 生凝 聚 和 分 散 作 用 ;③ 液 、 固 微 粒 均 是球 形 。计算 忽 略 微 粒 沉 降 的加 速 阶段 ,仅 考 虑 分 离不 小于 50lxm微 粒 的情 况 。此外 ,在计 算 中引 入 立式分 离 器 修 正 系数 K ,气 体 空 间 占有 的 空 间 面积分率 K 、气体空间占有 的高度分率 K,和长径 比 K 经验 参数 … ,这 无 疑 增加 分 离 器 计 算 的 不 确 定 性 。设 计 人 员 先 依 据 标 准 规 范 进 行 计 算 ,再 根 据 经验 及 工 程 需 要 进 行 修 正 ,有 时最 终 所 选 设 备 会 比计 算结 果 大 很 多 ,造 成 不 必 要 的 浪 费 。基 于 以上考 虑 ,综 合 多 种 计 算 方 法 得 出 分 离 器 计 算 方 法 。该 方法 不 仅 满 足 工 程 需 要 ,而 且 采 用 使 设 备 重 量最 轻 的优 化 过 程 使 投 资 最 低 ,可 为 气 液 分 离 器 选 型提供 参考 。
运行 :
气液分离器设计算表知识讲解
100 mm 300 mm
(设定值:
以
50
mm 圆整
HL
H1 H2 HS 圆整后增量:
0
H3 ) 50 0
以 3 ≤ L/D ≤
5 为合理标准
恢复默认 隐
完整性: 合理性1: 合理性2:
类型:
操作分析:
分析1:
分析 2:
3段
流 量
密度 尺寸
kg/h
m3/h kg/m3 mm
立式气-液分离器工艺计算 已经破解了vba密码
已经破解了其中的表格锁定
气相 N2
H3=
300
m m
N1
H2=
150
m m
混合进料
WV= WL=
1500.0 kg/h 150.0 kg/h
QV= QL=
322.6 m3/h 0.2 m3/h
H1=
1182
m m
┈┈┈┈┈┈┈┈┈┈┈
操作分析: 1 1
1500.0 150.0
4.7 100 892.0
1 min
1500.0 322.6 4.7 100
150.0
0.2
%设计流
量
0.0
0.0
892.0 50
重新计算
0.0
0.0
min
NOTE
操作分 结 束
恢复默认 隐 藏
整 合:
操作分析:
1
整 合:
3段
整 合:
结构合理
◆约 为操作5量1%适 中,
允许气速 分离良好
D=
HL= 450 mm
N3
18
m m
液相
调试
计算过程
气-液分离: 1、 分离因子 分离常数 操作分离常数 最大气相流速 操作气相流速 2、 气相流通面积 筒体直径 ↓ 圆 整 实际流通面积 实际气相流速 3、 缓冲时间 存液容积 底部封头容积 最大液相高度 操作液相高度 4、 筒体长度 ↓ 圆 整 5、 长径比
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
600 mm
L'
1750 mm
L
1750
L/D
4.0
L/D合理
1800
m m
QV= ρV=
322.6 m3/h 4.7 kg/m3
蓝色 为输
L= 1800 mm
TYP. 管 口
物 料
设 计
进
N1
混合-气相 混合-液相
停留时间
出
N2 气相 N3 液相
流 量 kg/h 1500.0
立式气-液分离器工艺计算 已经破解了vba密码
已经破解了其中的表格锁定
气相 N2
H3=
300
m m
N1
H2=
150
m m
混合进料
WV= WL=
1500.0 kg/h 150.0 kg/h
QV= QL=
322.6m m
┈┈┈┈┈┈┈┈┈┈┈
操作分析: 1 1
UVDsn=
85 %×UVmax
AVmin=QV/UVmax
Dmin=(4×AVmin/π)0.5
以AV=(15π0Dm圆2/m整4) UV=QV/AV 约为
51% UVmax 分离良好
设定
QLB=QL×tB
QLC=(π/12)×
0.5 ×D3
高值LH'L=液:=五位(段设Q高L计B-度QLC)/AmVmm4in50低液1位50设计150
100 mm 300 mm
(设定值:
以
50
mm 圆整
HL
H1 H2 HS 圆整后增量:
0
H3 ) 50 0
以 3 ≤ L/D ≤
5 为合理标准
恢复默认 隐
完整性: 合理性1: 合理性2:
类型:
操作分析:
分析1:
分析 2:
3段
流 量
密度 尺寸
kg/h
m3/h kg/m3 mm
◆约 为操作5量1%适 中,
允许气速 分离良好
D=
HL= 450 mm
N3
18
m m
液相
调试
计算过程
气-液分离: 1、 分离因子 分离常数 操作分离常数 最大气相流速 操作气相流速 2、 气相流通面积 筒体直径 ↓ 圆 整 实际流通面积 实际气相流速 3、 缓冲时间 存液容积 底部封头容积 最大液相高度 操作液相高度 4、 筒体长度 ↓ 圆 整 5、 长径比
KS KV KVDsn UVmax UVDsn Avmin Dmin
0.0072 0.2643 0.2643
1.113 m/s 0.946 m/s 0.095 m2
348 mm
D AV
450 0.159 m2
m m
UV
0.563 m/s
tB
1 min
QLB
0.003 m3
QLC
0.000 m3
HL
18 mm
1500.0 150.0
4.7 100 892.0
1 min
1500.0 322.6 4.7 100
150.0
0.2
%设计流
量
0.0
0.0
892.0 50
重新计算
0.0
0.0
min
NOTE
操作分 结 束
恢复默认 隐 藏
整 合:
操作分析:
1
整 合:
3段
整 合:
结构合理
150.0
1500.0 150.0
进料量为
操 作
进
N1
混合-气相 混合-液相
0.0 0.0
停留时间
QL= ρL=
0.2 m3/h 892.0 kg/m3
── 设计参数及细节调整(操作分析时输入无效)─
KS=(WL/WV)×(ρV/ρL)0.5
设或UKVV计=ma取xe=x计pK(算V×A值(+(BKρ0LS.-+40ρCV,者K)S两取2/+ρDVK)S03.+5 EKS4+FKS5)