数学公开课优质课件精选——二次函数课件

合集下载

《二次函数》PPT优秀课件

《二次函数》PPT优秀课件


• 3.观察上述函数函数关系有哪些共同之处? 。
归纳总结
• 一般地,形如y=ax2+bx+c(a,b,c为常数且a≠0)的函数,叫 做二次函数。其中x是自变量,a叫做二次项系数,b叫做一次项 系数,c叫做常数项.
• 注意:判断二次函数注意自变量最高次数为2,且二次项系数不为0
03 例题练习
例题
练习
• 1.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率
都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=

• 2.多边形的对角线条数d与边数n之间的关系式为

;当d=35时,多边形的边数n=

,自变量n的取值范围是 且
练习
3.已知两个变量x,y之间的关系为y=(m-2)xm2-2+x-1,若x,y之间是二次函数关系, 求m的值.
4.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a为10米)围成的中间隔有一道 篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米. (1)求S与x的函数关系式; (2)如果要围成面积为45平方米的花圃,AB的长为多少米?
04 作业布置
作业布置
1.下列函数是二次函数的是( )
A.y=2x+1
二次函数
01
教学目标
目录
02 03
知识点框架
例题练习
04
作业布置
01
教学目标
掌握二次函数的定义并能根据实际问题列出二次函数解析式
02 知识点框架
二、新课讲授
• 1.设一个正方形的边长为x,则该正方形的面积y=

• 2.用一根长为40的铁丝围成一个半径为的扇形,求扇形的面积与它的半径之

《二次函数》数学教学PPT课件(4篇)

《二次函数》数学教学PPT课件(4篇)
x 2 不是整式
×
知1-讲
(2) y=-5x2
解:
二次项系数
所以y=-5x2的二次项系数为-5,一次项系
数为0,常数项为0.
二次项系数
(5)化为一般式,得到y=3x2-21x+30,
常数项
一次项系数
所以y=3(x-2)(x-5)的二次项系数为3,
一次项系数为-21,常数项为30.(来自《点拨》)
知1-练
值而确定,y与x之间的关系应怎样表示?
两年后的产量
y=20(1+x)2,
即y=20x2+40x+20.
知1-导
思考:函数y=6x2,m=
1
2
n2- 1 n,
2
y=20x2+40x+20有什么共同点?
可以发现
1、函数解析式是整式;
2、化简后自变量的最高次数是2;
3、二次项系数不为0.
知1-讲
定义 一般地,形如y=ax2+bx+c(a,b,c是常数,
(6)y=x2+
.
知1-讲
解: (1)y=7x-1; 自变量的最高次数是1
(2)y=-5x2; 自变量的最高次数是2
(3)y=3a3+2a2;自变量的最高次数是3
(4)y=x-2+x; x-2不是整式
×

×
×
(5)y=3(x-2)(x-5);
2-21x+30,是二次函数 √
整理得到y=3x
1
1
2
(6)y=x + x 2
a≠0)的函数,叫做二次函数.其中,x是自变
量,a,b,c分别是函数解析式的二次项系数、
一次项系数和常数项.
知1-讲
例1 下列函数中,哪些是二次函数?并指出二次函

《二次函数》优质PPT课件(共65页ppt)

《二次函数》优质PPT课件(共65页ppt)

抛物线
y 2x 32 1
2
y 1 x 12 5
3
y 2x 32 5
y 0.5x 12
y 3 x2 1 4
y 2x 22 5
y 0.5x 42 2 y 3 x 32
4
开口方向
向上 向下 向上 向下 向下 向上 向上 向下
对称轴
直线x=-3 直线x=-1 直线x=3 直线x=-1 直线x=0 直线x=2 直线x=-4 直线x=3
__10_0___x棵橙子树,这时平均每棵树结_______个橙6子00。 5x
(3)如果果园橙子的总产量为y个,那么y与x
之间的关系式为_____y____6_0_0__5_x_。100 x
y 5x2 100 x 60000
y 5x2 100 x 60000 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
-2
-1
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系 数。
有研究表明,晴天在某段公路上行驶时,速度为v(km/h)的 汽车的刹车距离s(m)可以由公
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14

y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500

《二次函数》课件

《二次函数》课件
3 经济模型
二次函数可以用来构建经济模型,分析不同变量之间的关系。
二次函数的应用举例
跳水比赛
二次函数可以描述跳水运动员 的下落轨迹。
抛物面天线
抛物面天线的形状可以用二次 函数来描述。
拱桥
拱桥的形状可以用二次函数来 描述。
结论和要点
二次函数的定义
二次函数是y=ax^2+bx+c,其中a、b、c是常 数且a≠0。
求解二次方程
可以使用公式法、配方法或图像法来求解二 次方程。
图像和性质
二次函数的图像为抛物线,其顶点、对称轴、 最值和零点与a、b、c的关系密切。
实际应用
二次函数在物理、经济、工程等领域有广泛 的应用。
2
配方法
通过配方使二次方程转化为平方完成形式,然后求解。
3
图像法
通过观察图像的顶点、对称轴和与x轴的交点来求解二次方程。
利用二次函数解决实际问题
1 运动物体的轨迹
二次函数可以描述运动物体的竖直方向的轨迹,例如抛物线的形状可以用来描述抛出的 物体的轨迹。
2 广告营销
二次函数可以用来分析广告效果随时间的变化趋势,从而优化广告营销策略。
《二次函数》课件
欢迎来到《二次函数》课件!本课件将带你深入了解二次函数的定义、图像 及性质、通项公式、求解二次方程的方法、实际问题的解决方式、应用举例 等。
二次函数的定义
二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c是常数,并且a不等于0。
二次函数的图像及性质
抛物线形状
顶点和对称轴
二次函数的图像是一条抛物线, 其口方向由a的正负确定。
抛物线的顶点是图像的最低点 或最高点,对称轴是过顶点和 抛物线开口方向相反的直线。

二次函数(共26张PPT)

二次函数(共26张PPT)

零点
零点
零点是函数与x轴的交点,对应于抛物线与x轴的交 点。
美丽的桥梁
这张照片是一张桥梁夕阳美景的照片,代表着美丽 与自然的结合。
判别式
二次函数的判别式Δ=b²-4ac表示抛物线与x轴的交点个数。如果Δ>0,则有两个 交点;如果Δ=0,则有一个交点;如果Δ<0,则没有交点。
基本形式
1 标准式
f(x)=ax²
二次函数
二次函数在数学中是一个重要的概念,涉及到图像、最值、应用等方面。本 次26张PPT涵盖了二次函数的各个方面,希望能帮助大家更好地理解这个概念。
定义
二次函数是形如f(x)=ax²+bx+c的函数,其中a、b、c为常数,且a≠0。二次函数的图像是一个开口朝上或朝下的 抛物线。
图像
二次函数图像
2 顶点式
f(x)=a(x-h)²+k
3 一般式
f(x)=ax²+bx+c
标准形式
定义
标准式是二次函数的一种形式, 其中二次项系数a=1,常数项 c=0。
公式
f(x)=x²
图像
开口朝上或下,左右对称
图像美学
蔚蓝海岸线和彩色天空构成完美背景,并营造出温 馨优美的氛围。
对称轴
二次函数的对称轴是过抛物线顶点的一条直线。对称轴可以是水平或垂直线。
顶点
顶点坐标
顶点坐标为(-b/2a, f(-b/2a))
寻找顶点
找到对称轴,然后代入函数公式求得顶点坐标
ห้องสมุดไป่ตู้
美丽的山景
这幅精美的照片展现了一个山丘和群山的自然美景,使我们感叹自然之美。

《二次函数》优秀课件

《二次函数》优秀课件
中$a neq 0$。
定义中需要注意的关键点是二 次项系数$a$不能为0。
定义中还包括了线性项系数 $b$和常数项$c$,它们决定
了函数的形状和位置。
二次函数的图像
总结词:直观、形象
当$a > 0$时,抛物线开口向 上;当$a < 0$时,抛物线开 口向下。
二次函数的图像是一个抛物 线,它的形状由系数$a$决 定。
抛物线的对称轴是直线$x = frac{b}{2a}$,顶点位于该直线上, 坐标为$left(-frac{b}{2a}, fleft(frac{b}{2a}right)right)$。
二次函数的性质 01
总结词:全面、深入
02
二次函数具有对称性,其对称轴 是直线$x = -frac{b}{2a}$。
《二次函数》优秀课件
汇报人: 2024-01-01
目录
• 二次函数的基本概念 • 二次函数的解析式与系数 • 二次函数的应用 • 二次函数与其他知识的综合 • 习题与解析
01
二次函数的基本概念
二次函数定义
01
02
03
04
总结词:明确、详细
ห้องสมุดไป่ตู้
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其
c$ 是常数,$a neq 0$。
二次函数的一般形式是顶点式 $f(x) = a(x - h)^2 + k$,其中
$(h, k)$ 是抛物线的顶点。
二次函数的标准形式是 $f(x) = ax^2 + bx + c$,可以通过平移
和旋转得到。
二次函数的最值出现在对称轴上 ,即当$x = -frac{b}{2a}$时,函 数取得最大值或最小值。

《二次函数》PPT优质课件

《二次函数》PPT优质课件
元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次
函数,且当x=60时,y=80,x=50时,y=10.在销售过程中,每天还要支
付其它费用450元.
(1)求y与x的函数关系式,并写出自变量x的取值范围.
(2)求该公司销售该原料日获利润w(元)与销售单价x(元)之间的函
数关系式.
解:(1)设y与x的函数关系式为
S x 2 30 x
此式表示了边长x与围网的面积S之间的关系,对于x的
每一个值,S都有唯一的一个对应值,即S是x的函数.
y =- x ²+30 x
y =-5x2+100x+60 000
y=100x2+200x+100
观察上面几个式子,分析它们的特点,你能试着
猜出二次函数的概念吗?注意事项是什么?
果多种树,那么树之间的距离和每一棵树所接受的阳
光就会减少.根据经验估计,每多种一棵树,平均每棵
树就会少结5个橙子.
(1)问题中有那些变量?其中哪些
是自变量?哪些是因变量?
(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子
树?这时平均每棵树结多少个橙子?
果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子
数叫什么?这
节课我们一起
来学习吧.
一个边长为x的正方形的面积y为多少?y是x的
函数吗?是我们学过的函数吗?
y=x2,对于x的每一个值,y都有唯一的一个对应值,
即y是x的函数.这个函数不是我们学过的函数.
合作探究
问题1:某果园有100棵橙子树,每一棵树平均结600
个橙子.现准备多种一些橙子树以提高产量,但是如
y=100x2+200x+100.

《二次函数》PPT优秀课件

《二次函数》PPT优秀课件

探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的步骤: (1)将函数解析式右边整理为含自变量的代数式,左边是 函数(因变量)的形式; (2)判断右边含自变量的代数式是否是整式; (3)判断自变量的最高次数是否是2; (4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1 (是)
素养目标
2. 能根据实际问题中的数量关系列出二次函数解析式 ,并能指出二次函数的项及各项系数.
1.掌握二次函数的定义,并能判断所给函数是否是 二次函数.
探究新知
知识点 1 二次函数的概念
问题1
正方体的六个面是全等的正方形(如下图),设正方形的棱长为x,表面 积为y,显然对于x的每一个值, y都有一个对应值,即y是x的函数,它们的 具体关系可以表示为
探究新知
【分析】认真观察以上出现的三个函数解析式,分别说出哪些 是常数、自变量和函数.
函数解析式 y=6x2
自变量 x
函数 y
这些函数有什么 共同点?
n
d
x
y
这些函数自变量的最高次项都是二次的!
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数,叫做二 次函数.
y =-2x2+40x=-2×122+40×12=192(m2).
xm
xm
y m2
(40-2x )m
方法点拨:确定实际问题中的二次函数关系式时,常常用到生活中的经验及数 学公式(例长方形和圆的面积、周长公式)等.
巩固练习
做一做: ①已知圆的面积y(cm2)与圆的半径x(cm),写出y与x之间的函数关系式; ②王先生存入银行2万元,先y=存πx一2 个(x一>0年) 定期,一年后银行将本息自动转存为 又一个一年定期,设一年定期的存款年利率为x,两年后王先生共得本息和y万 元,写出y与x之间的函数关系式; ③一个圆柱的高等于底面半径,写出它的表面积S与半径r之间的关系式.

《二次函数》ppt课件

《二次函数》ppt课件

判别式意义
当 $Delta > 0$ 时,方程有两个不相等 的实根,抛物线与 $x$ 轴有两个交点。
02
二次函数与一元二次方程 关系
一元二次方程求解方法
01
02
03
公式法
对于一般形式的一元二次 方程,可以使用求根公式 进行求解。
配方法
通过配方将一元二次方程 转化为完全平方形式,从 而求解。
因式分解法
首先,通过配方将二次函数转 化为顶点式f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。然后, 根据二次函数的性质,对称轴 为x = h,顶点坐标为(h, k)。最 后,代入具体的a、b、c值求解。
已知二次函数f(x) = x^2 - 2x, 求在区间[-1, 3]上的最值。
首先,将二次函数配方为f(x) = (x - 1)^2 - 1,确定对称轴为x = 1。然后,根据二次函数的单 调性,在区间[-1, 1]上单调递减, 在[1, 3]上单调递增。因此,在x = 1处取得最小值f(1) = -1,在 x = 3处取得最大值f(3) = 3。
04
根的判别式Δ=b²-4ac可 以用于判断二次函数与x 轴交点的个数。
当Δ>0时,二次函数与x 轴有两个不同的交点。
当Δ=0时,二次函数与x 轴有一个重根,即一个 交点。
当Δ<0时,二次函数与x 轴无交点。
03
二次函数图像变换与性质 分析
平移变换对图像影响
平移方向
二次函数图像在平面直角坐标系中可 沿x轴或y轴方向进行平移。
04
二次函数在实际问题中应 用举例
利润最大化问题建模与求解
1 2 3
问题描述
某公司生产一种产品,其成本和销售价格与产量 之间存在一定的关系。公司希望通过调整产量来 实现利润最大化。

初中数学《二次函数复习》公开课优质课PPT课件

初中数学《二次函数复习》公开课优质课PPT课件

当x= y最大值=
b 2a
4a 时4, ac
4a
b2
当 x=h 时, y最小值=k
当x=h时, y最大值=k
o
x
二. 用图
数形结合
1.如果把抛物线y=(x-1)2-4绕顶点旋转180°,
则该抛物线对应的解析式是 y=-(x-1)2-4 ;
若把新抛物线再向右平移2个单位,再向上平移4 个单位,则得到抛物线对应的解析y 式x 为1y=-(x-3)2 .
(3) 函数解析式: y (x 1)(x 3)
即 y x2 2x 3
或 y (x 1)2 4
-1 o
3x
(4)对称轴:直线x = 1
(5)顶点坐标(1,-4)
-4
(6)当x = 1时, y有最小值 4
(7)当x≥1,y 随 x 增大而增大; (8)当x = -1 或 3 时,y = 0 ;
当x≤1 ,y 随 x 增大而减小.
当-1 <x <3 时,y < 0 ;
当 x < -1或x >3 时,y > 0.
等等
知识梳理
名称
一般式
顶点式
交式
二次函数解析式 (a≠0)
y=ax2+bx+c
y=a(x-h)2+k
轴对对称轴
直线x= b
2a
直线 x=h
称 顶点坐标 ( b , 4ac b2 ) (h , k)

2a 4a
y=a(x-x1)(x-x2)
直线x= x1 x2
2
y
a>0 在对称轴左侧,y随x的增大而减小,
增减性
在对称轴右侧,y随x的增大而增大。 o
a<0 在对称轴左侧,y随x的增大而增大,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识运用
1:下列函数中,哪些是二次函数?
(1)y=3x-1 (不是 )
(2)y=3x2 ( 是 )
(3)y=3x3+2x2 ( 不是 ) (4)y=2x2-2x+1( 是 )
(5)y=x-2+x (不是 ) (6)y=x2-x(1+x) (不是 )
知识运用
2:m取何值时, 函数y= (m+1)x +(m-3)x+m 是二次函数?
二次函数(1)
知识回顾
1、什么叫函数?
在某变化过程中的两个变量x、y,当变量x在某个范围内取 一个确定的值,另一个变量y总有唯一的值与它对应。
这样的两个变量之间的关系我们把它叫做函数关系。 对于上述变量x 、y,我们把y叫x的函数。 x叫自变量, y叫应变量。
目前,我们已经学习了那几种类型的函数?
正方形的棱长为x,表面积为y,显然对于x的每一个 值,y都有一个对应值,即y是x的函数,它们的具体关
系可以表示为 y=6x2①
问题2:
多边形的对角线数d与边数n有什么关系?
n 由图可以想出,如果多边形有n条边,那么它有 个顶点,从一个顶点出发,连接与
点不相邻的各顶点,可以(作n-3) 条
对角线.
因为像线段MN与NM那样,连接
在上面的问题中,函数都是用自变量的二次式表示的。
定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0) 的函数叫做二次函数。其中x是自变量,a为二次项 系数,ax2叫做二次项,b为一次项系数,bx叫做一 次项,c为常数项。
注意:(1)等号左边是变量y,右边是关于自变量
x的 整式。
(2)a,b,c为常数,且 a≠0.
一次项系数: 0 常数项: 0
例2、y=(m+3)xm2-7
(1)m取什么值时,此函数是正比例函数?
(2) m取什么值时,此函数是反比例函数?
(3) m取什么值时,此函数是二次函数?
解:(1)当m2-7=1且m+3≠0即m=± 2 2 时是正
比例函数。
(2)当m2-7=-1且m+3≠0即m=± 6 时是反比例函
即 y=3x2-6x+4
不是二次函数.
是二次函数.
二次项系数: 3 一次项系数: -6
(5)y= _1_ -x x²
常数项: 4
(2) y=x+
_1_Байду номын сангаасx
不是二次函数.
不是二次函数. (6) v=8π r² 是二次函数.
(3) s=3-2t²是二次函数.
二次项系数: 8π
二次项系数: -2 一次项系数: 0 常数项: 3
想一想
函数y ax2 bx c(其中a,b,c是常数), 当a,b,c满足什么条件时 (1)它是二次函数? (2)它是一次函数? (3)它是正比例函数 ?
解:由题意得
m2—2m-1=2 m+1 ≠0
m2 2m1
∴m=3
3.P4T1,P3练习
驶向胜利 的彼岸
现在我们学习过的函数有: 一次函数y=kx+b (k ≠0),其中包括正比例函数
y=kx(k≠0),
k
反比例函数y= x(k≠0) ,
二次函数y=ax2+bx+c(a≠0)。
可以发现,这些函数的名称都形象地反映了函 数表达式与自变量的关系。
(3 )等式的右边最高次数为 ,可以没有
一次项和常数项,但不能没有二2次项。
(4)x的取值范围是任意实数。
(5) 函数的右边是一个 整 式
二次函数的一般形式: y=ax2+bx+c (其中a、b、c是常数,a≠0)
二次函数的特殊形式:
当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
数。 (3)当m2-7=2且m+3≠0即m=3时是二次函数。
想一想:
例3、某宾馆有50个房间供游客住宿,当每个房间的 房价为每天180元时,房间会全部住满.当每 个房间每天的房价每增加10元时,就会有一个 房间空闲.宾馆需对游客居住的每个房间每天 支出20元的各种费用.根据规定,每个房间每 天的房价不得高于340元.设每个房间的房价 每天增加x元(x为10的整数倍). (1)设一天订住的房间数为y,直接写出y与 x的函数关系式及自变量x的取值范围; (2)设宾馆一天的利润为W元,求W与x的 函数关系式;
变 量 之 间函 的数 关 系
一次函数 反比例函数
y=kx+b (k≠0)
正比例函数
y=kx (k≠0) y= k (k≠0)
x
二次函数
节日的喷泉给人带来喜庆,你是否注意过水流所经 过的路线?它会与某种函数有联系吗?
运动场上飞舞的跳绳
奥运赛场腾空的篮球
合作交流
问题1: 正方体的六个面是全等的正方形,设
相同两顶点的对角线是同一条对 M
N
角线,所以多边形的对角线总数
d 1 nn 3
2
即 d 1 n2 3 n②
22
②式表示了多边形的 对角线数d与边数n之 间的关系,对于n的每一 个值,d都有唯一的对应 值,即d是n的函数。
观察:函数①②③有什么共同点?
y=6x2①
d
1 2
n2
3 2
n②
y 20 x2 40x 20③
(1) y=3(x-1)²+1
(2)
y=x+
_1_ x
(3) s=3-2t²
(4) y=(x+3)²-x²
(5)y= _x1_²-x
(6) v=8π r²
解: (1)y=3(x-1)²+1
(4) y=(x+3)²-x²=x2+6x+9-x2
=3(x2-2x+1)+1
=3x2-6x+3+1 即 y=6x+9
解:(1)由题意得:
y=50-
,且0≤x≤160,且x为10的正整数倍.
(2)w=(180-20+x)(50- ),
即w=-
x2+34x+8000;
驶向胜利的 彼岸
思考:2. 二次函数的一般式y= ax2+bx+c(a≠0)与一元二次方 程ax2+bx+c=0(a≠0)有什么 联系和区别?
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的. 区别:前者是函数.后者是方程.等式另一 边前者是y,后者是0
1、 说出下列二次函数的二次项系数、一次项系 数、常数项 (1) y=-x2+58x-112
(2)y=πx2 2、指出下列函数y=ax²+bx+c中的a、b、c
(1) y=-3x2-x-1 (2) y=5x2-6 (3) y=x(1+x)
例1、下列函数中,哪些是二次函数?若是, 分别指出二次项系数,一次项系数,常数项。
相关文档
最新文档