2020届大连市中考数学模拟试卷(有答案)(Word版)
2020年辽宁省大连市中考数学一模试卷解析版
中考数学一模试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.-6的绝对值等于( )A. 6B.C. -D. -62.如图是由4个完全相同的正方体组成的几何体,它的左视图是( )A.B.C.D.3.“天文单位”是天文学中测量距离的基本单位,1天文单位约等于149 600 000千米,149 600 000这个数用科学记数法表示为( )A. 1496×105B. 1496×108C. 1.496×105D. 1.496×1084.在平面直角坐标系中,将点P(2,6)向下平移3个单位长度,得到的点P'的坐标为( )A. (2,3)B. (2,9)C. (-1,6)D. (5,6)5.不等式6x+1≤2x-3的解集在数轴上表示正确的是( )A. B.C. D.6.既是轴对称图形又是中心对称图形的是( )A. 等边三角形B. 平行四边形C. 正五边形D. 正六边形7.计算(-3x)3的结果是( )A. -27x3B. -9x3C. 9x3D. 27x38.不透明袋子中装有红、绿小球各2个,除颜色外无其他差别.随机摸出一个小球后,不放回,再随机摸出一个,两次都摸到红球的概率为( )A. B. C. D.9.如图,将矩形纸片ABCD折叠,使点B落在AD上点F处,折痕为EC,若AB=3,B C=5,则AE的长为( )A. B. 1 C. D.10.如图,抛物线y=x2+2x-3与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB,BD与y轴相交于点E,过点E的直线FG平行于x轴,与抛物线交于F,G两点,则线段FG的长为( )A.1+ B. 3 C. 2 D. 2+二、填空题(本大题共6小题,共18.0分)11.如图,AB∥CD,BC∥DE,∠B=72°,则∠D=______°.12.某校随机抽查了10名参加学业水平考试学生的体育成绩,得到的结果如表:成绩(分)47484950人数(人)1234则这10名同学的体育成绩的平均数为______.13.如图,△ABC是等边三角形,中线BD,CE相交于点O,OB=2,则BC的长为______.14.我国元朝数学家朱世杰的数学著作《四元玉鉴》中有一个“二果问价”问题:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果、苦果的个数分别是x个和y个,根据题意,可列方程组为______.15.某飞机模型的机翼形状如图所示,其中AB∥DC,∠BAE=90°,根据图中的数据计算CD的长为______ cm(精确到1cm)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)16.“五一黄金周”期间李师傅一家开车去旅游,出发前查看了油箱里有50升油,下面的两幅图分别描述了行驶里程及耗油情况,行驶130公里时,油箱里剩油量为______升.三、解答题(本大题共10小题,共102.0分)17.计算:(3-)2++.18.计算:÷-.19.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF.求证:AE=DF.20.某校为了解七年级男生“跳绳”成绩的情况,随机选取该年级部分男生进行测试.以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人)频率优秀良好及格100.2不及格0.1根据以上信息,解答下列问题:(1)被测试男生中,成绩等级为“优秀”的男生人数占被测试男生总人数的百分比为______%,成绩等级为“及格”的男生人数为______人;(2)被测试男生的总人数为______人,成绩等级为“不及格”的男生人数______人;(3)若该校七年级共有570名男生,根据调查结果,估计该校七年级男生成绩等级为“良好”的学生人数.21.向阳村2017年的人均收入为30000元,2019年的人均收入为36300元.(1)求2017年到2019年该村人均收入的年平均增长率;(2)假设2020年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2020年该村的人均收入是多少元?22.如图,直线y=3x+6与反比例函数y=(x>0)的图象交于点A(1,m),与x轴交于点B,与y轴交于点C.(1)求m的值和反比例函数的表达式;(2)在y轴上有一动点P(0,n)(0<n<6),过点P作平行于x轴的直线,交反比例函数的图象于点D,交直线AB于点E,连接BD.若S△BDE=S△BOC,求n的值.23.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线AB、CD交于点E,AD交⊙O于点F.(1)求证:AC平分∠DAB;(2)若AF=7,DC=2,求AE的长.24.如图,△ABC中,∠C=90°,AB=5,tan A=2,点P从点A出发,以每秒1个单位长度的速度沿AB向点B运动,过点P作PD⊥AB交△ABC的直角边于点D,以PD 为边向PD右侧作正方形PDEF.设点P的运动时间为t秒,正方形PDEF与△ABC 的重叠部分的面积为S.(1)用含t的代数式表示线段PD的长;(2)求S与t的函数关系式,并直接写出自变量t的取值范围.25.阅读下面材料,完成(1)、(2)题.数学课上,老师出示了这样一道题:△ABC中,AB=AC,BC=kAB,DA⊥AC交BC于点D,点E在BC的延长线上,且∠B=∠BAD+∠E,AF平分∠DAE交BE于点F,CG⊥AF垂足为G,探究线段CG与AD的数量关系,并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现∠BAD与∠CAE相等.”小强:“通过观察和度量,发现图中还有其它相等线段.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段CG与AD的数量关系.”…老师:“此题还有其它解法,同学们课后可以继续探究,互相交流.”…(1)求证:∠BAD=∠EAC;(2)探究线段CG与AD的数量关系(用含k的代数式表示),并证明.26.定义:把函数C1:y=ax2-6ax+5a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴为直线x=h.例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=-(x-3)2-5.(1)填空:h的值为______(用含m的代数式表示);(2)若a=1,m=1,当t-1≤x≤t时,函数C2的最大值为y1,最小值为y2,且y1-y2=3,求t的值;(3)当m=2时,C2的图象与x轴相交于A、B两点(点A在点B的右侧),与y 轴相交于点D.把线段BD绕原点O顺时针旋转90°,得到它的对应线段B′D′.若线段B′D′与C2的图象有公共点,结合函数图象,求a的取值范围.答案和解析1.【答案】A【解析】解:根据绝对值的性质,|-6|=6,故选:A.根据绝对值的性质解答即可.本题考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.2.【答案】B【解析】解:从左边看是竖着叠放的2个正方形,故选:B.细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.本题考查了由三视图判断几何体和简单组合体的三视图,解题的关键是掌握几何体的三视图及空间想象能力.3.【答案】D【解析】解:149 600000这个数用科学记数法表示为1.496×108.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:点P(2,6)向下平移3个单位长度,得到的点P'的坐标为(2,6-3),即(2,3),故选:A.根据横坐标,右移加,左移减;纵坐标,上移加,下移减计算即可.此题主要考查了坐标与图形的变化--平移,关键是掌握点的坐标的变化规律.5.【答案】D【解析】解:6x+1≤2x-3,6x-2x≤-3-1,4x≤-4,x≤-1,故选:D.根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.根据轴对称图形与中心对称图形的概念求解.掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.【答案】A【解析】解:(-3x)3=-27x3,故选:A.根据积的乘方的性质进行计算即可.本题考查了积的乘方.解题的关键是掌握积的乘方的运算方法,要注意理符号的变化.8.【答案】B【解析】解:画树状图为:共有12种等可能的结果数,其中随机摸出一个,两次都摸到红球的结果数为2,所以随机摸出一个,两次都摸到红球的概率==.故选:B.画树状图展示所有12种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.本题考查了列表法与树状图法,利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.9.【答案】C【解析】解:∵将矩形纸片ABCD折叠,使点B落在AD上点F处,∴CF=BC=5,EF=BE,∵CD=AB=3,∠D=90°,∴DF=4,∴AF=5-4=1,设AE=x,∴BE=EF=3-x,∵∠A=90°,∴AE2+AF2=EF2,∴x2+12=(3-x)2,解得:x=,∴AE=,故选:C.根据折叠的性质得到CF=BC=5,EF=BE,根据勾股定理得到DF=4,求得AF=5-4=1,设AE=x,根据勾股定理列方程即可得到结论.本题考查了翻折变换的性质、矩形的性质、勾股定理、熟练掌握翻折变换的性质,由勾股定理得出方程是解决问题的关键.10.【答案】C【解析】解:∵抛物线y=x2+2x-3=(x+3)(x-1),∴令x=0,则y=-3,∴C(0,-3),令y=0,则(x+3)(x-1)=0,∴x=-3或1,∴B(1,0),∵抛物线y=x2+2x-3=(x+1)2-4,∴对称轴为x=-1,∵CD∥AB,∴C、D两点关于x=-1对称,∴D(-2,-3),设BD的解析式为y=mx+n(m≠0),则,∴,∴BD的解析式为y=x-1,∴E(0,-1),令y=-1,则y=x2+2x-3=-1,解得,x=-1,∴F(-1-,-1),G(-1+,-1),∴FG=((-1+)-((-1-)=2,故选:C.利用二次函数图象上点的坐标特征可求出点B,C,D的坐标,由点B,D的坐标,利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点E 的坐标,再利用二次函数图象上点的坐标特征可得出点F、G的横坐标,进而可求出线段FG的长.本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出点F、G的横坐标是解题的关键.11.【答案】108【解析】解:∵AB∥CD,∠B=72°,∴∠C=180°-∠B=108°,∵BC∥DE,∴∠D=∠C=108°.故答案为:108.先根据AB∥CD求出∠C的度数,再由BC∥DE即可求出∠D的度数.本题考查的是平行线的性质,即两直线平行,内错角相等,同旁内角互补.12.【答案】49【解析】解:平均数=,故答案为:49.结合表格根据平均数的概念求解即可.本题考查了平均数的知识,掌握平均数的概念是解答本题的关键.13.【答案】2【解析】解:∵BD和CE为△ABC的中线,∴点O为△ABC的重心,∴OD=OB=×2=1,∴BD=3,∵△ABC为等边三角形,∴BD⊥AC,∠BCD=60°,∴CD=BD=,∴BC=2CD=2.故答案为2.先判断点O为△ABC的重心,根据重心的性质得到OD=1,则BD=3,再根据等边三角形的性质得BD⊥AC,∠BCD=60°,然后利用含30度的直角三角形三边的关系求解.本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了等边三角形的性质.14.【答案】【解析】【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.设买甜果、苦果的个数分别是x个和y个,根据题意可得两个等量关系:甜果的个数+苦果的个数=1000,买甜果所需的钱数+买苦果的所需的钱数=999,依此列出相应的方程组,从而可以解答本题.【解答】解:设买甜果、苦果的个数分别是x个和y个,由题意可得,,故答案为.15.【答案】22【解析】解:作DM⊥AB于M,如图所示:在Rt△BCN中,BC=CN÷cos37°=50÷0.8=62.5(cm),∴BN=BC•sin37°=62.5×0.60≈37.5(cm),∴AN=AB+BN=34+37.5=71.5cm,∵∠DAE=45°,∠BAE=90°,∴∠DAM=45°,∴△ADM是等腰直角三角形,∴AM=DM=50cm,∴CD=MN=AN-AM=71.5-50≈22(cm);故答案为:22.作DM⊥AB于M,在Rt△BCN中,由三角函数求出BC≈62.5(cm),BN≈37.5(cm),求出AN的长,证出△ADM是等腰直角三角形,得出AM=DM=50cm,即可得出CD的长.本题考查了解直角三角形的应用、三角函数、等腰直角三角形的判定与性质;熟练掌握解直角三角形的方法,求出BN是解决问题的关键.16.【答案】37【解析】解:由图象可知:当用时1小时时,油量剩余45升,行驶了30公里;当用时在1-2.5小时之间时,可得:每小时行驶的里程为公里,每小时耗油量为升∴当用时1+1=2小时时,此时刚好行驶了130公里,此时油箱里的剩油量为:45-8×1=37升,故答案为:37.找准几个关键点进行分析解答即可.本题考查了函数的图象,解答本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.17.【答案】解:原式=9-6+2+4+2=11.【解析】先利用完全平方公式计算,然后化简后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【答案】解:原式=•-=-=.【解析】根据分式的混合运算顺序和运算法则计算可得.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则19.【答案】证明:∵AE⊥BC,DF⊥BC,∴∠DFC=∠AEB=90°,又∵CE=BF,∴CE-EF=BF-EF,即CF=BE,∵AB=CD,∴Rt△DFC≌Rt△AEB(HL),∴AE=DF.【解析】由AE⊥BC,DF⊥BC,得∠DFC=∠AEB=90°,又由CE=BF,可得CE-EF=BF-EF ,即CF=BE,AB=CD,所以△DFC≌△AEB,即可得出AE=DF本题主要考查了全等三角形的判定与性质,在两直角三角形中,当斜边和一条直角边对应相等时,两直角三角形全等.20.【答案】30 10 50 5【解析】解:(1)被测试男生总数有10÷0.2=50(人),成绩等级为“优秀”的男生人数有50×30%=15(人),成绩等级为“优秀”的男生人数占被测试男生总人数的百分比为×100%=30%;成绩等级为“及格”的男生人数为10人;故答案为:30,10;(2)根据(1)可得:被测试男生总数是50(人),成绩等级为“不及格”的男生人数有50×0.1=5(人),故答案为:50,5;(3)根据题意得:570×(1-30%-0.2-0.1)=228(人),答:该校七年级男生成绩等级为“良好”的学生人数有228人.(1)根据及格的人数和频率求出被测试男生的总人数,用总人数乘以成绩等级为“优秀”的男生人数所占的百分比,求出成绩等级为“优秀”的男生人数,再用成绩等级为“优秀”的男生人数除以总人数,即可得出成绩等级为“优秀”的男生人数占被测试男生总人数的百分比;根据及格的频数直接得出成绩等级为“及格”的男生人数;(2)根据(1)求出的总人数乘以成绩等级为“不及格”的男生人数的频率即可得出答案;(3)用该校七年级共有的人数乘以成绩等级为“良好”的学生人数所占的百分比即可.本题考查的是表格统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.表格统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【答案】解:(1)设2017年到2019年该村人均收入的年平均增长率为x,依题意,得:30000(1+x)2=36300,解得:x1=0.1=10%,x2=-2.1(不合题意,舍去).答:2017年到2019年该村人均收入的年平均增长率为10%.(2)36300×(1+10%)=39930(元).答:预测2020年该村的人均收入是39930元.【解析】(1)设2017年到2019年该村人均收入的年平均增长率为x,根据2017年及2019年该村人均收入,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据2020年该村的人均收入=2019年该村的人均收入×(1+增长率),即可求出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.【答案】解:(1)把A(1,m)代入y=3x+6得m=3+6=9,∴A(1,9);把A(1,9)代入y=得k=1×9=9,∴反比例函数解析式为y=(x>0;(2)当y=0时,3x+6=0,解得x=-2,则B(-2,0);当x=0时,y=3x+6=6,则C(0,6);∵DP∥x轴,∴D、E点的纵坐标都为n,∴E(,n),D(,n),∵S△BDE=S△BOC,∴×n×(-)=××2×6,整理得n2-6n-3=0,解得n1=3+2,n2=3-2,∵0<n<6,∴n的值不存在.【解析】(1)先把A(1,m)代入y=3x+6求出m得到A(1,9),然后把A点坐标代入y=中求出得到反比例函数解析式;(2)先利用一次函数解析式确定B(-2,0),C(0,6),再用n表示出E(,n),D(,n),根据三角形面积公式,利用S△BDE=S△BOC得到×n×(-)=××2×6,即方程得到n1=3+2,n2=3-2,然后利用0<n<6可判断n的值不存在.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也得考查了待定系数法求函数解析式.23.【答案】(1)证明:连接OC,∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AD,∴AD∥OC,∴∠CAD=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠CAD=∠CAO,即AC平分∠DAB;(2)如图,连接BC,CF,BF,∵AB为⊙O的直径,∴∠ACB=90°,∠AFB=90°,∴∠CAB+∠CBA=90°,∠DAC+∠DCA=90°,由(1)知,∠DAC=∠CAO,∴∠CBA=∠DCA,∵四边形ABCF是圆内接四边形,∴∠AFC+∠CBA=180°,∵∠AFC+∠DFC=180°,∴∠DFC=∠CBA=∠DCA,由(1)知,∠ADC=∠CDF=90°,∴△CDF∽△ADC,∴==,∴=,∴DF2+7DF=8,∴DF=1(负值舍去),∴AD=AF+DF=7+1=8,∴AC===6,∵∠DAC=∠CAB,∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴,∴AB=9,∵∠AFB=90°,∠ADC=90°,∴∠AFB=∠ADC,∴BF∥DE,∴=,=,∴AE=.【解析】(1)连接OC,根据切线的性质得到CD⊥OC,根据平行线的性质得到∠CAD=∠ACO,根据角平分线的定义即可得到结论;(2)如图,连接BC,CF,BF,根据圆周角定理得到∠ACB=90°,∠AFB=90°,根据相似三角形的性质得到=,求得DF=1(负值舍去),根据勾股定理得到= ==6,根据相似三角形的性质即可得到结论.本题考查了切线的性质,相似三角形的判定和性质,勾股定理,角平分线的定义,正确的作出辅助线是解题的关键.24.【答案】解:(1)如图1中,过点C作CH⊥AB于H.则∠AHC=∠CHB=90°,设AH=m .在Rt△ACH中,=tan A=2,∴CH═2AH=2m,∵∠A+∠ACH=90°,∠ACH+∠BCH=∠ACB=90°,∴∠BCH=∠A,在Rt△BCH中,=tan∠BCH=2,∴BH=2CH=4m,∴AH+HB=AB,∴5m=5,∴m=1,∵四边形PDEF是正方形,∠APD=∠DPF=90°,①当0<t≤1时,如图1中,=tan A=2,∴PD=2PA=2t.②当1<t<5时,如图2中,∵∠A+∠B=90°,∠B+∠PDB=90°,∴∠PDB=∠A,在Rt△DPB中,=tan∠BDP=2,∴PD=PB=(5-t)=-t+.(2)当点E落在BC上时,如图3中,由题意EF=PF=PD=2t,BF=2EF=4t,∵AP+PF+BF=AB,∴t+2t+4t=5,∴t=,①当0<t≤时,重叠部分是正方形PDEF,如图1中,S=(2t)2=4t2.②当<t≤1时,重叠部分是五边形PDMNF,如图4中,EF=PD=PF=2t,在Rt△BNF中,FN=BF=(5-3t),∴EN=EF-FN=2t-(5-3t)=t-,在Rt△EMN中,EM=2EN=7t-5t,∴S=S正方形PDEF-S△EMN=4t2-(7t-5)2=-t2+t-.③当1<t<5时,重叠部分是四边形PDNF,如图2中,S=S△BDP-S△BNF=×(5-t)×(5-t)-×(-)×(-)=t2-t+,综上所述,S=.【解析】(1)如图1中,过点C作CH⊥AB于H.则∠AHC=∠CHB=90°,设AH=m.分两种情形:①当0<t≤1时,如图1中.②当1<t<5时,如图2中,分别求解即可.(2)首先确定点E落在BC上的时间,分三种情形:①当0<t≤时,重叠部分是正方形PDEF,如图1中.②当<t≤1时,重叠部分是五边形PDMNF,如图4中.③当1<t<5时,重叠部分是四边形PDNF,如图2中,分别求解即可解决问题.本题属于几何变换综合题,考查了正方形的性质,多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.25.【答案】(1)证明:∵AB=AC,∴∠B=∠ACB,∵∠ACB是△ACE的外角,∴∠ACB=∠CAE+∠E,∵∠B=∠BAD+∠E,∴∠BAD=∠EAC;(2)解:CG=AD,理由如下:作AN⊥CD于N,DH⊥AG于H,设∠BAD=α,则∠EAC=α,∵AF平分∠DAE,∴∠DAF=∠EAF=∠DAE=(∠DAC+∠EAC)=45°+α,∵AB=AC,∴∠B=∠ACB=(180°-∠BAC)=(90°-∠BAD)=45°-α,∴∠ADF=∠B+∠BAD=45°+α,∴∠ADF=∠DAF,∴FA=FD,∵∠DAC=90°,∴∠FAC=90°-∠DAF,∠FCA=90°-∠ADF,∴∠FAC=∠FCA,∴FA=FC,∴DF=CF,在△DFH和△CFG中,,∴△DFH≌△CFG(AAS),∴CG=DH,∵AB=AC,AN⊥BC,∴BN=BC=AB,∠ADH=90°-∠DAF=45°-α,∴∠ADH=∠B,又∠AHD=∠ANB,∴△ADH∽△ABN,∴==,∴=,即CG=AD.【解析】(1)根据等腰三角形的性质得到∠B=∠ACB,根据三角形的外角性质、结合题意证明即可;(2)作AN⊥CD于N,DH⊥AG于H,证明△DFH≌△CFG,根据全等三角形的性质得到CG=DH,证明△ADH∽△ABN,根据相似三角形的性质列出比例式,计算得到答案.本题考查的是相似三角形的判定和性质、等腰三角形的性质、全等三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.26.【答案】2m-3【解析】解:(1)y=ax2-6ax+5a,令y=0,则x=5或1,函数对称轴为直线x=3,由中点公式得:h+3=2m,故h=2m-3,故答案为:2m-3;(2)a=1,C1:y=x2-6x+5=(x-3)2-4,顶点为(3,-4),m=1时,C2的顶点为(-1,4),C2:y=-(x+1)2+4=-x2-2x+3,①当t≤-1时,y随x的增大而增大,y1-y2=-t2-2t+3-[-(t-1)2-2(t-1)+3]=3,解得:t=-2;②当t-1<-1<t时,即-1<t<0时,分两种情况:(Ⅰ)当-1-(t-1)≥t-(-1)时,即-1<t≤-时,y1-y2=[-(t-1)2-2(t-1)+3]-t2=3,解得:t=(舍去)(Ⅱ)当-1-(t-1)<t-(-1)时,即-<t<0时,y1-y2=3=4-(t2-2t+3)=t2+2t+1,解得:t=-1(舍去);③当t-1≥-1时,即t≥0时,y随x的增大而减小,y1-y2=[-(t-1)2-2(t-1)+3]-[-t2-2t+3]=3,解得:t=1;综上,t=-2或t=1;(3)当m=2时,C1:y=ax2-6ax+5a=a(x-3)2-4a,∴C2的表达式为:y=-a(x-1)2+4a,当y=0时,x=-1或3,当x=0时,y=3a,∴点A、B、D的坐标分别为:(3,0)、(-1,0)、(0,3a);∵线段BD绕原点O顺时针旋转90°,∴点B′的坐标为(3,0),点D′的坐标为(3a,0).①当a>0时,分两种情况:(Ⅰ)当点D′在点A的右侧(含点A)时,线段B′D′与C2的图象有公共点,如图1,∴3a≥3,解得a≥1;(Ⅱ)当点D′在点A的左侧,且点D在点B′的下方(含点B′)时,线段B′D′与C2的图象有公共点,如图2,∴3a≤1,∴0<a≤;②当a<0时,点D′在点B的左侧(含点B)时,线段B′D′与C2的图象有公共点,如图3,∴3a≤-1,解得:a≤;综上,a≤-或0<a≤或a≥1;(1)y=ax2-6ax+5a,令y=0,则x=5或1,函数对称轴为直线x=3,由中点公式得:h+3=2m ,即可求解;(2)分t≤-1、-1<t<0、t≥0三种情况,分别求解即可;(3)分a>0、a<0两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数的性质、解不等式等,本题解题的关键在于正确地进行分类讨论,其中(2)和(3)都要注意分类求解,避免遗漏.。
2020届辽宁省大连市中考数学一模试卷(有解析)
2020届辽宁省大连市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中最小的数是()A. −3B. 3C. 0D. −132.下列几何体中,主视图是长方形的是()A. B.C. D.3.点P的坐标是(−2,a2+1),则点P一定在第()象限.A. 一B. 二C. 三D. 四4.经专家测算,北京的4G网络速度基本上能够保证在80 000 000bps左右,最高峰值时曾达到106 000 000bps,将106 000 000用科学记数法表示应为()A. 106×106B. 1.06×106C. 1.06×108D. 1.06×1095.如图,AB//CD,点E在BC上,且CD=CE,∠D=68°,则∠B的度数为()A. 22°B. 32°C. 44°D. 68°6.下列运算不正确的是()A. x3+x3=x6B. x6÷x3=x3C. x2⋅x3=x5D. (−x3)4=x127.如图,AC是▱ABCD的对角线,点E是AB的延长线上的一点,连接DE,分别交BC,AC于点F,G,则下列式子一定正确的是()A. CFAD =CGACB. ABAE =CGAGC. EFFD =BFBCD. EBCD =BFFD8. 5.随机掷两枚硬币,落地后朝上一面是一正一反的概率是A. B. C. D.9.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x−m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为−3,则点D的横坐标最大值为()A. 13B. 7C. 5D. 810.如图,已知AB是的切线,点A为切点,连接OB交于点C,,点D是上一点,连接,.则等于()A. 76°B.C.D.二、填空题(本大题共6小题,共18.0分)11.分解因式:2xy2+4xy+2x=______.12.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的机会______ 摸到J,Q,K的机会(填“<,>或=”)13.n边形的每个外角都等于15°,则n=______ .14.小明和小刚每天坚持跑步,小明每秒跑6米,小刚每秒跑4米,如果他们同时从相距2000米的两地相向起跑,____________秒后两人相遇.15.如图,BD是△ABC的角平分线,AE⊥BD,垂足为F,且交线段BC于点E,连结DE,若∠C=50°,设∠ABC=x°,∠CDE=y°,则y关于x的函数表达式为______.16.如图,△ABC中,DE//FG//BC,且S△ADE=S梯形DFGE=S梯形FBCG,DE:FG:BC=______ .三、计算题(本大题共1小题,共6.0分)17.(1)计算:|−5|−2cos60°−√9+(12)−1(2)解分式方程:32x−4−xx−2=12.四、解答题(本大题共9小题,共74.0分)18.已知2a−1的平方根是±3,b−3的立方根是2,求√5a+b的值.19.如图,等腰Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连接AE,作AF⊥AE且AF=AE.(1)如图1,过F作FG⊥AC交AC于G点,求证:△AGF≌△ECA.(2)如图2,连接BF交AC于D,若AD=3CD,求证:E点为BC中点.20.“元旦晚会”是重庆一中庆祝节日的校级传统活动,初三年级某班班委为了更好的组织这次晚会,调查了同学们最期盼的节日类型(全班每位同学都必须且只能从曲艺类、语言类、歌曲类、舞蹈类这四类节目中选一类),并根据统计结果绘制了如图1和如图2两幅不完整的统计图,请根据图中提供的信息完成以下问题:(1)该班共有学生______人,扇形统计图中语言类对应的圆心角是______度,并补全条形统计图.(2)已知最期盼语言类的学生中,有4人擅长主持,其中有2名男生和2名女生,班委决定从这4名同学中随机选择2名担当本次元且晚会的主持人,请利用画树状图或列表的方法求出恰好选中1名男生和1名女生的概率.21.2013年10月6日,台风“菲特“影响宁波,11个县(市)区受到了不同程度的影响,现有一批救灾物资n件要运往三个县《市)区A,B,C,三地(三地不一定都送),要求运往C地的件数是运A地件数的2倍,运往A地运费为30元/件.运往B地运费为12元/件.运往C地运费为18元/件.设把x件物资运往A地(1)当n=500时.根据信息填好下表:A地B地C地合计物资件数n(件)X______ 2x500运费(元)30x______ ______ ______(2)在(1)的条件一下,运往A地的件数不少于100件,且总费用不超过为9060元,则有哪几种运输方案?(3)若总费用为7128元,求n的最小值.22. 温度与我们的生活息息相关,如图是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(℉).设摄氏温度为x(℃),华氏温度为y(℉),则y是x的一次函数,通过观察我们发现,温度计上的摄氏温度为0℃时,华氏温度为32℉;摄氏温度为−20℃时,华氏温度为−4℉请根据以上信息,解答下列问题(1)仔细观察图中数据,试求出y与x的函数关系式;(2)当摄氏温度为−5℃时,华氏温度为多少?(3)当华氏温度为59℉时,摄氏温度为多少?23. 如图,在△ABC中,以AB为直径的⊙O交BC边于点D,过点D作DE⊥AC于点E,交⊙O于点F,连结AD,AF.(1)求证:∠BAF=∠DAC.(2)当AF=8,AD=6,CD=3时,求⊙O的直径.24. 如图1,菱形ABCD是边长为2,∠BAD=60°,对角线AC、BD交于点O.(1)操作发现:小芳同学将△CBD绕点O旋转得△CEF,当CF落在AD上时(如图2),连接ED,请直接写出ED与AC的位置关系和数量关系;(2)问题解决:小芳同学继续旋转△CEF(A,C不重合),如图3,连接ED、AC,她认为(1)中的结论仍然成立.你同意吗?说明理由.(3)深入思考:若直线ED与直线AC的交点为H,请直接写出BH的最大值.25. 如图在△CDE中,∠DCE=90°,DC=CE,DA⊥AB于A,EB⊥AB于B,试判断AB与AD,BE之间的数量关系,并证明.26. 我们定义:把y2=ax叫做函数y=ax2的伴随函数.比如:y2=x就是y=x2的伴随函数.数形结合是学习函数的一种重要方法,对于二次函数y=ax2(a≠0的常数),若点(m,n)在函数y=ax2的图象上,则点(−m,n)也在其图象上,即从数的角度可以知道它的图象关于y轴对称.解答下列问题:(1)y2=x的图象关于______ 轴对称;(2)①直接写出函数y=4x2的伴随函数的表达式______ ;②在如图①所示的平面直角坐标系中画y=4x2的伴随函数的大致图象;(3)若直线y=kx−3k(k≠0)与y=4x2的伴随函数图象交于A、B两点(点A在点B的上方),连接OA、OB,且△ABO的面积为12,求k的值;(4)若直线AB(AB不平行于y轴)与y=ax2(a>0的常数)的伴随函数图象交于A、B两点(点A、B分别在第一、四象限),且∠AOB=90°,试AB两点的纵坐标的积是否为常数?如果是,请给予证明;如果不是,请说明理由.【答案与解析】1.答案:A解析:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.在数轴上表示出各数,根据数轴的特点即可得出结论.解:如图所示,,由图可知,最小的数是−3.故选A.2.答案:A解析:解:圆柱体的主视图是长方形,圆锥的主视图是等腰三角形,球的主视图是圆形,四面体的主视图是三角形,故选:A.根据各个几何体的主视图的形状进行判断即可.本题考查简单几何体的三视图,主视图就是从正面看该物体所得到的图形.3.答案:B解析:解:−2<0,a2+1>0,的坐标是(−2,a2+1),则点P一定在第二象限,故选:B.根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.本题考查了点的坐标,第二象限内点的横坐标小于零,纵坐标大于零.4.答案:C解析:解:将106 000 000用科学记数法表示为1.06×108.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.答案:C解析:先根据等腰三角形的性质及三角形内角和定理求出∠C的度数,再由平行线的性质即可求出∠B 的度数.解:∵CD=CE,∠D=68°,∴∠CED=∠D=68°,∴∠C=180°−∠CED−∠D=180°−68°−68°=44°.∵AB//CD,∴∠B=∠C=44°.故选C.6.答案:A解析:解:A、x3+x3=2x3,本选项错误;B、x6÷x3=x3,本选项正确;C、x2⋅x3=x5,本选项正确;D、(−x3)4=x12,本选项正确;故选:A.结合选项分别进行同底数幂的除法、合并同类项、同底数幂的乘法和积的乘方等运算,然后选择正确选项.本题主要考查了同底数幂的除法、合并同类项、同底数幂的乘法和积的乘方等运算,解题的关键是熟记同底数幂的除法、合并同类项、同底数幂的乘法和积的乘方等运算法则.7.答案:B解析:解:∵四边形ABCD是平行四边形,∴AD//BC,AB=CD,CD//AB,∴△CFG∽△ADG,∴CFAD =CGAG,故A不正确;∵CD//AE,∴△CDG∽△AEG,∴CDAE =CGAG,∵AB=DC,∴ABAE =CGAG,故B正确;∵△BEF∽△CDF,∴EFDF =BFCF=BECD,故C,D不正确;故选:B.根据平行四边形的性质得到AD//BC,AB=CD,CD//AB,根据相似三角形的性质即可得到结论.本题考查了相似三角形的判定和性质,平行四边形的性质,正确的识别图形是解题的关键.8.答案:B解析:解析:朝上一面发生的结果总数有4种,即(正,正)、(反,反)(正,反)、(反,正),所以朝上一面恰好出现一正一反的概率是24=12.故选择B9.答案:D解析:解:当点C横坐标为−3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D(8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8.故选:D.当C点横坐标最小时,抛物线顶点必为A(1,4),根据此时抛物线的对称轴,可判断出CD间的距离;。
2020年辽宁省大连市中山区中考数学模拟试卷((有答案))
2020年辽宁省大连市中山区中考数学模拟试卷一.选择题(共8小题,满分24分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤02.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a34.计算:=()A.1B.2C.1+D.5.已知等腰三角形的一个内角为40°,则它的另外两个角的度数为()A.70°,70°B.40°,70°C.100°,40°D.70°,70°或100°,406.面试时,某应聘者的学历、经验和工作态度的得分分别是70分、80分、60分,若依次按照1:2:2的比例确定成绩,则该应聘者的最终成绩是()A.60分B.70分C.80分D.90分7.一个不透明的袋子里装有质地、大小都相同的2个红球和1个黑球,随机从中摸出一球,放回充分搅匀后再随机摸出一球,则两次都摸到黑球的概率是()A.B.C.D.8.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°,下列结论:①∠1=∠3;②BD+DH =AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是()A.①②③B.③④C.①②④D.①②③④二.填空题(共8小题,满分24分,每小题3分)9.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为.10.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为11.如果点(m,﹣2m)在双曲线上,那么双曲线在象限.12.如图,在圆O中有折线ABCO,BC=6,CO=4,∠B=∠C=60°,则弦AB的长为.13.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0),若3<m<4,则a的取值范围是.14.如图,在一笔直的东西走向的沿湖道路上有A,B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km,则BC=km.15.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于.16.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是.三.解答题(共4小题,满分39分)17.(9分)计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.(9分)解方程:x2﹣5x+3=0.19.(9分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.求证:AE=CF.20.(12分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?四.解答题(共3小题,满分28分)21.(9分)松滋临港贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.22.(9分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C.(1)求直线AB的表达式;(2)求AC:CB的值.23.(10分)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠PCA=∠B.(1)求证:PC与⊙O相切;(2)若PA=4,⊙O的半径为6,求BC的长.五.解答题(共3小题,满分35分)24.(11分)将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).(1)如果M为CD边的中点,求证:DE:DM:EM=3:4:5;(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否有与点M的位置关系?若有关,请把△CMG的周长用含CM的长x的代数式表示;若无关,请说明理由.25.(12分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,若tan∠AEF=(1)求证:△AEF∽△BGE;(2)求△EBG的周长.26.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.2020年辽宁省大连市中山区中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤0【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a3【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.【解答】解:A、a3+a2,无法计算,故此选项错误;B、a3•a2=a5,正确;C、(2a2)3=8a6,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.4.计算:=()A.1B.2C.1+D.【分析】按同分母分式的减法法则计算即可.【解答】解:法一、===1.故选:A.法二、=+﹣=1.故选:A.【点评】本题考查了分式的减法.掌握同分母分式的减法法则是解决本题的关键.5.已知等腰三角形的一个内角为40°,则它的另外两个角的度数为()A.70°,70°B.40°,70°C.100°,40°D.70°,70°或100°,40【分析】已知给出了一个内角是40°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还需用三角形内角和定理去验证每种情况是不是都成立.【解答】解:分情况讨论:(1)若等腰三角形的顶角为40°时,另外两个内角=(180°﹣40°)÷2=70°;(2)若等腰三角形的底角为40°时,它的另外一个底角为40°,顶角为180°﹣40°﹣40°=100°.故选:D.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.6.面试时,某应聘者的学历、经验和工作态度的得分分别是70分、80分、60分,若依次按照1:2:2的比例确定成绩,则该应聘者的最终成绩是()A.60分B.70分C.80分D.90分【分析】根据题目中的数据和加权平均数的计算方法可以解答本题.【解答】解:70×+80×+60×=14+32+24=70(分),故选:B.【点评】本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法.7.一个不透明的袋子里装有质地、大小都相同的2个红球和1个黑球,随机从中摸出一球,放回充分搅匀后再随机摸出一球,则两次都摸到黑球的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到黑球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次都摸到黑球的有1种情况,∴两次都摸到黑球的概率是,故选:C.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.8.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°,下列结论:①∠1=∠3;②BD+DH =AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是()A.①②③B.③④C.①②④D.①②③④【分析】根据角平分线、高、等腰直角三角形的性质依次判断即可得出答案.【解答】解:①∵∠1=∠2=22.5°,又∵AD是高,∴∠2+∠C=∠3+∠C,∴∠1=∠3,②∵∠1=∠2=22.5°,∴∠ABD=∠BAD,∴AD=BD,又∵∠2=∠3,∠ADB=∠ADC,∴△BDH≌△ADC,∴DH=CD,∵AB=BC,∴BD+DH=AB,③无法证明,④可以证明,故选:C.【点评】本题主要考查了角平分线、高、等腰直角三角形的性质,比较综合,难度适中.二.填空题(共8小题,满分24分,每小题3分)9.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为﹣5.【分析】根据题意得出x+2+2x+10=﹣2+(﹣1)+(2x+10),进而求出答案.【解答】解:由题意可得:x+2+2x+10=﹣2+(﹣1)+(2x+10),整理得:3x+12=2x+7,解得:x=﹣5,故答案为:﹣5.【点评】此题主要考查了有理数的加法,正确得出关于x的等式是解题关键.10.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为x>﹣1【分析】根据题意判断出6﹣m的正负,求出不等式的解集即可.【解答】解:∵m>6,∴6﹣m<0,不等式解集为x>﹣1,故答案为:x>﹣1【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.11.如果点(m,﹣2m)在双曲线上,那么双曲线在第二、四象限.【分析】根据反比例函数图象上的点的坐标特征:图象上的点(x,y)的横纵坐标的积是定值k,即xy =k可得k=﹣2m2<0,根据反比例函数的性质可得答案.【解答】解:∵点(m,﹣2m)在双曲线(k≠0)上,∴m•(﹣2m)=k,解得:k=﹣2m2,∵﹣2m2<0,∴双曲线在第二、四象限.故答案为:第二、四.【点评】此题主要考查了反比例函数图象上的点的坐标特征,以及反比例函数的性质,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.如图,在圆O中有折线ABCO,BC=6,CO=4,∠B=∠C=60°,则弦AB的长为10.【分析】作OD⊥AB垂足为D,利用垂径定理得AB=2BD,作OE∥AB交BC于E,构造等边△COE,过E点作EF⊥AB,垂足为F,得Rt△BEF,而∠B=60°,可得BF=BE,再根据BD=BF+DF求BD.【解答】解:如图,作OD⊥AB垂足为D,OE∥AB交BC于E,过E点作EF⊥AB,垂足为F,∵OE∥AB,∴△COE为等边三角形,∴OE=CE=OC=4,∵OD⊥AB,EF⊥AB,∴DF=OE=4,BE=BC﹣CE=2,在Rt△BEF中,∵∠B=60°,∴BF=BE=1,∴BD=BF+DF=1+4=5,由垂径定理,得AB=2BD=10.故答案为:10【点评】本题考查了垂径定理,等边三角形的性质.关键是通过作辅助线,得出等边三角形,30°的直角三角形,利用垂径定理求AB.13.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0),若3<m<4,则a的取值范围是<a<或﹣4<a<﹣3.【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且3<m<4,∴当a>0时,3<<4,解得<a<;当a<0时,3<﹣a<4,解得﹣4<a<﹣3.故答案为:<a<或﹣4<a<﹣3.【点评】本题考查的是抛物线与x轴的交点,关键是在解答此题时要注意进行分类讨论,不要漏解.14.如图,在一笔直的东西走向的沿湖道路上有A,B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km,则BC=2km.【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD的长,然后在Rt△BCD中求得BC 的长.【解答】解:作CD⊥AB于点B.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•sin∠CAD=4×=2(km),∵Rt△BCD中,∠CBD=90°,∴BC=CD=2(km),故答案是:2.【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得BC的长是关键.15.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于8π.【分析】圆锥的侧面积就等于母线长乘底面周长的一半.依此公式计算即可.【解答】解:侧面积=4×4π÷2=8π.故答案为8π.【点评】本题主要考查了圆锥的计算,正确理解圆锥的侧面积的计算可以转化为扇形的面积的计算,理解圆锥与展开图之间的关系.16.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是k<0.【分析】根据一次函数的图象与系数的关系,利用一次函数的性质可知:当一次函数的系数小于零时,一次函数的函数值y随着自变量x的增大而减小,即可得到答案.【解答】解:∵一次函数y=kx﹣2,y随x的增大而减小,所以一次函数的系数k<0,故答案为:k<0.【点评】此题主要考查了一次函数图象与系数的关系,正确记忆一次函数的性质是解题关键.三.解答题(共4小题,满分39分)17.(9分)计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.(9分)解方程:x2﹣5x+3=0.【分析】找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【解答】解:这里a=1,b=﹣5,c=3,∵△=25﹣12=13,∴x=,则x1=,x2=.【点评】此题考查了解一元二次方程﹣公式法,利用此方法解方程时,首先将方程整理为一般形式,找出a,b及c的值,然后当根的判别式大于等于0时,代入求根公式即可求出解.19.(9分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.求证:AE=CF.【分析】由AE与CF平行,得到一对内错角相等,可得出领补角相等,由四边形ABCD为平行四边形,得到AD与BC平行且相等,利用AAS得到三角形ADE与三角形CBF全等,利用全等三角形的对应边相等即可得证.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠ADE=∠CBF,∵AE∥CF,∴∠AEF=∠CFE,∴∠AED=∠CFB,∴△ADE≌△CBF,∴AE=CF.【点评】此题考查了平行四边形的性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.20.(12分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?【分析】(1)根据A等人数为10人,占扇形图的20%,求出总人数,可以得出D的人数,即可画出条形统计图;(2)根据D的人数即可得出所占百分比,进而得出所在的扇形的圆心角度数;(3)利用总体人数与A组所占比例即可得出A级学生人数.【解答】解:(1)总人数是:10÷20%=50,则D级的人数是:50﹣10﹣23﹣12=5.条形统计图补充如下:;(2)D级的学生人数占全班学生人数的百分比是:1﹣46%﹣20%﹣24%=10%;D级所在的扇形的圆心角度数是360×10%=36°;(3)∵A级所占的百分比为20%,∴A级的人数为:600×20%=120(人).【点评】此题主要考查了条形图的应用以及用样本估计总体和扇形图统计图的应用,利用图形获取正确信息以及扇形图与条形图相结合是解决问题的关键.四.解答题(共3小题,满分28分)21.(9分)松滋临港贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.【分析】(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据工作时间=工作总量÷工作效率结合甲车主单独完成运输任务比乙车主单独完成任务要多用10天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据工作时间=工作总量÷工作效率及总费用=每日所需费用×运输天数,分别求出甲车主单独完成、乙车主单独完成及甲、乙两车主合作完成所需时间及总费用,比较后即可得出结论.【解答】解:(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据题意得:﹣=10,解得:x=16,经检验,x=16是原方程的解,且符合题意,∴1.5x=24.答:甲车主每天能运输16吨货物,乙车主每天能运输24吨货物.(2)甲车主单独完成所需时间为480÷16=30(天),乙车主单独完成所需时间为480÷24=20(天),甲、乙两车主合作完成所需时间为480÷(16+24)=12(天),甲车主单独完成所需费用为30×(800+200)=30000(元),乙车主单独完成所需费用为20×(1200+200)=28000(元),甲、乙两车主合作完成所需费用为12×(800+1200+200)=26400(元).∵30000>28000>26400,30>20>12,∴该公司选择由两车主合作完成既省钱又省时.【点评】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)分别求出三种外包方案所需时间及总费用.22.(9分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C.(1)求直线AB的表达式;(2)求AC:CB的值.【分析】(1)根据反比例函数的解析式可得m和n的值,利用待定系数法求一次函数的表达式;(2)作辅助线,构建平行线,根据平行线分线段成比例定理可得结论.【解答】解:(1)∵点A(m,6)和点B(﹣3,n)在双曲线,∴6m=6,﹣3n=6,m=1,n=﹣2.∴点A(1,6),点B(﹣3,﹣2).…(2分)将点A、B代入直线y=kx+b,得,解得…(4分)∴直线AB的表达式为:y=2x+4.…(5分)(2)分别过点A、B作AM⊥y轴,BN⊥y轴,垂足分别为点M、N.…(6分)则∠AMO=∠BNO=90°,AM=1,BN=3,…(7分)∴AM∥BN,…(8分)∴.…(10分)【点评】本题是一次函数和反比例函数的综合问题,考查了反比例函数和一次函数的交点问题,将点的坐标代入解析式中可得交点坐标,对于交点问题:可利用方程组的解来求两函数的交点坐标;本题还考查了平行线分线段成比例定理.23.(10分)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠PCA=∠B.(1)求证:PC与⊙O相切;(2)若PA=4,⊙O的半径为6,求BC的长.【分析】(1)连接OC,如图,利用圆周角定理得∠2+∠3=90°,再证明∠1=∠3,则∠1+∠2=90°,然后根据切线的判定定理可得到PC与⊙O相切;(2)先利用勾股定理得到PC=8,再证明△PAC∽△PCB,利用相似比得=,然后在Rt△ABC中,利用勾股定理得到BC2+BC2=122,从而解BC的方程即可.【解答】(1)证明:连接OC,如图,∵AB为⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵∠1=∠B,∠3=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠PCO=90°,∴OC⊥PC,∴PC与⊙O相切;(2)解:在Rt△POC中,PC===8,∵∠CPA=∠BPC,∠1=∠B,∴△PAC∽△PCB,∴===,在Rt△ABC中,∵AC2+BC2=AB2,∴BC2+BC2=122,∴BC=.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.五.解答题(共3小题,满分35分)24.(11分)将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).(1)如果M为CD边的中点,求证:DE:DM:EM=3:4:5;(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否有与点M的位置关系?若有关,请把△CMG的周长用含CM的长x的代数式表示;若无关,请说明理由.【分析】(1)正方形的证明题有时用计算方法证明比几何方法简单,此题设正方形边长为a,DE为x,则根据折叠知道DM=,EM=EA=a﹣x,然后在Rt△DEM中就可以求出x,这样DE,DN,EM就都用a表示了,就可以求出它们的比值了;(2)△CMG的周长与点M的位置无关.设CM=x,DE=y,则DM=2a﹣x,EM=2a﹣y,然后利用正方形的性质和折叠可以证明△DEM∽△CMG,利用相似三角形的对应边成比例可以把CG,MG分别用x,y分别表示,△CMG的周长也用x,y表示,然后在Rt△DEM中根据勾股定理可以得到4ax﹣x2=4ay,结合△CMG的周长,就可以判断△CMG的周长与点M的位置无关.【解答】(1)证明:设正方形边长为a,DE为x,则DM=,EM=EA=a﹣x在Rt△DEM中,∠D=90°,∴DE2+DM2=EM2x2+()2=(a﹣x)2x=EM=DE:DM:EM=3:4:5;(2)解:△CMG的周长与点M的位置无关.证明:设CM=x,DE=y,则DM=2a﹣x,EM=2a﹣y,∵∠EMG=90°,∴∠DME+∠CMG=90度.∵∠DME+∠DEM=90°,∴∠DEM=∠CMG,又∵∠D=∠C=90°△DEM∽△CMG,∴即∴CG=△CMG的周长为CM+CG+MG=在Rt△DEM中,DM2+DE2=EM2即(2a﹣x)2+y2=(2a﹣y)2整理得4ax﹣x2=4ay∴CM+MG+CG===4a.所以△CMG的周长为4a,与点M的位置无关.【点评】正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用.25.(12分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,若tan∠AEF=(1)求证:△AEF∽△BGE;(2)求△EBG的周长.【分析】(1)根据同交的余角相等证明∠AFE=∠BEG,则可以根据两角对应相等的两个三角形相似即可证得;(2)根据tan∠AEF=可得AF:AE=3:4,则设AF=3x,AE=4x,则EF=DF=5x,根据AD=6即可求得x的值.则BE即可求得,然后根据△AEF∽△BGE,求得△EBG的边长,从而求解.【解答】解:(1)由折叠可知:∠FEQ=∠D=90°,EF=DF∵∠AEF+∠AFE=90°,∠AEF+∠BEG=90°∴∠AFE=∠BEG,又∵∠A=∠B=90°,∴△AEF∽△BGE;(2)在Rt△AEF中,tan∠AEF=∴AF:AE=3:4设AF=3x,AE=4x,则EF=DF=5x∴3x+5x=6∴∴AF=,AE=3,EF=.∵△AEF∽△BGE,∴即,∴BG=4,GE=5.∴△EBG的周长为3+4+5=12.【点评】本题考查了图形的折叠与相似三角形的判定与性质,以及三角函数的定义,正确求得x的值是本题的关键.26.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P 的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;△APC(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【解答】解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∴S△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,∴C=AM+MN+AN=AC+AN=3+.△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.【点评】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S=﹣x2﹣x+3;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位△APC置.。
大连市2020年中考数学模拟试题含参考答案与评分标准doc初中数学
8.图3中圆柱的主视图面积为48,那么该圆柱的侧面积为( )
A.48 B.48πC.96 D.96π
二、填空题(此题共有9小题,每题3分,共27分)
9.运算 的结果是____________.
10.化简 的结果是___________.
11.化简 的结果是_____________________.
三、解答题(此题共有3小题,18题、19题、20题各12分,共36分)
18.:如图7,AB∥CD,∠1 =∠2.
求证:△ABE≌△CDF(要求:写出证明过程中的要紧依照)
19.某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行〝柑橘损坏率〞统计,并绘制成如图8所示的统计图,依照统计图提供的信息解决下面咨询题:
∴ ,
∴ ,……………………………………………………………………3分
∴ ⊙O的切线.…………………………………………………………5分
(2)连接 .
∵OB=OC,OC=2,
∴OB=2,……………………………………………………………………6分
在Rt△ABO中,
∵tan∠BOC= ,……………………………………………………………7分
19.解:〔1〕0.1,………………………………………………………………2分
0.9;………………………………………………………………………………4分
〔2〕9000;……………………………………………………………………………6分
(3)设每千克柑橘定价为 元.……………………………………………………7分
∴ ,……………………………………………………………4分
辽宁大连2020年中考数学模拟试卷 二(含答案)(含答案)
辽宁大连2020年中考数学模拟试卷二一、选择题1.如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A.m+n<0B.﹣m<﹣nC.|m|﹣|n|>0D.2+m<2+n2.如图,倒扣在台面上的一次性纸杯的俯视图是( )A. B. C. D.3.目前我国年可利用的淡水资源总量为27500亿立方米,人均占有量居全世界第110位,因此我们要节约用水,27500亿这个数用科学记数法表示为( )A.2.75×1013B.2.75×1012C.2.75×1011D.2.75×10104.如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(-2,2)5.如图,直线l经过二、三、四象限,l的解析式是y=(m﹣2)x﹣2,则m的取值范围在数轴上表示为()A. B.C. D.6.如图,不是中心对称图形的是( )A. B. C. D.7.下列计算正确的是( )A.(a 3)2=a 5B.a 2+a 5=a 7C.(ab)3=ab 3D.a 2•a 5=a 78.连掷两次骰子,它们的点数都是4的概率是( ) A.61 B.41 C.161 D.361 9.将矩形ABCD 按如图所示的方式折叠,BE ,EG ,FG 为折痕,若顶点A ,C ,D 都落在点O 处,且点B ,O ,G 在同一条直线上,同时点E ,O ,F 在另一条直线上,则的值为( )A .B .C .D .二、填空题 10.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在D ′、C ′的位置,并利用量角器量得∠EFB=65°,则∠AED ′等于 度.11.若甲组数据1,2,3,4,5的方差是2甲s ,乙组数据6,7,8,9,10的方差是2乙s ,则2甲s ____2乙s .(填“ ”、“<”或“=”)12.若等腰三角形的一个内角为50°,则它的顶角为 。
2020届辽宁省大连市中考数学模拟试题(有答案)(word版)(已审阅)
大连市初中毕业升学考试数学一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确) 1.-3的相反数是( ) A.31 B.31- C.3 D.-3 2.在平面直角坐标系中,点(1,5)所在的象限是( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 3.方程2x+3=7的解A. x=5B. x=4C. x=3.5D. x=24.如图,直线AB ∥CD ,AE 平分∠CAB ,AE 与CD 相交于点E , ∠ACD=40°则∠BAE 的度数是( )A. 40°B. 70°C. 80°D. 140°5.不等式组⎩⎨⎧++2322x x xx <>的解集是( )A. x >-2B. x <1C. -1<x <2D.-2<x <16.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,、2、3、4,随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球的标号的积小于4的概率是( ) A.61 B. 125 C. 31 D. 21 7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长,若月平均增长率为x ,则该文具店五月份销售铅笔的支数( )A. 100(1+x )B. 100(1+x )2C. 100(1+x 2) D. 100(1+2x ) 8. 如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm )A. 40πcm 2B. 65πcm 2C. 80πcm 2D. 105πcm 2二、填空题(本题共8小题,每小题3分,共24分)9.因式分解:x 2-3x=______________________ 10.若反比例函数xky =的图象经过点(1,-6),则k 的值为_________________ 11.如图,将△ABC 绕A 顺时针旋转得到△ADE ,点C 和点E 是对应点, 若∠CAE=90°,AB=1,则BD=_________ 1213.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是_________________14.若关于x 的方程2x 2+x-a=0有两个不相等的实数根,则实数a 的取值范围是_____________15.如图,一艘渔船位于灯塔P 的北偏东30°方向距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P的距离约为___________海里(结果取整数)。
2019-2020学年辽宁省大连市中考数学模拟试题(有标准答案)(word版)
大连市初中毕业升学考试数学一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确) 1.-3的相反数是( ) A.31 B.31- C.3 D.-3 2.在平面直角坐标系中,点(1,5)所在的象限是( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 3.方程2x+3=7的解A. x=5B. x=4C. x=3.5D. x=2 4.如图,直线AB ∥CD ,AE 平分∠CAB ,AE 与CD 相交于点E , ∠ACD=40°则∠BAE 的度数是( )A. 40°B. 70°C. 80°D. 140° 5.不等式组⎩⎨⎧++2322x x xx <>的解集是( )A. x >-2B. x <1C. -1<x <2D.-2<x <16.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,、2、3、4,随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球的标号的积小于4的概率是( ) A.61 B. 125 C. 31 D. 21 7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长,若月平均增长率为x ,则该文具店五月份销售铅笔的支数( )A. 100(1+x )B. 100(1+x )2C. 100(1+x 2) D. 100(1+2x ) 8. 如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm ) A. 40πcm 2B. 65πcm 2C. 80πcm 2D. 105πcm 2二、填空题(本题共8小题,每小题3分,共24分) 9.因式分解:x 2-3x=______________________ 10.若反比例函数xky =的图象经过点(1,-6),则k 的值为_________________ 11.如图,将△ABC 绕A 顺时针旋转得到△ADE ,点C 和点E 是对应点, 若∠CAE=90°,AB=1,则BD=_________ 12.下表是某校女子排球队队员的年龄分布13.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是_________________(第8题)(第11题)14.若关于x 的方程2x 2+x-a=0有两个不相等的实数根,则实数a 的取值范围是_____________15.如图,一艘渔船位于灯塔P 的北偏东30°方向距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为___________海里(结果取整数)。
2020年大连市中考数学模拟试卷及答案解析
2020年大连市中考数学模拟试卷一.选择题(共10小题,满分30分)1.(3分)若|a|=﹣a,则a一定是()A.正数B.负数C.正数或零D.负数或零2.(3分)点(2,3),(2,﹣3),(1,0),(0,﹣3),(0,0),(﹣2,3)中,不属于任何象限的有()A.1个B.2个C.3个D.4个3.(3分)计算(﹣ab2)3的结果是()A.﹣a3b5B.﹣a3b6C.﹣ab6D.﹣3ab24.(3分)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°5.(3分)如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体6.(3分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.367.(3分)现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜甲获胜的概率是( )A .13B .23C .49D .59 8.(3分)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .12x(x −1)=28B .12x(x +1)=28C .x (x ﹣1)=28D .x (x +1)=289.(3分)观察图中给出的直线y =k 1x +b 和反比例函数y =k 2x 的图象,下列结论中错误的是( )A .k 2>b >k 1>0B .当﹣6<x <2时,有k 1x +b >k 2xC .直线y =k 1x +b 与坐标轴围成的△ABO 的面积是4D .直线y =k 1x +b 与反比例函数y =k 2x 的图象的交点坐标为(﹣6,﹣1),(2,3)10.(3分)如图,将△ABC 绕点B 逆时针旋转α,得到△EBD ,若点A 恰好在ED 的延长线上,则∠CAD 的度数为( )A .90°﹣αB .αC .180°﹣αD .2α二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,长方形的长宽分别为a ,b ,且a 比b 大5,面积为10,则a 2b ﹣ab 2的值。
2020年大连市中考数学模拟试卷及答案解析
2020年大连市中考数学模拟试卷一.选择题(共10小题,满分30分)1.(3分)若|a|=﹣a,则a一定是()A.正数B.负数C.正数或零D.负数或零2.(3分)点(2,3),(2,﹣3),(1,0),(0,﹣3),(0,0),(﹣2,3)中,不属于任何象限的有()A.1个B.2个C.3个D.4个3.(3分)计算(﹣ab2)3的结果是()A.﹣a3b5B.﹣a3b6C.﹣ab6D.﹣3ab24.(3分)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°5.(3分)如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体6.(3分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.367.(3分)现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜甲获胜的概率是( ) A .13B .23C .49D .598.(3分)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A .12x(x −1)=28B .12x(x +1)=28C .x (x ﹣1)=28D .x (x +1)=289.(3分)观察图中给出的直线y =k 1x +b 和反比例函数y =k2x 的图象,下列结论中错误的是( )A .k 2>b >k 1>0B .当﹣6<x <2时,有k 1x +b >k2xC .直线y =k 1x +b 与坐标轴围成的△ABO 的面积是4D .直线y =k 1x +b 与反比例函数y =k2x 的图象的交点坐标为(﹣6,﹣1),(2,3)10.(3分)如图,将△ABC 绕点B 逆时针旋转α,得到△EBD ,若点A 恰好在ED 的延长线上,则∠CAD 的度数为( )A .90°﹣αB .αC .180°﹣αD .2α二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,长方形的长宽分别为a ,b ,且a 比b 大5,面积为10,则a 2b ﹣ab 2的值为.12.(3分)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是.13.(3分)如图,一折扇完全打开后,若外侧两竹片OA,OB的夹角为120°,扇面ABDC 的宽度AC是OA的一半,且OA=30cm,则扇面ABDC的周长为cm.14.(3分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为.15.(3分)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)16.(3分)如图,在矩形ABCD中,点E在边CD上,将矩形ABCD沿AE所在直线折叠,点D恰好落在边BC上的点F处.若AB=8,DE=5,则折痕AE的长为.三.解答题(共4小题,满分39分)17.(9分)计算:(14)−1−√12+(√2+1)(√2−1)+√2×√1818.(9分)解不等式组:{x +3≥22(x +4)>4x +2.19.(9分)如图,在▱ABCD 中,AE 、CF 分别平分∠BAD 、∠BCD . 求证:(1)AE =CF ; (2)AE ∥CF .20.(12分)某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:类别人数占总人数比例重视a0.3一般570.38不重视b c说不清楚90.06(1)样本容量为,表格c的值为,并补全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数为;(3)根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?21.(9分)甲乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做多少个零件?22.(9分)已知a、b、c是△ABC的三边长,且a2+2b2+c2﹣2b(a+c)=0,试判断△ABC 的形状,并证明你的结论.23.(10分)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,过圆心O的直线PF⊥AB 于D,交⊙O于E,F,PB是⊙O的切线,B为切点,连接AP,AF.(1)求证:直线P A为⊙O的切线;(2)求证:EF2=4OD•OP;(3)若BC=6,tan∠F=12,求AC的长.24.(11分)如图1,在平面直角坐标系中,OB=10,F是y轴正半轴上一点.(1)若OF=2,求直线BF的解析式;(2)设OF=t,△OBF的面积为s,求s与t的函数关系(直接写出自变量t的取值范围);(3)如图3,在(2)的条件下,过点B作BA⊥x轴,点C在x轴上,OF=OC,连接AC,CD⊥直线BF于点D,∠ACB=2∠CBD,AC=13,OF=OC,AC.BD交于点E,求此时t的值.25.(12分)【阅读材料】小明遇到这样一个问题:如图1,点P在等边三角形ABC内,且∠APC=150°,P A=3,PC=4,求PB的长.小明发现,以AP为边作等边三角形APD,连接BD,得到△ABD;由等边三角形的性质,可证△ACP≌△ABD,得PC=BD;由已知∠APC=150°,可知∠PDB的大小,进而可求得PB的长.(1)请回答:在图1中,∠PDB=°,PB=.【问题解决】(2)参考小明思考问题的方法,解决下面问题:如图2,△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,且P A=1,PB=√17,PC=2√2,求AB的长.【灵活运用】(3)如图3,在Rt△ABC中,∠ACB=90°,∠BAC=α,且tanα=43,点P在△ABC外,且PB=3,PC=1,直接写出P A长的最大值.26.(12分)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P 的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向向下平移,平移后的抛物线的顶点为点D,点P的对应点为点Q,当OD⊥DQ时,求抛物线平移的距离.2020年大连市中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分)1.(3分)若|a|=﹣a,则a一定是()A.正数B.负数C.正数或零D.负数或零解:∵a的相反数是﹣a,且|a|=﹣a,∴a一定是负数或零.故选:D.2.点(2,3),(2,﹣3),(1,0),(0,﹣3),(0,0),(﹣2,3)中,不属于任何象限的有()A.1个B.2个C.3个D.4个解:点(2,3),(2,﹣3),(1,0),(0,﹣3),(0,0),(﹣2,3)中,不属于任何象限的有:(1,0),(0,﹣3),(0,0)共3个.故选:C.3.(3分)计算(﹣ab2)3的结果是()A.﹣a3b5B.﹣a3b6C.﹣ab6D.﹣3ab2解:(﹣ab2)3=(﹣a)3•(b2)3=﹣a3b6,故选:B.4.(3分)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°解:如图,∵△ABC是等腰直角三角形,∴∠1=45°,∵l∥l',∴∠α=∠1=45°,故选:A.5.(3分)如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体解:由主视图和俯视图可得几何体为三棱柱,故选:A.6.(3分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.36解:∵四边形ABCD是菱形,∴AO=CO=12AC,BO=DO=12BD=3,AC⊥BD,∴AO=√AD2−DO2=√25−9=4,∴AC=8,∴菱形ABCD 的面积=12×AC ×BD =12×6×8=24, 故选:B .7.(3分)现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜甲获胜的概率是( ) A .13B .23C .49D .59解:画树状图为:共有9种等可能的结果数,其中两人抽取的数字之和为偶数的有5种结果, 所以甲获胜的概率为59,故选:D .8.(3分)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A .12x(x −1)=28B .12x(x +1)=28C .x (x ﹣1)=28D .x (x +1)=28解:设比赛组织者应邀请x 个队参赛, 依题意,得:12x (x ﹣1)=28.故选:A .9.(3分)观察图中给出的直线y =k 1x +b 和反比例函数y =k2x 的图象,下列结论中错误的是( )A .k 2>b >k 1>0B .当﹣6<x <2时,有k 1x +b >k 2xC .直线y =k 1x +b 与坐标轴围成的△ABO 的面积是4D .直线y =k 1x +b 与反比例函数y =k2x 的图象的交点坐标为(﹣6,﹣1),(2,3)解:把(2,3)代入y =k 2x 得k 2=2×3=6,则反比例函数解析式为y =6x, 把(﹣6,﹣1),(2,3)代入y =k 1x +b 得{−6k 1+b =−12k 1+b =3,解得{k 1=12b =2,则一次函数解析式为y =12x +2;∴k 2>b >k 1>0;所以A 选项的结论正确;当﹣6<x <0或x >2时,有k 1x +b >k2x ,所以B 选项的结论错误;当y =0时,12x +2=0,解得x =﹣4,则A (﹣4,0),当x =0时,y =12x +2=2,则B (0,2),∴S △AOB =12×2×4=4,所以,C 选项的结论正确;直线y =k 1x +b 与反比例函数y =k2x 的图象的交点坐标为(﹣6,﹣1),(2,3),所以D 选项的结论正确. 故选:B .10.(3分)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°﹣α,故选:C.二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,长方形的长宽分别为a,b,且a比b大5,面积为10,则a2b﹣ab2的值为50.解:∵长方形的长宽分别为a,b,且a比b大5,面积为10,∴a﹣b=5,ab=10,则a2b﹣ab2=ab(a﹣b)=5×10=50. 故答案为:50.12.(3分)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是 189 .解:这5名学生跳绳次数从小到大排列为163、184、189、195、201, 所以该组数据的中位数是189, 故答案为:189.13.(3分)如图,一折扇完全打开后,若外侧两竹片OA ,OB 的夹角为120°,扇面ABDC 的宽度AC 是OA 的一半,且OA =30cm ,则扇面ABDC 的周长为 (30π+30) cm .解:由题意得,OC =AC =12OA =15, AB̂的长=120π×30180=20π, CD ̂的长=120π×15180=10π, ∴扇面ABDC 的周长=20π+10π+15+15=30π+30(cm ), 故答案为:(30π+30).14.(3分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y 千克,则可列方程组为 {4x +6y =28x =y +2 .解:由题意可得, {4x +6y =28x =y +2, 故答案为:{4x +6y =28x =y +2.15.(3分)如图,小明为了测量校园里旗杆AB 的高度,将测角仪CD 竖直放在距旗杆底部B 点6m 的位置,在D 处测得旗杆顶端A 的仰角为53°,若测角仪的高度是1.5m ,则旗杆AB 的高度约为 9.5 m .(精确到0.1m .参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°,∵BC=DE=6m,∴AE=DE•tan53°≈6×1.33≈7.98m,∴AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m,故答案为:9.516.(3分)如图,在矩形ABCD中,点E在边CD上,将矩形ABCD沿AE所在直线折叠,点D恰好落在边BC上的点F处.若AB=8,DE=5,则折痕AE的长为5√5.解:∵四边形ABCD是矩形,∴AB=CD=8,BC=AD,∠B=∠D=∠C=90°,∴CE=CD﹣DE=8﹣5=3,由折叠的性质得:FE=DE=5,AF=AD,∴CF=√EF2−CE2=√52−32=4,设AD=BC=AF=x,则BF=x﹣4,在Rt △ABF 中,由勾股定理得:82+(x ﹣4)2=x 2, 解得:x =10, ∴AD =10,∴AE =√AD 2+DE 2=√102+52=5√5; 故答案为:5√5.三.解答题(共4小题,满分39分)17.(9分)计算:(14)−1−√12+(√2+1)(√2−1)+√2×√18 解:原式=4﹣2√3+2﹣1+√2×3√2 =5﹣2√3+6 =11﹣2√3.18.(9分)解不等式组:{x +3≥22(x +4)>4x +2.解:{x +3≥2①2(x +4)>4x +2②∵解不等式①得:x ≥﹣1, 解不等式②得:x <3,∴不等式组的解集为﹣1≤x <3.19.(9分)如图,在▱ABCD 中,AE 、CF 分别平分∠BAD 、∠BCD . 求证:(1)AE =CF ; (2)AE ∥CF .证明:(1)∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC ,∠BAD =∠DCB , ∴∠ADE =∠CBF ,∵AE 、CF 分别平分∠BAD 、∠BCD , ∴∠DAE =12∠DAB ,∠BCF =12∠DCB , ∴∠DAE =∠BCF , ∴△ADE ≌△CBF (ASA ), ∴AE =CF .(2)∵△ADE≌△CBF,∴∠AED=∠CFB,∴AE∥CF.20.(12分)某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:类别人数占总人数比例重视a0.3一般570.38不重视b c说不清楚90.06(1)样本容量为150,表格c的值为0.26,并补全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数为598;(3)根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?解:(1)由题意可得出:样本容量为:57÷0.38=150(人),∴a=150×0.3=45,b=150﹣57﹣45﹣9=39,c=39÷150=0.26,故答案为150,0.26; 如图所示:;(2)若该校共有初中生2300名,该校“不重视阅读数学教科书”的初中人数约为:2300×0.26=598(人); 故答案为598;(3)①根据以上所求可得出:只有30%的学生重视阅读数学教科书,有32%的学生不重视阅读数学教科书或说不清楚,可以看出大部分学生忽略了阅读数学教科书,同学们应重视阅读数学教科书,从而获取更多的数学课外知识和对相关习题、定理的深层次理解与认识.②如果要了解全省初中生阅读数学教科书的情况,应随机抽取不同的学校以及不同的年级进行抽样,进而分析.四.解答题(共3小题,满分28分)21.(9分)甲乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做多少个零件? 解:设乙每小时做x 个零件,甲每小时做(x +6)个零件, 根据题意得:60x=90x+6,解得:x =12,经检验,x =12是原方程的解,且符合题意, ∴x +6=18.答:乙每小时做12个零件,甲每小时做18个零件.22.(9分)已知a、b、c是△ABC的三边长,且a2+2b2+c2﹣2b(a+c)=0,试判断△ABC 的形状,并证明你的结论.解:△ABC是等边三角形,理由:∵a2+2b2+c2﹣2b(a+c)=0∴a2+b2+c2﹣2ba﹣2bc+b2=0,∴(a﹣b)2+(b﹣c)2=0,则a=b,b=c,故a=b=c,则△ABC是等边三角形.23.(10分)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,过圆心O的直线PF⊥AB 于D,交⊙O于E,F,PB是⊙O的切线,B为切点,连接AP,AF.(1)求证:直线P A为⊙O的切线;(2)求证:EF2=4OD•OP;(3)若BC=6,tan∠F=12,求AC的长.解:(1)连接OB∵PB是⊙O的切线,∴∠PBO=90°∵OA=OB,BA⊥PO于D ∴AD=BD,∠POA=∠POB 又∵PO=PO∴△P AO≌△PBO(SAS)∴∠P AO =∠PBO =90°∴直线P A 为⊙O 的切线.(2)证明:∵∠P AO =∠PDA =90°∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°∴∠OAD =∠OP A∴△OAD ∽△OP A∴OD OA =OA OP∴OA 2=OD •OP又∵EF =2OA∴EF 2=4OD •OP ;(3)∵OA =OC ,AD =BD ,BC =6∴OD =12BC =3设AD =x∵tan ∠F =12∴FD =2x ,OA =OF =2x ﹣3在Rt △AOD 中,由勾股定理,得(2x ﹣3)2=x 2+32解之得,x 1=4,x 2=0(不合题意,舍去)∴AD =4,OA =2x ﹣3=5∵AC 是⊙O 的直径∴AC =2OA =10.∴AC 的长为10.五.解答题(共3小题,满分35分)24.(11分)如图1,在平面直角坐标系中,OB =10,F 是y 轴正半轴上一点.(1)若OF =2,求直线BF 的解析式;(2)设OF =t ,△OBF 的面积为s ,求s 与t 的函数关系(直接写出自变量t 的取值范围);(3)如图3,在(2)的条件下,过点B 作BA ⊥x 轴,点C 在x 轴上,OF =OC ,连接AC ,CD ⊥直线BF 于点D ,∠ACB =2∠CBD ,AC =13,OF =OC ,AC .BD 交于点E ,求此时t 的值.解:(1)∵OB =10,OF =2,∴B (﹣10,0),F (0,2),设直线BF 的解析式为y =kx +b ,∵直线y =kx +b 经过点B (﹣10,0),F (0,2),∴{0=−10k +b 2=b, 解得:{k =15b =2, ∴直线BF 的解析式为y =15x +2;(2)△OBF 的面积为S =12OB ⋅OF =12×10×t =5t (t >0); (3)如图,延长AB 至点R ,使BR =AB ,连接CR ,延长CD 交y 轴于点T ,过点T ,作TM ∥x 轴交BA 的延长线于点M ,过点T 作TK ⊥CR 交RC 的延长线于点K ,连接RT ,∵AB ⊥BC ,AB =BR ,∴BC 垂直平分AR ,∴AC =CR =13,∴∠ACB =∠RCB ,设∠CBD =α,则∠ACB =2α,∵BD⊥CD,∴∠BDC=90°,∴∠BCD=90°﹣α,∵∠ACB=∠RCB=2α,∴∠ACK=180°﹣4α,∴∠KCT=∠BCK﹣∠BCD=∠BCA+∠ACK﹣∠BCD=90°﹣α,∴∠KCT=∠BCD,∵TK⊥KR,OT⊥OC,∴OT=TK,∵TC=TC,∴Rt△OTC≌Rt△KTC(HL),∴OC=CK=TK=t,∵OF=OC,∠BOF=∠TOC,∠FBO=∠OTC,∴△BOF≌△TOC(AAS),∴OB=OT=10,∴TK=10,∵∠ABO+∠BOT=90°+90°=180°.∴MB∥OT,∵MT∥OB,∴四边形OBMT为平行四边形,∵OB=OT,∠BOT=90°.∴四边形OBMT为正方形,∴MB=MT=OT=10,∴MT=TK,∵RT=RT,∴Rt△RMT≌Rt△RTK(HL),∴RK=RM=CR+CK=13+t,∴BR=RM﹣MB=3+t,∵BC=OB+OC=10+t,在Rt△BRC中,BR2+BC2=RC2,∴(3+t)2+(10+t)2=132,解得:t=2(t=﹣15舍去).∴t的值为2.25.(12分)【阅读材料】小明遇到这样一个问题:如图1,点P在等边三角形ABC内,且∠APC=150°,P A=3,PC=4,求PB的长.小明发现,以AP为边作等边三角形APD,连接BD,得到△ABD;由等边三角形的性质,可证△ACP≌△ABD,得PC=BD;由已知∠APC=150°,可知∠PDB的大小,进而可求得PB的长.(1)请回答:在图1中,∠PDB=90°,PB=5.【问题解决】(2)参考小明思考问题的方法,解决下面问题:如图2,△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,且P A=1,PB=√17,PC=2√2,求AB的长.【灵活运用】(3)如图3,在Rt△ABC中,∠ACB=90°,∠BAC=α,且tanα=43,点P在△ABC外,且PB=3,PC=1,直接写出P A长的最大值.解:(1)如图1中,∵△ACP≌△ABD,∴∠PDB=∠APC=150°,PC=BD=4,AD=AP=3,∵△ADP为等边三角形,∴∠ADP=60°,DP=AD=3,∴∠BDP=150°﹣60°=90°,∴PB=√32+42=5.故答案为:90°,5;(2)如图2中,把△ACP绕点C逆时针旋转90°得到△BCD.由旋转性质可知;BD=P A=1,CD=CP=2√2,∠PCD=90°,∴△PCD是等腰直角三角形,∴PD=√2PC=√2×2√2=4,∠CDP=45°,∵PD2+BD2=42+12=17,PB2=(√17)2=17,∴PD2+BD2=PB2,∴∠PDB=90°,∴∠BDC=135°,∴∠APC=∠CDB=135°,∵∠CPD=45°,∴∠APC+∠CPD=180°,∴A,P,D共线,∴AD=AP+PD=5,在RtADB 中,AB =√AD 2+BD 2=√52+12=√26.(3)如图3中,作CD ⊥CP ,使得CD =34PC =34,则PD =√PC 2+CD 2=54,∵tan ∠BAC =BC AC =43,∴BC AC =PC CD ,∵∠ACB =∠PCD =90°,∴∠ACD =∠BCP ,∴△ACD ∽△BCP ,∴AD PB =CD PC =34, ∴AD =94,∵94−54≤P A ≤94+54,∴1≤P A ≤72,∴P A 的最大值为72. 26.(12分)如图,在平面直角坐标系xOy 中,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,对称轴为直线x =2,点A 的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P 为抛物线上一点(不与点A 重合),连接PC .当∠PCB =∠ACB 时,求点P 的坐标;(3)在(2)的条件下,将抛物线沿平行于y 轴的方向向下平移,平移后的抛物线的顶点为点D ,点P 的对应点为点Q ,当OD ⊥DQ 时,求抛物线平移的距离.解:(1)∵对称轴为直线x =2,点A 的坐标为(1,0),∴点B 的坐标是(3,0).将A (1,0),B (3,0)分别代入y =x 2+bx +c ,得{1+b +c =09+3b +c =0. 解得{b =−4c =3. 则该抛物线解析式是:y =x 2﹣4x +3.由y =x 2﹣4x +3=(x ﹣2)2﹣1知,该抛物线顶点坐标是(2,﹣1);(2)如图1,过点P 作PN ⊥x 轴于N ,过点C 作CM ⊥PN ,交NP 的延长线于点M ,∵∠CON =90°,∴四边形CONM 是矩形.∴∠CMN =90°,CO =MN 、∴y =x 2﹣4x +3,∴C (0,3).∵B (3,0),∴OB =OC =3.∵∠COB =90°,∴∠OCB =∠BCM =45°.又∵∠ACB =∠PCB ,∴∠OCB ﹣∠ACB =∠BCM ﹣∠PCB ,即∠OCA =∠PCM .∴tan ∠OCA =tan ∠PCM .∴PM CM =13. 故设PM =a ,MC =3a ,PN =3﹣a .∴P (3a ,3﹣a ),将其代入抛物线解析式y =x 2﹣4x +3,得(3a )2﹣4(3﹣a )+3=3﹣a . 解得a 1=119,a 2=0(舍去).∴P (113,169).(3)设抛物线平移的距离为m ,得y =(x ﹣2)2﹣1﹣m .∴D (2,﹣1﹣m ).如图2,过点D 作直线EF ∥x 轴,交y 轴于点E ,交PQ 延长线于点F ,∵∠OED =∠QFD =∠ODQ =90°,∴∠EOD +∠ODE =90°,∠ODE +∠QDP =90°.∴∠EOD =∠QDF .∴tan ∠EOD =tan ∠QDF ,∴DE OE=QF DF . ∴2m+1=169−m+1+m 113−2.解得m =15.故抛物线平移的距离为15.。
2020届辽宁省大连市中山区中考数学模拟试卷((有答案))(加精)
辽宁省大连市中山区中考数学模拟试卷一.选择题(共8小题,满分24分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤02.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a34.计算:=()A.1B.2C.1+D.5.已知等腰三角形的一个内角为40°,则它的另外两个角的度数为()A.70°,70°B.40°,70°C.100°,40°D.70°,70°或100°,406.面试时,某应聘者的学历、经验和工作态度的得分分别是70分、80分、60分,若依次按照1:2:2的比例确定成绩,则该应聘者的最终成绩是()A.60分B.70分C.80分D.90分7.一个不透明的袋子里装有质地、大小都相同的2个红球和1个黑球,随机从中摸出一球,放回充分搅匀后再随机摸出一球,则两次都摸到黑球的概率是()A.B.C.D.8.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°,下列结论:①∠1=∠3;②BD+DH =AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是()A.①②③B.③④C.①②④D.①②③④二.填空题(共8小题,满分24分,每小题3分)9.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为.10.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为11.如果点(m,﹣2m)在双曲线上,那么双曲线在象限.12.如图,在圆O中有折线ABCO,BC=6,CO=4,∠B=∠C=60°,则弦AB的长为.13.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0),若3<m<4,则a的取值范围是.14.如图,在一笔直的东西走向的沿湖道路上有A,B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km,则BC=km.15.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于.16.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是.三.解答题(共4小题,满分39分)17.(9分)计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.(9分)解方程:x2﹣5x+3=0.19.(9分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.求证:AE=CF.20.(12分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?四.解答题(共3小题,满分28分)21.(9分)松滋临港贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.22.(9分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C.(1)求直线AB的表达式;(2)求AC:CB的值.23.(10分)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠PCA=∠B.(1)求证:PC与⊙O相切;(2)若PA=4,⊙O的半径为6,求BC的长.五.解答题(共3小题,满分35分)24.(11分)将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).(1)如果M为CD边的中点,求证:DE:DM:EM=3:4:5;(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否有与点M的位置关系?若有关,请把△CMG的周长用含CM的长x的代数式表示;若无关,请说明理由.25.(12分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,若tan∠AEF=(1)求证:△AEF∽△BGE;(2)求△EBG的周长.26.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.辽宁省大连市中山区中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤0【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(2a2)3=6a6D.a6÷a2=a3【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.【解答】解:A、a3+a2,无法计算,故此选项错误;B、a3•a2=a5,正确;C、(2a2)3=8a6,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.4.计算:=()A.1B.2C.1+D.【分析】按同分母分式的减法法则计算即可.【解答】解:法一、===1.故选:A.法二、=+﹣=1.故选:A.【点评】本题考查了分式的减法.掌握同分母分式的减法法则是解决本题的关键.5.已知等腰三角形的一个内角为40°,则它的另外两个角的度数为()A.70°,70°B.40°,70°C.100°,40°D.70°,70°或100°,40【分析】已知给出了一个内角是40°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还需用三角形内角和定理去验证每种情况是不是都成立.【解答】解:分情况讨论:(1)若等腰三角形的顶角为40°时,另外两个内角=(180°﹣40°)÷2=70°;(2)若等腰三角形的底角为40°时,它的另外一个底角为40°,顶角为180°﹣40°﹣40°=100°.故选:D.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.6.面试时,某应聘者的学历、经验和工作态度的得分分别是70分、80分、60分,若依次按照1:2:2的比例确定成绩,则该应聘者的最终成绩是()A.60分B.70分C.80分D.90分【分析】根据题目中的数据和加权平均数的计算方法可以解答本题.【解答】解:70×+80×+60×=14+32+24=70(分),故选:B.【点评】本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法.7.一个不透明的袋子里装有质地、大小都相同的2个红球和1个黑球,随机从中摸出一球,放回充分搅匀后再随机摸出一球,则两次都摸到黑球的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到黑球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次都摸到黑球的有1种情况,∴两次都摸到黑球的概率是,故选:C.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.8.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°,下列结论:①∠1=∠3;②BD+DH =AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是()A.①②③B.③④C.①②④D.①②③④【分析】根据角平分线、高、等腰直角三角形的性质依次判断即可得出答案.【解答】解:①∵∠1=∠2=22.5°,又∵AD是高,∴∠2+∠C=∠3+∠C,∴∠1=∠3,②∵∠1=∠2=22.5°,∴∠ABD=∠BAD,∴AD=BD,又∵∠2=∠3,∠ADB=∠ADC,∴△BDH≌△ADC,∴DH=CD,∵AB=BC,∴BD+DH=AB,③无法证明,④可以证明,故选:C.【点评】本题主要考查了角平分线、高、等腰直角三角形的性质,比较综合,难度适中.二.填空题(共8小题,满分24分,每小题3分)9.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为﹣5.【分析】根据题意得出x+2+2x+10=﹣2+(﹣1)+(2x+10),进而求出答案.【解答】解:由题意可得:x+2+2x+10=﹣2+(﹣1)+(2x+10),整理得:3x+12=2x+7,解得:x=﹣5,故答案为:﹣5.【点评】此题主要考查了有理数的加法,正确得出关于x的等式是解题关键.10.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为x>﹣1【分析】根据题意判断出6﹣m的正负,求出不等式的解集即可.【解答】解:∵m>6,∴6﹣m<0,不等式解集为x>﹣1,故答案为:x>﹣1【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.11.如果点(m,﹣2m)在双曲线上,那么双曲线在第二、四象限.【分析】根据反比例函数图象上的点的坐标特征:图象上的点(x,y)的横纵坐标的积是定值k,即xy =k可得k=﹣2m2<0,根据反比例函数的性质可得答案.【解答】解:∵点(m,﹣2m)在双曲线(k≠0)上,∴m•(﹣2m)=k,解得:k=﹣2m2,∵﹣2m2<0,∴双曲线在第二、四象限.故答案为:第二、四.【点评】此题主要考查了反比例函数图象上的点的坐标特征,以及反比例函数的性质,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.如图,在圆O中有折线ABCO,BC=6,CO=4,∠B=∠C=60°,则弦AB的长为10.【分析】作OD⊥AB垂足为D,利用垂径定理得AB=2BD,作OE∥AB交BC于E,构造等边△COE,过E点作EF⊥AB,垂足为F,得Rt△BEF,而∠B=60°,可得BF=BE,再根据BD=BF+DF求BD.【解答】解:如图,作OD⊥AB垂足为D,OE∥AB交BC于E,过E点作EF⊥AB,垂足为F,∵OE∥AB,∴△COE为等边三角形,∴OE=CE=OC=4,∵OD⊥AB,EF⊥AB,∴DF=OE=4,BE=BC﹣CE=2,在Rt△BEF中,∵∠B=60°,∴BF=BE=1,∴BD=BF+DF=1+4=5,由垂径定理,得AB=2BD=10.故答案为:10【点评】本题考查了垂径定理,等边三角形的性质.关键是通过作辅助线,得出等边三角形,30°的直角三角形,利用垂径定理求AB.13.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0),若3<m<4,则a的取值范围是<a<或﹣4<a<﹣3.【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且3<m<4,∴当a>0时,3<<4,解得<a<;当a<0时,3<﹣a<4,解得﹣4<a<﹣3.故答案为:<a<或﹣4<a<﹣3.【点评】本题考查的是抛物线与x轴的交点,关键是在解答此题时要注意进行分类讨论,不要漏解.14.如图,在一笔直的东西走向的沿湖道路上有A,B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km,则BC=2km.【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD的长,然后在Rt△BCD中求得BC 的长.【解答】解:作CD⊥AB于点B.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•sin∠CAD=4×=2(km),∵Rt△BCD中,∠CBD=90°,∴BC=CD=2(km),故答案是:2.【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得BC的长是关键.15.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于8π.【分析】圆锥的侧面积就等于母线长乘底面周长的一半.依此公式计算即可.【解答】解:侧面积=4×4π÷2=8π.故答案为8π.【点评】本题主要考查了圆锥的计算,正确理解圆锥的侧面积的计算可以转化为扇形的面积的计算,理解圆锥与展开图之间的关系.16.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是k<0.【分析】根据一次函数的图象与系数的关系,利用一次函数的性质可知:当一次函数的系数小于零时,一次函数的函数值y随着自变量x的增大而减小,即可得到答案.【解答】解:∵一次函数y=kx﹣2,y随x的增大而减小,所以一次函数的系数k<0,故答案为:k<0.【点评】此题主要考查了一次函数图象与系数的关系,正确记忆一次函数的性质是解题关键.三.解答题(共4小题,满分39分)17.(9分)计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.(9分)解方程:x2﹣5x+3=0.【分析】找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【解答】解:这里a=1,b=﹣5,c=3,∵△=25﹣12=13,∴x=,则x1=,x2=.【点评】此题考查了解一元二次方程﹣公式法,利用此方法解方程时,首先将方程整理为一般形式,找出a,b及c的值,然后当根的判别式大于等于0时,代入求根公式即可求出解.19.(9分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.求证:AE=CF.【分析】由AE与CF平行,得到一对内错角相等,可得出领补角相等,由四边形ABCD为平行四边形,得到AD与BC平行且相等,利用AAS得到三角形ADE与三角形CBF全等,利用全等三角形的对应边相等即可得证.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠ADE=∠CBF,∵AE∥CF,∴∠AEF=∠CFE,∴∠AED=∠CFB,∴△ADE≌△CBF,∴AE=CF.【点评】此题考查了平行四边形的性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.20.(12分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?【分析】(1)根据A等人数为10人,占扇形图的20%,求出总人数,可以得出D的人数,即可画出条形统计图;(2)根据D的人数即可得出所占百分比,进而得出所在的扇形的圆心角度数;(3)利用总体人数与A组所占比例即可得出A级学生人数.【解答】解:(1)总人数是:10÷20%=50,则D级的人数是:50﹣10﹣23﹣12=5.条形统计图补充如下:;(2)D级的学生人数占全班学生人数的百分比是:1﹣46%﹣20%﹣24%=10%;D级所在的扇形的圆心角度数是360×10%=36°;(3)∵A级所占的百分比为20%,∴A级的人数为:600×20%=120(人).【点评】此题主要考查了条形图的应用以及用样本估计总体和扇形图统计图的应用,利用图形获取正确信息以及扇形图与条形图相结合是解决问题的关键.四.解答题(共3小题,满分28分)21.(9分)松滋临港贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.【分析】(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据工作时间=工作总量÷工作效率结合甲车主单独完成运输任务比乙车主单独完成任务要多用10天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据工作时间=工作总量÷工作效率及总费用=每日所需费用×运输天数,分别求出甲车主单独完成、乙车主单独完成及甲、乙两车主合作完成所需时间及总费用,比较后即可得出结论.【解答】解:(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据题意得:﹣=10,解得:x=16,经检验,x=16是原方程的解,且符合题意,∴1.5x=24.答:甲车主每天能运输16吨货物,乙车主每天能运输24吨货物.(2)甲车主单独完成所需时间为480÷16=30(天),乙车主单独完成所需时间为480÷24=20(天),甲、乙两车主合作完成所需时间为480÷(16+24)=12(天),甲车主单独完成所需费用为30×(800+200)=30000(元),乙车主单独完成所需费用为20×(1200+200)=28000(元),甲、乙两车主合作完成所需费用为12×(800+1200+200)=26400(元).∵30000>28000>26400,30>20>12,∴该公司选择由两车主合作完成既省钱又省时.【点评】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)分别求出三种外包方案所需时间及总费用.22.(9分)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=相交于点A(m,6)和点B(﹣3,n),直线AB与y轴交于点C.(1)求直线AB的表达式;(2)求AC:CB的值.【分析】(1)根据反比例函数的解析式可得m和n的值,利用待定系数法求一次函数的表达式;(2)作辅助线,构建平行线,根据平行线分线段成比例定理可得结论.【解答】解:(1)∵点A(m,6)和点B(﹣3,n)在双曲线,∴6m=6,﹣3n=6,m=1,n=﹣2.∴点A(1,6),点B(﹣3,﹣2).…(2分)将点A、B代入直线y=kx+b,得,解得…(4分)∴直线AB的表达式为:y=2x+4.…(5分)(2)分别过点A、B作AM⊥y轴,BN⊥y轴,垂足分别为点M、N.…(6分)则∠AMO=∠BNO=90°,AM=1,BN=3,…(7分)∴AM∥BN,…(8分)∴.…(10分)【点评】本题是一次函数和反比例函数的综合问题,考查了反比例函数和一次函数的交点问题,将点的坐标代入解析式中可得交点坐标,对于交点问题:可利用方程组的解来求两函数的交点坐标;本题还考查了平行线分线段成比例定理.23.(10分)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠PCA=∠B.(1)求证:PC与⊙O相切;(2)若PA=4,⊙O的半径为6,求BC的长.【分析】(1)连接OC,如图,利用圆周角定理得∠2+∠3=90°,再证明∠1=∠3,则∠1+∠2=90°,然后根据切线的判定定理可得到PC与⊙O相切;(2)先利用勾股定理得到PC=8,再证明△PAC∽△PCB,利用相似比得=,然后在Rt△ABC中,利用勾股定理得到BC2+BC2=122,从而解BC的方程即可.【解答】(1)证明:连接OC,如图,∵AB为⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵∠1=∠B,∠3=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠PCO=90°,∴OC⊥PC,∴PC与⊙O相切;(2)解:在Rt△POC中,PC===8,∵∠CPA=∠BPC,∠1=∠B,∴△PAC∽△PCB,∴===,在Rt△ABC中,∵AC2+BC2=AB2,∴BC2+BC2=122,∴BC=.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.五.解答题(共3小题,满分35分)24.(11分)将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).(1)如果M为CD边的中点,求证:DE:DM:EM=3:4:5;(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否有与点M的位置关系?若有关,请把△CMG的周长用含CM的长x的代数式表示;若无关,请说明理由.【分析】(1)正方形的证明题有时用计算方法证明比几何方法简单,此题设正方形边长为a,DE为x,则根据折叠知道DM=,EM=EA=a﹣x,然后在Rt△DEM中就可以求出x,这样DE,DN,EM就都用a表示了,就可以求出它们的比值了;(2)△CMG的周长与点M的位置无关.设CM=x,DE=y,则DM=2a﹣x,EM=2a﹣y,然后利用正方形的性质和折叠可以证明△DEM∽△CMG,利用相似三角形的对应边成比例可以把CG,MG分别用x,y分别表示,△CMG的周长也用x,y表示,然后在Rt△DEM中根据勾股定理可以得到4ax﹣x2=4ay,结合△CMG的周长,就可以判断△CMG的周长与点M的位置无关.【解答】(1)证明:设正方形边长为a,DE为x,则DM=,EM=EA=a﹣x在Rt△DEM中,∠D=90°,∴DE2+DM2=EM2x2+()2=(a﹣x)2x=EM=DE:DM:EM=3:4:5;(2)解:△CMG的周长与点M的位置无关.证明:设CM=x,DE=y,则DM=2a﹣x,EM=2a﹣y,∵∠EMG=90°,∴∠DME+∠CMG=90度.∵∠DME+∠DEM=90°,∴∠DEM=∠CMG,又∵∠D=∠C=90°△DEM∽△CMG,∴即∴CG=△CMG的周长为CM+CG+MG=在Rt△DEM中,DM2+DE2=EM2即(2a﹣x)2+y2=(2a﹣y)2整理得4ax﹣x2=4ay∴CM+MG+CG===4a.所以△CMG的周长为4a,与点M的位置无关.【点评】正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用.25.(12分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,若tan∠AEF=(1)求证:△AEF∽△BGE;(2)求△EBG的周长.【分析】(1)根据同交的余角相等证明∠AFE=∠BEG,则可以根据两角对应相等的两个三角形相似即可证得;(2)根据tan∠AEF=可得AF:AE=3:4,则设AF=3x,AE=4x,则EF=DF=5x,根据AD=6即可求得x的值.则BE即可求得,然后根据△AEF∽△BGE,求得△EBG的边长,从而求解.【解答】解:(1)由折叠可知:∠FEQ=∠D=90°,EF=DF∵∠AEF+∠AFE=90°,∠AEF+∠BEG=90°∴∠AFE=∠BEG,又∵∠A=∠B=90°,∴△AEF∽△BGE;(2)在Rt△AEF中,tan∠AEF=∴AF:AE=3:4设AF=3x,AE=4x,则EF=DF=5x∴3x+5x=6∴∴AF=,AE=3,EF=.∵△AEF∽△BGE,∴即,∴BG=4,GE=5.∴△EBG的周长为3+4+5=12.【点评】本题考查了图形的折叠与相似三角形的判定与性质,以及三角函数的定义,正确求得x的值是本题的关键.26.(12分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P 的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;△APC(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【解答】解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∴S△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,∴C=AM+MN+AN=AC+AN=3+.△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.【点评】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S=﹣x2﹣x+3;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位△APC置.。
辽宁大连2020年中考数学模拟试卷 一(含答案)(含答案)
辽宁大连2020年中考数学模拟试卷一一、选择题1.﹣9的相反数是( )A.﹣9 B.﹣ C.9 D.2.由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( )A.正视图的面积最大B.俯视图的面积最大C.左视图的面积最大D.三个视图的面积一样大3.地球半径约为6 400 000米,这个数用科学记数法表示为()A.640×104 B.64×105 C.6.4×106 D.0.64×1074.若点A(m,n)在第二象限,那么点B(﹣m,|n|)在()A.第一象限B.第二象限C.第三象限D.第四象限5.不等式2(x+1)<3x的解集在数轴上表示出来应为( )A. B. C. D.6.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.7.已知32m=8n,则m、n满足的关系正确的是( )A.4m=nB.5m=3nC.3m=5nD.m=4n8.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为( )A.2B.15C.18D.219.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=( )A.﹣20 B.﹣16 C.﹣12 D.﹣8二、填空题10.如图,AB∥CD,AF交CD于点O,且OF平分∠EOD,如果∠A=38°,那么∠EOF=___________°。
11.已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为_______.12.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心,BC长为半径作弧,交AB于点D,交AC于点E,连结BE,则∠ABE的大小为度.13.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分;不答记0分.已知小明不答的题比答错的题多2道,他的总分为74分,则他答对了题.14.如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是 cm.15.如图,已知菱形ABCD在平面直角坐标系中,A(-4,0),D(0,3),连OC,则直线OC解析式为 .16.若一元二次方程ax 2+bx+1=0有两个相同的实数根,则a 2-b 2+5的最小值为__________.三、计算题17.化简:112222+---x x x x x .18.计算:.四、解答题19.如图,点D ,E 分别在AB ,AC 上,且AD=AE ,∠BDC=∠CEB .求证:BD=CE .20.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A ,B ,C ,D 四个等级,其中相应等级的里程依次为200 km ,210 km ,220 km ,230 km ,根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有多少辆?请补全条形统计图.(2)估计这种电动汽车一次充电后行驶的平均里程数.21.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件.为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求每次下调的百分率;(2)经调查,若该商品每降价1元,每天可多销售8件,那么每天要想获得512元的利润,每件应降价多少元?22.如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.23.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH.①△CBH∽△OBC;②求OH+HC的最大值.五、综合题24.已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.25.速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.参考答案1.答案为:C2.B3.答案为:C4.B5.D.6.答案为:D.7.B8.B9.C.解析:过点E 作EG ⊥OA ,垂足为G ,设点B 关于DE 的对称点为F ,连接DF 、EF 、BF ,如图所示:则△BDE ≌△FDE ,∴BD=FD ,BE=FE ,∠DFE=∠DBE=90°易证△ADF ∽△GFE ∴,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D 、E 在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt △ADF 中,由勾股定理:AD 2+AF 2=DF 2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C .10.答案为:38;11.答案为:2.12.答案为:21.13.答案为:19;14.答案为:210.15.答案为:y=0.8x ;16.答案为:1;17.原式=1x x . 18.答案为:+2+.19.证明:∵∠ADC+∠BDC=180°,∠BEC+∠AEB=180°,又∵∠BDC=∠CEB,∴∠ADC=∠AEB.在△ADC和△AEB中,,∴△ADC≌△AEB(ASA).∴AB=AC.∴AB﹣AD=AC﹣AE.即BD=CE.20.100辆.补全条形统计图如图.(2)估计这种电动汽车一次充电后行驶的平均里程数为217 km.21.解:(1)设每次下调的百分率为,由题意,得.解得.经检验:不符合题意,故=10%.答:每次下调的百分率为10%.(2)设每件商品降价元,则每天多销售件.由题意,得.解得.答:每件应降价2元.22.解:23.24.解:(1)过点C作CH⊥x轴,垂足为H∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2∴OB=4,OA=由折叠知,∠COB=30°,OC=OA=∴∠COH=60°,OH=,CH=3∴C点坐标为(,3);(2)∵抛物线y=ax2+bx(a≠0)经过C(,3)、A(,0)两点,∴,解得:,∴此抛物线的解析式为:y=﹣x2+2x.(3)存在.因为的顶点坐标为(,3)所以顶点坐标为点C作MP⊥x轴,垂足为N,设PN=t,因为∠BOA=30°,所以ON=t∴P(t,t)作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E把t代入得:y=﹣3t2+6t∴M(t,﹣3t2+6t),E(,﹣3t2+6t)同理:Q(,t),D(,1)要使四边形CDPM为等腰梯形,只需CE=QD(这时△PQD≌△MEC)即3﹣(﹣3t2+6t)=t﹣1,解得:,t2=1(不合题意,舍去)∴P点坐标为(,)∴存在满足条件的点P,使得四边形CDPM为等腰梯形,此时P点的坐为(,);25.解:(1)∵△ABC是等边三角形,∴∠B=60°,∴当BQ=2BP时,∠BPQ=90°,∴6+t=2(6﹣t),∴t=3,∴t=3时,△BPQ是直角三角形.(2)存在.理由:如图1中,连接BF交AC于M.∵BF平分∠ABC,BA=BC,∴BF⊥AC,AM=CM=3cm,∵EF∥BQ,∴∠EFM=∠FBC=∠ABC=30°,∴EF=2EM,∴t=2•(3﹣t),解得t=3.(3)如图2中,作PK∥BC交AC于K.∵△ABC是等边三角形,∴∠B=∠A=60°,∵PK∥BC,∴∠APK=∠B=60°,∴∠A=∠APK=∠AKP=60°,∴△APK是等边三角形,∴PA=PK,∵PE⊥AK,∴AE=EK,∵AP=CQ=PK,∠PKD=∠DCQ,∠PDK=∠QDC,∴△PKD≌△QCD(AAS),∴DK=DC,∴DE=EK+DK= (AK+CK)= AC=3(cm).(4)如图3中,连接AM,AB′∵BM=CM=3,AB=AC,∴AM⊥BC,∴AM==3,∵AB′≥AM﹣MB′,∴AB′≥3﹣3,∴AB′的最小值为3﹣3.第11 页共11 页。
2019-2020学年大连市中考数学模拟试卷(有标准答案)(Word版)
辽宁省大连市中考数学试卷一、选择题(每小题3分,共24分)1.在实数﹣1,0,3,中,最大的数是()A.﹣1 B.0 C.3 D.2.一个几何体的三视图如图所示,则这个几何体是()A.圆锥B.长方体C.圆柱D.球3.计算﹣的结果是()A.B.C.D.4.计算(﹣2a3)2的结果是()A.﹣4a5B.4a5C.﹣4a6D.4a65.如图,直线a,b被直线c所截,若直线a∥b,∠1=108°,则∠2的度数为()A.108°B.82°C.72°D.62°6.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.B.C.D.7.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)8.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB 的长为()A.2a B.2 a C.3a D.二、填空题(每小题3分,共24分)9.计算:﹣12÷3= .10.下表是某校女子排球队队员的年龄分布:年龄/岁13141516人数1452则该校女子排球队队员年龄的众数是岁.11.五边形的内角和为.12.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为cm.13.关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为.14.某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,设甲种票买了x张,乙种票买了y张,依据题意,可列方程组为.15.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为n mile.(结果取整数,参考数据:≈1.7,≈1.4)16.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为(用含m的代数式表示).三、解答题(17-19题各9分,20题12分,共39分)17.计算:( +1)2﹣+(﹣2)2.18.解不等式组:.19.如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别A B C D E节目类型新闻体育动画娱乐戏曲人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生中,最喜爱体育节目的有人,这些学生数占被调查总人数的百分比为%.(2)被调查学生的总数为人,统计表中m的值为,统计图中n的值为.(3)在统计图中,E类所对应扇形的圆心角的度数为.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.四、解答题(21、22小题各9分,23题10分,共28分)21.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?22.如图,在平面直角坐标系xOy中,双曲线y=经过▱ABCD的顶点B,D.点D的坐标为(2,=5.1),点A在y轴上,且AD∥x轴,S▱ABCD(1)填空:点A的坐标为;(2)求双曲线和AB所在直线的解析式.23.如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.五、解答题(24题11分,25、26题各12分,共35分)24.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D与点A,C 不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.25.如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b= (用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(2)若a=,当0<x<1,抛物线上的点到x轴距离的最大值为3时,求b的值.辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.在实数﹣1,0,3,中,最大的数是()A.﹣1 B.0 C.3 D.【考点】2A:实数大小比较.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行比较即可.【解答】解:在实数﹣1,0,3,中,最大的数是3,故选:C.2.一个几何体的三视图如图所示,则这个几何体是()A.圆锥B.长方体C.圆柱D.球【考点】U3:由三视图判断几何体.【分析】根据主视图与左视图,主视图与俯视图的关系,可得答案.【解答】解:由主视图与左视图都是高平齐的矩形,主视图与俯视图都是长对正的矩形,得几何体是矩形,故选:B.3.计算﹣的结果是()A.B.C.D.【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:原式==故选(C)4.计算(﹣2a3)2的结果是()A.﹣4a5B.4a5C.﹣4a6D.4a6【考点】47:幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方进行计算即可.【解答】解:原式=4a6,故选D.5.如图,直线a,b被直线c所截,若直线a∥b,∠1=108°,则∠2的度数为()A.108°B.82°C.72°D.62°【考点】JA:平行线的性质.【分析】两直线平行,同位角相等.再根据邻补角的性质,即可求出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=108°,∵∠2+∠3=180°,∴∠2=72°,即∠2的度数等于72°.故选:C.6.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】画树状图展示所有4种等可能的结果数,再找出两枚硬币全部正面向上的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.7.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)【考点】Q3:坐标与图形变化﹣平移.【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.【解答】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选:B.8.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB 的长为()A.2a B.2 a C.3a D.【考点】KP:直角三角形斜边上的中线.【分析】根据勾股定理得到CE=a,根据直角三角形的性质即可得到结论.【解答】解:∵CD⊥AB,CD=DE=a,∴CE=a,∵在△ABC中,∠ACB=90°,点E是AB的中点,∴AB=2CE=2a,故选B.二、填空题(每小题3分,共24分)9.计算:﹣12÷3= ﹣4 .【考点】1D:有理数的除法.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣4.故答案为:﹣410.下表是某校女子排球队队员的年龄分布:年龄/岁13141516人数1452则该校女子排球队队员年龄的众数是15 岁.【考点】W5:众数.【分析】根据表格中的数据确定出人数最多的队员年龄确定出众数即可.【解答】解:根据表格得:该校女子排球队队员年龄的众数是15岁,故答案为:1511.五边形的内角和为540°.【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°计算即可.【解答】解:(5﹣2)•180°=540°.故答案为:540°.12.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为 5 cm.【考点】M2:垂径定理;KQ:勾股定理.【分析】先根据垂径定理得出AC的长,再由勾股定理即可得出结论.【解答】解:连接OA,∵OC⊥AB,AB=8,∴AC=4,∵OC=3,∴OA===5.故答案为:5.13.关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为c<1 .【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式,即可得出关于c的一元一次不等式,解之即可得出结论.【解答】解:∵关于x的方程x2+2x+c=0有两个不相等的实数根,∴△=22﹣4c=4﹣4c>0,解得:c<1.故答案为:c<1.14.某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,设甲种票买了x张,乙种票买了y张,依据题意,可列方程组为.【考点】99:由实际问题抽象出二元一次方程组.【分析】设甲种票买了x张,乙种票买了y张,根据“36名学生购票恰好用去860元”作为相等关系列方程组.【解答】解:设甲种票买了x张,乙种票买了y张,根据题意,得:,故答案为.15.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为102 n mile.(结果取整数,参考数据:≈1.7,≈1.4)【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】根据题意得出∠MPA=∠PAD=60°,从而知PD=AP•sin∠PAD=43,由∠BPD=∠PBD=45°根据BP=,即可求出即可.【解答】解:过P作PD⊥AB,垂足为D,∵一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,∴∠MPA=∠PAD=60°,∴PD=AP•sin∠PAD=86×=43,∵∠BPD=45°,∴∠B=45°.在Rt△BDP中,由勾股定理,得BP===43×≈102(n mile).故答案为:102.16.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为m﹣6≤b≤m﹣4 (用含m的代数式表示).【考点】FF:两条直线相交或平行问题.【分析】由点的坐标特征得出线段AB∥y轴,当直线y=2x+b经过点A时,得出b=m﹣6;当直线y=2x+b经过点B时,得出b=m﹣4;即可得出答案.【解答】解:∵点A、B的坐标分别为(3,m)、(3,m+2),∴线段AB∥y轴,当直线y=2x+b经过点A时,6+b=m,则b=m﹣6;当直线y=2x+b经过点B时,6+b=m+2,则b=m﹣4;∴直线y=2x+b与线段AB有公共点,则b的取值范围为m﹣6≤b≤m﹣4;故答案为:m﹣6≤b≤m﹣4.三、解答题(17-19题各9分,20题12分,共39分)17.计算:( +1)2﹣+(﹣2)2.【考点】79:二次根式的混合运算.【分析】首先利用完全平方公式计算乘方,化简二次根式,乘方,然后合并同类二次根式即可.【解答】解:原式=3+2﹣2+4=7.18.解不等式组:.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x﹣3>1,得:x>2,解不等式>﹣2,得:x<4,∴不等式组的解集为2<x<419.如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】由平行四边形的性质得出AB∥CD,AB=CD,由平行线的性质得出得出∠BAC=∠DCA,证出∠EAB=∠FAD,∠BEA=∠DFC=90°,由AAS证明△BEA≌△DFC,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAC=∠DCA,∴180°﹣∠BAC=180°﹣∠DCA,∴∠EAB=∠FAD,∵BE⊥AC,DF⊥AC,∴∠BEA=∠DFC=90°,在△BEA和△DFC中,,∴△BEA≌△DFC(AAS),∴AE=CF.20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别A B C D E节目类型新闻体育动画娱乐戏曲人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生中,最喜爱体育节目的有30 人,这些学生数占被调查总人数的百分比为20 %.(2)被调查学生的总数为150 人,统计表中m的值为45 ,统计图中n的值为36 .(3)在统计图中,E类所对应扇形的圆心角的度数为21.6°.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.【考点】VB:扇形统计图;V5:用样本估计总体;VA:统计表.【分析】(1)观察图表休息即可解决问题;(2)根据百分比=,计算即可;(3)根据圆心角=360°×百分比,计算即可;(4)用样本估计总体的思想解决问题即可;【解答】解:(1)最喜爱体育节目的有 30人,这些学生数占被调查总人数的百分比为 20%.故答案为30,20.(2)总人数=30÷20%=150人,m=150﹣12﹣30﹣54﹣9=45,n%=×100%=36%,即n=36,故答案为150,45,36.(3)E类所对应扇形的圆心角的度数=360°×=21.6°.故答案为21.6°(4)估计该校最喜爱新闻节目的学生数为2000×=160人.答:估计该校最喜爱新闻节目的学生数为160人.四、解答题(21、22小题各9分,23题10分,共28分)21.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?【考点】B7:分式方程的应用.【分析】设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得: =,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件.22.如图,在平面直角坐标系xOy中,双曲线y=经过▱ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S=5.▱ABCD(1)填空:点A的坐标为(0,1);(2)求双曲线和AB所在直线的解析式.【考点】G7:待定系数法求反比例函数解析式;FA:待定系数法求一次函数解析式;G5:反比例函数系数k的几何意义;L5:平行四边形的性质.【分析】(1)由D得坐标以及点A在y轴上,且AD∥x轴即可求得;(2)由平行四边形得面积求得AE得长,即可求得OE得长,得到B得纵坐标,代入反比例函数得解析式求得B得坐标,然后根据待定系数法即可求得AB所在直线的解析式.【解答】解:(1)∵点D的坐标为(2,1),点A在y轴上,且AD∥x轴,∴A(0,1);故答案为(0,1);(2)∵双曲线y=经过点D(2,1),∴k=2×1=2,∴双曲线为y=,∵D(2,1),AD∥x轴,∴AD=2,=5,∵S▱ABCD∴AE=,∴OE=,∴B点纵坐标为﹣,把y=﹣代入y=得,﹣ =,解得x=﹣,∴B(﹣,﹣),设直线AB得解析式为y=ax+b,代入A(0,1),B(﹣,﹣)得:,解得,∴AB所在直线的解析式为y=x+1.23.如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.【考点】MC:切线的性质;KQ:勾股定理;T7:解直角三角形.【分析】(1))设∠BAD=α,由于AD平分∠BAC,所以∠CAD=∠BAD=α,进而求出∠D=∠BED=90°﹣α,从而可知BD=BE;(2)设CE=x,由于AB是⊙O的直径,∠AFB=90°,又因为BD=BE,DE=2,FE=FD=1,由于BD=,所以tanα=,从而可求出AB==2,利用勾股定理列出方程即可求出x的值.【解答】解:(1)设∠BAD=α,∵AD平分∠BAC∴∠CAD=∠BAD=α,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣2α,∵BD是⊙O的切线,∴BD⊥AB,∴∠DBE=2α,∠BED=∠BAD+∠ABC=90°﹣α,∴∠D=180°﹣∠DBE﹣∠BED=90°﹣α,∴∠D=∠BED,∴BD=BE(2)设AD交⊙O于点F,CE=x,则AC=2x,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∵BD=BE,DE=2,∴FE=FD=1,∵BD=,∴tanα=,∴AB==2在Rt△ABC中,由勾股定理可知:(2x)2+(x+)2=(2)2,∴解得:x=﹣或x=,∴CE=;五、解答题(24题11分,25、26题各12分,共35分)24.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D与点A,C 不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.【考点】R2:旋转的性质;E3:函数关系式;LD:矩形的判定与性质;T7:解直角三角形.【分析】(1)根据等角的余角相等即可证明;(2)分两种情形①如图1中,当C′E′与AB相交于Q时,即<x≤时,过P作MN∥DC′,设∠B=α.②当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,分别求解即可;【解答】(1)证明:如图1中,∵∠EDE′=∠C=90°,∴∠ADP+∠CDE=90°,∠CDE+∠DEC=90°,∴∠ADP=∠DEC.(2)解:如图1中,当C′E′与AB相交于Q时,即<x≤时,过P作MN∥DC′,设∠B=α∴MN⊥AC,四边形DC′MN是矩形,∴PM=PQ•cosα=y,PN=×(3﹣x),∴(3﹣x)+y=x,∴y=x﹣,当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN 是矩形,∴PN=DM,∵DM=(3﹣x),PN=PQ•sinα=y,∴(3﹣x)=y,∴y=﹣x+.综上所述,y=25.如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为∠BAD+∠ACB=180°;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.【考点】RB:几何变换综合题.【分析】(1)在△ABD中,根据三角形的内角和定理即可得出结论:∠BAD+∠ACB=180°;(2)如图1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出===,可得=,可得4y2+2xy﹣x2=0,即()2+﹣1=0,求出的值即可解决问题;(3)如图2中,作DE∥AB交AC于E.想办法证明△PA′D∽△PBC,可得==,可得=,即=,由此即可解决问题;【解答】解:(1)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,又∵∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.(2)如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴===,∴=,∴4y2+2xy﹣x2=0,∴()2+﹣1=0,∴=(负根已经舍弃),∴=.(3)如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD∽△ACB,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C+∠A′CB=180°,∴A′D∥BC,∴△PA′D∽△PBC,∴==,∴=,即=∵CD=,∴PC=1.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b= ﹣2a﹣1 (用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(2)若a=,当0<x<1,抛物线上的点到x轴距离的最大值为3时,求b的值.【考点】HF:二次函数综合题.【分析】(1)①由A点坐标可求得c,再把B点坐标代入可求得b与a的关系式,可求得答案;②用a可表示出抛物线解析式,令y=0可得到关于x的一元二次方程,利用根与系数的关系可用a表示出EF的值,再利用函数性质可求得其取得最小值时a的值,可求得抛物线解析式;(2)可用b表示出抛物线解析式,可求得其对称轴为x=﹣b,由题意可得出当x=0、x=1或x=﹣b时,抛物线上的点可能离x轴最远,可分别求得其函数值,得到关于b的方程,可求得b 的值.【解答】解:(1)①∵抛物线y=ax2+bx+c的开口向上,且经过点A(0,),∴c=,∵抛物线经过点B(2,﹣),∴﹣=4a+2b+,∴b=﹣2a﹣1,故答案为:﹣2a﹣1;②由①可得抛物线解析式为y=ax2﹣(2a+1)x+,令y=0可得ax2﹣(2a+1)x+=0,∵△=(2a+1)2﹣4a×=4a2﹣2a+1=4(a﹣)2+>0,∴方程有两个不相等的实数根,设为x1、x2,∴x1+x2=,x1x2=,∴EF2=(x1﹣x2)2=(x1+x2)2﹣4x1x2==(﹣1)2+3,∴当a=1时,EF2有最小值,即EF有最小值,∴抛物线解析式为y=x2﹣3x+;(2)当a=时,抛物线解析式为y=x2+bx+,∴抛物线对称轴为x=﹣b,∴只有当x=0、x=1或x=﹣b时,抛物线上的点才有可能离x轴最远,当x=0时,y=,当x=1时,y=+b+=2+b,当x=﹣b时,y=(﹣b)2+b(﹣b)+=﹣b2+,①当|2+b|=3时,b=1或b=﹣5,且顶点不在0<x<1范围内,满足条件;②当|﹣b2+|=3时,b=±3,对称轴为直线x=±3,不在0<x<1范围内,故不符合题意,综上可知b的值为1或﹣5.。
2020年辽宁省大连市中考数学模拟试卷含答案解析
3.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是( )
A.AC=ABB.∠C= ∠BODC.∠C=∠BD.∠A=∠BOD
4.不等式|x﹣1|<1的解集是( )
A.x>2B.x<0C.1<x<2D.0<x<2
5.在平面直角坐标系中,抛物线y=﹣ (x+1)2﹣ 的顶点是( )
A.绝对值B.倒数C.相反数D.算术平方根
【考点】算术平方根;相反数;绝对值;倒数.
【分析】利用绝对值的代数意义,倒数,相反数,算术平方根定义判断即可.
【解答】解:正整数5的绝对值为5;倒数为 ;相反数为﹣5;算术平方根为 ,得到的数值仍为正整数的是绝对值,
故选A.
2.我国是一个严重缺水的国家,淡水资源总量为28000亿立方米,人均淡水资源低于世界平均水平,因此,珍惜水、保护水是我们每一位公民的责任,其中数据28000用科学记数法表示为( )
所以米堆的斛数是 ≈22,
故选B.
二、填空题(本题共8小题,每小题3分,满分24分)
9.因式分解:2a2﹣4a=2a(a﹣2).
【考点】因式分解-提公因式法.
【分析】原题中的公因式是2a,用提公因式法来分解因式.
【解答】解:原式=2a(a﹣2).
故答案为:2a(a﹣2).
10.某舞蹈队10名队员的年龄分布如表所示:
13.如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的 ,则AB:DE=.
14.如图,点A是反比例函数图象上y= 一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则k=.
15.在平面直角坐标系中,有平行四边形ABCD,点A坐标为(2,0),点C(5,﹣3),点B(4,1),则D点坐标为.
2020年辽宁省大连市中考数学试题及参考答案(word解析版)
大连市2020年初中毕业升学考试数学试卷(满分150,考试时间120分钟)一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.下列四个数中,比﹣1小的数是()A.﹣2 B.﹣C.0 D.12.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A.360×102B.36×103C.3.6×104D.0.36×1054.如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°5.平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)6.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(﹣2a2)3=﹣6a67.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.B.C.D.8.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.100m C.100m D.m9.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)10.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°二、填空题(本题共6小题,每小题3分,共18分)11.不等式5x+1>3x﹣1的解集是.12.某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A 1 10B 2 8C 7 5这个公司平均每人所创年利润是万元.13.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为.14.如图,菱形ABCD中,∠ACD=40°,则∠ABC=°.15.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为.16.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为.(第14题图)(第15题图)(第16题图)三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算(+1)(﹣1)++.18.(9分)计算﹣1.19.(9分)如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.20.(12分)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为 人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为 %;(2)被调查学生的总人数为 人,其中读书量为2本的学生数为 人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.(9分)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?22.(10分)四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,AD =CD .(1)如图1,求证∠ABC =2∠ACD ;(2)过点D 作⊙O 的切线,交BC 延长线于点P (如图2).若tan ∠CAB =,BC =1,求PD的长.23.(10分)甲、乙两个探测气球分别从海拔5m 和15m 处同时出发,匀速上升60min .如图是甲、乙两个探测气球所在位置的海拔y (单位:m )与气球上升时间x (单位:min )的函数图象.(1)求这两个气球在上升过程中y 关于x 的函数解析式;(2)当这两个气球的海拔高度相差15m 时,求上升的时间.读书量 频数(人) 频率 1本 4 2本 0.3 3本 4本及以上 10五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.(11分)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点B出发,沿边BA →AC以2cm/s的速度向终点C运动,过点D作DE∥BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.25.(11分)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.26.(12分)在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为;(2)函数F1为y=,当PQ=6时,t的值为;(3)函数F1为y=ax2+bx+c(a≠0),①当t=时,求△OPQ的面积;②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.下列四个数中,比﹣1小的数是()A.﹣2 B.﹣C.0 D.1【知识考点】有理数大小比较.【思路分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解题过程】解:根据有理数比较大小的方法,可得﹣2<﹣1,0>﹣1,﹣>﹣1,1>﹣1,∴四个数中,比﹣1小的数是﹣2.故选:A.【总结归纳】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形即可.【解题过程】解:从正面看,底层是三个小正方形,上层右边的一个小正方形.故选:B.【总结归纳】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A.360×102B.36×103C.3.6×104D.0.36×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解题过程】解:36000=3.6×104,故选:C.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°【知识考点】平行线的性质;三角形内角和定理.【思路分析】利用三角形内角和定理求出∠C,再根据平行线的性质求出∠AED即可.【解题过程】解:∵∠C=180°﹣∠A﹣∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE∥BC,∴∠AED=∠C=80°,故选:D.【总结归纳】本题考查三角形内角和定理,平行线的性质,解题的关键是熟练掌握三角形内角和定理,平行线的性质解决问题,属于中考常考题型.5.平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解题过程】解:点P(3,1)关于x轴对称的点的坐标是(3,﹣1)故选:B.【总结归纳】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(﹣2a2)3=﹣6a6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.【解题过程】解:A.a2与a3不是同类项,所以不能合并,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.(a2)3=a6,故本选项符合题意;D.(﹣2a2)3=﹣8a6,故本选项不合题意.故选:C.【总结归纳】本题主要考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.7.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.B.C.D.【知识考点】概率公式.【思路分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.【解题过程】解:根据题意可得:袋子中有3个白球,4个红球,共7个,从袋子中随机摸出一个球,它是红球的概率.故选:D.【总结归纳】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.100m C.100m D.m【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】根据题意求出∠AOB,根据直角三角形的性质解答即可.【解题过程】解:由题意得,∠AOB=90°﹣60°=30°,∴AB=OA=100(m),故选:A.【总结归纳】本题考查的是解直角三角形的应用﹣方向角问题,掌握方向角的概念、熟记含30度角的直角三角形的性质是解题的关键.9.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)【知识考点】二次函数的性质;抛物线与x轴的交点.【思路分析】根据抛物线的对称性和(﹣1,0)为x轴上的点,即可求出另一个点的交点坐标.【解题过程】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2﹣1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),故选:B.【总结归纳】本题考查了抛物线与x轴的交点,要知道抛物线与x轴的两交点关于对称轴对称.10.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°【知识考点】旋转的性质.【思路分析】根据旋转可得∠A′BA=∠ABC=40°,A′B=AB,得∠BAA′=70°,根据∠CAA'=∠CAB+∠BAA′,进而可得∠CAA'的度数.【解题过程】解:∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°﹣∠ABC=90°﹣40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=(180°﹣40°)=70°,∴∠CAA'=∠CAB+∠BAA′=50°+70°=120°.故选:D.【总结归纳】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.二、填空题(本题共6小题,每小题3分,共18分)11.不等式5x+1>3x﹣1的解集是.【知识考点】解一元一次不等式.【思路分析】先对不等式进行移项,合并同类项,再系数化1即可求得不等式的解集.【解题过程】解:5x+1>3x﹣1,移项得,5x﹣3x>﹣1﹣1,合并得,2x>﹣2,即x>﹣1,故答案为x>﹣1.【总结归纳】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A 1 10B 2 8C 7 5这个公司平均每人所创年利润是万元.【知识考点】加权平均数.【思路分析】直接利用表格中数据,求出10人的总创年利润进而求出平均每人所创年利润.【解题过程】解:这个公司平均每人所创年利润是:(10+2×8+7×5)=6.1(万).故答案为:6.1.【总结归纳】此题主要考查了加权平均数,正确利用表格获取正确信息是解题关键.13.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为.【知识考点】数学常识;由实际问题抽象出一元二次方程.【思路分析】由矩形的宽及长与宽之间的关系可得出矩形的长为(x+12)步,再利用矩形的面积公式即可得出关于x的一元二次方程,此题得解.【解题过程】解:∵矩形的宽为x步,且宽比长少12步,∴矩形的长为(x+12)步.依题意,得:x(x+12)=864.故答案为:x(x+12)=864.【总结归纳】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.14.如图,菱形ABCD中,∠ACD=40°,则∠ABC=°.【知识考点】菱形的性质.【思路分析】由菱形的性质得出AB∥CD,∠BCD=2∠ACD=80°,则∠ABC+∠BCD=180°,即可得出答案.【解题过程】解:∵四边形ABCD是菱形,∴AB∥CD,∠BCD=2∠ACD=80°,∴∠ABC+∠BCD=180°,∴∠ABC=180°﹣80°=100°;故答案为:100.【总结归纳】本题考查了菱形的性质、平行线的性质;熟练掌握菱形的性质是解题的关键.15.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为.【知识考点】反比例函数图象上点的坐标特征;正方形的性质.【思路分析】连接BD,与AC交于点O′,利用正方形的性质得到O′A=O′B=O′C=O′D=2,从而得到点A坐标,代入反比例函数表达式即可.【解题过程】解:连接BD,与AC交于点O′,∵四边形ABCD是正方形,AC⊥x轴,∴BD所在对角线平行于x轴,∵B(0,2),∴O′C=2=BO′=AO′=DO′,∴点A的坐标为(2,4),∴k=2×4=8,故答案为:8.【总结归纳】本题考查了正方形的性质,反比例函数表达式的求法,解题的关键是利用正方形的性质求出点A的坐标.16.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为.【知识考点】矩形的性质;相似三角形的判定与性质.【思路分析】根据题干条件可证得△DEF∽△BCF,从而得到,由线段比例关系即可求出函数解析式.【解题过程】解:在矩形中,AD∥BC,∴△DEF∽△BCF,∴,∵BD==10,BF=y,DE=x,∴DF=10﹣y,∴,化简得:,∴y关于x的函数解析式为:,故答案为:.【总结归纳】本题主要考查的是相似三角形的判定与性质定理,难度不大,熟练掌握性质和判定定理是解得本题的关键,注意掌握数形结合思想与函数思想的应用.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算(+1)(﹣1)++.【知识考点】实数的运算;平方差公式.【思路分析】原式利用平方差公式,立方根、算术平方根性质计算即可求出值.【解题过程】解:原式=2﹣1﹣2+3=2.【总结归纳】此题考查了平方差公式,以及实数的运算,熟练掌握公式及运算法则是解本题的关键.18.(9分)计算﹣1.【知识考点】分式的混合运算.【思路分析】直接利用分式的混合运算法则分别化简得出答案.【解题过程】解:原式=•﹣1=﹣1==﹣.【总结归纳】此题主要考查了分式的混合运算,正确化简分式是解题关键.19.(9分)如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.【知识考点】全等三角形的判定与性质.【思路分析】根据等腰三角形等边对等角的性质可以得到∠B=∠C,然后证明△ABD和△ACE 全等,根据全等三角形对应边相等有AD=AE,再根据等边对等角的性质即可证明.【解题过程】证明:∵AB=AC,∴∠B=∠C(等边对等角),在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形对应边相等),∴∠ADE=∠AED(等边对等角).【总结归纳】本题考查了全等三角形的判定与性质以及等腰三角形的性质,找出已知边的夹角相等是证明三角形全等的关键,也是本题的突破点.20.(12分)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.读书量频数(人)频率1本 42本0.33本4本及以上10根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为%;(2)被调查学生的总人数为人,其中读书量为2本的学生数为人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.【知识考点】用样本估计总体;频数(率)分布表;扇形统计图.【思路分析】(1)直接根据图表信息可得;(2)用4本及以上对应的频数除以所占百分比可得总人数,再乘以读书量为2本的频率即可;(3)求出读书量为3本的人数,除以样本人数50,再乘以全校总人数550可得结果.【解题过程】解:(1)由图表可知:被调查学生中,读书量为1本的学生数为4人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为20%,故答案为:4;20;(2)10÷20%=50人,50×0.3=15人,∴被调查学生的总人数为50人,其中读书量为2本的学生数为15人,故答案为:50;15;(3)(50﹣4﹣10﹣15)÷50×550=231人,该校八年级学生读书量为3本的学生有231人.【总结归纳】本题考查了频数统计表和扇形统计图,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.(9分)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?【知识考点】二元一次方程组的应用.【思路分析】设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,根据“第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解题过程】解:设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,依题意,得:,解得:.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(10分)四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=,BC=1,求PD 的长.【知识考点】垂径定理;圆周角定理;圆内接四边形的性质;切线的性质;解直角三角形.【思路分析】(1)由等腰三角形的性质得出∠DAC=∠ACD,由圆内接四边形的性质得出∠ABC+∠ADC=180°,则可得出答案;(2)由切线的性质得出∠ODP=90°,由垂径定理得出∠DEC=90°,由圆周角定理∠ACB=90°,可得出四边形DECP为矩形,则DP=EC,求出EC的长,则可得出答案.【解题过程】(1)证明:∵AD=CD,∴∠DAC=∠ACD,∴∠ADC+2∠ACD=180°,又∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ABC=2∠ACD;(2)解:连接OD交AC于点E,∵PD是⊙O的切线,∴OD⊥DP,∴∠ODP=90°,又∵=,∴OD⊥AC,AE=EC,∴∠DEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ECP=90°,∴四边形DECP为矩形,∴DP=EC,∵tan∠CAB=,BC=1,∴,∴AC=,∴EC=AC=,∴DP=.【总结归纳】本题考查了切线的性质,圆周角定理的应用,圆内接四边形的性质,垂径定理,解直角三角形等知识,熟练切线的性质是解题的关键.23.(10分)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.【知识考点】一次函数的应用.【思路分析】(1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x大于20时,两个气球的海拔高度可能相差15m,可得方程x+5﹣(x+15)=15,解之即可.【解题过程】解:(1)设甲气球的函数解析式为:y=kx+b,乙气球的函数解析式为:y=mx+n,分别将(0,5),(20,25)和(0,15),(20,25)代入,,,解得:,,∴甲气球的函数解析式为:y=x+5,乙气球的函数解析式为:y=x+15;(2)由初始位置可得:当x大于20时,两个气球的海拔高度可能相差15m,且此时甲气球海拔更高,∴x+5﹣(x+15)=15,解得:x=50,∴当这两个气球的海拔高度相差15m时,上升的时间为50min.【总结归纳】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.(11分)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点B出发,沿边BA →AC以2cm/s的速度向终点C运动,过点D作DE∥BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.【知识考点】函数关系式;函数自变量的取值范围.【思路分析】(1)根据勾股定理即可得到结论;(2)根据相似三角形的判定和性质以及三角形的面积公式即可得到结论.【解题过程】解:(1)∵△ABC中,∠ACB=90°,AC=6cm,BC=8cm,∴AB===10(cm),当点D与点A重合时,BD=AB=10cm,∴t==5(s);(2)当0<t<5时,(D在AB上),∵DE∥BC,∴△ADE∽△ABC,∴,∴==,解得:DE=,CE=t,∵DE∥BC,∠ACB=90°,∴∠CED=90°,∴S=DE•CE=×t=﹣t2+;当t=5时,点D与点A重合,△CDE不存在;如图2,当5<t<8时,(D在AC上),则AD=2t﹣10,∴CD=16﹣2t,∵DE∥BC,∴△ADE∽△ACB,∴==,∴=,∴DE=,∴S=DE•CD=×(16﹣2t)=﹣t2+t﹣,综上所述,S关于t的函数解析式为S=.【总结归纳】本题考查了函数关系式,相似三角形的判定和性质,勾股定理,正确的理解题意是解题的关键.25.(11分)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.【知识考点】三角形综合题.【思路分析】(1)根据等腰三角形等边对等角回答即可;(2)在CG上取点M,使GM=AF,连接AM,EM,证明△AGM≌△GAF,得到AM=GF,∠AFG=∠AMG,从而证明四边形AMED为平行四边形,得到AD=EM,AD∥EM,最后利用中位线定理得到结论;(3)延长BA至点N,使AD=AN,连接CN,证明△BCN为等腰三角形,设AD=1,可得AB 和BC的长,利用勾股定理求出AC,即可得到的值.【解题过程】解:(1)∵CA=CG,∴∠CAG=∠CGA,故答案为:∠CGA;(2)AD=BD,理由是:如图,在CG上取点M,使GM=AF,连接AM,EM,∵∠CAG=∠CGA,AG=GA,∴△AGM≌△GAF(SAS),∴AM=GF,∠AFG=∠AMG,∵GF=DE,∠AFG=∠CDE,∴AM=DE,∠AMG=∠CDE,∴AM∥DE,∴四边形AMED为平行四边形,∴AD=EM,AD∥EM,∵BE=CE,即点E为BC中点,∴ME为△BCD的中位线,∴AD=ME=BD;(3)延长BA至点N,使AD=AN,连接CN,∵∠BAC=∠NAC=90°,∴AC垂直平分DN,∴CD=CN,∴∠ACD=∠ACN,设∠ACD=α=∠ACN,则∠ABC=2α,则∠ANC=90﹣α,∴∠BCN=180﹣2α﹣(90﹣α)=90﹣α,∴BN=BC,即△BCN为等腰三角形,设AD=1,则AN=1,BD=2,∴BC=BN=4,AB=3,∴AC=,∴.【总结归纳】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行四边形的判定和性质,中位线定理,解题的关键是根据题意构造平行四边形,转化已知条件.26.(12分)在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为;(2)函数F1为y=,当PQ=6时,t的值为;(3)函数F1为y=ax2+bx+c(a≠0),①当t=时,求△OPQ的面积;②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.【知识考点】二次函数综合题.【思路分析】(1)根据F1和F2关于y轴对称得出F2的解析式,求出P、Q两点坐标,即可得到PQ;(2)根据F1和F2关于y轴对称得出F2的解析式,求出P、Q两点坐标,根据PQ=6得出方程,解出t值即可;(3)①根据F1和F2关于y轴对称得出F2的解析式,将x=代入解析式,求出P、Q两点坐标,从而得出△OPQ的面积;②根据题意得出两个函数的解析式,再分当0<c<1时,当1≤c≤2时,当c>2时,三种情况,分析两个函数的增减性,得出最值,相减即可.【解题过程】解:(1)∵F1:y=x+1,F1和F2关于y轴对称,∴F2:y=﹣x+1,分别令x=2,则2+1=3,﹣2+1=﹣1,∴P(2,3),Q(2,﹣1),∴PQ=3﹣(﹣1)=4,故答案为:4;(2)∵F1:,可得:F2:,∵x=t,可得:P(t,),Q(t,),∴PQ=﹣==6,解得:t=1,经检验:t=1是原方程的解,故答案为:1;(3)①∵F1:y=ax2+bx+c,∴F2:y=ax2﹣bx+c,∵t=,分别代入F1,F2,可得:P(,),Q(,),∴PQ=||=,∴S△OPQ==1;②∵函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),而函数F1和F2的图象关于y轴对称,∴函数F1的图象经过A(5,0)和(﹣1,0),∴设F1:y=a(x+1)(x﹣5)=ax2﹣4ax﹣5a,则F2:y=ax2+4ax﹣5a,∴F1的图象的对称轴是直线x=2,且c=﹣5a,∴a=,∵c>0,则a<0,c+1>1,而F2的图象在x>0时,y随x的增大而减小,当0<c<1时,F1的图象y随x的增大而增大,F2的图象y随x的增大而减小,∴当x=c+1时,y=ax2﹣4ax﹣5a的最大值为a(c+1)2﹣4a(c+1)﹣5a,y=ax2+4ax﹣5a的最小值为a(c+1)2+4a(c+1)﹣5a,则h=a(c+1)2﹣4a(c+1)﹣5a﹣[a(c+1)2+4a(c+1)﹣5a]=﹣8ac﹣8a,又∵a=,∴h=;当1≤c≤2时,F1的最大值为=﹣9a,F2的图象y随x的增大而减小,∴F2的最小值为:a(c+1)2+4a(c+1)﹣5a,则h=﹣9a﹣[a(c+1)2+4a(c+1)﹣5a]=﹣a(c+1)2﹣4a(c+1)﹣4a=﹣ac2﹣6ac﹣9a,又∵a=,∴h=,当c>2时,F1的图象y随x的增大而减小,F2的图象y随x的增大而减小,∴当x=c时,y=ax2﹣4ax﹣5a的最大值为ac2﹣4ac﹣5a,当x=c+1时,y=ax2+4ax﹣5a的最小值为a(c+1)2+4a(c+1)﹣5a,则h=ac2+4ac﹣5a﹣[a(c+1)2+4a(c+1)﹣5a],又∵a=,∴h=2c2+c;综上:h关于x的解析式为:h=.【总结归纳】本题是二次函数综合题,考查了一次函数,反比例函数,以及二次函数的图象与性质,二次函数的最值,解题的关键是要理解题意,尤其(3)问中要读懂题干,结合图象进行分析求解.21。
大连市2020年初中毕业升学模拟考试数学(辽宁省大连市2020年初三一模)
大连市2020年初中毕业升学模拟考试数 学注意事项:1.请在答题卡上作答,在试卷上作答无效。
2.木试卷共5道大题,26小题,满分150分,考试时间120分钟。
一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.下列几何体中,左视图为圆的是( ).ABCD2.下列四个数中,最小的是( ).A.-1B. 12-C.0D.23.在平面直角坐标系中,点P (2,-3)关于原点对称的点的坐标为( )A.(2,3)B.(-3,2)C.(-2, 3)D.(-2,-3)4.开学伊始,我市开设了大连教育数字课堂,全市约630000名学生同上开学第一课。
数630000用科学记数法表示为( )A.46.310⨯B.56.310⨯C.60.6310⨯D.46310⨯5.将一块直角三角尺ABC 按如图所示的方式放置,其中点A 、C分别落在直线a b 、上,若a ∥b ,∠1=62°,则∠2的度数为( ). A.28°B.30°C.38°D.62°6.下列计算正确的是( ).A. 2232a a -= B. ()23636aa -= C. ()2224a a -=- D .325a a a ⋅=7.一次抛掷两枚相同的硬币,则这两枚硬币都是正面向上的概率是( ).A.18B.14C.13D.12A21ba C B8.两年前生产1t 某种药品的成本是5000元,随着生产技术的进步,现在生产1t 该种药品的成本是3000元,若设该药品成本的年平均下降率为x ,则可列方程为( ).A.()50001+3000x =B.()250001-3000x = C.()250001-3000x =D.()50001-3000x =9.如图,矩形ABCDE 的对角线AC 、BD 相交于点O ,E 是边BC 的中点,AD=4.则OE 的长为( ).A.1C.210.若二次函数2(0)y ax bx c a =++≠的自变量x 与函数值y 的部分对应值如下表:则当x=4时,函数值为A.-1B.0C.3D. 8二、填空题(本题共6小题,每小题3分,共18分) 11.不等式2-4x >的解集是 .12.如图,某商场大厅自动扶梯AB 的长为12m ,它与水平面AC 的夹角∠BAC=30°,则大厅两层之间的高度BC 为 m.13.某校男子排球队队员的年龄分布为:13岁3人,14岁6人,15岁3人,则这些队员的平均年龄为 岁.14.“圆材埋壁”是我国古代著名数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”转化为现在的数学语言就是:如图,AB 是⊙O 的直径,弦CD⊥AB,垂足为E ,AE =1寸,CD =10寸,则直径AB 的长为 寸.(第12题图) (第14题图)(第15题图) (第16题图)15.如图,函数)0y x x=>的图像与直线()0y kx k =≠相交于点A ,点B 是OA 的中点,过点B 作OA 的垂线,与x 轴相交于点C.当AAC 的长为 .16.如图,△ABC 中,∠BAC=90°,BC=4,BD 是△ABC 的角平分线,过点C 做BD 的垂线,交BD 的延长线于点E.若设AB=x ,CE=y ,则y 关于x 的函数解析式为 .三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.计算(13|++18.计算 221442242a a a a a -+÷-+--CBA30°19.如图,平行四边形ABCD 中,点E 、F 分别在BC 、DE 上,AF=AB ,∠AFD=∠DCE。
辽宁大连2020年中考数学模拟试卷 三(含答案)(含答案)
辽宁大连2020年中考数学模拟试卷三一、选择题1.将式子3-5-7写成和的形式,正确的是()A.3+5+7B.-3+(-5)+(-7)C.3-(+5)-(+7)D.3+(-5)+(-7)2.如图所示的几何体的俯视图是()3.人类的遗传物质是DNA,人类的DNA是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为( )A.3×108B.3×107C.3×106D.0.3×1084.在直角坐标系中,将点P(-3,2)向右平移4个单位长度,再向下平移6个单位长度后,得到点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,表示下列某个不等式的解集,其中正确的是()A.x>2B.x<2C.x≥2D.x≤﹣26.下列四个图形中,不是中心对称图形的是( )A. B. C. D.7.已知10 x=3,10 y=4,则102x+3y =( )A.574B.575C.576D.5778.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A. B. C. D.9.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD 沿直线PD折叠,使点C落到点C/处;作∠BPC/的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()二、填空题10.如图,AB∥CD,直线EF分别交AB、CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于度.11.某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是S2=1.9,乙队队员身高甲的方差是S乙2=1.2,那么两队中队员身高更整齐的是队.(填“甲”或“乙”)12.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为.13.明德小学为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑两条宽度相同的道路,余下部分作草坪,现在有一位学生设计了如图所示的方案,求图中道路的宽是米时,草坪面积为540平方米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省大连市中考数学试卷一、选择题(每小题3分,共24分)1.在实数﹣1,0,3,中,最大的数是()A.﹣1 B.0 C.3 D.2.一个几何体的三视图如图所示,则这个几何体是()A.圆锥B.长方体C.圆柱D.球3.计算﹣的结果是()A. B. C. D.4.计算(﹣2a3)2的结果是()A.﹣4a5B.4a5C.﹣4a6D.4a65.如图,直线a,b被直线c所截,若直线a∥b,∠1=108°,则∠2的度数为()A.108°B.82°C.72°D.62°6.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.B.C.D.7.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2) B.(5,2) C.(6,2) D.(5,3)8.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB 的长为()A.2a B.2 a C.3a D.二、填空题(每小题3分,共24分)9.计算:﹣12÷3=.10.下表是某校女子排球队队员的年龄分布:年龄/岁13141516人数1452则该校女子排球队队员年龄的众数是岁.11.五边形的内角和为.12.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为cm.13.关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为.14.某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,设甲种票买了x张,乙种票买了y张,依据题意,可列方程组为.15.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为n mile.(结果取整数,参考数据:≈1.7,≈1.4)16.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为(用含m的代数式表示).三、解答题(17-19题各9分,20题12分,共39分)17.计算:( +1)2﹣+(﹣2)2.18.解不等式组:.19.如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别A B C D E节目类型新闻体育动画娱乐戏曲人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生中,最喜爱体育节目的有人,这些学生数占被调查总人数的百分比为%.(2)被调查学生的总数为人,统计表中m的值为,统计图中n的值为.(3)在统计图中,E类所对应扇形的圆心角的度数为.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.四、解答题(21、22小题各9分,23题10分,共28分)21.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?22.如图,在平面直角坐标系xOy中,双曲线y=经过▱ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S▱ABCD=5.(1)填空:点A的坐标为;(2)求双曲线和AB所在直线的解析式.23.如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.五、解答题(24题11分,25、26题各12分,共35分)24.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D与点A,C 不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.25.如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b=(用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(2)若a=,当0<x<1,抛物线上的点到x轴距离的最大值为3时,求b的值.辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.在实数﹣1,0,3,中,最大的数是()A.﹣1 B.0 C.3 D.【考点】2A:实数大小比较.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行比较即可.【解答】解:在实数﹣1,0,3,中,最大的数是3,故选:C.2.一个几何体的三视图如图所示,则这个几何体是()A.圆锥B.长方体C.圆柱D.球【考点】U3:由三视图判断几何体.【分析】根据主视图与左视图,主视图与俯视图的关系,可得答案.【解答】解:由主视图与左视图都是高平齐的矩形,主视图与俯视图都是长对正的矩形,得几何体是矩形,故选:B.3.计算﹣的结果是()A. B. C. D.【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:原式==故选(C)4.计算(﹣2a3)2的结果是()A.﹣4a5B.4a5C.﹣4a6D.4a6【考点】47:幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方进行计算即可.【解答】解:原式=4a6,故选D.5.如图,直线a,b被直线c所截,若直线a∥b,∠1=108°,则∠2的度数为()A.108°B.82°C.72°D.62°【考点】JA:平行线的性质.【分析】两直线平行,同位角相等.再根据邻补角的性质,即可求出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=108°,∵∠2+∠3=180°,∴∠2=72°,即∠2的度数等于72°.故选:C.6.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】画树状图展示所有4种等可能的结果数,再找出两枚硬币全部正面向上的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.7.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2) B.(5,2) C.(6,2) D.(5,3)【考点】Q3:坐标与图形变化﹣平移.【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.【解答】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选:B.8.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB 的长为()A.2a B.2 a C.3a D.【考点】KP:直角三角形斜边上的中线.【分析】根据勾股定理得到CE=a,根据直角三角形的性质即可得到结论.【解答】解:∵CD⊥AB,CD=DE=a,∴CE=a,∵在△ABC中,∠ACB=90°,点E是AB的中点,∴AB=2CE=2a,故选B.二、填空题(每小题3分,共24分)9.计算:﹣12÷3=﹣4.【考点】1D:有理数的除法.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣4.故答案为:﹣410.下表是某校女子排球队队员的年龄分布:年龄/岁13141516人数1452则该校女子排球队队员年龄的众数是15岁.【考点】W5:众数.【分析】根据表格中的数据确定出人数最多的队员年龄确定出众数即可.【解答】解:根据表格得:该校女子排球队队员年龄的众数是15岁,故答案为:1511.五边形的内角和为540°.【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°计算即可.【解答】解:(5﹣2)•180°=540°.故答案为:540°.12.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为5cm.【考点】M2:垂径定理;KQ:勾股定理.【分析】先根据垂径定理得出AC的长,再由勾股定理即可得出结论.【解答】解:连接OA,∵OC⊥AB,AB=8,∴AC=4,∵OC=3,∴OA===5.故答案为:5.13.关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为c<1.【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式,即可得出关于c的一元一次不等式,解之即可得出结论.【解答】解:∵关于x的方程x2+2x+c=0有两个不相等的实数根,∴△=22﹣4c=4﹣4c>0,解得:c<1.故答案为:c<1.14.某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,设甲种票买了x张,乙种票买了y张,依据题意,可列方程组为.【考点】99:由实际问题抽象出二元一次方程组.【分析】设甲种票买了x张,乙种票买了y张,根据“36名学生购票恰好用去860元”作为相等关系列方程组.【解答】解:设甲种票买了x张,乙种票买了y张,根据题意,得:,故答案为.15.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为102n mile.(结果取整数,参考数据:≈1.7,≈1.4)【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】根据题意得出∠MPA=∠PAD=60°,从而知PD=AP•sin∠PAD=43,由∠BPD=∠PBD=45°根据BP=,即可求出即可.【解答】解:过P作PD⊥AB,垂足为D,∵一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,∴∠MPA=∠PAD=60°,∴PD=AP•sin∠PAD=86×=43,∵∠BPD=45°,∴∠B=45°.在Rt△BDP中,由勾股定理,得BP===43×≈102(n mile).故答案为:102.16.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为m﹣6≤b≤m﹣4(用含m的代数式表示).【考点】FF:两条直线相交或平行问题.【分析】由点的坐标特征得出线段AB∥y轴,当直线y=2x+b经过点A时,得出b=m﹣6;当直线y=2x+b经过点B时,得出b=m﹣4;即可得出答案.【解答】解:∵点A、B的坐标分别为(3,m)、(3,m+2),∴线段AB∥y轴,当直线y=2x+b经过点A时,6+b=m,则b=m﹣6;当直线y=2x+b经过点B时,6+b=m+2,则b=m﹣4;∴直线y=2x+b与线段AB有公共点,则b的取值范围为m﹣6≤b≤m﹣4;故答案为:m﹣6≤b≤m﹣4.三、解答题(17-19题各9分,20题12分,共39分)17.计算:( +1)2﹣+(﹣2)2.【考点】79:二次根式的混合运算.【分析】首先利用完全平方公式计算乘方,化简二次根式,乘方,然后合并同类二次根式即可.【解答】解:原式=3+2﹣2+4=7.18.解不等式组:.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x﹣3>1,得:x>2,解不等式>﹣2,得:x<4,∴不等式组的解集为2<x<419.如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】由平行四边形的性质得出AB∥CD,AB=CD,由平行线的性质得出得出∠BAC=∠DCA,证出∠EAB=∠FAD,∠BEA=∠DFC=90°,由AAS证明△BEA≌△DFC,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAC=∠DCA,∴180°﹣∠BAC=180°﹣∠DCA,∴∠EAB=∠FAD,∵BE⊥AC,DF⊥AC,∴∠BEA=∠DFC=90°,在△BEA和△DFC中,,∴△BEA≌△DFC(AAS),∴AE=CF.20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别A B C D E节目类型新闻体育动画娱乐戏曲人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生中,最喜爱体育节目的有30人,这些学生数占被调查总人数的百分比为20%.(2)被调查学生的总数为150人,统计表中m的值为45,统计图中n的值为36.(3)在统计图中,E类所对应扇形的圆心角的度数为21.6°.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.【考点】VB:扇形统计图;V5:用样本估计总体;VA:统计表.【分析】(1)观察图表休息即可解决问题;(2)根据百分比=,计算即可;(3)根据圆心角=360°×百分比,计算即可;(4)用样本估计总体的思想解决问题即可;【解答】解:(1)最喜爱体育节目的有30人,这些学生数占被调查总人数的百分比为20%.故答案为30,20.(2)总人数=30÷20%=150人,m=150﹣12﹣30﹣54﹣9=45,n%=×100%=36%,即n=36,故答案为150,45,36.(3)E类所对应扇形的圆心角的度数=360°×=21.6°.故答案为21.6°(4)估计该校最喜爱新闻节目的学生数为2000×=160人.答:估计该校最喜爱新闻节目的学生数为160人.四、解答题(21、22小题各9分,23题10分,共28分)21.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?【考点】B7:分式方程的应用.【分析】设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得:=,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件.22.如图,在平面直角坐标系xOy中,双曲线y=经过▱ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S▱ABCD=5.(1)填空:点A的坐标为(0,1);(2)求双曲线和AB所在直线的解析式.【考点】G7:待定系数法求反比例函数解析式;FA:待定系数法求一次函数解析式;G5:反比例函数系数k的几何意义;L5:平行四边形的性质.【分析】(1)由D得坐标以及点A在y轴上,且AD∥x轴即可求得;(2)由平行四边形得面积求得AE得长,即可求得OE得长,得到B得纵坐标,代入反比例函数得解析式求得B得坐标,然后根据待定系数法即可求得AB所在直线的解析式.【解答】解:(1)∵点D的坐标为(2,1),点A在y轴上,且AD∥x轴,∴A(0,1);故答案为(0,1);(2)∵双曲线y=经过点D(2,1),∴k=2×1=2,∴双曲线为y=,∵D(2,1),AD∥x轴,∴AD=2,∵S▱ABCD=5,∴AE=,∴OE=,∴B点纵坐标为﹣,把y=﹣代入y=得,﹣=,解得x=﹣,∴B(﹣,﹣),设直线AB得解析式为y=ax+b,代入A(0,1),B(﹣,﹣)得:,解得,∴AB所在直线的解析式为y=x+1.23.如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.【考点】MC:切线的性质;KQ:勾股定理;T7:解直角三角形.【分析】(1))设∠BAD=α,由于AD平分∠BAC,所以∠CAD=∠BAD=α,进而求出∠D=∠BED=90°﹣α,从而可知BD=BE;(2)设CE=x,由于AB是⊙O的直径,∠AFB=90°,又因为BD=BE,DE=2,FE=FD=1,由于BD=,所以tanα=,从而可求出AB==2,利用勾股定理列出方程即可求出x的值.【解答】解:(1)设∠BAD=α,∵AD平分∠BAC∴∠CAD=∠BAD=α,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣2α,∵BD是⊙O的切线,∴BD⊥AB,∴∠DBE=2α,∠BED=∠BAD+∠ABC=90°﹣α,∴∠D=180°﹣∠DBE﹣∠BED=90°﹣α,∴∠D=∠BED,∴BD=BE(2)设AD交⊙O于点F,CE=x,则AC=2x,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∵BD=BE,DE=2,∴FE=FD=1,∵BD=,∴tanα=,∴AB==2在Rt△ABC中,由勾股定理可知:(2x)2+(x+)2=(2)2,∴解得:x=﹣或x=,∴CE=;五、解答题(24题11分,25、26题各12分,共35分)24.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D与点A,C 不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.【考点】R2:旋转的性质;E3:函数关系式;LD:矩形的判定与性质;T7:解直角三角形.【分析】(1)根据等角的余角相等即可证明;(2)分两种情形①如图1中,当C′E′与AB相交于Q时,即<x≤时,过P作MN∥DC′,设∠B=α.②当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,分别求解即可;【解答】(1)证明:如图1中,∵∠EDE′=∠C=90°,∴∠ADP+∠CDE=90°,∠CDE+∠DEC=90°,∴∠ADP=∠DEC.(2)解:如图1中,当C′E′与AB相交于Q时,即<x≤时,过P作MN∥DC′,设∠B=α∴MN⊥AC,四边形DC′MN是矩形,∴PM=PQ•cosα=y,PN=×(3﹣x),∴(3﹣x)+y=x,∴y=x﹣,当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,∴PN=DM,∵DM=(3﹣x),PN=PQ•sinα=y,∴(3﹣x)=y,∴y=﹣x+.综上所述,y=25.如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为∠BAD+∠ACB=180°;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.【考点】RB:几何变换综合题.【分析】(1)在△ABD中,根据三角形的内角和定理即可得出结论:∠BAD+∠ACB=180°;(2)如图1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出===,可得=,可得4y2+2xy﹣x2=0,即()2+﹣1=0,求出的值即可解决问题;(3)如图2中,作DE∥AB交AC于E.想办法证明△PA′D∽△PBC,可得==,可得=,即=,由此即可解决问题;【解答】解:(1)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,又∵∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.(2)如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴===,∴=,∴4y2+2xy﹣x2=0,∴()2+﹣1=0,∴=(负根已经舍弃),∴=.(3)如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD∽△ACB,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C+∠A′CB=180°,∴A′D∥BC,∴△PA′D∽△PBC,∴==,∴=,即=∵CD=,∴PC=1.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b=﹣2a﹣1(用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(2)若a=,当0<x<1,抛物线上的点到x轴距离的最大值为3时,求b的值.【考点】HF:二次函数综合题.【分析】(1)①由A点坐标可求得c,再把B点坐标代入可求得b与a的关系式,可求得答案;②用a可表示出抛物线解析式,令y=0可得到关于x的一元二次方程,利用根与系数的关系可用a表示出EF的值,再利用函数性质可求得其取得最小值时a的值,可求得抛物线解析式;(2)可用b表示出抛物线解析式,可求得其对称轴为x=﹣b,由题意可得出当x=0、x=1或x=﹣b时,抛物线上的点可能离x轴最远,可分别求得其函数值,得到关于b的方程,可求得b 的值.【解答】解:(1)①∵抛物线y=ax2+bx+c的开口向上,且经过点A(0,),∴c=,∵抛物线经过点B(2,﹣),∴﹣=4a+2b+,∴b=﹣2a﹣1,故答案为:﹣2a﹣1;②由①可得抛物线解析式为y=ax2﹣(2a+1)x+,令y=0可得ax2﹣(2a+1)x+=0,∵△=(2a+1)2﹣4a×=4a2﹣2a+1=4(a﹣)2+>0,∴方程有两个不相等的实数根,设为x1、x2,∴x1+x2=,x1x2=,∴EF2=(x1﹣x2)2=(x1+x2)2﹣4x1x2==(﹣1)2+3,∴当a=1时,EF2有最小值,即EF有最小值,∴抛物线解析式为y=x2﹣3x+;(2)当a=时,抛物线解析式为y=x2+bx+,∴抛物线对称轴为x=﹣b,∴只有当x=0、x=1或x=﹣b时,抛物线上的点才有可能离x轴最远,当x=0时,y=,当x=1时,y=+b+=2+b,当x=﹣b时,y=(﹣b)2+b(﹣b)+=﹣b2+,①当|2+b|=3时,b=1或b=﹣5,且顶点不在0<x<1范围内,满足条件;②当|﹣b2+|=3时,b=±3,对称轴为直线x=±3,不在0<x<1范围内,故不符合题意,综上可知b的值为1或﹣5.。