第十八届希望杯全国数学邀请赛初二第2试及答案-
历届1-24“希望杯”全国数学邀请赛八年级-真题及答案

第二届(1991 年)初中二年级第一试试题
一、选择题:(每题1分,共15分)
1.如图1,已知AB=8,AP=5,OB=6,则OP的长是[ ] A.2; B.3; C.4; D.5
2.方程x2-5x+6=0的两个根是[ ] A.1,6 ; B.2,3; C.2,3; D.1,6
A
O
P
B
(1)
3.已知△ABC是等腰三角形,则[ ]
8x
2y 5
z
6x 3
z
x
2
y
x y z
3
x 1 5
y 1 3
3x 4 y 5z 1
则1989x-y+25z=______. 10.已知3x2+4x-7=0,则6x4+11x3-7x2-3x-7=______.
一、选择题
答案与提示
提示: 1.因为所求角α=5(90°-α),解得α=75°.故选(B). 2.因为2的平方是4,4的平方根有2个,就是±2.故选(C). 3.以x=1代入,得a0-a1+a0-a1-a1+a1-a0+a1-a0+a1=2a0-3a1+3a1-2a0=0.故选(A).
1. △ABC中,∠CAB ∠B=90°,∠C的平分线与AB交于L,∠C的外角平分线与BA
的延长线交于N.已知CL=3,则CN=______.
2. 若 a 1 (ab 2)2 0 ,那么
1
1
ab (a 1)(b 1)
1
的值是_____.
(a 1990)(b 1990)
3. 已知a,b,c满足a+b+c=0,abc=8,则c的取值范围是______.
八年级数学希望杯第1-22届试题汇总(含答案与提示)

希望杯第一届(1990)第二试试题 (1)希望杯第二届(1991年)初中二年级第二试试题 (5)希望杯第三届(1992年)初中二年级第二试题 (10)希望杯第四届(1993年)初中二年级第一试试题 (18)希望杯第四届(1993年)初中二年级第二试试题 (24)希望杯第五届(1994年)初中二年级第一试试题 (26)希望杯第五届(1994年)初中二年级第二试试题 (32)第六届(1995年)初中二年级第一试试题 (45)希望杯第六届(1995年)初中二年级第二试试题 (50)希望杯第七届(1996年)初中二年级第一试试题 (56)希望杯第七届(1996年)初中二年级第二试试题 (62)希望杯第八届(1997年)初中二年级第一试试题 (72)希望杯第八届(1997年)初中二年级第二试试题 (79)第九届(1998年)初中二年级第一试试题 (88)希望杯第九届(1998年)初中二年级第二试试题 (98)1999年第十届“希望杯”全国数学邀请赛第二试 (108)2000年第十一届“希望杯”数学竞赛初二第一试 (111)2000年第十一届“希望杯”数学竞赛初二第二试 (114)2001年希望杯第十二届初中二年级第一试试题 (119)2001年希望杯第12届八年级第2试试题 (122)2002年第十三届全国数学邀请赛初二年级第一试 (129)2002年度初二“希望杯”全国数学邀请赛第二试 (132)2003年第十四届“希望杯”全国数学邀请赛初二第1试 (139)2003年第十四届“希望杯”(初二笫2试) (142)2004年第十五届“希望杯”全国数学邀请赛初二 (148)2004年第十五届“希望杯”全国数学邀请赛初二第2试 (151)2005年第十六届希望杯初二第1试试题 (157)2005年第十六届“希望杯”全国数学邀请赛第二试 (159)2006年第十七届“希望杯”全国数学邀请赛第一试 (163)2006年第十七届“希望杯’’数学邀请赛第二试 (166)2007年第十八届”希望杯“全国数学邀请赛第一试 (171)2007年第十八届“希望杯”全国数学邀请赛第二试 (173)2008年第19届“希望杯”全国数学邀请赛初二第2试试题 (179)2009年第二十届“希望杯”全国数学邀请赛第一试 (183)2009年第20届“希望杯”全国数学邀请赛第二试 (186)2010年第二十一届“希望杯”全国数学邀请赛第一试 (193)2010年第二十一届“希望杯”全国数学邀请赛第二试 (195)2011年第二十二届“希望杯”全国数学邀请赛第二试 (201)希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ]A.7.5 B.12. C.4. D.12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ]A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ]A .M >P >N 且M >Q >N.B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1,则∠BDA=[ ]A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种二、填空题:(每题1分,共5分)1. △ABC 中,∠∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N .已知CL=3,则CN=______.2. 2(2)0ab -=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____. 3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=300,三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______. 5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列n 1<n 2<n 3<n 4……,试求:n 1·n 2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a,b,c的关系可以写成( ) A.a<b<c. B.(a-b)2+(b-c)2=0. C.c<a<b. D.a=b≠c5.如图30,AC=CD=DA=BC=DE.则∠BAE是∠BAC的 ( )A.4倍. B.3倍. C.2倍. D.1倍6.D是等腰锐角三角形ABC的底边BC上一点,则AD,BD,CD满足关系式( )A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 27.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为的x 2、y 2的值是( )A.x 2y 22,y 2C. x 2y 22,y 29.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( )A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b a a b +等于( ) A.2213; B.5821; C.240249; D.36538. 二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______. 6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______.8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______.9.2x x +++______.10.已知两数积ab ≠1.且2a2+1234567890a+3=0,3b2+1234567890b+2=0,则ab=______.三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1.已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO∥FK,OH∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF改成直的.(即两边都是直线)但进水口EF的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989 (1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
历届希望杯初二选择题附答案

历届希望杯初二选择题希望杯第二十届(2009年) 初二第二试一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内.1.篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章.印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图1的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中镂空的)( )2.如果1-<<y x ,那么代数式xyx y -++11的值是( ) (A ) 0 (B ) 正数 (C )负数 (D )非负数3.将x 的整数部分记为[x ],x 的小数部分记为{x },易知=x [x ]+{x }({}10<<x ).若5353+--=x ,那么[x ]等于( )(A ) 2- (B )1- (C ) 0 (D )1 4.某种产品由甲、乙、丙三种元件构成.根据图2,为使生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人数量所对应的扇形圆心角的大小依次是( )(A )120°,180°,60°(B )108°,144°,108° (C )90°,180°,90° (D ) 72°,216°,72°5.面积是48的矩形的边长和对角线的长都是整数,则它的周长等于 ( ) (A )20 (B ) 28 (C ) 36 (D )406.In the rectangular coordinates,abscissa and ordinate of the intersection point ofthe lines k x y -= and 2+=kx y are integers for imteger k ,then the number of the possible values of k is ( )(A )4 (B )5 (C )6 (D )7(英汉小词典:abscissa 横坐标;ordinate 纵坐标;intersection point 交点;integer 整数)7.将一张四边形纸片沿两组对边的中点连线剪开,得到四张小纸片,如图3所示.用这四张小纸片一定可以拼成( )(A )梯形 (B )矩形 (C )菱形 (D )平行四边形 8.若不等式组⎩⎨⎧>++<+-mx x m x 1104的解集是4>x ,则( )(A )29≤m (B )5≤m (C )29=m (D )5=m 9.如图4,四边形ABCD 中,∠A=∠C=90°,∠ABC=60°,AD=4,CD=10,则BD 的长等于( )(A ) 134 (B )38 (C )12 (D )31010.任何一个正整数n 都可以写成两个正整数相乘的形式,对于两个乘数的差的绝对值最小的一种分解q p n ⨯=(q p ≤)可称为正整数n 的最佳分解,并规定qpn F =)(.如:12=1×12=2×6=3×4,则43)12(=F . 则在以下结论 ①21)2(=F ②83)24(=F ③若n 是一个完全平方数,则1)(=n F④若n 是一个完全立方数,即3a n =(a 是正整数),则an F 1)(=. 中,正确的结论有( )(A ) 4个 (B )3个 (C )2个 (D )1个第二十一届“希望杯”全国数学邀请赛一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内.1.计算91252⨯,得数是( )(A)9位数. (B) 10位数. (C) 11位数. (D) 12位数.图1fed c ba2.若132=-yx ,则代数式189189---+y x y x 的值( )(A )等于57. (B)等于75. (C)等于75或不存在. (D)等于57或不存在. 3. The integer solutions of the inequalities about x ⎪⎩⎪⎨⎧-<+--≥+-23)21(22)(3xb b x a x a xare1,2,3, then the number of integer pairs (a,b) is( )(A)32. (B)35. (C)40. (D)48. (英汉词典:integer 整数)4.已知三角形三个内角的度数之比为z y x ::,且x+y<z ,则这个三角形是( ) (A)锐角三角形. (B)直角三角形. (C)钝角三角形. (D)等腰三角形. 5.如图1,一个凸六边形的六个内角都是120°,六条边的长分别为 a ,b ,c ,d ,e ,f ,则下列等式中成立的是( ) (A)a+b+c=d+e+f . (B)a+c+e=b+d+f . (C)a+b=d+e . (D)a+c=b+d .6.在三边互不相等的三角形中,最长边的长为a ,最长的中线的长为m ,最长的 高线的长为h ,则( )(A)a>m>h . (B)a>h>m . (C)m>a>h . (D)h>m>a .7.某次足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得O 分,某球队参赛15场,积33分,若不考虑比赛顺序,则该队胜、平、负的情况可能有( ) (A) 15种. (B)11种. (C)5种. (D)3种. 8.若yx y x xy 11,0,0+=/+=/与x+y 成反比,则2)(y x +与22y x + ( ) (A)成正比. (B)成反比. (C)既不成正比,也不成反比. (D)关系不确定.9.如图2,已知函数)0(),0(2<=>=x xky x x y ,点A 在正y 轴上,过点A 作x BC //轴,交两个函数的图象于点B 和C ,若3:1:=AC AB ,则k 的值是( )(A)6. (B)3. (C)一3. (D)一6.10. 10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图3所示,则报出来的数是3的人心里想的数是( )(A)2. (B)一2. (C)4. (D)一4.第二十二届”希望杯”全国数学邀请赛 初二 第2试2011年4月10日 上午9:00至11:00一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内. 1. Given A :B =32:3,A =2,C =1029. The size relationship between B and C is (A) B >C (B) B =C (C) B <C (D) uncertain2. 已知a 2-a =7,则代数式21+-a a .12422+--a a a ÷112-a 的值是(A) 3 (B)27(C) 4 (D) 5 3. 一个凸四边形的四个内角可以(A) 都是锐角 (B) 都是直角 (C) 都是钝角 (D) 有三个是直角,另一个是锐角或钝角 .4. 如果直线y =2x +m 与直角坐标系的两坐标轴围成的三角形的面积等于4,则m 的值是 (A) ±3 (B) 3 (C) ±4 (D) 45. 若n +1=20102+20112,则12+n = (A) 2011 (B) 2010 (C) 4022 (D) 40216. 有四个命题:若两个等腰三角形的腰相等,腰上的高也相等,则这两个等腰三角形全等 有一条边相等的两个等腰直角三角形全等● 有一条边和一个锐角对应相等的两个直角三角形全等 ❍ 两边以及另一边上的高对应相等的两个三角形全等 其中,正确的命题有(A) 0个 (B) 1个 (C) 2个 (D) 3个7. 如图1,Rt △ABC 两直角边上的中线分别为AE 和BD , 则AE 2+BD 2与AB 2的比值为A BCD E 图1ABCDEFP(A)43 (B) 1 (C) 45 (D) 23 8. As shown in figure 2, ABCD is a rectangle and AD =12, AB =5, P is any point on AD and PE ⊥BD at point E , PF ⊥AC at point F . Then PE +PF has a total length of (A)1348 (B) 1360 (C) 5 (D) 1370 9. 如图3,正方形ABCD 的边AB 在x 轴的正半轴上,C (2,1),D (1,1). 反比例函数y =xk的图像与边BC 交于点E ,与边CD 交于点F .已知 BE :CE =3:1,则DF :FC 等于(A) 4:1 (B) 3:1 (C) 2:1 (D) 1:110. 如图4,a ,b ,c ,d ,e 分别代表1,2,3,4,5中的一个数. 若b +a +c 及d +a +e 除以3都余1,则不同的填数方法有 (A) 2种 (B) 4种 (C) 8种 (D) 16种 .第二十三届“希望杯”全国数学邀请赛初二 第2试2012年4月8日 上午9:00至11:00 得分一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在后面的圆括号内。
第8-21届希望杯全国数学邀请赛(初二)试题

第八届“希望杯”全国数学邀请赛初二第1试第八届“希望杯”全国数学邀请赛初二第2试第九届“希望杯”全国数学邀请赛初二第1试第九届“希望杯”全国数学邀请赛初二第2试第十届“希望杯”全国数学邀请赛初二第1试第十届“希望杯”全国数学邀请赛初二第2试第十一届“希望杯”全国数学邀请赛初二第1试第十一届“希望杯”全国数学邀请赛初二 第2试一、选择题:1.-20001999, -19991998, -999998, -1000999这四个数从小到大的排列顺序是(AA )-20001999<-19991998<-1000999<-999998 (B )-999998<-1000999<-19991998<-20001999(C )-19991998<-20001999<-1000999<-999998 (D )-1000999<-999998<-20001999<-199919982.一个三角形的三条边长分别是a , b , c (a , b , c 都是质数),且a +b +c =16,则这个三角形的形状是(A )直角三角形(B )等腰三角形(C )等边三角形(D )直角三角形或等腰三角形 3.已知25x =2000, 80y =2000,则y1x 1+等于 (A )2 (B )1 (C )21(D )23 4.设a +b +c =0, abc >0,则|c |ba |b |ac |a |c b +++++的值是 (A )-3 (B )1 (C )3或-1 (D )-3或15.设实数a 、b 、c 满足a <b <c (ac <0),且|c |<|b |<|a |,则|x -a |+|x -b |+|x +c |的最小值是 (A )3|c b a |++ (B )|b | (C )c -a (D )―c ―a 6.若一个等腰三角形的三条边长均为整数,且周长为10,则底边的长为 (A )一切偶数 (B )2或4或6或8 (C )2或4或6 (D )2或4 7.三元方程x +y +z =1999的非负整数解的个数有(A )20001999个 (B )19992000个 (C )2001000个 (D )2001999个 8.如图1,梯形ABCD 中,AB //CD ,且CD =3AB ,EF //CD ,EF 将梯形 ABCD 分成面积相等的两部分,则AE :ED 等于( )。
全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ](A )12-. (B )21-.(C ))12(-±. (D )12+. 7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。
9.已知 1112111222222--÷-+++-⨯--++x y x y xy y y x y xy x 等于一个固定的值, 则这个值是( ) A .0.B .1.C .2.D .4.把f 1990化简后,等于 ( ) A .1-x x . B.1-x. C.x1. D.x.二、填空题(每题1分,共10分) 1..________6613022=-2.().__________125162590196.012133=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+÷- 3.89850-+=________.4.如图2,∠A=60°,∠1=∠2,则∠ABC 的度数是______.5.如图3,O 是直线AB 上一点,∠AOD=117°,∠BOC=123°,则∠COD 的度数是____度. 6.△ABC 中,∠C=90°,∠A 的平分线与∠B 的平分线交于O 点,则∠AOB 的度数是______度.7.计算下面的图形的面积(长度单位都是厘米)(见图4).答:______. 8.方程x 2+px+q=0,当p >0,q <0时,它的正根的个数是______个. 9.x ,y ,z 适合方程组826532113533451x y z x z x yx y z x y x y z -+++⎧=-⎪⎪++-+⎪+=⎨⎪+=-⎪⎪⎩则1989x-y+25z=______.10.已知3x 2+4x-7=0,则6x 4+11x 3-7x 2-3x-7=______.答案与提示一、选择题提示:1.因为所求角α=5(90°-α),解得α=75°.故选(B).2.因为2的平方是4,4的平方根有2个,就是±2.故选(C).3.以x=1代入,得a0-a1+a0-a1-a1+a1-a0+a1-a0+a1=2a0-3a1+3a1-2a0=0.故选(A).<3,根据大边对大角,有∠C>∠B>∠A.5.如图5,数一数即得.又因原式中有一个负号.所以也不可能是(D),只能选(A).7.∵a<0,故选(C).8.有△ABE,△ABM,△ADP,△ABF,△AMF等五种类型.选(D).9.题目说是一个固定的值,就是说:不论x,y取何值,原式的值不变.于是以x=y=0代入,得:故选(B).故选(A).二、填空题提示:4.∠ADC=∠2+∠ADB=∠1+∠ADB=180°--∠A=120° 所以∠ADC 的度数是120度. 5.∠COD 度数的一半是30度.8.∵Δ=p 2-4q >p 2.9.方程组可化简为:解得: x=1,y=-1,z=0. ∴1989x-y+25z=1990.10.∵6x 4+11x 3-7x 2-3x-7=(3x 2+4x-7)(2x 2+x+1)而3x 2+4x-7=0.希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm ,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ] A .7.5B .12.C .4.D .12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ] A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ] A .M >P >N 且M >Q >N. B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1∶3,则∠BDA=[ ] A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种 二、填空题:(每题1分,共5分)1. △ABC 中,∠CAB ∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA的延长线交于N .已知CL=3,则CN=______. 2. 21(2)0a ab -+-=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____.3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=30053三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______.5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n之和被7除余数都不为1,将所有满足上述条件的自然数n由小到大排成一列n1<n2<n3<n4……,试求:n1·n2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即a b=k×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即a b=177.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.第二届(1991年)初中二年级第一试试题一、选择题:(每题1分,共15分)1.如图1,已知AB=8,AP=5,OB=6,则OP的长是[ ]A.2; B.3; C.4; D.52.方程x2-5x+6=0的两个根是[ ]A.1,6 ; B.2,3; C.2,3; D.1,63.已知△ABC是等腰三角形,则[ ]A.AB=AC;B.AB=BC;C.AB=AC或AB=BC;D.AB=AC或AB=BC或AC=BC344134b c-==+,则a,b,c的大小关系是[ ]A.a>b>c B.a=b=c C.a=c>b D.a=b>c5.若a≠b,则[ ]6.已知x,y都是正整数,那么三边是x,y和10的三角形有[ ]A.3个B.4个; C.5个D.无数多个7.两条直线相交所成的各角中,[ ]A.必有一个钝角;B.必有一个锐角;C.必有一个不是钝角;D.必有两个锐角8.已知两个角的和组成的角与这两个角的差组成的角互补,则这两个角 [ ]A.一个是锐角另一个是钝角;B.都是钝角;C.都是直角;D.必有一个角是直角9.方程x2+|x|+1=0有[ ]个实数根.A.4; B.2; C.1; D.010.一个两位数,用它的个位、十位上的两个数之和的3倍减去-2,仍得原数,这个两位数是[ ]A.26; B.28; C.36; D.3811.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是[ ] A.179; B.181; C.183; D.18512.1,>+等于[ ]A.2x+5 B.2x-5; C.1 D.113.方程2x5+x4-20x3-10x2+2x+1=0有一个实数根是[ ]14.当a<-1时,方程(a3+1)x2+(a2+1)x-(a+1)=0的根的情况是 [ ]A.两负根;B.一正根、一负根且负根的绝对值大(1)BOC .一正根、一负根且负根的绝对值小;D .没有实数根15.甲乙二人,从M 地同时出发去N 地.甲用一半时间以每小时a 公里的速度行走,另一半时间以每小时b 公里的速度行走;乙以每小时a 公里的速度行走一半路程,另一半路程以每小时b 公里的速度行走.若a ≠b 时,则[ ]到达N 地. A . 二人同时; B .甲先;C .乙先;D .若a >b 时,甲先到达,若a <b 时,乙先 二、填空题:(每题1分,共15分)1.一个角的补角减去这个角的余角,所得的角等于______度. 2.有理化分母=______________.3.0x =的解是x=________. 4.分解因式:x 3+2x 2y+2xy 2+y 3=______.5.若方程x 2+(k 2-9)x+k+2=0的两个实数根互为相反数,则k 的值是______.6.如果2x 2-3x-1与a(x-1)2+b(x-1)+c 是同一个多项式的不同形式,那么a bc+=__.7.方程x 2-y 2=1991有______个整数解.8.当m______时,方程(m-1)x 2+2mx+m-3=0有两个实数根.9.如图2,在直角△ABC 中,AD 平分∠A ,且BD ∶DC=2∶1,则∠B 等于______度.CBAFFEDCBA(2) (3) (4)10.如图3,在圆上有7个点,A ,B ,C ,D ,E ,F ,和G ,连结每两个点的线段共可作出__条. 11.D ,E 分别是等边△ABC 两边AB ,AC 上的点,且AD=CE ,BE 与CD 交于F ,则∠BFC 等于__度. 12.如图4,△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是△ABD 的角平分线,DF ∥AB 交AE 延长线于F ,则DF 的长为______.13.在△ABC 中,AB=5,AC=9,则BC 边上的中线AD 的长的取值范围是______.14.等腰三角形的一腰上的高为10cm ,这条高与底边的夹角为45°,则这个三角形的面积是______.15.已知方程x 2+px+q=0有两个不相等的整数根,p ,q 是自然数,且是质数,这个方程的根是______.答案与提示一、选择题提示:1.∵OP=OB-PB=OB-(AB-AP)=6-(8-5)=3.∴选(B).2.∵以2,3代入方程,适合.故选(B).3.∵有两条边相等的三角形是等腰三角形.∴选(D).4.∵a=1,b=-1,c=1.∴选(C).6.∵x=y>5的任何正整数,都可以和10作为三角形的三条边.∴选(D).7.两直线相交所成角可以是直角,故而(A),(D)均不能成立.∴选(C).8.设两个角为α,β.则(α+β)+(α-β)=180°,即α=90°.故选(D).9.∵不论x为何实数,x2+|x|+1总是大于零的.∴选(D).即7a=2b+2,可见a只能为偶数,b+1是7的倍数.故取(A).11.设这11个连续奇数为:2n+1,2n+3,2n+5,…,2n+21.则(2n+1)+(2n+3)+(2n+5)+…+(2n+21)=1991.即 11(2n+11)=1991.解得n=85.∴第六个数是2×85+11=181.故选(B).∴选(A).13.原方程可化为(2x5-20x3+2x)+(x4-10x2+1)=0.即 (2x+1)(x4-10x2+1)=0.即 x4-10x2+1=0.故取(C).14.a<-1时,a3+1<0,a2+1>0,a+1<0.而若方程的两根为x1,x2,则有15.设M,N两地距离为S,甲需时间t1,乙需时间t2,则有∴t1<t2,即甲先.另外:设a=1,b=2,则甲走6小时,共走了9公里,这时乙走的时间为从这个计算中,可以看到,a,b的值互换,不影响结果.故取(B).二、填空题提示:1.设所求角为α,则有(180°-α)-(90°-α)=90°.4.x3+2x2y+2xy3+y3=(x3+y3)+(2x2y+2xy2)=(x+y)(x2-xy+y2)+2xy(x+y)=(x+y)(x2+xy+y2)5.设二根为x1,-x1,则x1+(-x1)=-(k2-9).即k2-9=0.即k=±3.又,要有实数根,必须有△≥0.即 (k2-9)2-4(k+2)>0.显然 k=3不适合上面的不等式,∴k=-3.6.由2x2-3x-1=a(x+1)2+b(x-1)+c是恒等式,故由x=1代入,得c=-2;x2项的系数相等,有a=2,这时再以x=0代入,得-1=a-b+c.即b=1.7.x2-y2=1991,(x-y)(y+x)=11×181可以是9.BD∶DC=2∶1,故有AB∶AC=2∶1,直角三角形斜边与直角边之比为2∶1,则有∠B=30°.10.从A出发可连6条,从B出发可连5条,(因为BA就是AB),从C出发可连4条,…,从F出发可连一条.共计1+2+3+4+5+6=21(条).另法:每个点出发均可连6条,共有42条.但每条都重复过一次,11.如图28.∠F=∠1+∠A+∠2.又:△ADC≌△CEB.∴∠1=∠3.∴∠F=∠3+∠A+∠2=∠B+∠A=120°.12.△ABC是等腰三角形,D为底边的中点,故AD又是垂线,又是分角线,故∠BAD=60°,∠ADB=90°.又:AE是分角线,故∠DAE=∠EAB=30°.又:DF∥AB,∴∠F=∠BAE=30°.在△ADF中,∠DAF=∠F=30°.∴AD=DF.而在△ADB中,AB=9,∠B=30°.13.∵4<BC<14.∴当BC为4时,BD=CD=2,AD<7.当BC=14时,BC=CD=7,有AD>2.∴2<AD<7.14.等腰三角形一腰上的高与底边的夹角是45°,则顶角是90°,高就是腰,其长为10cm.15.设两根为x1,x2.则x1+x2=-p① x1x2=q②由题设及①,②可知,x1,x2均为负整数.q为质数,若q为奇数,则x1,x2均为奇数.从而p为偶数,而偶质数只有2,两个负整数之和为-2,且不相等,这是不可能的.若q为偶数(只能是2),两个负整数之积为2,且不相等,只能是-1和-2.∴方程的根是-1和-2.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时,3x y-等于( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a ,b ,c 的关系可以写成( ) A .a <b <c. B .(a-b)2+(b-c)2=0. C .c <a <b. D .a=b ≠c 5.如图30,AC=CD=DA=BC=DE .则∠BAE 是∠BAC 的 ( ) A .4倍.B .3倍.C .2倍.D .1倍6.D 是等腰锐角三角形ABC 的底边BC 上一点,则AD ,BD ,CD 满足关系式( ) A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 2 7.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为x 2、y 2的值是( )A.x 2,y 22y 2;C. x 2,y 2; D. x 2y 2.9.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( ) A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b aa b+等于( ) A.2213; B.5821; C.240249; D.36538.二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______.6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______. 8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______. 9.2243x x +++的最小值的整数部分是______.10.已知两数积ab ≠1.且2a 2+1234567890a+3=0,3b 2+1234567890b+2=0,则ab=______. 三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1. 已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO ∥FK ,OH ∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF 改成直的.(即两边都是直线)但进水口EF 的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989(1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>2b,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK ∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
第十八届”希望杯“全国数学邀请赛初二第一试

第十八届”希望杯“全国数学邀请赛初二 第一试一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。
1. 下列运动属于平移的是( )(A )乒乓球比赛中乒乓球的运动. (B )推拉窗的活动窗扇在滑道上的滑行.(C )空中放飞的风筝的运动. (D )篮球运动员投出的篮球的运动.2. 若x =1满足2220mx m x m --=,则m 的值是( )(A )0. (B )1. (C )0或1. (D )任意实数.3. 如图1,将△APB 绕点B 按逆时针方向旋转90后得到△A P B '',若BP=2,那么PP '的长为( )(A ). (B . (C )2 . (D )3.4.已知a 是正整数,方程组48326ax y x y +=⎧⎨+=⎩ 的解满足x >0,y <0,则a 的值是( ) (A )4 . (B )5 . (C )6. (D )4,5,6以外的其它正整数.5.让k 依次取1,2,3,…等自然数,当取到某一个数之后,以下四个代数式:①k+2;②k 2; ③2 k ;④2 k 就排成一个不变的大小顺序,这个顺序是( )(A )①<②<③<④. (B )②<①<③<④.(C) ①<③<②<④. (D) ③<②<①<④.6.已知1个四边形的对角线互相垂直,且两条对角线的长度分别是8和10 , 那么顺次连接这个四边形的四边中点所得的四边形的面积是( )(A )40 . (B ) (C )20. (D )7. Let a be the length of a diagonal of a square, b and c be the length of two diagonals of a rhombus respectively. If ::b a a c =,then the ratio of area of the square and rhombus is ( )(A )1:1. (B )2. (C )1 (D )1:2.(英汉词典:length 长度;diagonal 对角线;square 正方形;rhombus 菱形;respectively 分别地;ratio 比;area 面积)8.直角三角形有一条边长为11,另外两边的长是自然数,那么它的周长等于( ).(A )132. (B )121. (C )120. (D )111.9.若三角形三边的长均能使代数式是2918x x -+的值为零,则此三角形的周长是( ).(A )9或18. (B )12或15 . (C )9或15或18. (D )9或12或15或18.10. 如图2,A 、B 、C 、D 是四面互相垂直摆放的镜子,镜面向内,在镜面D 上放了写有字母“G”的纸片,某人站在M 处可以看到镜面D 上的字母G 在镜面A 、B 、C 中的影像,则下列判断中正确的是( )(A )镜面A 与B 中的影像一致 . (B )镜面B 与C 中的影像一致 .(C )镜面A 与C 中的影像一致 . (D )在镜面B 中的影像是“G”.二、A 组填空题(每小题4分,共40分)11.如图3,在 △BMN 中,BM=6,点A 、C 、D 分别在MB 、BN 、MN 上,且四边形ABCD 是平行四边形,∠NDC=∠MDA ,则平行四边ABCD 的周长是 .12.如果实数a ≠b ,且101101a b a b a b ++=++,那么a b +的值等于 .13.已知a x =M 的立方根,y =x 的相反数,且M =37a -,那么x 的平方根是 .14.如图4,圆柱体饮料瓶的高是12厘米,上、下底面的直径是6厘米.上底面开有一个小孔供插吸管用,小孔距离上底面圆心2厘米,那么吸管在饮料瓶中的长度最多是 厘米.15.小杨在商店购买了a 件甲种商品,b 件乙种商品,共用213元,已知甲种商品每件7元,乙种商品每件19元,那么a b +的最大值是 .16.ABC △ 是边长为D 在三角形内,到边AB 的距离是1,到A 点的距离是2,点E 和点D 关于边AB 对称,点F 和点E 关于边AC 对称,则点F 到BC 的距离是 .17.如图5,小华从M 点出发,沿直线前进10米后,向左转20,再沿直线前进10米后,又向左转20,……,这样下去,他第一次回到出发地M 时,行走了 米.18.关于x 的不等式123x x -+-≤的所有整数解的和是 .19.已知点(1,2)在反比例函数a y x=所确定的曲线上,并且该反比例函数和一次函数1y x =+ 在x b =时的值相等,则b 等于 .20.如图6,大五边形由若干个白色和灰色的多边形拼接而成,这些多边形(不包括大五边形)的所有内角和等于 .三、B 组填空题(每小题8分,共40分,每一题两个空,每空4分)21.解分式方程 225111m x x x +=+--会产生增根,则m = 或 . 22.Let A abcd = be a four-digit number. If 400abcd is a square of an integer, thenA= 或 .(英汉词典:four-digit number 四位数;square 平方、平方数;integer 整数)23.国家规定的个人稿酬纳税办法是:①不超过800元的不纳税;②超过800元而不超过4000元的,超过800元的部分按14%纳税;③超过4000元的按全部稿酬的11%纳税.某人编写了两本书,其中一本书的稿酬不超过4000元,第二本书的稿酬比第一本书多700元,两本书共纳税915元,则两本书的稿酬分别是= 元和 元.24.直线l 交反比例函数y x=的图象于点A ,交x 轴于点B ,点A 、B 与坐标原点o 构成等边三角形,则直线l 的函数解析式为 或 .25.若n 是质数,且分数417n n -+不约分或经过约分后是一个最简分数的平方,则n 或 .。
2007年第十八届“希望杯”全国数学邀请赛初二培训题(含答案)-

第十八届(2007年)“希望杯”全国数学邀请赛培训题“希望杯”命题委员会(未署名的题,均为命题委员会命题)初中二年级一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后的圆括号内)1.有下面的四个叙述:①整式加整式还是整式;②整式减整式还是整式;③整式乘整式还是整式;④整式除整式还是整式.其中正确叙述的个数为().(A)4 (B)3 (C)2 (D)12.若x是有理数,分式1||2x-的值为正整数,则x的个数为()(A)2 (B)4 (C)6 (D)无数个3.将分式2aa b+中的a扩大2倍,6扩大4倍,而分式的值不变,则()(A)a=0 (B)b=0 (C)a=0,且b=0 (D)a=0或b=04.已知x与y+2成反比例,当x=1时,y=4,那么y=1时,x的值是()(A)0 (B)1 (C)2 (D)45.若实数a,b,c满足a2+b2≠0,a3+a2c-ab c+b2c+b3=0,则a+b+c的值是()(A)-1 (B)0 (C)1 (D)26.若实数a,b,c满足1a+1b+1c=1a b c++,则a+b,b+c,c+a中等于零的()(A)有且只有1个(B)至少有1个(C)最多有1个(D)不可能有2个7.设f=2x-3x-2,g=x-2,考察下面四个叙述:①f+g是整式;②f-g是整式;③f×g是整式;④当x≠2时,f÷g是整式.其中正确叙述的个数为()(A)4 (B)3 (C)2 (D)18.如果≠0成立,那么下列各式中正确的是()(A)a+b≥0 (B)a+b>0 (C)a+b≤0 (D)a+b<09.甲、乙两人从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象如图,根据图中提供的信息,•有下列叙述:①他们都行驶了18千米;②甲在途中停留了0.5小时;③乙比甲晚出发了0.5小时;④相遇后,甲的速度小于乙的速度;⑤甲、乙两人同时到达目的地.其中,符合图象的叙述有()个.(A)2 (B)3 (C)4 (D)5(第9题) (第10题) (第15题)10.已知直线y=2x+a与y=2a-x的图象的交点在如图所示的阴影长方形区域内(•含长方形边界),则a的取值范围是()(A)0≤a≤32(B)65≤a≤95(C)65≤a≤32(D)0≤a≤9511.甲车追超过前方的乙车,经过时间t后在A处追上,若甲、乙各提速a%,则()(A)甲车追上乙车所用的时间增加了a%; (B)甲车追上乙车所用的时间减少了a% (C)甲车仍在A处追上乙车; (D)甲车驶过A处后才追上乙车12.某人用1000元钱购进一批货物,第二天售出,获利10%,•过几天后又以上次售出的价格的90%购进一批同样的货物,由于卖不出去,•两天后他将其按第二次购进价的九价再QQ :- 3 -出售,这样他在两次交易中( )(A )刚好盈亏平衡 (B )盈利1元 (C )盈利9元 (D )亏损1.1元13.某足球赛,记分规律如下:胜一场积3分,平一场积1分,负一场积0分,A 队经过12场比赛后,积19分,若队员出赛一场的出场费为500元/人,胜一场奖金1000元/人,•平一场奖金500元/人,那么A 队队员在12场比赛后的最高收益可能是( )(A )13500元/人 (B )14000元/人 (C )13000元/人 (D )12500元/人14.小明和小刚用掷两枚骰子的方法来确定点P (x ,y )在坐标系上的位置,他们规定:小明掷得的点数为x ,小刚掷得的点数为y ,•那么他们各掷一次所确定的点落在已知直线y=-2x+6上的概率为( )(注:骰子是骨制的一个白色小正方体,它的六个面上分别刻有1个,2个,3个,4个,5个,6个红色小圆点,将其随意掷放于一个平面上,骰子必有一面向上,•这个面上红色圆点的个数就叫做点数).(A )16 (B )112 (C )118 (D )1915.如图,晴朗的夏天,太阳当空,•一只小鸟以不变的速度水平地飞过一个斜坡上空,则小鸟在斜坡上的影子移动的速度( )(A )越来越大 (B )越来越小(C )不变 (D )一定和小鸟的飞行速度一样大16.当5个整数从小到大排列时,中位数是4,如果这5个整数的惟一众数是6,则这5个整数的和最大是( ).(A )20 (B )21 (C )22 (D )2317.某市出租车的起步价为12元(行程在3公里以内),行程到达3公里之后,•每增加1公里需加付m 元(不足1公里亦按1公里计价),•张老师坐这种出租车从学校到离学校n 公里的教育局开会,沿途未遇红灯,下车时付车费28元,则m 与n 的关系是m=( ) (注:[n]表示不大于n 的最大整数,如[3,2]=3,[4]=4.)(A )16162828()()3()3[]3[]2[]3[]2B C D n n n n ------ 18.用200元钱买A 、B 、C 、D 四种商品共10件,若A 、B 、C 、D 的单价依次是13元,17元,22元,35元,则( )(A )A 、B 、C 、D 各买了2,3,4,1件 (B )A 、B 、C 、D 各买了4,2,2,2件(C )以上两种情况都可能 (D )以上三种情况都不可能19.如图,直线AE ∥BF ,点P 在AE 上方,点M 、N 分别在AE 、BF 上,若PC 平分∠MPN 交AE 、BF 于C 、D 两点,∠PCE=α,则∠1=∠2的大小为( )(A )α (B )2α (C )3α (D )4α(第19题) (第22题) (第25题)20.周长为30,各边长互不相等且都是整数的三角形的个数为( )(A )11 (B )12 (C )7 (D )821.如果△ABC 的垂心G (三条高的交点)在△ABC 的内部,并且在BC 边的中线AD 上,那么△ABC 一定是( )(A )直角三角形 (B )等腰三角形(C )等边三角形 (D )等腰直角三角形22.如图5,△ABC 中,∠A=60°,AC=16,S △ABC AB=( )(A )554(B )55 (C )45 (D )23.有下面四个判断性语句:①平行四边形的四个内角之和为360°;②有两个内角相等的四边形是平行四边形;QQ :- 5 -③平行四边形的四个内角中有两对是相等的;④四个内角中有两对相等的四边形是平行四边形.(A )4 (B )3 (C )2 (D )124.对凸四边形ABCD ,给出下列4个条件:①AB ∥CD ; ②AD ∥BC ; ③AB=CD ; ④∠BAD=∠DCB .现从以上4个条件中任选2个条件为一组,能推出四边形ABCD•为平行四边形的概率是( )(A )13 (B )12 (C )23 (D )5625.如图,以Rt △ABC 的两直角边AB 、BC 为边,•在△ABC•外部作等边△ABE•和△BCF ,EA 、FC 的延长线交于M 点,则点B 一定是△EMF 的((A )垂心 (B )重心 (C )内心 (D )外心26.Assume that in Fig . 7 ABCD is a square ,and •point •E •is •on •theline BC ,CE=AC .we connect A and E ,AE intersects CD at point •F ,•then •thedegree of ∠AFC is ( )(A )150° (B )125° (C )135° (D )112.5°(英汉词典:Fig .是figure (图、图形)的缩写;to cormect 连接;to intersect …at 相交于;degree 度、度数)(第26题) (第27题) (第28题) (第30题)27.如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连结DF ,则∠CDF 等于( )(A )80° (B )70° (C )65° (D )60°28.如图,顺次连接凸四边形ABCD 的中点,得到四边形EFGH .要使四边形EFGH•是正方形,应补充的条件是( )(A )四边形ABCD 是等腰梯形 (B )四边形ABCD 是平行四边形(C )四边形ABCD 是菱形 (D )AC=BD ,且AC ⊥BD29.将一把折扇逐渐打开,会发现打开部分的扇形面积随圆心角的变化而变化,•那么能正确描述这种变化的函数是( )(A )正比例函数 (B )反比例函数(C )一次函数y=kx+b (b ≠0) (D )以上都不是30.如图是一间卧室地面瓷砖的图案,在这间卧室地下藏有一宝物,•则藏在白色瓷砖和灰色瓷砖下的可能性是( )(A )藏在白色瓷砖下的可能性大(B )藏在灰色瓷砖下的可能性大(C )藏在两种瓷砖下的可能性一样大(D )藏在灰色瓷砖下与藏在白色瓷砖下的可能性之比是3:2二、填空题31.计算:20082+20072+20062-2008×2007-2007×2006-2006×2008=________.32.已知则x 2007=2,则(x 2006+x 2005+x 2004+…+x+1)(x-1)=__________.33.设a ,b ,c 是实数,则能使(a+b+c )(1a +1b +1c )=1成立的条件是______或_______.(•写出两个满足条件即可)34.Ifm and n are positive integers satisfying m 2+27mn+n 2=729 and m+•n>mn ,then the value of m+n is_________.(英汉词典:positive integer 正整数;to satisfy 满足;value 值、数值)35.计算:(+2=________.36.已知A=××,B=(2007×2008×2009)2007200820093++,则A•与B•的大小关系是A_____B .(填“>”、“<”或“=”)QQ :- 7 -37.设B =,则A_______B .(填“>”、“<”或“=”) 38.39.If a and •b •are •constant .•and •the •set •of •solutions •of •theinequality ax+b>0 is x<13,then the set of solutions of the inequalityba<0 is________. (英汉词典:constant 常数;set 集合;solution 解、解答;inequality 不等式)40.一次智力测试有25道题,答对一题得4分,不答扣2分,答错扣4分,小明要想在这次智力测试中的得分不低于60分,他至少要答对________道题.41.设正数a ,b ,c ,x ,y 满足:a ≠c ,22222222221,x xy y x xy y a b c c b a++=++=1,则代数式222111a b c++的值为________. 42.若以x 为未知数的方程42ax x -+=3无解,则a=_______. 43.已知m 与n 使m m m n m n ++-的值等于-14,则n m的值是_________. 44.当x=2时,多项式75312a b c d x x x x ++++的值是3,那么当x=-2时,多项式的值是_______. 45.若实数a ,b 满足1a -1b -1a b +=0,则2222b a a b-的值等于________. (拟题:夏建平 江苏省江阴市要塞中学)46.如果以x ,y 为元的二元一次方程12ax y x ay +=⎧⎨+=⎩有解,那么a 不等于________.52.如图,△P1OA1,△P2A1A2是等腰直角三角形,点P1,P2在函数y=4x(x>0)的图象上,•斜边OA,AA都在x轴上,则点A的坐标是________.(第52题) (第53题) (第55题) 53.In the following traffic marks,the number of marks whose•figuresaxially-symmetric is___________.(英汉词典:traffic交通;•mark•标志;•number•个数;•figure•图形;•axially-symmetric(轴对称)54.仅将两个全等的非等腰的直角三角形的一条边重合,拼接成新的图形,•拼成的图形可能是下列各种图形中的一种或几种:①矩形;②菱形;③直角梯形;④平行四边形;⑤等腰三角形;⑥等腰梯形.则正确结论的序号是_______.(把所有正确的图形的序号都填上)55.如图所示,平行四边形ABCD中,过BD的中点O的直线交AB、CD于M、N,•交DA、BC 延长线于E、F,则图中有全等三角形________对.56.如图,在一个由4×4个小正方形组成的正方形网格中,•阴影部分面积与正方形ABCDQQ :- 9 -的面积比是_______;周长的比是________.(第56题) (第58题) (第59题) (第60题)57.在平面直角坐标系内点A 、B 的坐标分别为(-3,-2),(3,a ),点B 在第一象限,•且A 、B 两点间的距离为10,那么a 等于______.58.在建筑工地上,工人用如图所示的装置能将重物运往高处:•绳子绕过定滑轮,一端系着重物,在地面的工人手拿绳子的另一端,沿着垂直于滑轮轴的方向,向前走一段距离,重物便上升到定滑轮外,被高处的工人卸下,已知重物上升的距离是5米,则地面上的工人向前行走的距离为________米.59.图中的两个滑块A 、B 由一个连杆连接,可以在竖直和水平的滑道内滑动,•开始时,滑块A 距0点15厘米,滑块B 距0点20厘米,A 、B 的距离为25厘米,那么滑块B 滑到C 点时,滑块A 共滑动了_________厘米.60.如图,△ABC 的边AB 长为2,AB 边上的中线CD 长为1,AC 、BC,则△ABC 的面积为_________.61.a 、b 、c 是三角形的三边,它们满足ac 2+b 2c-b 3=abc ,若三角形的一个内角是120°,那么a :b :c=_______.62.设a ,b ,c 是△ABC 的三条边,满足c a b a b c b c a c a b <<+-+-+-,则三边中最长的边是________.63.如图,0是△ABC 外部一点,AO 交BC 于A 点,BO ,CO 的延长线分别交AC ,AB•的延长线于点B ,C ,则111AO BO CO AA BB CC ++的值为_________.(第63题) (第64题) (第65题) (第66题)64.如图,已知梯形ABCD中,AD∥BC,∠A=90°,E为CD的中点,BE=132,梯形ABCD•的面积为30,则AB+BC+DA的值为________.65.如图,边长为2的正方形ABCD中,若∠PAQ=45°,则△PCQ的周长是_____.66.如图,A,B两个平行四边形草坪有公共部分(阴影处),A,B•草坪面积之和为160m2,A的面积为120m2,B的面积为74m,则重叠部分的面积是_______m2.67.若凸4n+2边形AA…A(A为正整数)的每个内角都是30°的整数倍,且∠A=∠A=∠A=90°,则n的值是________.?68.服装店进了某款式的时装,开始按比进价提高30%的价格销售,但是无人问津,•于是决定打折降价销售.•如果要使利润率不低于10%,••那么打折的幅度不能低于_________.(保留两位有效数字)69.红光中学去年有120人参加“希望杯”全国数学邀请赛,•今年的参赛人数增加了50%,考场数比去年多了3个,而且平均每个考场安排的考生增加了2人,今年安排的考场有_________个.70.直角三角形三边长均为整数,其中一条直角边长为35,•则它的周长的最大值是________,最小值是_______.(拟题:刘朝晖广东省中山市第一中学初中部)71.生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,•若现在所需要的时间为b小时,则_______<b<______.(用关于a的表达式表示)72.1=12,2+3+4=32,3+4+5+6+7=52,QQ :- 11 -……从中找出一般规律是________.73.一种商品的进价为90元,原售价定为m 元,售出一半之后,剩余的一半按8折出售,全部售出后共获利10%,则原售价定为m=________元.74.某学校八年级的数学竞赛小组进行了一次数学测验,如图所示是反映这次测验情况的频率分布直方图,那么该小组共有______人;70.5~90.5这一分数段的频率是______.(第74题) (第76题) (第77题) 75.用[a ,b]表示自然数a ,b 的最小公倍数,(a ,b )表示□,b 的最大公约数,若[•a ,b]=1085-(a ,b ),那么当a>b 时,a-b 的最小值是________. 76.如图,△ABC 中,∠C=90°,EC=13AC ,CD=13BC ,BE=8,AD=EC+CD=6,则S △BCD =______. (拟题:刘朝晖 广东省中山市第一中学初中部)77.如图,E 是平行四边形ABCD 的边CD 上任一点,AE 的延长线与BC 的延长线交于点F ,连结BE 、DF ,则S △BCE _______S △DEF .(填“>”、“<”或“=”) (拟题:李廷江 贵州省修文县第二中学)78.若4x 2+1+kx 是关于x 的完全平方式,则k 2-2k+2的值为________. (拟题:窦桐生 吉林省磐石市明城中学 ) 79.解方程:20052007200820042004200620072003x x x x x x x x +++++=+++++得x=_________.(拟题:钟金子 福建省安溪恒兴中学) 三、解答题80.某班有语文、数学两个课外兴趣小组,•其中参加语文组的人数是全班人数的23,既参加语文组又参加数学组的人数是参加数学组人数的23,另外有4•位同学既不参加语文组,也不参加数学组,如果这4位同学参加语文组,•那么参加数学组与参加语文组的人数恰好相等,问全班有多少同学?既参加语文组又参加数学组的人数是多少?81.某工厂计划生产A、B两种产品,为取得最大生产利润,事先做了市场调查,根据厂内实际情况和市场需要得到有关数据如下表:现在工厂可以筹集到的资金用于原料及消耗的是元/月,用于工资支出的是元/月,问如何确定两种产品的月产量,可以使工厂得到的总利润达到最大?并求这个最大利润值.82.如图,从直线COD上一点O引两条射线OE,OF,使∠GOF=∠FOE=∠EOD=60°,•在射线QQ:OF,OG,OE上各取一点A,B,C,使∠CAB=60°,若OA=m,求△ABC面积的最大值.83.从2006年元旦起,公民的月工资、薪金个人所得税的起征点由原来的800•元调整为1600元,如果公民的月工资、薪金超过1600元,则税款按下表累加计算:根据上表,请:(1)写出所纳款税y(元)与该月收入x(元)之间的函数关系式;(2)作出所纳款税y(元)与该月收入x(元)之间的函数图象;(3)若李先生月薪金4000元,他应交纳的个人所得税是多少元?84.用红色刻度线将一根木棍分成135等份,•再用黑色刻度线将这根木棍分成40等份,沿- 13 -两种刻度线将这一木棍锯成短木棍.问共有多少种不同长度的短木棍?85.100条线段的长度分别为1,2,3,…,99,100,从中取出一些线段,•要使取出的线段中的任意三条都能构成一个三角形,问最多能取出多少条线段?第十八届(2007年)“希望杯”全国数学邀请赛初二培训题(1~85题)QQ:答案.解析一、选择题- 15 -。
第十八届“希望杯”全国数学邀请赛初二第2试及答案-

第十八届“希望杯”全国数学邀请赛初二 第2试2007年4月15 上午8:30至10:30 得分________一、选择题(本大题共10小题,每小题4分,共40分),以下每题的四个选项中,•仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内.1.红丝带是关注艾滋病防治问题的国际性标志,人们将红丝带剪成小段,并用别针将折叠好的红丝带别在胸前,如图?所示,红丝带重叠部分形成的图形是( ).(A )正方形 (B )矩形 (C )菱形 (D )梯形2.设a ,b ,c 是不为零的实数,那么x=||||||a b c a b c +-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种3.△ABC 的边长分别是a=m 2-1,b=m 2+1,c=2m (m>0),则△ABC 是( )(A )等边三角形 (B )钝角三角形(C )直角三角形 (D )锐角三角形4.古人用天干和地支记次序,其中天干有10个:甲乙丙丁戊己庚辛壬癸.•地支有12个:子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行:甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁……子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,•我国的农历纪年就是按这个顺序得来的,如公历2007年是农历丁亥年,那么从今年往后,•农历纪年来甲亥年的哪一个在公历中( )(A )是2019年 (B )是2031年(C )是2043年 (D )没有对应的年号5.实数a ,b ,m ,n 满足a<b ,-1<n<m ,若M=,11a mb a nb N m n++=++,则M 与N 的大小关系是( )(A )M>N (B )M=N (C )M<N (D )无法确定的6.若干个正方形和等腰直角三角形拼接成如图所示的图形,若最大的正方形的边长是7cm ,则正方形A ,B ,C ,D 的面积和是( )(A )14cm 2 (B )42cm 2(C )49cm 2 (D )64cm 27.已知关于x 的不等式组230,320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( )(A )23≤a ≤32 (B )43≤a ≤32(C )43<a ≤32 (D )43≤a<328.The number of intersection point of the graths of function y=||k x •andfunction y=kx (k ≠0) is ( )(A )0 (B )1 (C )2 (D )0 or 29.某医药研究所开发一种新药,成年人按规定的剂量服用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于0.25毫克时,治疗有效,则服药一次治疗疾病有效的时间为(• )(A )16小时 (B )1578小时 (C )151516小时 (D )17小时 10.某公司组织员工到公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘,每只船坐10人,那么其余的船坐满后,•仅有一只船不空也不满.参加划船的员工共有( )(A )48人 (B )45人 (C )44人 (D )42人二、填空题(本大题共10小题,每小题4分,共40分)11.已知a ,b ,c 为△ABC 三边的长,则化简│a+b+c │+2()a b c --的结果是________.12.自从扫描隧道显微镜发明后,世界上便诞生了一门新科学,•这就是“纳米技术”.已知1毫米=1000微米,1微米=1000纳米,那么2007•纳米的长度用科学记数法表示为_________米. 13.若不等式组21,23x a x b -<⎧⎨->⎩中的未知数x 的取值范围是-1<x<1,那么(a+1)(•b-•1)•的值等于_______.14.已知a 1,a 2,a 3,…,a 2007是彼此互不相等的负数,且M=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2007),N=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2007),那么M•与N•的大小关系是M______N.15.a bc d叫做二阶行列式,它的算法是:ad-bc,将四个数2,3,4,5排成不同的二阶行列式.则不同的计算结果有______个,其中,数值最大的是________.16.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米.•当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了_________米.17.Xiao Ming says to Xiao Hua that my age add yuor age.addyour •agewhen I was your agg is 48.The age of Xiao Huais______now.(英汉词典:age 年龄;add 加上;when 当……时)18.长方体的长、宽、高分别为正整数a,b,c,且满足a+b+c+ab+•bc+•ac+•abc=2006,那么这个长方体的体积为________.19.已知a为实数,且a+26与1a-26都是整数,则a的值是_________.20.为确保信息安全,信息传输需加密,发送方由明文→密文(加密),接收方由密文→明文(解密).现规定英文26个字母的加密规则是:26个字母按顺序分别对应整数0到25,例如:英文a,b,c,d,写出它们的明文(对应整数0,1,2,3),然后将这4个字母对应的整数(分别为x1,x2,x3,x4)按x1+2x2,3x2,x3+2x4;3x4计算,得到密文,即a,b,c,d•四个字母对应的密文分别是2,3,8,9.现在接收方收到的密文为35,42,23,12,则解密得到的英文单词为_________.三、解答题(本大题共3小题,共40分),要求:写出推算过程.21.(本题满分10分)如图,一个大的六角星形(粗实线)的顶点是周围六个全等的小六角星形(•细实数)的中心,相邻的两个小六角星形各有一个公共顶点,如果小六角星形的顶点C到中心A的距离为a,求:(1)大六角星形的顶点A到其中心O的距离;(2)大六角星形的面积;(3)大六角星形的面积与六个小六角星形的面积之和的比值.(注:本题中的六角星形由12个相同的等边三角形拼接而成).22.(本题满分15分)甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A•地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/•小时的速度返回,请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从A地返回的速度多大时,才能比乙车先回到A地?23.(本题满分15分)平面上有若干个点,其中任意三点都不在同一直线上,将这些点分成三组,•并按下面的规则用线段连接:①在同一组的任意两点间都没有线段连接;②不在同一组的任意两点间一定有线段连接.(1)若平面上恰好有9个点,且平均分成三组,那么平面上有多少条线段?(2)若平面上恰好有9个点,且点数分成2,3,4三组,那么平面上有多少条线段?(3)若平面上共有192条线段,那么平面上至少有多少个点?第十八届“希望杯”全国数学邀请赛参考答案及评分标准初二 第2试一、选择题(每小题4分)1.C 2.B 3.C 4.D 5.A 6.C 7.B 8.D 9.C 10.A二、填空题(每小题4分,第15小题,每个空2分,第19小题,答对一个答案2分)11.2c 12.2.007×10-4 13.-6 14.> 15.6;14 16.2.5 17.16 •18.•888•19.5-26或-5-26 20.hope三、解答题21.(1)连结CO ,易知△AOC 是直角三角形,∠ACO=90°,∠AOC=30°,所以AO=2AC=2a . (3分)(2)如图,大六角星形的面积是等边△AMN 面积的12倍.因为AM 2=222()()22AM a , 解得23a . 所以大六角星形的面积是S=12×12×33a ×32. (7分) (3)小六角星形的顶点C 到其中心A 的距离为a ,大六角星形的顶点A 到其中心O•的距离为2a ,所以大六角星形的面积是一个小六角星形的面积的4倍,所以 大六角星形的面积:六个小六角星形的面积和=2:3 (10分)22.(1)由图知,可设甲车由A 地前往B 地的函数解析式为s=kt ,将(2.4,48)代入,解得k=20.所以 s=20t . (2分)由图2可知,在距A 地30千米处,乙车追上甲车,所以当s=30千米时, t=302020s ==1.5(小时). 即甲车出发1.5小时后被乙车追上. (5分)(2)由图知,可设乙车由A 地前往B 地的函数的解析式为s=pt+m ,将(1.0,0)和(1.5,30)代入,得0,60,30 1.5,60.p m p p m m =+=⎧⎧⎨⎨=+=-⎩⎩解得 所以s=60t-60. (7分)当乙车到达B 地时,s=48千米,代入s=60t-60,得t=1.8小时.又设乙车由B 地返回A 地的函数的解析式为s=-30t+n ,将(1.8,48)代入,得48=-30×1.8+n ,解得 n=102,所以 s=-30t+102. (9分)当甲车与乙车迎面相遇时,有-30t+102=20t ,解得 t=2.04小时,代入s=20t ,得s=40.8千米.即甲车与乙车在距离A 地40.8千米处迎面相遇. (12分)(3)当乙车返回A 地时,有-30t+102=0,解得 t=3.4小时.甲车要比乙车先回到A 地,速度应大于483.4 2.4-=48(千米/小时). (15分) 23.(1)平面上恰好有9个点,且平均分成三组,每组3个点,•其中每个点可以与另外两组的6个点连接,共有线段692⨯=27(条). (5分) (2)若平面上恰好有9个点,且点数分成2,3,4三组,则平面上共有线段 12[2×(3+4)+3×(2+4)+4×(2+3)]=26(条). (10分)(3)设第一组有a个点,第二组有b个点,第三组有c个点,则平面上共有线段1[a(b+c)+b(a+c)+c(a+b)]=ab+bc+ca(条).2若保持第三组点数不变,将第一组中的一个点划归到第二组,则平面上线段的条数为(a-1)(b+1)+(b+1)c+(a-1)c=ab+bc+ca+a-b-1.与原来线段的条数的差是a-b-1,即当a>b时,a-b-1≥0时,此时平面上的线段条数不减少;当a≤b时,a-b-1<0,此时平面上的线段条数一定减少.由此可见,当平面上由点数较多的一组中划出一个点到点数较少的一组中时,平面上的线段条数不减少,所以当三组中点数一样多(或基本平均)时,平面上线段的条数最多.(13分)设三组中都有x个点,则线段条数为3x2=192,解得x=8.所以平面上至少有24个点.(15分)。
2007年初中数学竞赛试题赏析(含解答)-

2007年初中数学竞赛试题赏析2007年春末夏初,国内的初中数学竞赛基本告一段落,暑假期间,在放松避暑纳凉的同时,对数学爱好者来说,把玩一下新的试题,也是一件乐事.下面为大家选析一些试题,供同学们玩赏.一、代数问题例1 已知a ,b ,c 是实数,若2222b c a bc +-,2222c a b ac +-,2222a b c ab+-之和恰等于1,求证:这三个分数的值有两个为1,一个为-1.(2007年北京市初二数学竞赛试题三)证明 由题设2222b c a bc +-+2222c a b ac +-+2222a b c ab+-=1, 即(2222b c a bc +--1)+(2222a c b ac +--1)+(2222a b c ab+-+1)=0, 通分,分子部分因式分解,(请自己完成演算)可得()()()2a b c c a b c a b abc+-+--+=0. 所以,或者a+b-c=0或者c+a-b=0或者b+c-a=0.①若a+b-c=0,则222222222222222222()21;222()21;222()2 1.222b c a b c b c bc bc bc bcc a b c a c a ac ac ac cab c a a b a b ab bc ab ab+-+--===+-+--===+-+-+-===- ②若c+a-b=0,同理可得2222b c a bc +-=1,2222c a b ac +-=-1,2222a b c ab+-=1, ③若c+a-b=0,同理可得2222b c a bc +-=-1,2222c a b ac +-=1,2222a b c ab+-=1. 综合①、②、③可得,三个分数2222b c a bc +-,2222c a b ac +-,2222a b c ab+-的值有两个为1,一个为-1.评析:由题设2222b c a bc +-+2222c a b ac +-+2222a b c ab+-=1,要证这三个分数的值有两个为1,一个为-1,想到证(2222b c a bc +--1)+(2222a c b ac +--1)+(2222a b c ab+-+1)=0 是关键.其中分子部分的因式分解,可检验你的代数式恒等变形的基本功是否过硬. 例2 设a 是正整数,二次函数y=x 2+(a+17)x+38-a ,反比例函数y=56x,•如果这两个函数的图象的交点都是整点(横坐标和纵坐标都是整数的点),求a 的值.(2007年全国初中数学联合竞赛(B 组)试题第三大题)解 联立方程组2(17)38,56,y x a x a y x ⎧=+++-⎪⎨=⎪⎩消去y 得x 2+(a+17)x+38-a=56x, 即x 3+(a+17)x 2+(38-a )x-56=0,分解因式得(x-1)[x 2+(a+18)x+56]=0. (1)显然x 1=1是方程(1)的一个根,(1,56)是两个函数的图象的一个交点, 因为a 是正整数,所以关于x 的方程x 2+(a+18)x+56=0 (2)的判别式△=(a+18)2-224>0,它一定有两个不同的实数根.而两个函数的图象的交点都是整点,所以方程(2)的根都是整数,•因此它的判别式△=(a+18)2-224应该是一个完全平方数.设(a+18)2-224=k 2(其中k 为非负整数),则(a+18)2-k 2=224,即(a+18+k )(a+18-k )=224.显然a+18+k 与a+18-k 的奇偶性相同,且a+18+k ≥8,而224=112×2=56×4=28×8,18112,1856,1828,182,184,188.39,12,0,55,26,10.a k a k a k a k a k a k a a a k k k ++=++=++=⎧⎧⎧⎨⎨⎨+-=+-=+-=⎩⎩⎩===⎧⎧⎧⎨⎨⎨===⎩⎩⎩所以或或解得或或 而a 是正整数,所以只可能39,12,55,26,a a k k ==⎧⎧⎨⎨==⎩⎩或 当a=39时,方程(2)即x 2+57x+56=0,它的两根分别为-1和-56,此时两个函数的图象还有两个交点(-1,-56)和(-56,-1).当a=12时,方程(2)即x 2+30x+56=0,它的两根分别为-2和-28,此时两个函数的图象还有两个交点(-2,-28)和(-28,-2).评析:这是初中数学的重点知识与方法高度综合的题目,要求会自行演算独立解答.二、几何问题在初中阶段,图形的运动主要是合同变换,包含平移、轴对称、旋转和中心对称.另外,在我国的几何教学中,对等积变换的知识日益普及,主要是利用“同底等高的两个三角形面积相等”和三角形面积公式来证题、计算,包括解决线段的比例问题.例3 如图1所示,△ABC 中,∠ABC=46°,D 是BC 边上一点,DC=AB ,∠DAB=21°,•试确定∠CAD 的度数.(2007年北京市中学生数学竞赛初二年级试题四)图1 图2解如图2,作△ABD关于AD的轴对称图形△AED,即∠EAD=21°,AE=AB,•所以DE=BD.易知∠ADC=21°+46°=67°,所以∠ADE=∠ADB=180°-67°=113°,∠CDE=113°-67°=46°,连接CE,DC=AB,△ABD≌△CDE≌△ADE.设O为AE与DC的交点,由于∠ODE=∠OED=46°,所以OD=OE.又DC=AE,所以AO=CO ∠OCA=∠OAC ∠COE=2∠ACO.易知∠COE=2×46°=92°,因此2∠ACO=∠COE=92°∠ACO=46°=∠OAC.所以∠DAC=∠DAE+∠EAC=21°+46°=67°.例4如图3,已知等腰△ABC中,AB=AC,P、Q分别为AC、AB上的点,且AP=PQ=•QB=BC,则∠PCQ=______.(2007年北京市中学生数学竞赛初二年级试题)图3 图4解:如图4,过P作AB的平行线,过B作PQ的平行线,二平行线相交于O,则PQBO•是个菱形.连接CO.由AB=AC,AP=QB,则PC=AQ,AP=QB=PO,∠CPO=∠PAQ,所以△PQC≌△APQ,因此CO=PQ=CB=OB,可知△BCO为等边三角形,∠BCO=∠CBO=60°,•设∠CAB=θ,•则∠PCO=∠QBO=θ,由三角形内角和定理,得3θ+2×60°=180°⇒θ=20°,因此∠PCQ=80°-•50°=30°.例5 如图5,四边形ABCD 是梯形,点E 是上底AD 边上一点,CE 的延长线与BA 的延长线交于点F ,过点E 作BA 的平行线CD 交的延长线于点M ,BM 与AD 交于点N .证明:∠AFN=∠DME .(2007全国初中数学联合竞赛试题)例5分析 延长BF ,CM 相交于Q ,因为EM ∥AF ,所以∠DME=∠DQA .要证∠AFN=∠DME ,只需证∠AFN=∠DQA 即可.为此,只需证FN ∥MC .证明 (面积法)连接FM ,BE ,CN ,因为EM ∥AF ,所以S △PFM =S △PBE ,因为AD ∥BC ,S △BNE =S △CNE ,因此S △BNE +S △PNE =S △CNE +S △PNE .即S △PBE =S △PNC ,所以S △PFM =S △PNC .两边同加S △PMC 得S △FMC =S △NMC ,所以FN ∥MC ,又已知FB ∥ME ,所以∠AFN=∠DME .至于其它的证法我们就不再例举了.例6 试问:18能否表示为3个互异的正整数的倒数的和?18能否表示为3•个互异的完全平方数的倒数的和?如果能,请给出一个例子;如果不能,请说明理由. (第12届华杯赛初一组决赛试题14)解:(1)由于18=14×12=14×(112+16+14)=114824++116,所以18能表示为3个互异的正整数的倒数的和.(2)不妨设三个正整数a<b<c ,满足18=21a +21b +21c. 由于a ,b ,c 是互异的正整数,则21c <21b <21a, 从而18=21a +21b +21c <23a ,所以a 2>24.又18>21a,所以a 2>8,故a 2=9或16. 若a 2=9,则21b +21c =18-19=172,于是172>21b,有b 2>72; 又因为21c <21b ,所以172=21b +21c <22b , 因此b 2<144,所以72<b 2<144.故b 2=81,100或121,将b 2=81,100,121分别代入c 2=227272b b -,没有一个是完全平方数,此时无解.若a 2=16,则21b +21c =18-116=116, 同上讨论可得:16<b 2<32,所以b 2=25,c 2=22161625169b b ⨯=-不是整数. 综上所述,18不能表示为3个互异的完全平方数的倒数之和. 例7 已知a ,b 都是正整数,试问关于x 的方程x 2-abx+12(a+b )=0是否有两个整数解?如果有,请把它们求出来;如果没有,请给出证明.解 不妨设a ≤b ,且方程的两个整数根为x 1,x 2(x 1≤x 2),则有12121()2x x ab x x a b +=⎧⎪⎨=+⎪⎩ 所以x 1x 2-x 1-x 2=12a+12b-ab ,4(x 1-1)(x 2-1)+(2a-1)(2b-1)=5. 因为a ,b 都是正整数,所以x 1,x 2均是正整数.于是x 1-1≥0,x 2-1≥0,2a-1≥1,2b-1≥1,所以12(1)(1)0(21)(21)5x x a b --=⎧⎨--=⎩或12(1)(1)1(21)(21)1x x a b --=⎧⎨--=⎩ (1)当12(1)(1)0(21)(21)5x x a b --=⎧⎨--=⎩时,由于a ,b 都是正整数,且a ≤b ,可得a=1,b=3. 此时,一元二次方程为x 2-3x+2=0,它的两个根为x=1,x=2.(2)当12(1)(1)1(21)(21)1x x a b --=⎧⎨--=⎩时,可得a=1,b=1,此时,一元二次方程为x 2-x+1=0,它无整数解.综上所述,当且仅当a=1,b=3时,题设方程有整数解,且它的两个整数解为x 1=1,x 2=2.例8 (1)是否存在正整数m ,n ,使得m (m+2)=n (n+1)?(2)设k (k ≥3)是给定的正整数,是否存在正整数m ,n ,使得m (m+k )=n (n+1)? 解:(1)答案是否定的.若存在正整数m ,n ,使得m (m+2)=n (n+1). 则(m+1)2=n 2+n+1,显然n>1.于是n 2<n 2+n+1<(n+1)2,所以n 2+n+1不是平方数,矛盾.(2)当k=3时,若存在正整数m ,n ,使得m (m+3)=n (n+1),则4m 2+12m=4n 2+4n ⇔(2m+3)2=(2n+1)2+8即(2m+3-2n-1)(2m+3+2n+1)=8⇔ (m-n+1)(m+n+2)=2, 而m+n+2>2,故上式不可能成立.当k ≥4时,若k=2t (t 是不小于2的整数)为偶数,取m=t 2-t ,n=t 2-1,则m (m+k )=(t 2-t )(t 2+t )=t 4-t 2,n (n+1)=(t 2-1)t 2=t 4-t 2,因此这样的(m ,n )满足条件.若k=2t+1(t是不小于2的整数)为奇数,取m=22t t-,n=222t t+-,则m(m+k)=22t t-(22t t-+2t+1)=14(t4+2t3-t2-2t)n(n+1)=222t t+-·22t t+=14(t4+2t3-t2-2t),因此这样的(m,n)满足条件.综上所述,当k=3时,答案是否定的;当k≥4时,答案是肯定的.(注:当k≥4时,构造的例子不是唯一的.)四、组合与极值组合问题对锻炼思维意义重大,初中只适宜分类计数、加法原理、乘法原理的简单运用,简单的包含排除原理,基本的抽屉原理也是重要的内容.但在初中阶段,不应提前引入排列组合的计算公式.特别是提前较大范围的培训高中的排列组合知识,会激起大范围超前学习的竞争热,从而影响基础教育,并且也影响竞赛的公平性.建议命一些以几何元素为背景的构造性的问题,容易引发学生兴趣,又使套用组合公式的人容易出错,这类问题的研制特别引人注目.例9 平面上有6个点,其中任何3个点不在同一条直线上,以这6个点为顶点可以构造多少个不同的三角形?从这些三角形中选出一些,如果要求其中任何两个三角形没有公共点,则最多可以选出多少个三角形?(第12届华杯赛初一组决赛试题12)解答:(1)先从6个点中选取1个做三角形的一个顶点,有6种取法;•再从余下的5点中选取1个做三角形的第二个顶点,有5种取法;再从余下的4个点中选取1个点做三角形的第三个顶点者,有4种取法.因为任何3个点不在同一条直线上,所以,这样选出的三个点可以做出一个三角形.但是,如果选出的三个点相同的话,则做出的三角形相同,•三个点相同的取法有3×2×1=6种,所以,以这6个点为顶点可以构造654321⨯⨯⨯⨯=20个不同的三角形.(2)每个三角形有3个顶点,所以,6个点最多只能做出2个三角形,•它们没有公共顶点,如图4(1).(3)用英文大写字母A,B,C,D,E,F记这6个点,如果可以选出5个三角形,它们共有15个顶点,需要15个英文大写字母.但是,不同的英文大写字母仅有6个,因此,这5•个三角形中至少有三个三角形有同一个顶点,不妨设为点A.根据题目条件,这三个三角形没有公共边,即除去公共顶点A之外,其余6•个顶点互不相同,即表示这6个顶点的字母不相同.否则,根据题目条件,它们将有公共边.但是,除A之外,我们仅有5个不同的字母,所以,不可能存在5个三角形,它们没有公共边.如图4(2)所示,△ABC,△ADE,△BDF和△CEF这4个三角形没有公共边,所以,最多可以选出4个三角形,它们没有公共边.例10 若对于任意n个连续正整数中,总存在一个数的数字之和8是的倍数.试确定n的最小值,并说明你的理由.(2007北京市中学生数学竞赛初二年级试题五)解先证n≤14时题设的性质不成立.因为,当n=14时,对于9999993,9999994,…,999999,…,10000006这14个连续整数中,任意一个数字的数字之和均不能被8整除.所以n≤14时题设的性质不成立.因此要使题设的性质成立,应有n≥15.再证n=15时,题设的性质成立.设a1,a2,…,a15为任意的连续15个正整数,则这15个正整数中,个位数字为0•的整数最多有两个,最少有一个,可分为:(1)当a1,a2,…,a15中个位数字为0的整数有两个时,设a i<a j,且a i,a j的个位数字为0.则满足a i,a i+1,a i+2,…,a i+9,a j为连续的11个整数,其中a i,a i+1,a i+2,…,a i+9无进位设n i表示a i各位数字之和.则前10个数的各位数字之和分别为n i,n i+1,…,n i+9则这连续的10个数中至少有一个被8整除.(2)当a1,a2,…,a15中个位数字为0的整数只有一个时,设其中的a i的个位数字为0,•①若整数满足1≤i≤8,则在a i后面至少有7个连续整数,则a i,a i+1,a i+2,…,a i+7这8个连续整数的各位数字和也为8个连续整数,所以必有一个数能被8整除.②若整数i满足9≤i≤15,则在a前面至少有8个连续整数,不妨设为a i-8,a i-7,a i-5,a i-4,a i-3,a a-2,a a-2,a i-1,这8个连续整数的各位数字和也为8个连续整数,所以必有一个数能被8整除.由①、②可知,当a1,a2,…,a15中个位数字为0的整数只有一个时,必有一个数,其各位数字之和是8的倍数.综上(1)、(2)所述,对于任意15个连续整数中,必有一个数,•其各位数字之和是的倍数.而小于15个的任意连续整数不成立此性质,所以n的最小值是15.例11 平面上有若干个点,其中任意三点都不在同一直线上,将这些点分成三组,并按下面的规则用线段连接:①在同一组的任意两点都没有线段连接;②不在同一组的任意两点间一定有线段连接.(1)若平面上恰好有9个点,且平均分成三组,那么平面上有多少条线段?(2)若平面上恰好有9个点,且点数分成2,3,4三组,那么平面上有多少条线段?(3)若平面上共有192条线段,那么平面上至少有多少个点?(第十八届“希望杯”全国数学邀请赛初二第2试23题)解:(1)平面上恰好有9个点,且平均分成三组,每组3个点,•按题设规则用线段连接,可以连出3×3+3×3+3×3=27条线段.(2)平面上恰好有9个点,且点数分成2,3,4三组,按题设规则用线段连接,可以连出2×3+2×4+3×4=26条线段.(3)设平面上三组点数为m,n,p个,s=m+n+p,目标求s的最小值?按题设规则用线段连接,可以连出mn+mp+np=192条线段.由于s2=(m+n+p)2=m2+n2+p2+2mn+2mp+2np≥mn+mp+np+2mn+2mp+2np=3mn+3mp+3np=•3(mn+mp+np)=3×192=576=242所以s≥24.s的最小值是24.事实上,当这24个点平分为3组,每组8个点,按题设规则用线段连接,恰可以连出8×8+8×8+8×8=3×64=192条线段.因此平面上至少有24个点.- 11 -。
第20届希望杯全国数学邀请赛初二年级组第2试试题及答案解析

第19届“希望杯”全国数学邀请赛初二第2试试题一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内.)1.篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章,印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图1的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中镂空的部分) A 。
B 。
C 。
D 。
2.如果1x y <<-,那么代数式11y yx x+-+的值是() A .0B .正数C .负数D .非负数 图1 3.将x 的整数部分记为[]x ,x 的小数部分记为()x ,易知[]{}{}()01x x x x =+<<.若3535x =--+,那么[]x 等于() A .-2 B .-1C .0D .14.某种产品由甲、乙、丙三种元件构成.根据图2,为使生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人的数量所对应的扇形的圆心角的大小依次是()组装一件成品需要的元件的数量1名工人1小时生产某种元件的数量202040305050种类丙乙甲数量A .12018060︒︒︒,,B .108144108︒︒︒,,C .9018090︒︒︒,,D .7221672︒︒︒,,5.面积是48的矩形的边长和对角线的长都是整数,则它的周长等于( )A .20B .28C .36D .406.In the rectangular coordinates ,abscissa and ordinate of the intersection point of the lines y x k =- and 2y kx =+ are integers for integer k ,then the number of the possible values of k is ()A .4B .5C .6D .7(英汉词典:abscissa 横坐标,ordinate 纵坐标,intersection point 交点,integer 整数) 7.将一张四边形纸片沿两组对边的中点连线剪开,得到四张小纸片,如图3所示.用这四张小纸片一定可拼成一个( ) A .梯形 B .矩形 C .菱形D .平行四边形8.若不等式组4101x m x x m -+<+⎧⎨+>⎩,的解集是4x >,则()A .92m ≤B .5m ≤C .92m =D .5m =9.如图4所示,四边形ABCD 中,90A C ∠=∠=︒,60ABC ∠=︒,410AD CD ==,,则BD 的长等于()A .413B .83C .12D .10310.任何一个正整数n 都可以写成两个正整数相乘的形式,对于两个乘数的差的绝对值最小的一种分解()n p q p q =⨯≤可称为正整数n 的最佳分解,并规定()pF n q=.如:12=1⨯12=2⨯6=3⨯4,则3(12)4F =. 则以下结论图3104DCBA图4①1(2)2F =; ②3(24)8F =;③若n 是一个完全平方数,则()1F n =;④若n 是一个完全立方数,即3n a =(a 是正整数),则1()F n a=.中,正确的结论有( )A .4个B .3个C .2个D .1个二、填空题11.将一根钢筋锯成a 段,需要b 分钟,按此速度将同样的钢筋锯成c 段(a b c ,,都是大于1的自然数),需要__________________分钟.(用a b c ,,表示)12.给机器人下一个指令[]()00s A s A ︒︒,,≥≤≤180,它将完成下列动作: ①先在原地向左旋转角度A ;②再朝它面对的方向沿直线行走s 个单位长度的距离.现以机器人站立的位置为坐标原点,取它面对的方向为x 轴的正方向,取它的左侧为y 轴的正方向.要想让机器人移动到点(-5,5)处,应下指令:___________________. 13.已知实数x y z ,,满足1233x y z x y zx y z ++===+++,则x y z ++=_________________或______________.14.已知实数x y ,满足234x y -=,并且01x y ,≥≤,则x y -的最大值是_____________,最小值是_________________.15.汽车燃油价税费改革从2009年元旦起实施:取消养路费,同时汽油消费税每升提高0.8元.若某车一年的养路费是1440元,百千米耗油8升,在“费改税”前后该车的年支出与年行驶里程的关系分别如图5中的12l l 、所示,则1l 与2l 的交点的横坐标m =___________.(不考虑除养路费和燃油费以外的其他费用)16.Given 32()f x ax bx cx d =+++,if when x takes the value of its inverse number ,theOl 1l 2m 图5年支出/元1440年行驶里程/千米corresponding value of ()f x is also the inverse number ,and (2)f =0,thenc da b+=+_______________. (英汉词典:inverse number 相反数)17.8人参加象棋循环赛,规定胜1局得2分,平1局得1分,败者不得分,比赛结果是第二名的得分与最后4名的得分之和相同,那么第二名得__________________分. 18.若正整数a b ,使等式()()12a b a b a ++-+=2009成立,则a =____________,b =_____________.19.如图6所示,长为2的三条线段'AA ,''BB CC ,交于O 点,并且'''60B OA C OB A OC ∠=∠=∠=︒,则三个三角形的面积的和123S S S ++_______________3.(填“<”、“=”或“>”) 20.已知正整数x y ,满足2249x y +=,则x =_____________,y=________________.三、解答题(每题都要写出推算过程.)21.在分母小于15的最简分数中,求不等于25但与25最接近的那个分数.22.如图7哀兵必胜示,一次函数33y x =-+的图像与x 轴、y 轴分别交于点A B ,,以线段AB 为直角边在第一象限内作Rt ABC △,且使30ABC ∠=︒.⑴求ABC △的面积;图6S 3S 2S 1O C'C AB'BA'yxPO CBA30°图7⑵如果在第二象限内有一点32P m ⎛⎫⎪ ⎪⎝⎭,, 试用含m 的代数式表示四边形AOPB 的面积,并求当APB △与ABC △面积相等时m 的值; ⑶是否存在使QAB △是等腰三角形并且在坐标轴上的点Q ?若存在,请写出点Q 所有可能的坐标;若不存在,请说明理由.23.点(40)(03)A B ,,,与点C 构成边长分别是3,4,5的直角三角形,如果点C 在反比例函数ky x=的图像上,求k 可能取的一切值.参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 DCABBADCAC提 示1.印章在纸上盖出的效果与印章的图形成镜面对称,如图8所示,右侧的印章图形沿轴翻转180︒后,将与左侧的效果重合.故选D .2.因为 1x y <<-, 所以 0100x x x y <+<-<,,, 则101(1)(1)y y xy x xy y x yx x x x x x ++----==<+++, 即该代数式的值是负数,选C .3.因为()2516255135222±±±±===,所以 515122 1.41222x -+-=-==-≈-,所以 []2x =-,选A .4.为使生产效率最高,在相同的时间内生产甲、乙、两两件的数量之比是5:4:2,而1名工人在单位时间内生产这三种元件的数量之比是5:3:2,所以生产甲、乙、丙元件的工人数量之比是542::532,即41::13,也即3:4:3,在扇形图中对应的扇形的圆心角依次是108︒,144︒,108︒.故选B .5.5.设矩形的边长分别是a b ,,对角线的长是c ,则222a b c +=已知矩形的面积是44832ab ==⨯,a b ,都是整数,不妨设a b ,≤则()a b ,可能是 (1,48),(2,24),(3,16),(4,12),(6,8),分别代入222a b c +=,只有当68a b ==,时,c 才是整数10,其他情况得到的c 的值都不是整数. 所以,矩形的边长分别是6,8,周长是28,选B .。
新希望杯八年级数学试题及答案

八年级试题(A 卷)(时间:120分钟 满分:120分)一、选择题(每小题4分,共32分) 1.若()422015+=mA ,则A 的算术平方根是( )A.(m 2+2015)4B.(m 2+2015)2C.m 2+2015D.m+20152.已知等腰三角形的两边长分别为a 、b ,且0243163=-++-+b a b a ,则此三角形的周长是( )A.13B.17C.13或17D.14或163.将一副三角板如下图叠放在一起,则∠1的度数是( )A.105°B.110°C.115°D.120°4.如图,在3×4的正方形网格中,已有3个方格涂色,若再选择一个方格涂色,且使得4个涂色的方格组成轴对称图形,可选择的方格共有( )A.1个B.2个C.3个D.4个5.已知201531+n 是整数,若n 是正整数,则n 的最小值是( )A.31B.59C.65D.1246.某超市购进50千克的散装糖果,决定包装后出售,方式一:1.5千克/盒,包装成本1.2元/个;方式二:1千克/盒,包装盒成本1元/个.根据需要1千克装的糖果数量不能少于1.5千克装的一半,且糖果全部包装完,那么包装盒的总成本最低是( )A.43.4元B.43.1元C.42.8元D.42.5元7.如图,在四边形ABCD 中,对角线AC 、BD 交于点O ,且BO=DO ,点P 在△BCD 内部,下列说法:①S △AOD=S △AOB ;②BC +CD >PB +PD ;③AC +BD >AB +CD ;④AC +BD >AD >CD ,其中正确的有( ) A.1个 B.2个 C.3个 D.4个8.如图,等边三角形ABC 边长为6,点P 从B 点开始在BC 上向点C 运动,运动到点C 停止,以AP 为边在直线BC 的同侧作等边三角形APQ ,得到点Q ,则点Q 的运动路径长( ) A.6 B.33 C.24 D.23π二、填空题:(每小题5分,共40分)9.化简:.________________)2015(201522=+--x x )(10.已知正n 边形的一个内角是一个外角的5倍,则n=____________.11.如图,△ABC 是格点三角形,点D 是异于点A 的一个格点,则使△DBC 和△ABC 全等的D 点共有__________个.12.方程3100820151210071=+-+-xx x 的解是___________________.13.如图,等边三角形的边长为1,现将其各边n(n >2)等分,并以相邻分点为顶点向外作小等边三角形,再将相邻分点之间的线段去掉,得到一个锯齿图形,当n=k 时,锯齿图形的周长为___________.(用含k 的代数式表示).14.将1、2、3、4、5这五个数排成一列,要求第一个数和最后一个数都是偶数,且其中任意三个相邻的数之和都能被这三个数中的第一个数整除,这样的排列方法共有_____________种.15.对于实数m 、n ,定义运算m ※n=m(1-n),下面是关于这种运算的几个结论:①2※3=-4;②若m ※n=0,则n=0;③m ※n=(1-n )※(1-m);④若m+n=1,则(m ※n )-(n ※n)=0.其中正确的是___________. 16.如图,已知点A(1,1),点B (7,3),点P 为x 轴上一个动点,当PA+PB 的值最小时,点P 的坐标为_______________.三、解答题(10+12+12+14=48分)17..)32(32,2,29的值)求(若+--==-y x xy y x18.如图,△ABC 为等边三角形,点D 是BC 延长线上一点,且CD <BC ,BD 的垂直平分线交AC 于E ,过点E 作EF ∥BC 交AB 于F.(1)求证:△AEF 为等边三角形; (2)若BC=3CD ,求ECAE的值.19.某数学俱乐部组织60名会员租车进行自驾游,共有两种车型可供选择,A 型车共有8个座位,B 型车有4个座位,要求租用的车不能空座,也不能超载. (1)共有多少种不同的租车方案?(2)若A 型车的租金是400元/天,B 型车的租金是260元/天,请设计最划算的租车方案,并说明理由.20.已知:直角三角形斜边上的中线等于斜边的一半,如图1,在△ABC 中,∠CAB=90°,D 是BC 的中点,连接AD ,则AD=CD=BD.(1)如图2,过点D作DE⊥AB于E,以E为边作等边三角形AEF,以DF为边作等边三角形DFG,连接AG,求证:AG平分∠FAB.(2)如图3,过点C作CH⊥AF于H,连接DH,求证:DH=FG.1 2 3 4 5 6 7 8C B AD B C D A9 10 11 12 13 14 15 1610 1/2-8060X12 3 1008KK 66-6 ①③④⎪⎭⎫ ⎝⎛0,25。
第希望杯初二第2试试题及答案

第二十一届“希望杯”全国数学邀请赛初二第 2 试一、选择题(每题 4 分,共 40 分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后边圆括号内.1.计算21259,得数是()A.9 位数B.10 位数C. 11 位数D.12 位数2.若xy 1 ,则代数式9xy18的值()239x y18A.等于7B.等于5C.等于5或不存在D.等于7或不存在57753( x a) 2 ≥ 2(1 2x a)3. The integer solutions of the inequalities about x :x b b x are 1,2,332then the number of integer pairs(a,b)is()A. 32B.35C. 40D.48(英汉字典: integer整数)4.已知三角形三个内角的度数之比为x : y : z ,且 x y z ,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形 D .等腰三角形5.如图 1 ,三个凸六边形的六个内角都是120 ,六条边的长分别为 a ,b ,c ,d ,e, f ,则以下等式中建立的是()bacf de图1A.a b c d e f B.a c e b d fB . a b d eC . a c b d6.在三边互不相等的三角形中,最长边的长为 a ,最长的中线的长为 m ,最长的高线的长为 h ,则()A . a m hB . a h mC . m a hD . h m a7.某次足球竞赛的计分规则是:胜一场得 3 分,平一场得 1 分,负一场得 0 分,某球队参赛 15场,积 33 分,若不考虑竞赛次序,则该队胜、平、负的状况可能有()A .15 种B .11 种C .5 种D .3 种8.若 xy0 ,x y0 ,11与 x y 成反比,则 x y2与 x 2 y 2 ()x yA .成正比B .成反比C .既不可正比,也不可反比D .关系不确立9.如图 2,已知函数 y2 k ,点 A 在正 y 轴上,过点 A 作 BC ∥ x 轴,交两个函( x 0) ,y(x 0)xx数的图象于点 B 和 C ,若 AB : AC 1:3 ,则 k 的值是()yCABO x图2A . 6B .3C . 3D . 610 .10 个人围成一圈做游戏,游戏的规则是:每一个人内心都想一个数,并把自己想的数告诉与他相邻的两个人, 而后每一个人将与他相邻的两个人告诉他的数的均匀数报出来,若报出来的数如图 3所示,则报出来的数是3 的人内心想的数是( )A .2B . 2C .4D . 4110 29384756图 3二、填空题(每题4 分,共 40 分)11 .若 x 2 2 7 x 2 0 , 则 x 4 24x 2.12 .如图 4 ,已知点 A( a ,b) , O 是原点, OAOA 1 ,OA OA 1 ,则点 A 1 的坐标是.yA ( a ,b )A 1O x图 413 .已知 ab0 ,而且 a b 0 ,则ab1 1 b 22____________.(填“ ”、“ ”、“≥ ”或“ ≤ ”)aab14 .若 a 2b 2a 2 b2 0 ,则代数式 a a b b a b的值是.15 .将代数式 x 3 2a 1 x 2 a 2 2a 1 x a 2 1 分解因式,得16 . A 、B 、C 三辆车在同一条直路上同向行驶,某一时辰, A 在前, 10 分钟后, C 追上 B ;又过了 5 分钟, C 追上 A .则再过.C 在后, B 在 A 、C 正中间,分钟, B 追上 A .17 .边长是整数,周长等于 20 的等腰三角形有 种,此中面积最大的三角形底边的长是.18 .如图 5 ,在 △ ABC 中, AC BD ,图中的数听说明 ABC .A30°B40° CD 图519 .如图 6,直线 y31 与 x 轴、 y 轴分别交于 A 、B ,以线段 AB 为直角边在第一象限内作x3等腰直角 △ ABC , BAC90 .在第二象限内有一点P a , 1,且 △ABP 的面积与 △ ABC 的面积2相等,则 △ ABC 的面积是; a ___________________yCBPO Ax 图 620 .Given the area of△ ABC is S 1 ,and the length of its three sides are311,9 3,101313respectively . And the perimeter of △ABCis 18 ,its area is S 2 .Then the relationship between S 1 and S 2 isS 1S 2 .( fill in the blank with“ ”,“= ”or “ ”)(英汉字典: area 面积; length长度; perimeter 周长)三、解答题每题都要写出计算过程.21 .(此题满分 10 分)解方程:2 x34 4 x 3 .42 x 334 x【分析】 令2x 3a ,4xb ,43则a1 b 1 ,ab 整理得ab 10 ,aab所以 a b 或 ab1,即3x 34 x , ①4 3或2 x3 4 x 1 ,②43由①得x7 ,10由②得 x0 或 x52经查验,知7 ,0,5都是原方程的解.10222.(此题满分15分)如图7,等腰直角△ABC 的斜边 AB 上有两点 M、N ,且知足MN 2BN 2AM 2,将△ABC绕着 C 点顺时针旋转90 后,点M、N的对应点分别为T、S .⑴请画出旋转后的图形,并证明△MCN△MCS⑵求MCN 的度数.BBNN MC AM SC A r图 7【分析】⑴将△ ABC 绕着C点顺时针旋转90,如图.依据旋转前后的对应关系,可知BN AS ,CN CS , NBC SAC45所以MAS MAC SAC90.由色股定理,得MS 2AM 2AS2AM 2BN 2MN2,所以M N.M S又因为CN CS ,CM 是公共边,所以△MCN △MCS .⑵因为 CN 顺时针旋转 90后获得 CS ,所以NCS90,上边已证得△MCN △MCS ,故MCN MCS 145.NCS223 .(此题满分 15 分)已知长方形的边长都是整数,将边长为 2 的正方形纸片放入长方形,要求正方形的边与长方形的边平行或重合,且随意两个正方形重叠部分的面积为0,放入的正方形越多越好.⑴假如长方形的长是4,宽是 3 ,那么最多能够放入多少个边长为 2 的正方形?长方形被覆盖的面积占整个长方形面积的百分比是多少?⑵假如长方形的长是 n(n ≥ 4) ,宽是 n 2 ,那么最多能够放入多少个边长为2 的正方形?长方形被覆盖的面积占整个长方形面积的百分比是多少?⑶关于随意知足条件的长方形,使长方形被覆盖的面积小于整个长方形面积的55% 求长方形边长的全部可能值.(已知0.55 0.74 )【分析】 ⑴ 最多能够放入 2 个正方形,长方形被覆盖的面积占整个长方形面积的百分比是2 22 2 .4 366.7%3⑵当 n 是偶数时, n 2 也是偶数,最多能够放入1 个正方形,长方形被覆盖的面n( n 2)4 积占整个长方形面积的百分比是 100% .当 n 是奇数时, n2 也是奇数,最多能够放入1 3) 个正方形,长方形被覆盖的(n 1)(n4面积占整个长方形面积的百分比是 n 1 n 3n n2100% .⑶设长方形的宽与长分别是x ,y .若 x ,y 都是偶数,则长方形被覆盖的面积占整个长方形面积的100% ,不切合题意.若 x ,y 中一个是偶数 2a ,一个是奇数 2b 1 ( a ,b 是正整数),则4ab 4ab2b0.55 .xy2a (2b 1) 2b 1解得 b 0.61.没有知足此结果的正整数b ,这类状况也不切合题意.所以, x ,y 都是奇数.x 2a 1 ,令 y 2b 1 , a ≤ b ,a ,b 是正整数,则有4ab0.55 .2a 1 2ba4ab4a4a2因为2a2a 1 2b a11,12a12a 12a22ba22a所以0. 55.2a 12a得0. 7 ,4a 1.,42a 1因为 a 是正整数,所以 a 1代入①式,得4b0. 55, 3 ( 2b1)解得 b 2.4 ,因为 b 是正整数,所以 b 1 或 2故有x 3 ,y3或 5.即长方形长为 5,宽为 3,或长与宽都是 3.第二十一届“希望杯”全国数学邀请赛参照答案及评分标准初二第 2 试一、选择题(每题4 分.)题号1 21 3 4 5 6 7 8 9 10答案BDBCCADADB二、填空题(每题 4 分,第 17 、19 题,每空 2 分.)题号111213141516 17 1819 20答案 -4b ,a≥1x 1 x a 1 x a 115 4;6402;3421. 21259 23 109 8 109 ,∴得数是 10 位数.2.∵xy 1 ,∴ y 3 x 32 329x 33 189 x y 18 x21x42 7 x22将其代入代数式,得315x 30 5 x 29 x y 189x3 18x2当 x2 时,原式7;当 x 2 时,原式的值不存在.53x 3a 2 ≥ 4 x 2 2ax ≥ 1a113.原不等式7 b2 x 2b 3b 3x1 7a ≤ xx 5b5于是 01a ≤ 1 , 31b≤ 4所以 a 有 7个不一样的取值, b 有 5 个不一样的取值,75于是整数对 a , b 共有7535个.4.∵x y z ,∴x y z 2 z ,即1802z,∴z90,三角形为钝角三角形.5.如图,补三个等边三角形,则 a b c c d e a f e ,于是a b d e.a b ca cdfee6.利用直角三角形中斜边大于直角边易得结论a m h .7.设该球队胜、平、负的场数分别为x 、y、 15 x y ,则 3x y33 .x ≥ 0y ≥ 0 x ,于是 0 ≤ y ≤ 6 ,又y能整除 3 ,于是 y 0 , 3 , 6 .y ≤ 153x y 33对应的 x 11 , 10 , 9 ,共3种状况.8.∵11与 x y 成反比,∴x y11m ,此中 m 为非零常数.x y x y于是yx m 2 ,所以y为定值.x y x2y2而 x y22y y1, x2y2x2 1 ,联合y为定值xxx x x所以 x y2与x2y2成正比.9. B 与 C 的纵坐标相等,即k2,∴k2AC6AC AB AB10.假定报出来的数是 3 的人内心想的数是 x ,则报出来的 12345678910数4 x x8 x 4 x12 x内心想的数于是 4x 12x20 ,解得 x2 .11. x 4 24x 22 7 x 224 2 7 x 228 x 28 7 x4 48 7x 4828x 2 56 7x 5222 8 2 x7 25 6x 752.412. 过 A 、 A 1 作 x 轴的垂线,利用弦图简单获得A 1 b , a .aba 2ba 211a b13.a bba b∵b 2a 2b 2aba 2,ab11ba2222而a2b2 ≥ 2 a 2 b 22bab a∴ab a b ≥1 1a b ,即ab1 1 .b 2a 2a bb 2 a 2 ≥ a b14. ∵a 2 b 2a 2 b 2a 2b21 , b 1110 ,∴a于是 a a b b a b 12 10 1 .15.x 3 2 a 1 x 2 a 2 2 a 1 x2a 1x 3 2ax 2 a 2 1 x x 2 2ax a 2 1x 1 x 22axa1 a 1x 1 x a 1 x a116. 设当 B 在 A 、C 正中间是 ABBC1,则 C 相对 B 的速度为1,C 相对 A 的速度为 2 ,1015所以 B 相对 A 的速度为1,故 B 追上 A 需要时间为 30 分钟.30于是再过 15 分钟, B 追上 A .17. 设等腰三角形的腰长为x ,则底边长为 20 2x ,于是 0 20 2xxx ,有 5 x 10 ,∴x 的可能取值有 6 , 7 , 8 , 9,共 4 种.其面积为10 1022 x10 ,∴当 x7 时三角形面积最大,此时底边长为6 .x18. 在 BC 上取一点 E ,使得 CE CA ,简单证明 △ AEB ≌△ ADC ,于是 ABC 40 .19. ∵ A 3 , 0 ,B 0,1,∴ AB 2于是 S △ ABC 12AB22∵S△ ABP1 1 1 a1 3 11 3 a 12 ,解得 a3 4 .2 2222220. △ ABC 的面积不小于三边长分别为 3 , 9 , 10 的三角形面积,于是S △ABC ≥ 11 11 3 11 9 11 10262 ;而 △A B C 的面积不大于周长为 18 的正三角形面积,于是3 2S 2 ≤18243 .49 33∴S 1 S 2 .。
希望杯数学八年级竞赛真题及答案(1-23届)

1、第一届希望杯初二第1试试题2、第一届希望杯初二第2试试题3、第二届希望杯初二第1试试题4、第二届希望杯初二第2试试题5、第三届希望杯初二第1试试题6、第三届希望杯初二第2试试题7、第四届希望杯初二第1试试题8、第四届希望杯初二第2试试题9、第五届希望杯初二第1试试题10、第五届希望杯初二第2试试题11、第六届希望杯初二第1试试题12、第六届希望杯初二第2试试题13、第七届希望杯初二第1试试题14、第七届希望杯初二第2试试题15、第八届希望杯初二第1试试题16、第八届希望杯初二第2试试题17、第九届希望杯初二第1试试题18、第九届希望杯初二第2试试题19、第十届希望杯初二第1试试题20、第十届希望杯初二第2试试题21、第十一届希望杯初二第1试试题22、第十一届希望杯初二第2试试题23、第十二届希望杯初二第1试试题24、第十二届希望杯初二第2试试题25、第十三届希望杯初二第1试试题26、第十三届希望杯初二第2试试题27、第十四届希望杯初二第1试试题28、第十四届希望杯初二第2试试题28、第十五届希望杯初二第1试试题30、第十五届希望杯初二第2试试题31、第十六届希望杯初二第1试试题32、第十六届希望杯初二第2试试题33、第十七届希望杯初二第1试试题34、第十七届希望杯初二第2试试题35、第十八届希望杯初二第1试试题36、第十八届希望杯初二第2试试题37、第十九届希望杯初二第1试试题38、第十九届希望杯初二第2试试题39、第二十届希望杯初二第1试试题40、第二十届希望杯初二第2试试题41、第二十一届希望杯初二第1试试题42、第二十一届希望杯初二第2试试题43、第二十二届希望杯初二第1试试题44、第二十二届希望杯初二第2试试题45、第二十三届希望杯初二第1试试题46、第二十三届希望杯初二第2试试题希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ] (A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。
历年初中希望杯数学竞赛试题大全

历年初中希望杯数学竞赛试题大全 ][真诚为您服务试试题希望杯”全国数学邀请赛初二第2· 2009年第20届“次· 161· [4-30]★详细简介请参考下载页]· [竞赛 2试试题届“希望杯”全国数学邀请赛初一第年第· 200920 次· 153· [4-28]详细简介请参考下载页★]· [竞赛数学大赛初赛试卷(扫描版)届5“希望杯”年湖北省黄冈市第· 2009 · 76次· [4-17]★详细简介请参考下载页]· [竞赛试试题”全国数学邀请赛初二第1· 2009年第20届“希望杯次· 133· [4-7]对不起,尚无简介☆]竞赛· [ 试试题全国数学邀请赛初一第1届“希望杯”20· 2009年第· 122次· [4-7]详细简介请参考下载页★]· [竞赛全国数学邀请赛初二训练题”第十四届“希望杯·次· 44· [9-9]详细简介请参考下载页★]竞赛· [ 2试试题“希望杯”全国数学邀请赛初一第19· 2008年第届次· 203· [9-4]详细简介请参考下载页★]· [竞赛 1”“19· 2008年第届希望杯全国数学邀请赛初一第试试题次· 169· [9-4]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第219年第届“希望杯”· 2008 次· 156· [9-2]详细简介请参考下载页★]· [竞赛 1试试题希望杯”全国数学邀请赛初二第“· 2008年第19届· 146次· [9-2]详细简介请参考下载页★]竞赛· [ 2试试题”届“希望杯全国数学邀请赛初二第18· 2007年第· 101次· [9-2]详细简介请参考下载页★]竞赛· [ 1全国数学邀请赛初二第试试题”“18· 2007年第届希望杯次· 95· [9-2]详细简介请参考下载页★]竞赛· [ 试试题”全国数学邀请赛初二第2· 2006年第17届“希望杯次· 76· [9-2]详细简介请参考下载页★]竞赛· [ 1试试题“希望杯”全国数学邀请赛初二第届· 2006年第17 · 76次· [9-2]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第2希望杯· 2005年第16届“”次· 65· [9-1]详细简介请参考下载页★]· [竞赛 1试试题全国数学邀请赛初二第届· 2005年第16“希望杯”次· 52· [9-1]详细简介请参考下载页★]· [竞赛试试题全国数学邀请赛初二第希望杯”2· 2004年第15届“次· 47· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第115届“希望杯”年第· 2004 次· 38· [9-1]详细简介请参考下载页★]· [竞赛 2试试题希望杯”全国数学邀请赛初二第届· 2003年第14“次· 30· [9-1]详细简介请参考下载页★]竞赛· [ 1试试题希望杯届“”全国数学邀请赛初二第年第· 200314 · 26次· [9-1]详细简介请参考下载页★]竞赛· [ 2试试题全国数学邀请赛初二第希望杯届年第· 200213“”· 31次· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第1”年第13届“希望杯· 2002 次· 23· [9-1]详细简介请参考下载页★]竞赛· [ 2试试题“希望杯”全国数学邀请赛初二第· 2001年第12届· 17次· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第112年第届“希望杯”· 2001 · 17次· [9-1]详细简介请参考下载页★]竞赛· [ 试试题2“届希望杯”全国数学邀请赛初二第11· 2000年第次· 15· [9-1]★详细简介请参考下载页]· [竞赛试试题”全国数学邀请赛初二第1“· 2000年第11届希望杯次· 15· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第210届“希望杯”· 1999年第次· 13· [9-1]详细简介请参考下载页★]· [竞赛试试题1希望杯”全国数学邀请赛初二第· 1999年第10届“次· 15· [9-1]详细简介请参考下载页★]竞赛· [ 2试试题“希望杯”全国数学邀请赛初二第9· 1998年第届次· 11· [8-29]详细简介请参考下载页★]· [竞赛 1”“9· 1998年第届希望杯全国数学邀请赛初二第试试题次· 10· [8-29]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第28年第届“希望杯”· 1997 次· 13· [8-29]详细简介请参考下载页★]· [竞赛 1试试题希望杯”全国数学邀请赛初二第“· 1997年第8届· 10次· [8-29]详细简介请参考下载页★]竞赛· [ 2试试题”届“希望杯全国数学邀请赛初二第7· 1996年第· 11次· [8-29]详细简介请参考下载页★]竞赛· [ 1全国数学邀请赛初二第试试题”“7· 1996年第届希望杯次· 10· [8-29]详细简介请参考下载页★]· [竞赛试试题”希望杯全国数学邀请赛初二第2· 1995年第6届“次· 14· [8-29]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第16届“希望杯”· 1995年第次· 14· [8-29]★详细简介请参考下载页]· [竞赛 2试试题希望杯”全国数学邀请赛初二第5· 1994年第届“次· 12· [8-29]详细简介请参考下载页★]竞赛· [ 1试试题“届希望杯”全国数学邀请赛初二第· 1994年第5 · 12次· [8-29](每一、选择题 :年第五届希望杯全国数学邀请赛1994 初中二年级第一试试题 [] Ax 1.303小题分,共分)使等式成立的的值是.是]· [竞赛试试题初二第2”年第4届“希望杯全国数学邀请赛· 1993 次· 9· [8-29]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第14届“希望杯”· 1993年第次· 10· [8-29]详细简介请参考下载页★]· [竞赛试试题2希望杯”全国数学邀请赛初二第· 1992年第3届“次· 11· [8-29]详细简介请参考下载页★]竞赛· [ 1试试题“希望杯”全国数学邀请赛初二第3· 1992年第届次· 9· [8-29]详细简介请参考下载页★]· [竞赛 2”“2· 1991年第届希望杯全国数学邀请赛初二第试试题· 14次· [8-28]详细简介请参考下载页★]· [竞赛试试题”全国数学邀请赛初二第1年第· 19912届“希望杯次· 12· [8-28]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第21届“希望杯”· 1990年第· 13次· [8-28]详细简介请参考下载页★]· [竞赛试试题”全国数学邀请赛初二第1希望杯· 1990年第1届“次· 11· [8-28]分,(每题1 ”全国数学邀请赛初二第一试一、选择题:“1990年第一届希望杯() 倍,那么这个角是 1.一个角等于它的余角的5分)共10]竞赛· [ 2试试题全国数学邀请赛初一第希望杯届年第· 200718“”· 94次· [8-28]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初一第118届“希望杯”· 2007年第次· 42· [8-28]详细简介请参考下载页★]· [竞赛试试题”希望杯全国数学邀请赛初一第2· 2006年第17届“次· 41· [8-28]详细简介请参考下载页★]竞赛· [ 试试题1希望杯”全国数学邀请赛初一第“· 2006年第17届次· 43· [8-28]试第1全国数学邀请赛初一希望杯年第十七届2006“”……中考资源网,竞赛试题任你选!更多数学竞赛试题请点击。
希望杯第届初二第试试题及参考答案

第十七届“希望杯’’全国数学邀请赛初二第2试2006年4月16日上午8:30至lO:30 得分___________一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内.1.下列四组根式中,是同类二次根式的一组是( )2.要使代数式有意义,那么实数x的取值范围是( )3.以线段a=13,b=13,c=10,d=6为边作梯形,其中a,c为梯形的两底,这样的梯形( )(A)能作一个. (B)能作两个. (C)能作无数个. (D)一个也不能作.(英汉词典:Fig.figure的缩写,图;quadrilateral四边形;diagonal对角线;value数值;variable变量;to depend on取决于;position位置)(A)是完全平方数,还是奇数. (B)是完全平方数,还是偶数.(C)不是完全平方数,但是奇数. (D)不是完全平方数,但是偶数.6.将任意一张凸四边形的纸片对折,使它的两个不相邻的顶点重合,然后剪去纸片的不重合部分,展开纸片,再一次对折,使另外的两个顶点重合,再剪去不重合的部分后展开,此时纸片的形状是( )(A)正方形. (B)长方形. (C)菱形. (D)等腰梯形.7.若a,b,c都是大于l的自然数,且c a=252b,则n的最小值是( )(A)42. (B)24. (C)21 (D)15(英汉词典:two-placed number两位数;number数,个数;to satisfy满足;complete square完全平方(数);total总的,总数)9.下表是某电台本星期的流行歌曲排行榜,其中歌曲J 是新上榜的歌曲,箭头“↑”或“↓”分别表示该歌曲相对于上星期名次的变化情况,“↑”表示上升,“↓”表示下降,不标注的则表明名次没有变化,已知每首歌的名次变化都不超过两位,则上星期排在第1,5,7名的歌曲分别是( )(A)D ,E ,H . (B)C ,F ,I . (C)C ,E ,I . (D)C ,F ,H . 10.设n(n ≥2)个正整数1a ,2a ,…,n a ,任意改变它们的顺序后,记作1b ,2b ,…,n b ,若P=(1a -1b )(2a -2b )(33b a -)…(n a 一n b ),则( )(A)P 一定是奇数. (B)P 一定是偶数.(C)当n 是奇数时,P 是偶数. (D)当”是偶数时,P 是奇数. 二、填空题(每小题4分,共40分.)11.消防云梯的长度是34米,在一次执行任务时,它只能停在离大楼16米远的地方,则云梯能达到大楼的高度是______米.15.从凸n 边形的一个顶点引出的所有对角线把这个凸n 边形分成了m 个小三角形,若m 等于这个凸n 边形对角线条数的94,那么此n 边形的内角和为_____.16.某种球形病毒,直径是0.01纳米,每一个病毒每过一分钟就能繁殖出9个与自己同样的病毒,假如这种病毒在人体中聚集到一定数量,按这样的数量排列成一串,长度达到1分米时,人就会感到不适,那么人从感染第一个病毒后,经过_______分钟,就会感到不适.(1米=109纳米)19.如图2,等腰△ABC 中,AB=AC ,P 点在BC 边上的高AD 上,且21=PD AP , BP 的延长线交AC 于E ,若ABC S ∆=10,则ABE S ∆=______,DEC S ∆=_______.20.一个圆周上依次放有1,2,3,…,20共20个号码牌,随意选定一个号码牌(如8),从它开始,先把它拿掉,然后每隔一个拿掉一个(如依次拿掉8,10,12,…),并一直循环下去,直到剩余两个号码牌时停止,则最后剩余的两个号码的差的绝对值是______或_______.三、解答题(本大题共3小题,共40分.) 要求:写出推算过程. 21.(本小题满分10分)如图3,正方形ABCD 的边长为a ,点E 、F 、G 、H 分别在正方形的四条边上,已知EF ∥GH .EF=GH .(1)若AE=AH=a 31,求四边形EFGH 的周长和面积;(2)求四边形EFGH 的周长的最小值.22.(本小题满分15分)已知A 港在B 港的上游,小船于凌晨3:00从A 港出发开往B 港,到达后立即返回,来回穿梭于A 、B 港之间,若小船在静水中的速度为16千米/小时,水流速度为4千米/小时,在当晚23:OO 时,有人看见小船在距离A 港80千米处行驶.求A 、B 两个港口之间的距离.23.(本小题满分15分)在2,3两个数之间,第一次写上5132=+,第二次在2,5之间和5,3之间分别写上27252=+和4235=+,如下所示:第k 次操作是在上一次操作的基础上,在每两个相邻的数之间写上这两个数的和的k1. (1)请写出第3次操作后所得到的9个数,并求出它们的和;(2)经过k 次操作后所有数的和记为k S ,第k+1次操作后所有数的和记为1+k S ,写出1+k S 与k S 之间的关系式; (3)求6S 的值.第十七届“希望杯”全国数学邀请赛参考答案及评分标准 初中二年级 第2试 一.选择题(每小题4分)二.填空题(每小题4分)三、解答题21.(1)如图1,连结HF .由题知四边形EFGH 是平行四 边形,所以又 所以 所以(3分)所以△AHE 和△DHG 都是等腰直角三角形,故∠EHG=090,四边形EFGH 是矩形. 易求得所以四边形EFGH 的周长为2a 2,面积为294a .(5分)(2)如图2,作点H 关于AB 边的对称点H ',连结H F ',交AB 于E ',连结 E 'H .显然,点E 选在E '处时.EH+EF 的值最小,最小值等于H F '.(7分)仿(1)可知当AE≠AH 时,亦有(8分)所以因此,四边形EFGH周长的最小值为2a2.(10分)22.设A、B两个港口之间的距离为L,显然(1分)(1)若小船在23:00时正顺流而下,则小船由A港到达下游80千米处需用即19:00时小船在A港,那么在3:00到19:00的时间段内,小船顺流行驶的路程与逆流行驶的路程相同,而所用的时间与速度成反比,设小船顺流行驶用了t小时,则逆流行驶用了(16一t)小时,所以解得 t=6 (5分)即顺流行驶了由于所以A、B两个港口之间的距离是120千米.(7分)(2)若小船在23:00时正逆流而上,则小船到达A港需再用即小船在内顺流行驶的路程与逆流行驶的路程相同,而所用的时间与速度成反比,设小船顺流行驶用了t 小时,则逆流行驶用了小时,所以解得(12分)即顺流行驶了由于所以A、B两个港口之间的距离可能是100千米或200千米. (14分)(15综上所述,A、B两港口之间的距离可能是100千米或120千米或200千米.分)23.(1)第3次操作后所得到的9个数为它们的和为255(4分) (2)由题设知0S =5,则(10分)(3)因为所以(15分)。
第二十届希望杯全国数学邀请赛初二第2试参考答案及评分标准(WORD版)

第二十届“希望杯”全国数学邀请赛参考答案及评分标准初二 第2试(每小题4分)(每小题4分,含两个空的小题,每空2分)三、解答题21.设所求的最简分数是n m ,()1,=n m ,n m <<0,15<n , 则 nn m n m 52552-=-, 因为52≠n m ,且m ,n 是正整数, 所以 125≥-n m .(1)当125=-n m 时,有125=-n m (当52>n m 时),或125-=-n m (当52<n m 时), 所以 512+=n m 或512-=n m . 由m 是整数,知2n +1或2n -1(n <15)是5的倍数.(5分) 要使nn m 5152=-最小,则n 应最大. 由2n +1或2n -1(n <15)是5的倍数,知n 最大取13,对应的m=5,此时65152=-n m .(8分) (2)当125>-n m 时,因为n <15,m ,n 是正整数,所以nnm n m 52552-=-≥6513511452>=⨯. 综上可知,52-n m 的最小值是651,此时对应的m =5,n =13, 故135是最接近52,但分母小于15的最简分数. (10分)22.(1)依题意,函数y =3-x +3的图象与x 轴、y 轴分别交于点A 、B ,当y =0时,x =1;当x =0时,y =3,所以点A 的坐标是(1,0),点B 的坐标是(0,3) 于是 AB =22OB OA +=2. 在Rt △ABC 中,∠ABC =30º,AB =2.设AC =x ,则BC =2x ,由勾股定理,得222)2(2x x =+,得342=x ,332=x .所以 AC =332, S △ABC =21AB ·AC =332. (5分)(2)点P 在第二象限内,且P ⎪⎪⎭⎫ ⎝⎛23,m , 则m<0,S 四边形AOPB = S △AOB +S △BOP =21×1×3+21×3×(-m )=()m -123. 又S △APB = S 四边形AOPB - S △AOP =()23121123⨯⨯--m =()m 2143-, 由△APB 与△ABC 的面积相等,得()3322143=-m ,解得 65-=m . (10分) (3)这样的点存在,一共有6个,分别是:以AB 为底边的等腰三角形有两个,这时,Q 点的坐标是(-1,0)或(0,33); 以AB 为一条腰的等腰三角形有四个,这时,Q 点的坐标是(0,23+),(0,23-),(0,3-),(3,0). (15分)23.点A 和点B 之间的距离是5,所以它们之间的连线是直角三角形的斜边,设点C 的坐标是(a ,b ),则()()⎪⎩⎪⎨⎧=-+=+-.163942222b a b a , ① 或者()()⎪⎩⎪⎨⎧=-+=+-.931642222b a b a ,② (5分) 对于①,有⎪⎩⎪⎨⎧=+-+=+-+.169691682222b b a a b a ,两式相减,得 01468=--b a ,因此 )74(31-=a b , 将它代入①的第二个式子,得0)2825)(4(91=--a a ,解得 4=a ,或2528=a ,对应的b 的值是3或2521-,所以点C 的坐标是(4,3)或⎪⎭⎫ ⎝⎛-25212528,. 对应的k 的值是12或625588-. (10分) 对于②,有⎪⎩⎪⎨⎧=+-+=+-+.996161682222b b a a b a ,两式相减,得 068=-b a ,因此 a b 34=,将它代入②的第一个式子,得0)7225(91=-a a , 解得 =a 0,或2572=a ,对应的b 的值是0或2596.因为原点不可能在反比例函数的图象上,所以点C 的坐标是⎪⎭⎫⎝⎛25962572,, 对应的k 的值是6256912. 综上所述,k 的值是12或625588-或6256912. (15分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八届“希望杯”全国数学邀请赛初二 第2试2007年4月15日 上午8:30至10:30 得分________一、选择题(本大题共10小题,每小题4分,共40分),以下每题的四个选项中,•仅有一个 是正确的,请将正确答案的英文字母写在每题后面的圆括号内.1.红丝带是关注艾滋病防治问题的国际性标志,人们将红丝带剪成小段,并用别针将折叠好的 红丝带别在胸前,如图?所示,红丝带重叠部分形成的图形是( ). (A )正方形 (B )矩形 (C )菱形 (D )梯形 2.设a ,b ,c 是不为零的实数,那么x=||||||a b c a b c +-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种 3.△ABC 的边长分别是a=m 2-1,b=m 2+1,c=2m (m>0),则△ABC 是( ) (A )等边三角形 (B )钝角三角形 (C )直角三角形 (D )锐角三角形4.古人用天干和地支记次序,其中天干有10个:甲乙丙丁戊己庚辛壬癸.•地支有12个: 子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行: 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁…… 子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,•我国的农历纪年就是 按这个顺序得来的,如公历2007年是农历丁亥年,那么从今年往后,•农历纪年来甲亥年 的哪一个在公历中( )(A )是2019年 (B )是2031年(C )是2043年 (D )没有对应的年号 5.实数a ,b ,m ,n 满足a<b ,-1<n<m ,若M=,11a mb a nbN m n++=++,则M 与N 的大小关系是( ) (A )M>N (B )M=N (C )M<N (D )无法确定的6.若干个正方形和等腰直角三角形拼接成如图所示的图形, 若最大的正方形的边长是7cm ,则正方形A ,B ,C ,D 的面积 和是( )(A )14cm 2 (B )42cm 2 (C )49cm 2 (D )64cm 27.已知关于x 的不等式组230,320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( ) (A )23≤a ≤32 (B )43≤a ≤32 (C )43<a ≤32 (D )43≤a<328.The number of intersection point of the graths of function y=||k x•andfunction y=kx (k ≠0) is ( )(A )0 (B )1 (C )2 (D )0 or 2 9.某医药研究所开发一种新药,成年人按规定的剂量 服用,服药后每毫升血液中的含药量y (毫克)与时间 t (小时)之间的函数关系近似满足如图3所示曲线, 当每毫升血液中的含药量不少于0.25毫克时,治疗有 效,则服药一次治疗疾病有效的时间为(• )(A )16小时 (B )1578小时(C )151516小时 (D )17小时10.某公司组织员工到公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人, 就剩下18人无船可乘,每只船坐10人,那么其余的船坐满后,•仅有一只船不空也不满.参加 划船的员工共有( )(A )48人 (B )45人 (C )44人 (D )42人 二、填空题(本大题共10小题,每小题4分,共40分)11.已知a ,b ,c 为△ABC 三边的长,则化简│a+b+c │+2()a b c --的结果是________. 12.自从扫描隧道显微镜发明后,世界上便诞生了一门新科学,•这就是“纳米技术”.已知1毫米=1000微米,1微米=1000纳米,那么2007•纳米的长度用科学记数法表示为_________米.13.若不等式组21,23x a x b -<⎧⎨->⎩中的未知数x 的取值范围是-1<x<1,那么(a+1)(•b-•1)•的值等于_______.14.已知a 1,a 2,a 3,…,a 2007是彼此互不相等的负数,且M=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2007),N=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2007),那么M•与 N•的大小关系是M______N . 15.a b c d叫做二阶行列式,它的算法是:ad-bc ,将四个数2,3,4,5排成不同的二阶行列式.则不同的计算结果有______个,其中,数值最大的是________. 16.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距 离墙角0.7米.•当小猫从木板底端爬到顶端时,木板底端向左滑 动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动 了_________米.17.Xiao Ming says to Xiao Hua that my age add yuor age .add your •agewhen I was your agg is 48.The age of Xiao Huais______now .(英汉词典:age 年龄;add 加上;when 当……时)18.长方体的长、宽、高分别为正整数a ,b ,c ,且满足a+b+c+ab+•bc+•ac+•abc=2006,那么这个长方体的体积为________.19.已知a为实数,且a+26与1a-26都是整数,则a的值是_________.20.为确保信息安全,信息传输需加密,发送方由明文→密文(加密),接收方由密文→明文(解密).现规定英文26个字母的加密规则是:26个字母按顺序分别对应整数0到25,例如:英文a,b,c,d,写出它们的明文(对应整数0,1,2,3),然后将这4个字母对应的整数(分别为x1,x2,x3,x4)按x1+2x2,3x2,x3+2x4;3x4计算,得到密文,即a,b,c,d•四个字母对应的密文分别是2,3,8,9.现在接收方收到的密文为35,42,23,12,则解密得到的英文单词为_________.三、解答题(本大题共3小题,共40分),要求:写出推算过程.21.(本题满分10分)如图,一个大的六角星形(粗实线)的顶点是周围六个全等的小六角星形(•细实数)的中心,相邻的两个小六角星形各有一个公共顶点,如果小六角星形的顶点C到中心A的距离为a,求:(1)大六角星形的顶点A到其中心O的距离;(2)大六角星形的面积;(3)大六角星形的面积与六个小六角星形的面积之和的比值.(注:本题中的六角星形由12个相同的等边三角形拼接而成).22.(本题满分15分)甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A•地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/•小时的速度返回,请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从A地返回的速度多大时,才能比乙车先回到A地?23.(本题满分15分)平面上有若干个点,其中任意三点都不在同一直线上,将这些点分成三组,•并按下面的规则用线段连接:①在同一组的任意两点间都没有线段连接;②不在同一组的任意两点间一定有线段连接.(1)若平面上恰好有9个点,且平均分成三组,那么平面上有多少条线段?(2)若平面上恰好有9个点,且点数分成2,3,4三组,那么平面上有多少条线段?(3)若平面上共有192条线段,那么平面上至少有多少个点?第十八届“希望杯”全国数学邀请赛参考答案及评分标准初二 第2试一、选择题(每小题4分)1.C 2.B 3.C 4.D 5.A 6.C 7.B 8.D 9.C 10.A二、填空题(每小题4分,第15小题,每个空2分,第19小题,答对一个答案2分)11.2c 12.2.007×10-413.-6 14.> 15.6;14 16.2.5 17.16 •18.•888 •19.5-26或-5-26 20.hope三、解答题 21.(1)连结CO ,易知 △AOC 是直角三角形,∠ACO=90°,∠AOC=30°,所以AO=2AC=2a . (3分)(2)如图,大六角星形的面积是等边△AMN 面积的12倍. 因为AM 2=222()()22AM a +, 解得AM=233a . 所以大六角星形的面积是 S=12×12×233a ×a=43a 2. (7分)(3)小六角星形的顶点C 到其中心A 的距离为a ,大六角星形的顶点A 到其中心O•的距离为2a ,所以大六角星形的面积是一个小六角星形的面积的4倍,所以 大六角星形的面积:六个小六角星形的面积和=2:3 (10分) 22.(1)由图知,可设甲车由A 地前往B 地的函数解析式为s=kt ,将(2.4,48)代入,解得k=20.所以 s=20t . (2分) 由图2可知,在距A 地30千米处,乙车追上甲车,所以当s=30千米时, t=302020s ==1.5(小时). 即甲车出发1.5小时后被乙车追上. (5分)(2)由图知,可设乙车由A 地前往B 地的函数的解析式为s=pt+m , 将(1.0,0)和(1.5,30)代入,得0,60,30 1.5,60.p m p p m m =+=⎧⎧⎨⎨=+=-⎩⎩解得 所以s=60t-60. (7分) 当乙车到达B 地时,s=48千米, 代入s=60t-60,得t=1.8小时.又设乙车由B 地返回A 地的函数的解析式为s=-30t+n , 将(1.8,48)代入,得48=-30×1.8+n , 解得 n=102,所以 s=-30t+102. (9分) 当甲车与乙车迎面相遇时,有-30t+102=20t , 解得 t=2.04小时,代入s=20t ,得s=40.8千米.即甲车与乙车在距离A 地40.8千米处迎面相遇. (12分) (3)当乙车返回A 地时,有-30t+102=0, 解得 t=3.4小时.甲车要比乙车先回到A 地,速度应大于483.4 2.4-=48(千米/小时). (15分)23.(1)平面上恰好有9个点,且平均分成三组,每组3个点,•其中每个点可以与另外两组 的6个点连接,共有线段692⨯=27(条). (5分) (2)若平面上恰好有9个点,且点数分成2,3,4三组,则平面上共有线段12[2×(3+4)+3×(2+4)+4×(2+3)]=26(条). (10分) (3)设第一组有a 个点,第二组有b 个点,第三组有c 个点,则平面上共有线段12[a (b+c )+b (a+c )+c (a+b )]=ab+bc+ca (条). 若保持第三组点数不变,将第一组中的一个点划归到第二组,则平面上线段的条数为 (a-1)(b+1)+(b+1)c+(a-1)c=ab+bc+ca+a-b-1. 与原来线段的条数的差是a-b-1,即当a>b 时,a-b-1≥0时,此时平面上的线段条数不减少; 当a ≤b 时,a-b-1<0,此时平面上的线段条数一定减少.由此可见,当平面上由点数较多的一组中划出一个点到点数较少的一组中时,平面上的 线段条数不减少,所以当三组中点数一样多(或基本平均)时,平面上线段的条数最多. (13分)设三组中都有x 个点,则线段条数为 3x 2=192,解得x=8.所以平面上至少有24个点. (15分)。