高二数学寒假作业专题01常用逻辑用语学
高二数学第一章 常用逻辑用语测试题及答案
高二数学(选修1-1 第一章 常用逻辑用语)姓名:_________班级:________ 得分:________一:选择题1、判断下列语句是真命题的为( ). (供题)A .若整数a是素数,则a是奇数B .指数函数是增函数吗?C .若平面上两条直线不相交,则这两条直线平行D .x>151.已知P :A ∩¢=¢,Q: A ∪¢=A,则下列判断错误的是( )(铁一中 张爱丽 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真1.已知P :2+2=5,Q:3>2,则下列判断错误的是( )(十二厂 闫春亮 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真3、对于两个命题:①,1sin 1x R x ∀∈-≤≤,②22,sin cos 1x R x x ∃∈+>,下列判断正确的是( )。
( 金台中学 唐宁 供题 两个数学符号教材未涉及,可以换为文字语言)A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真2.在下列命题中,真命题是( )(十二厂 闫春亮 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2.在下列命题中,真命题是( )(铁一中 张爱丽 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2. “2x >”是“24x >”的( ). (斗鸡中学 张永春 供题)A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.已知P:(2x -3)2<1, Q:x(x -3)<0, 则P 是Q 的( )(铁一中 张爱丽 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件2、设,,l m n 均为直线,其中,m n 在平面a 内,则“”l α⊥是“l m ⊥且”l n ⊥的( )( 金台中学 唐宁 供题)A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.条件210p x ->:,条件2q x <-:,则p ⌝是q ⌝的( ). (斗鸡中学 张永春 供题)A. 充分但不必要条件B. 必要但不充分条件C. 充分且必要条件D. 既不充分也不必要条件3.已知P:|2x -3|<1, Q:x(x -3)<0, 则P 是Q 的( )(十二厂 闫春亮 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件二:填空题11.在下列四个命题中,①若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件②“⎩⎨⎧≤-=∆>04,02ac b a ”是“一元二次不等式20ax bx c ++≥的解集为R 的充要条件③“1x ≠”是“21x ≠”的充分不必要条件④“0x ≠”是“0x x +>”的必要不充分条件正确的有________.(填序号)(斗鸡中学 张永春 供题)11、已知命题p :x ∀∈R ,sin x x >,则p ⌝形式的命题是__ ( 金台中学 唐宁 供题)三:解答题15.已知集合{}{}22320,20A x x x B x x x m =-+==-+=且AB A =,求m 的取值范围.(斗鸡中学 张永春 供题)17.(命题甲:“方程x 2+mx+1=0有两个相异负根”,命题乙:“方程4x 2+4(m -2)x+1=0无实根”,这两个命题有且只有一个成立,试求实数m 的取值范围。
高中数学常用逻辑用语
逆否命题: 若 q 则 p
结论1:要写出一个命题的另外三个命
题关键是分清命题的题设和结论(即
把原命题写成“若p则q”的形式)
注意:三种命题中最难写 的是否命题。 高中数学常用逻辑用语
三、四种命题之间的 关系
原命题
பைடு நூலகம்若p则q
互逆 逆命题
若q则p
互
互
否
否
否命题
逆否命题
若﹁p则﹁q
互逆 若﹁q则﹁p
高中数学常用逻辑用语
x∈N”是“x∈M∩N”的
B
A.充要条件
B必要不充分条件
C充分不必要 D既不充分也不必要
注、集合法
2、a∈R,|a|<3成立的一个必要不充分条件是
A.a<3 B.|a|<2 C.a2<9 D.0<a<2
A
高中数学常用逻辑用语
练习5、
1.已知p是q的必要而不充分条件, 那么┐p是┐q的___充__分_不__必__要_条__件__.
(2)从这个假设出发,经过推理 论证,得出矛盾;
(3) 由矛盾判定假设不正确, 从而肯定命题的高中数结学常用论逻辑正用语 确。
归谬 结论
1.写出命题“当c>0时,若a>b, 则ac>bc“的逆命题,否命题 与逆否命题,并分别判断他们的真假
2.写出命题“若x≠a且x≠b, 则x2-(a+b)x+ab≠0”的否命题
充分非必要条件
2) 若A B且B A,则甲是乙的
必要非充分条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件 4)若A=B ,则甲是高中乙数学的常用逻充辑用分语 且必要条件。
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.
专题01 集合与常用逻辑用语(解析版)
专题01 集合与常用逻辑用语1.【2022年全国甲卷】设集合,则()A.B.C.D.【答案】A【解析】【分析】根据集合的交集运算即可解出.【详解】因为,,所以.故选:A.2.【2022年全国甲卷】设全集,集合,则()A.B.C.D.【答案】D【解析】【分析】解方程求出集合B,再由集合的运算即可得解.【详解】由题意,,所以,所以.故选:D.3.【2022年全国乙卷】集合,则()A.B.C.D.【答案】A【解析】【分析】根据集合的交集运算即可解出.【详解】因为,,所以.故选:A.4.【2022年全国乙卷】设全集,集合M满足,则()A.B.C.D.【答案】A【解析】【分析】先写出集合,然后逐项验证即可【详解】由题知,对比选项知,正确,错误故选:5.【2022年新高考1卷】若集合,则()A.B.C.D.【答案】D【解析】【分析】求出集合后可求.【详解】,故,故选:D6.【2022年新高考2卷】已知集合,则()A.B.C.D.【答案】B【解析】【分析】求出集合后可求.【详解】,故,故选:B.7.【2021年甲卷文科】设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B 【解析】 【分析】求出集合N 后可求M N ⋂. 【详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=,故选:B.8.【2021年甲卷理科】设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则MN =( )A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【答案】B 【解析】 【分析】根据交集定义运算即可 【详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B. 【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.9.【2021年乙卷文科】已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( ) A .{}5 B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A 【解析】首先进行并集运算,然后进行补集运算即可. 【详解】 由题意可得:{}1,2,3,4M N =,则(){}5UM N =.故选:A.10.【2021年乙卷文科】已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( ) A .p q ∧ B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨【答案】A 【解析】 【分析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项. 【详解】由于sin0=0,所以命题p 为真命题;由于x y e =在R 上为增函数,0x ≥,所以||01x e e ≥=,所以命题q 为真命题; 所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题. 故选:A .11.【2021年乙卷理科】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( ) A .∅ B .SC .TD .Z【答案】C 【解析】 【分析】分析可得T S ⊆,由此可得出结论. 【详解】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆, 因此,S T T =. 故选:C.12.【2021年新高考1卷】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( ) A .{}2 B .{}2,3C .{}3,4D .{}2,3,4【答案】B【分析】利用交集的定义可求A B . 【详解】由题设有{}2,3A B ⋂=, 故选:B .13.【2021年新高考2卷】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UA B =() A .{3} B .{1,6} C .{5,6} D .{1,3}【答案】B 【解析】 【分析】根据交集、补集的定义可求()U A B ⋂. 【详解】 由题设可得{}U1,5,6B =,故(){}U 1,6A B ⋂=,故选:B.14.【2020年新课标1卷理科】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2 C .2 D .4【答案】B 【解析】 【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-. 故选:B. 【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力. 15.【2020年新课标1卷文科】已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】 【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果. 【详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =, 故选:D. 【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.16.【2020年新课标2卷理科】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=( ) A .{−2,3} B .{−2,2,3} C .{−2,−1,0,3} D .{−2,−1,0,2,3}【答案】A 【解析】 【分析】首先进行并集运算,然后计算补集即可. 【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U2,3A B =-.故选:A. 【点睛】本题主要考查并集、补集的定义与应用,属于基础题.17.【2020年新课标2卷文科】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2} D .{–2,2}【答案】D 【解析】 【分析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可. 【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--, {}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =-. 故选:D. 【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.18.【2020年新课标3卷理科】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B中元素的个数为( ) A .2 B .3C .4D .6【答案】C 【解析】 【分析】采用列举法列举出A B 中元素的即可. 【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故A B 中元素的个数为4. 故选:C. 【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.19.【2020年新课标3卷文科】已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3C .4D .5【答案】B 【解析】 【分析】采用列举法列举出A B 中元素的即可. 【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.20.【2020年新高考1卷(山东卷)】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4}【答案】C 【解析】 【分析】根据集合并集概念求解. 【详解】 [1,3](2,4)[1,4)AB ==故选:C 【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.21.【2020年新高考2卷(海南卷)】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =( ) A .{1,3,5,7} B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}【答案】C 【解析】 【分析】根据集合交集的运算可直接得到结果. 【详解】 因为A{2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B = 故选:C 【点睛】本题考查的是集合交集的运算,较简单.22.【2019年新课标1卷理科】已知集合{}}242{60M x x N x x x =-<<=--<,,则M N⋂=( ) A .}{43x x -<< B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题. 【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C . 【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分. 23.【2019年新课标1卷理科】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm【答案】B 【解析】 【分析】理解黄金分割比例的含义,应用比例式列方程求解. 【详解】设人体脖子下端至肚脐的长为x cm ,肚脐至腿根的长为y cm ,则262651105x x y +-=+得42.07, 5.15x cm y cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B . 【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.24.【2019年新课标1卷文科】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7【答案】C 【解析】 【分析】 先求UA ,再求UBA .【详解】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C . 【点睛】本题主要考查交集、补集的运算.渗透了直观想象素养.使用补集思想得出答案. 25.【2019年新课标2卷理科】设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞)【答案】A 【解析】 【分析】先求出集合A ,再求出交集. 【详解】由题意得,{}{}23,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A . 【点睛】本题考点为集合的运算,为基础题目.26.【2019年新课标2卷文科】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2) C .(–1,2) D .∅ 【答案】C 【解析】 【分析】本题借助于数轴,根据交集的定义可得. 【详解】由题知,(1,2)A B =-,故选C . 【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.27.【2019年新课标2卷文科】在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙【答案】A 【解析】 【分析】利用逐一验证的方法进行求解. 【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A . 【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.28.【2019年新课标3卷理科】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A 【解析】先求出集合B 再求出交集. 【详解】21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,则{}1,0,1A B =-, 故选A . 【点睛】本题考查了集合交集的求法,是基础题.29.【2019年新课标3卷文科】记不等式组620x y x y +⎧⎨-≥⎩表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+;命题:(,),212q x y D x y ∀∈+.给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是 A .①③ B .①②C .②③D .③④【答案】A 【解析】 【分析】根据题意可画出平面区域再结合命题可判断出真命题. 【详解】如图,平面区域D 为阴影部分,由2,6y x x y =⎧⎨+=⎩得2,4x y =⎧⎨=⎩ 即A (2,4),直线29x y +=与直线212x y +=均过区域D , 则p 真q 假,有p ⌝假q ⌝真,所以①③真②④假.故选A .【点睛】本题将线性规划和不等式,命题判断综合到一起,解题关键在于充分利用取值验证的方法进行判断.30.【2018年新课标1卷理科】已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃ D .}{}{|1|2x x x x ≤-⋃≥【答案】B 【解析】 【详解】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x <->或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.31.【2018年新课标1卷文科】已知集合{}02A =,,{}21012B =--,,,,,则A B = A .{}02, B .{}12, C .{}0D .{}21012--,,,, 【答案】A 【解析】 【分析】分析:利用集合的交集中元素的特征,结合题中所给的集合中的元素,求得集合A B 中的元素,最后求得结果. 【详解】详解:根据集合交集中元素的特征,可以求得{}0,2A B =,故选A.点睛:该题考查的是有关集合的运算的问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.32.【2018年新课标2卷理科】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为( ) A .9 B .8 C .5D .4【答案】A 【解析】 【分析】根据枚举法,确定圆及其内部整点个数. 【详解】 223x y +≤ 23,x ∴≤ x Z ∈1,0,1x ∴=-当1x =-时,1,0,1y =-; 当0x =时,1,0,1y =-; 当1x =时,1,0,1y =-; 所以共有9个,故选:A. 【点睛】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别. 33.【2018年新课标2卷文科】已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B = A .{}3 B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C 【解析】 【详解】分析:根据集合{1,3,5,7},{2,3,4,5}A B ==可直接求解{3,5}A B =. 详解:{1,3,5,7},{2,3,4,5}A B ==,{}3,5A B ∴⋂=,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算.34.【2018年新课标3卷理科】已知集合{}|10A x x =-≥,{}012B =,,,则A B = A .{}0 B .{}1 C .{}12, D .{}012,, 【答案】C 【解析】 【详解】分析:由题意先解出集合A,进而得到结果. 详解:由集合A 得x 1≥, 所以{}A B 1,2⋂= 故答案选C.点睛:本题主要考查交集的运算,属于基础题.35.【2018年新课标3卷文科】已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B = A .{0} B .{1}C .{1,2}D .{0,1,2}【答案】C 【解析】 【分析】由题意先解出集合A,进而得到结果. 【详解】解:由集合A 得x 1≥,所以{}A B 1,2⋂= 故答案选C. 【点睛】本题主要考查交集的运算,属于基础题.36.【2020年新课标2卷理科】设有下列四个命题: p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝ 【答案】①③④ 【解析】 【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论. 【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α; 若3l 与1l 相交,则交点A 在平面α内, 同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个, 命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面, 命题3p 为假命题;对于命题4p ,若直线m ⊥平面α, 则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l , 命题4p 为真命题. 综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④. 【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.。
高二数学常用逻辑用语复习1
常用逻辑用语高中数学
常用逻辑用语高中数学在高中数学的学习中,“常用逻辑用语”是一个重要且有趣的部分。
它就像是我们数学世界中的语言规则,帮助我们清晰准确地表达和理解各种数学关系和命题。
首先,我们来聊聊命题。
命题是一个可以判断真假的陈述句。
比如说,“3 大于2”,这就是一个真命题;而“1+1=5”,显然是个假命题。
命题有简单命题和复合命题之分。
简单命题就像是一个独立的个体,比如“今天是晴天”。
复合命题则是由简单命题通过逻辑连接词组合而成的,像“如果今天下雨,那么我就带伞”,这里面就用到了“如果……那么……”这样的逻辑连接词。
在常用逻辑用语中,“且”“或”“非”这三个逻辑连接词可是非常关键的角色。
“且”表示的是两个条件要同时满足。
比如说,“x 大于 2 且 x小于5”,这意味着 x 既要大于 2 又要小于 5 。
“或”则相对宽松一些,只要满足其中一个条件就行。
像“x 大于 3 或 x 小于0 ”,x 只要符合大于3 或者小于0 其中一个情况就可以。
“非”呢,就是对原命题的否定。
比如命题“x 大于5”的否定就是“x 小于等于5”。
充分条件和必要条件也是我们经常会碰到的概念。
如果有 A 就能推出 B ,那么 A 就是 B 的充分条件;反过来,如果有 B 就一定有 A ,那 A 就是 B 的必要条件。
举个例子,如果“x 是偶数”,那么“x 能被 2整除”,“x 是偶数”就是“x 能被 2 整除”的充分条件;而“x 能被 2 整除”就是“x 是偶数”的必要条件。
再来说说全称量词和存在量词。
“所有”“任意”“一切”这样的词就是全称量词,带有全称量词的命题叫做全称命题。
比如“所有的三角形内角和都是 180 度”。
“存在”“至少有一个”这样的词就是存在量词,带有存在量词的命题称为特称命题。
像“存在一个实数 x ,使得 x 的平方等于1 ”。
在解题的时候,我们要特别注意对命题的真假判断。
对于复合命题,我们要根据逻辑连接词的性质来判断。
而对于充分条件、必要条件的判断,要准确理解它们之间的逻辑关系。
高二数学常用逻辑用语试题答案及解析
高二数学常用逻辑用语试题答案及解析1.下列命题正确的有 .①“一元二次方程”有实数解的一个充分不必要条件是;②命题“且,则”的否命题是假命题;③若不等式的解集是,则不等式的解集;④数列满足:若是递增数列,则.【答案】①②③【解析】对于①“一元二次方程”有实数解的充要条件是,而集合,故是“一元二次方程”有实数解的一个充分不必要条件;对于②命题“且,则”的否命题为“或,则”,这个命题显然是假命题,如,此时;对于③,由不等式的解集是可得与是方程的两个根,所以,解得,所以不等式可变为,解得;对于④,因为是递增数列,所以即,解得;综上可知,①②③正确,而④是错误的.【考点】1.充分必要条件;2.命题及其关系;3.一元二次不等式;4.数列的单调性.2.“”是“且”的 ()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】∵同向不等式相加不等号方向不变,且∴;而当不能推得且。
所以是必要不充分条件.【考点】充要条件的判断.3.非零向量,则“”是“∥”的条件.【答案】充分不必要;【解析】若,则∥;若∥,则,若或时不一定成立;故“”是“∥”的充分不必要条件.【考点】1.向量共线的坐标表示;2.充分必要条件的判断.4.原命题:“设”以及它的逆命题,否命题,逆否命题中,真命题的个数是______________________.【答案】2【解析】因为c=0时,原命题不成立,所以为假命题,可知其逆否命题为假命题;逆命题:“设”,因为,所以为真命题,可知否命题也是真命题,故真命题个数为2.【考点】四种命题的真假判断.5.设p:实数x满足<0,其中a<0;q:实数x满足x2-x-6≤0或x2+2x-8>0,且p是q的必要不充分条件,求a的取值范围.【答案】a≤-4或-≤a<0【解析】解:设A={x|x2-4ax+3a2<0,a<0}={x|3a<x<a,a<0},B={x|x2-x-6≤0或x2+2x-8>0}={x|-2≤x≤3}∪{x|x<-4或x>2}={x|x<-4或x≥-2}.4分由p是q的必要不充分条件,转化成它的逆否命题q是p的必要不充分条件,即p 是q的充分不必要条件,也就是p q且q p.由A B,得或解得a≤-4或-≤a<0.【考点】充分条件与必要条件点评:充分条件与必要条件是一个重要的考点。
高二数学寒假作业 专题01 常用逻辑用语(练)(含解析)
专题1 常用逻辑用语【练一练】一、选择题1.有下列四个命题,其中的真命题是()①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④若“A∪B=B,则A⊇B”的逆否命题.A.①②B.②③C.①③D.③④2.已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,使得x2<0C.存在x0∈R,使得x20≥0 D.存在x0∈R,使得x20<0【答案】D【解析】试题分析:全称命题的否定是一个特称命题(存在性命题),故选D项.4.命题p:在△ABC中,∠C>∠B是sin C>sin B的充分不必要条件;命题q:a>b是ac2>bc2的充分不必要条件.则()A.p假q真B.p真q假C.p∨q为假D.p∧q为真【答案】C【解析】试题分析:命题p、q均为假命题,∴p∨q为假.5.命题p:若a,b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y=|x-1|-2 的定义域是(-∞,-1]∪[3,+∞),则()A.“p或q”为假B.“p且q”为真C.p真q假D.p假q真二、填空题6.已知集合A={x|y=lg(4-x)},集合B={x|x<a},若P:“x∈A”是Q:“x∈B”的充分不必要条件,则实数a的取值范围是__________.7.若命题“存在实数x0,使x20+ax0+1<0”的否定是假命题,则实数a的取值范围为__________.【答案】(-∞,-2)∪(2,+∞)【解析】试题分析:由于命题的否定是假命题,所以原命题为真命题,由Δ=a2-4>0,解得a>2或a<-2.三、解答题8.设有两个命题.命题p:不等式x2-(a+1)x+1≤0的解集是∅;命题q:函数f(x)=(a+1)x在定义域内是增函数.如果p∧q为假命题,p∨q为真命题,求a的取值范围.。
高中数学第一章常用逻辑用语1.2基本逻辑联结词1.2.2“非”(否定)b11b高二11数学
12/13/2021
第七页,共三十二页。
3.命题 p:“∃x∈R,x2+1<2x”的否定﹁p:________; ﹁p 为________命题.(填“真”“假”) 答案:∀x∈R,x2+1≥2x 真
12/13/2021
第八页,共三十二页。
4.写出下列命题的否定,并判断真假. (1)p:y=sin x 是周期函数; (2)p:3<2. 解:(1)﹁p:y=sin x 不是周期函数.是假命题. (2)﹁p:3≥2.是真命题.
12/13/2021
第九页,共三十二页。
命题的否定 写出下列命题的否定,并判断其真假: (1)p:圆(x-1)2+y2=4 的圆心是(1,0); (2)q:50 是 7 的倍数; (3)r:一元二次方程至多有两个解; (4)s:7<8.12/13源自2021第十页,共三十二页。
【解】 (1)“是”的否定词语为“不是”,利用命题的否定 的定义写出﹁p:圆(x-1)2+y2=4 的圆心不是(1,0).因原 命题为真,故其否定为假. (2)﹁q:50 不是 7 的倍数.因原命题为假,故其否定为真. (3)“至多有两个”的否定词是“至少有三个”,利用命题 的否定的定义写出该命题的否定﹁r:一元二次方程至少有 三个解.因原命题为真,故其否定为假. (4)﹁s:7≥8.因原命题为真,故其否定为假.
12/13/2021
第十九页,共三十二页。
命题的否定的应用 已知命题 p:“至少存在一个实数 x∈[1,2],使不 等式 x2+2ax+2-a>0 成立”为真,试求参数 a 的取值范围.
12/13/2021
第二十页,共三十二页。
【解】 由已知得﹁p:∀x∈[1,2],x2+2ax+2-a≤0 成 立. 所以设 f(x)=x2+2ax+2-a, 则ff( (12) )≤ ≤00, , 所以14++24aa++22--aa≤≤00,,
高二数学常用逻辑用语试题答案及解析
高二数学常用逻辑用语试题答案及解析1.如果命题“非p”与命题“p或q”都是真命题,那么()A.命题p与命题q的真值相同B.命题q一定是真命题C.命题q不一定是真命题D.命题p不一定是真命题【答案】B【解析】因为“非p”与命题“p或q”都是真命题,所以p是假命题,从而q一定是真命题。
选B。
【考点】本题主要考查复合命题与简单逻辑联结词。
点评:简单题,理解复合命题的概念及简单逻辑联结词的意义。
2.命题“的值不超过3”看作“非p”形式时,则p为____________看作“p或q”形式时,p为__________ q为____________。
【答案】p: ;p: q: 。
【解析】“非p”形式:的值不超过3即,所以p:;p或q :的值不超过3即,也就是或,故填写p: ;p: q: 。
【考点】本题主要考查复合命题与简单逻辑联结词。
点评:简单题,理解简单逻辑联结词及不等式的意义,运用真值表。
3.已知命题p:正方形的两条对角线互相垂直;命题q:正方形的两条对角线相等,写出命题“p或q”“p且q”“非p”,并指出真假.【答案】p或q:正方形的两条对角线互相垂直或相等(真命题)p且q:正方形的对角线互相垂直且相等(真命题)非p:正方形的两条对角线不互相垂直(假命题)【解析】p或q:正方形的两条对角线互相垂直或相等(真命题)p且q:正方形的对角线互相垂直且相等(真命题)非p:正方形的两条对角线不互相垂直(假命题)【考点】本题主要考查复合命题与简单逻辑联结词。
点评:具有综合性,理解简单逻辑联结词的意义。
熟练掌握平面几何知识,是解决此类问题的关键。
4.下面的电路图由电池、开关和灯泡组成,假定所有零件均能正常工作,则电路中“开关闭合”是“灯泡亮”的()A.充分不必要条件B.必要充分条件C.充要条件D.既不充分又不必要条件【答案】A【解析】由图可知开关闭合时,灯泡一定亮,即“开关闭合”是“灯泡亮”的充分条件;反之,灯泡亮时,开关不一定闭合(闭合也可以),故“开关闭合”是“灯泡亮”的充分不必要条件,故选A。
高二数学选修11第一章常用逻辑用语
常用逻辑用语一、命题及其关系考点:要点1.命题:一般地,把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.要点2.四种命题:(1)一般地,用p和q分别表示命题的条件和结论,用¬p和¬q分别表示p 和q的否定,于是四种命题的形式就是:原命题:若p,则q;逆命题:若q,则p;否命题:若¬p,则¬q;逆否命题:若¬q,则¬p.要点3.四种命题的关系:互为逆否的两个命题同真假.考点1. 命题及其真假判断:例1、判断下列语句是否是命题?若是,判断其真假并说明理由。
1)x>1或x=1; 2)如果x=1,那么x=33)x2-5x+6=0; 4)当x=4时,2x<0; 5)垂直于同一条直线的两条直线必平行吗?6)矩形难道不是平行四边形吗? 7)矩形是平行四边形吗?;8)求证:若x∈R,方程x2-x+1=0无实根.解析:1)不是,x值不确定。
2)是,假命题3)不是命题.因为语句中含有变量x,在不给定变量的值之前,我们无法确定这语句的真假.同样如“2x>0”也不是命题.4)是命题.它是作出判断的语言,它是一个假命题.5)不是命题.因为并没有对垂直于同一条直线的两条直线平行作出判断,疑问句不是命题.6)是命题.通过反意疑问句对矩形是平行四边形作出了判断,它是真命题.7)不是.不是陈述句8)不是命题.它是祈使句,没有作出判断.如“把门关上”是祈使句,也不是命题.练一练: 1. 判断下列语句是不是命题。
(1)2+22是有理数;(2)1+1>2;(3)2100是个大数;(4)986能被11整除;(5)非典型性肺炎是怎样传播的?(6)(6)x ≤3。
2. 判断下列语句是不是命题。
(1)矩形难道不是平行四边形吗?(2)垂直于同一条直线的两条直线平行吗?(3)一个数不是合数就是质数。
(4)大角所对的边大于小角所对的边;(5)y+x 是有理数,则x 、y 也是有理数。
高二数学寒假作业 专题01 常用逻辑用语(测)(含解析)
专题1 常用逻辑用语【测一测】时间:45分钟 总分:100分一、选择题(10*5=50分)1.已知命题p:∀x ∈R,x>sinx,则p 的否定形式为( )(A)∃x0∈R,x0<sinx0 (B)∃x0∈R,x0≤sinx0 (C)∀x ∈R,x ≤sinx (D)∀x ∈R,x<sinx【答案】B【解析】命题中“∀”与“∃”相对,则p:∃x0∈R,x0≤sinx0.2. 设a ∈R,则a>1是错误!未找到引用源。
<1的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件3.命题:“若12<x ,则11<<-x ”的逆否命题是( )A.若12≥x ,则11-≤≥x x ,或 B.若11<<-x ,则12<x C.若11-<>x x ,或,则12>x D.若1x ≥,或1x ≤-,则12≥x4.命题“∀x ∈[1,2],x2-a ≤0”为真命题的一个充分不必要条件是( )(A)a ≥4 (B)a ≤4 (C)a ≥5 (D)a ≤5 【答案】C【解析】满足命题“∀x ∈[1,2],x2-a ≤0”为真命题的实数a 即为不等式x2-a ≤0在[1,2]上恒成立的a 的取值范围,即a ≥x2在[1,2]上恒成立,即a ≥4,要求的是充分不必要条件,因此选项中满足a>4的即为所求,5.下列命题中是真命题的是( )(A)∃x0∈R,使得sinx0cosx0=错误!未找到引用源。
(B)∃x0∈(-∞,0),错误!未找到引用源。
>1(C)∀x ∈R,x2≥x+1 (D)∀x ∈(0,错误!未找到引用源。
),tanx>sinx【答案】D【解析】当x ∈(0,错误!未找到引用源。
)时,0<cosx<1,0<sinx<1,∴sin xcos x >sinx,即tanx>sinx.6. 给出以下命题: ①∃x0∈R,sinx0+cosx0>1; ②∀x ∈R,x2-x+1>0; ③“x>1”是“|x|>1”的充分不必要条件.其中正确命题的个数是( )(A)0 (B)1 (C)2 (D)37.下列有关命题的说法正确的是 ( )A .命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”. B .“1x =-”是“2560x x --=”的必要不充分条件. C .命题“x R ∃∈,使得210x x ++=”的否定是:“对x R ∀∈ 均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.8.已知a 、b 为非零向量,则“a ⊥b ”是“函数)()()(a b x b a x x f -•+=为一次函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】()222()()()f x xa b xb a a bx b a x a b =+•-=⋅+--⋅r r r r r r r r r r ,若“函数)()()(a b x b a x x f -•+=为一次函数”,则0a b ⋅=r r ,即“a ⊥b ”;若“a ⊥b ”,当22a b =r r 时,()0f x =,就不是一次函数,故“a ⊥b ”是“函数)()()(a b x b a x x f -•+=为一次函数”的必要不充分条件.9.命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f(x)在(-∞,0]及(0,+∞)上都是减函数,则f(x)在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p 或q ”是真命题B .“p 或q ”是假命题C .綈p 为假命题D .綈q 为假命题10.下列四个命题:p1:∃x0∈(0,+∞),00 x x11()()23<;p2:∃x0∈(0,1),101023log x log x>;p3:∀x∈(0,+∞),(错误!未找到引用源。
专题01 集合与常用逻辑用语(知识梳理)(新高考地区专用)(解析版)
专题01 集合与常用逻辑用语(知识梳理)一、集合1、集合:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),通常用英语大写字母A 、B 、C 、…来表示。
2、元素:构成集合的每个对象叫做这个集合的元素(或成员),通常用英语小写字母a 、b 、c 、…来表示。
注意:在集合中,通常用小写字母表示点(元素),用大写字母表示点(元素)的集合,而在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合,应注意区别。
3、空集的含义:不含任何元素的集合叫做空集,记为∅。
4、元素与集合的关系:之间只能用“∈”或“∉”符号连接。
(1)属于:如果a 是集合A 的元素,就说a 属于集合A ,记作A a ∈;(2)不属于:如果a 不是集合A 的元素,就说a 不属于集合A ,记作A a ∉。
5、集合中元素的三个特性:确定性、互异性、无序性。
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性。
集合中的元素互不相同。
例:集合},1{a A =,则a 不能等于1。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性。
例:}2,1,0{有}1,2,0{、}2,0,1{、}0,2,1{、}1,0,2{、}0,1,2{等六种表示方法。
6、集合的分类:(1)有限集:含有有限个元素的集合。
(2)无限集:含有无限个元素的集合。
(3)空集:不含任何元素的集合。
7、常见的特殊集合:(1)正整数集*N 或+N ;(2)非负整数集N (即自然数集,包括零);(3)整数集Z (包括负整数、零和正整数);(4)有理数集Q (包括整数集Z 和分数集→正负有限小数或无限循环小数);(5)实数集R (包括所有的有理数和无理数);注意:①}{整数=Z (√);}{全体整数=Z (×);②},,0|),{(R y R x y x y x ∈∈=⋅表示坐标轴上的点集;③},,0|),{(R y R x y x y x ∈∈>⋅表示第一、三象限的点集;④},,0|),{(R y R x y x y x ∈∈<⋅表示第二、四象限的点集;⑤对方程组解的集合应是点集,例:⎩⎨⎧=-=+1323y x y x 解的集合)}1,2{(; 例1-1.判断下列说法是否正确,并说明理由。
专题01 集合、常用逻辑用语、不等式(新定义,高数观点,压轴题)(学生版)-2024年高考压轴专题复
专题01 集合、常用逻辑用语、不等式(新定义,高数观点,压轴题)目录一、集合的新定义(高数观点)题 (2)①乘法运算封闭 (2)②“群”运算 (2)③“*”运算 (3)④“⊕”运算 (4)⑤戴德金分割 (4)⑥“类” (5)⑦差集运算 (6)⑧“势” (7)⑨“好集” (7)二、逻辑推理 (8)①充分性必要性 (8)②逻辑推理 (8)三、不等式 (9)①作差法 (9)②基本不等式 (9)一、集合的新定义(高数观点)题①乘法运算封闭②“群”运算1.(2022·全国·高三专题练习)“群”是代数学中一个重要的概念,它的定义是:设G 为某种元素组成的一个非空集合,若在G 内定义一个运算“*”,满足以下条件:①a ∀,b G ∈,有a b G*∈②如a ∀,b ,c G ∈,有()()a b c a b c **=**;③在G 中有一个元素e ,对a G ∀∈,都有a e e a a *=*=,称e 为G 的单位元;④a G ∀∈,在G 中存在唯一确定的b ,使a b b a e *=*=,称b 为a 的逆元.此时称(G ,*)为一个群.例如实数集R 和实数集上的加法运算“+”就构成一个群(),+R ,其单位元是0,每一个数的逆元是其相反数,那么下列说法中,错误的是( )A .G Q =,则(),+G 为一个群B .G R =,则(),G ⨯为一个群C .{}1,1G =-,则(),G ⨯为一个群D .G ={平面向量},则(),+G 为一个群③“*”运算1.(2023·全国·高三专题练习)在R 上的定义运算*:*2a b ab a b =++,则满足*(2)0x x -<的解集为( )A .(0,2)B .(2,1)-C .(,2)(1,)-∞-+∞D .(1,2)-2.(2023·全国·高三专题练习)设U 为全集,对集合X ,Y ,定义运算“*”,()X Y X Y *= .对于任意集合X ,Y ,Z ,则()X Y Z **=( )A .()X Y ZB .()X Y ZC .()X Y Z ⋃⋃D .()X Y Z3.(2023秋·高一课时练习)在实数集R 中定义一种运算“*”,具有以下三条性质:(1)对任意R a ∈,0*a a =;(2)对任意a ,R b ∈,**a b b a =;(3)对任意a ,b ,R c ∈,()()()()*****2a b c c ab a c b c c =++-.给出下列三个结论:①()2*0*20=;②对任意a ,b ,R c ∈,()()****a b c b c a =;③存在a ,b ,R c ∈,()()()***a b c a c b c +≠+;其中,所有正确结论的序号是( )A .②B .①③C .②③D .①②③④“⊕”运算⑤戴德金分割1.(多选)(2022秋·山西运城·高一山西省运城中学校期中)1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集Q⑥“类”⑦差集运算A .已知{4,5,6,7,9}A =,B .如果A B -=∅,那么C .已知全集、集合A 、集合D .已知{|1A x x =<-或x >2.(多选)(2022秋·贵州铜仁⑧“势”⑨“好集”二、逻辑推理①充分性必要性②逻辑推理三、不等式①作差法②基本不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题1 常用逻辑用语
【学一学】
学一学------基础知识结论 四种命题及其关系
(1)四种命题的命题结构:
用p 和q 分别表示原命题的条件和结论,用,p q ⌝⌝分别表示p 和q 的否定,四种形式就是:
原命题:“若p ,则q ”;逆命题:“若q ,则p ”; 否命题:“若p ⌝,则q ⌝”;逆否命题:“若q ⌝,则p ⌝”.
(2)四种命题间的相互关系:
互为逆否的两个命题是等价的,具有相同的真假性,因此在直接证明原命题有困难时可以通过证明与它等价的逆否命题来证明原命题成立,四个命题中真命题只能是偶数个,即0个,2个或4个 复合命题及其真假判断
(1)复合命题有p q ∧(p 且q ),p q ∨(p 或q ),p ⌝,其分别与集合运算中的
原 命 题 若p 则q
逆 命 题 若q 则p
逆 否 命 题
若q ⌝
则p ⌝
否 命 题 若p ⌝
则q ⌝
互逆
互逆
互
否
互
否
互 为 逆 否
互 为
逆
否
交、并、补对应. (2)复合命题的真值表
充分条件与必要
条件
p 是q 的充分条件,即p ⇒q ,相当于分别满足条件p 和q 的两个集合P 与Q 之间
有包含关系:Q P ⊆,即
P Q 或Q P =,必要条件正好相反.而充要条件p ⇔q 就相当于Q P =.
以下四种说法表达的意义是相同的:①命题“若p ,则q ”为真;②p ⇒q ;③p 是q 的充分条件;④q 是p 的必要条件. 4.全称命题和特称命题的否定
(1)全称量词用符号“∀”表示,表示所有的意思;存在量词用符号“∃”表示,表示存在一个的意思.
(2)全称命题:,()p x M p x ∀∈,它的否定是00:,()p x M p x ⌝∃∈,全称命题的否定是特称命题;特称命题00:,()p x M p x ⌝∃∈,它的否定是:,()p x M p x ∀∈,特称命题的否定是全称命题.
学一学------方法规律技巧 抓住量词,对症下药
全称命题与特称命题是两类特殊的命题,这两类命题的否定是这部分内容的重要概念,解决此类命题的题目时一定要抓住决定命题性质的量词,理解其相应
p
q p 且q p 或q 真 真 真 真 真 假 假 真 假 真 假 真 假
假
假
假
的含义,从而对症下药.
例1.已知命题p :∃x ∈R ,mx2+1≤0,命题q :∀x ∈R ,x2+mx +1>0.若p ∨q 为假命题,则实数m 的取值范围为( )
A .m ≥2
B .m ≤-2
C .m ≤-2或m ≥2
D .-2≤m ≤2
2.挖掘等价转化思想,提高解题速度
在四种命题的关系、充要条件、简单的逻辑联结词、全称量词与存在量词中,时时刻刻渗透着等价转化思想,例如互为逆否命题的两个命题(原命题与逆否命题或逆命题与否命题)一定同真同假,它们是等价的;但原命题与逆命题不等价,即原命题为真,其逆命题不一定为真.
例2. 已知p :|1-x -1
3|≤2,q :x2-2x +1-m2≤0(m >0),且p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围. 【答案】m ≥9
【解析】∵p ⌝是q ⌝的必要而不充分条件,∴p 是q 的充分而不必要条件, 由q :x2-2x +1-m2≤0,得1-m ≤x ≤1+m ,∴q :Q ={x|1-m ≤x ≤1+m},
补集思想的运用
对于某些问题,如果从正面求解困难,则可先考虑求解问题的反面,采用“正难则反”的解题策略,具体地说,就是将研究对象的全体,作为全集,求出使问题反面成立的集合A,则A的补集即为所求.
例3.已知命题p:“∃x0∈R,4x0-2x0+1+m=0”,若命题⌝p是假命题,则实数m的取值范围是__________(用区间表示).
【答案】(-∞,1]
【解析】若⌝p是假命题,则p是真命题,即关于x的方程4x-2·2x+m=0有实数解.由于m=-(4x-2·2x)=-(2x-1)2+1≤1,∴m≤1.
4.分类讨论思想的运用
分类讨论是根据数学对象本质属性的相同点和不同点,确定划分标准,进行分类,逻辑中的分类讨论主要是由逻辑结构以及相关参数引起的.
例4.设有两个命题p、q.其中p:对于任意的x∈R,不等式ax2+2x+1>0恒成立;命题q:f(x)=(4a-3)x在R上为减函数.如果两个命题中有且只有一个是真命题,那么实数a的取值范围是__________.
综上,a 的取值范围是)
1,43(∪(1,+∞).。