高一数学讲义_集合间的基本关系

合集下载

高一数学人必修件第一章集合间的基本关系

高一数学人必修件第一章集合间的基本关系

04 不等式与不等式组
不等式的性质与解法
不等式的性质
一元二次不等式的解法
了解不等式的传递性、可加性、可乘 性等基本性质,以及特殊情况下的不 等式性质。
理解一元二次不等式的解法,包括配 方法、公式法和因式分解法,能够根 据不等式的形式选择合适的解法。
一元一次不等式的解法
掌握一元一次不等式的解法,包括去 分母、去括号、移项、合并同类项、 系数化为1等步骤。
对于任意角α,其正弦、余弦、正切等三角函数之间存在基本 关系式,如sin^2α+cos^2α=1,1+tan^2α=sec^2α等。
诱导公式
利用周期性、对称性等性质,可以将任意角的三角函数转化 为锐角或特殊角的三角函数进行计算,从而简化问题。
正弦定理和余弦定理及其应用举例
正弦定理
在任意三角形中,各边与其对角 的正弦值之比相等,即
数学归纳
归纳假设
归纳推理
数学归纳法的应用
一种证明与自然数n有关 的命题的数学方法。
验证当n=1(或n=0, 根据命题具体情况而定 )时命题成立。
假设当n=k(k为任意自 然数)时命题成立。
证明当n=k+1时命题也 成立。
可用于证明与自然数n有 关的恒等式、不等式、 存在性等命题。例如, 证明“对于任意自然数n , 1^2+2^2+...+n^2=n* (n+1)*(2n+1)/6”这一 恒等式时,即可采用数

唯一性
对于集合$A$中的任何一个元 素,在集合$B$中都有唯一确
定的元素与之对应。
对应性
映射的对应可以是“一对一 ”,也可以是“多对一”,
但不能是“一对多”。
函数的概念与表示方法

1.2集合间的基本关系课件-高一数学人教A版必修第一册

1.2集合间的基本关系课件-高一数学人教A版必修第一册
5. 空集的定义
6. 结论
第一章 集合与常用逻辑用语
1.2 集合间的基本关系
学习目标:
1. 了解集合之间包含与相等的含义,能识别给定集合的子集;
2. 理解子集、真子集的概念;
3. 能使用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用,
体会数形结合的思想.
教学重点:
集合间的包含与相等关系,子集与真子集的概念.
教学难点:
-1
m ________.
解析:因为 B A, m2 0 ,所以 m 1 ,
又当 m 1 时, 2m 3 1, m2 1 ,此时 A B {1,3,1} ,符合题意,故 m 1 .
故答案为: 1 .
5.已知 A {x | x 3}, B {x | 2 x 1 a}, A B ,求实数 a 的取值范围.
子集的个数是 2 − 1,非空真子集的个数是 2 − 2.
例2 判断下列各题中集合A是否为集合B的子集,并说明理由:
(1)A ={1,2,3},B ={x | x是8的约数};
(2)A ={ x | x是长方形},B ={ x | x是两条对角线相等的平行四
边形}.
解:(1)因为 3 不是 8 的约数,所以集合 A 不是集合 B 的子集.
1. 集合与集合的关系
子集定义: 一般地,对于两个集合 A,B,如果集合 A 中任意一个元
素都是集合 B 中的元素,就称集合 A 为集合 B 的子集.

记作: ⊆ 或 ⊇
读作:“A 包含于 B”(或“B 包含 A”)
韦恩图(Venn图): 用平面上封闭曲线的内部来代表集合的图称
为韦恩图(Venn图).

高一数学讲义_集合间的基本关系

高一数学讲义_集合间的基本关系

集合间的基本关系一、子集、空集等概念的教学:比较下面几个例子,试发现两个集合之间的关系:(1)A={123},B={123,4,5};(2)C={新华一中高一班全体女生},D={新华一中高一班全体学生};(3)E={x I x是两条边相等的三角形},F={x|x是等腰三角形}1.子集的定义:对于两个集合A,B,如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。

记作:A G B(或B o A)读作:A包含于(iscontainedin)B,或B包含(contains)A当集合A不包含于集合B时,记作AB用Venn图表示两个集合间的“包含”关系:A G B2.集合相等定义:如果A是集合B的子集,且集合B是集合A的子集,则集合A与集合B中的元素是一样的,因此集合A与集合B相等,即若A G B且B G A,则A=B。

女如(3)中的两集合E=F。

例1.若集合A=x2+x-6=0丿,B=mx+1=o},B三A,求m的值。

3.真子集定义:若集合A匸B,但存在元素x G B,且x电A,则称集合A是集合B的真子集(propersubset)。

记作:B(或异A)读作:A真包含于B(或B真包含A)4.空集定义:不含有任何元素的集合称为空集(emptyset),记作:0。

用适当的符号填空:0{o};00;0{0};{0}{0}重要结论:(1) 空集是任何集合的子集;(2) 空集是任何非空集合的真子集;(3) 任何一个集合是它本身的子集;(4) 对于集合A,B,C,如果A匸B,且B匸C,那么A匸C。

说明:1.注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含于”的关系;2.在分析有关集合问题时,要注意空集的地位。

三、例题讲解:(m=0或-或-—)32例2.已知集合A=i x|-2<x<5},B= i x|-m+1<x< 2m-1}且A匸B,求实数m的取值范围。

高一数学必修1第一章-集合间的基本关系

高一数学必修1第一章-集合间的基本关系

(2)适用范围:元素个数较少的集合.(3)使用方法:把元素写在封闭曲线的内部.7.子集的概念文字语言符号语言图形语言集合A中任意一个元素都是集合B 中的元素,就说这两个集合有包含关系,称集合A是集合B的子集A⊆B(或B⊇A)8.集合相等与真子集的概念定义符号表示图表示集合相等如果A⊆B且B⊆A,就说集合A与B相等A=B真子集如果集合A⊆B,但存在元素x∈B,且x∉A,称集合A是B的真子集A B(或B A)9.空集(1)定义:不含任何元素的集合叫做空集.(2)用符号表示为:∅.(3)规定:空集是任何集合的子集.10.子集的有关性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.【新知识梳理与重难点点睛】要点一有限集合的子集确定问题例1写出集合A={1,2,3}的所有子集和真子集.解由0个元素构成的子集:∅;由1个元素构成的子集:{1},{2},{3};由2个元素构成的子集:{1,2},{1,3},{2,3};由3个元素构成的子集:{1,2,3}.由此得集合A的所有子集为∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合A本身,即{1,2,3},剩下的都是A的真子集.规律方法 1.求解有限集合的子集问题,关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出;(3)注意两个特殊的集合,即空集和集合本身.2.一般地,若集合A中有n个元素,则其子集有2n个,真子集有2n-1个,非空真子集有2n-2个.跟踪演练1已知集合M满足{2,3}⊆M⊆{1,2,3,4,5},求集合M及其个数.解当M中含有两个元素时,M为{2,3};当M中含有三个元素时,M为{2,3,1},{2,3,4},{2,3,5};当M中含有四个元素时,M为{2,3,1,4},{2,3,1,5},{2,3,4,5};当M中含有五个元素时,M为{2,3,1,4,5};所以满足条件的集合M为{2,3},{2,3,1},{2,3,4},{2,3,5},{2,3,1,4},{2,3,1,5},{2,3,4,5},{2,3,1,4,5},集合M的个数为8.要点二集合间关系的判定例2指出下列各对集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)A={x|-1<x<4},B={x|x-5<0};(4)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解(1)集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.(3)集合B={x|x<5},用数轴表示集合A,B如图所示,由图可知A B.(4)由列举法知M ={1,3,5,7,…},N ={3,5,7,9,…},故NM .规律方法 对于连续实数组成的集合,通常用数轴来表示,这也属于集合表示的一种图示法.注意在数轴上,若端点值是集合的元素,则用实心点表示;若端点值不是集合的元素,则用空心点表示. 跟踪演练2 集合A ={x |x 2+x -6=0},B ={x |2x +7>0},试判断集合A 和B 的关系. 解 A ={-3,2},B =⎩⎨⎧⎭⎬⎫x |x >-72.∵-3>-72,2>-72,∴-3∈B,2∈B ∴A ⊆B 又0∈B ,但0∉A ,∴A B .要点三 由集合间的关系求参数范围问题例3 已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A ,求实数m 的取值范围. 解 ∵B ⊆A ,(1)当B =∅时,m +1≤2m -1,解得m ≥2. (2)当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2,综上得{m |m ≥-1}.规律方法 1.(1)分析集合间的关系时,首先要分析、简化每个集合.(2)利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误.2.涉及字母参数的集合关系时,注意数形结合思想与分类讨论思想的应用. 跟踪演练3 已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若A B ,求a 的取值范围; (2)若B ⊆A ,求a 的取值范围. 解 (1)若A B ,由图可知a >2.(2)若B ⊆A ,由图可知1≤a ≤21.集合A ={x |0≤x <3,x ∈N }的真子集的个数为( ) A .4 B .7 C .8 D .16 答案 B解析 可知A ={0,1,2},其真子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},即共有23-1=7(个).2.设集合M ={x |x >-2},则下列选项正确的是( ) A .{0}⊆M B .{0}∈M C .∅∈M D .0⊆M答案 A解析 选项B 、C 中均是集合之间的关系,符号错误;选项D 中是元素与集合之间的关系,符号错误. 3.已知M ={-1,0,1},N ={x |x 2+x =0},则能表示M ,N 之间关系的V enn 图是( )答案 C解析 M ={-1,0,1},N ={0,-1},∴N M .4.已知集合A ={2,9},集合B ={1-m,9},且A =B ,则实数m =________. 答案 -1解析 ∵A =B ,∴1-m =2,∴m =-1.5.已知∅{x |x 2-x +a =0},则实数a 的取值范围是________. 答案 a ≤14解析 ∵∅{x |x 2-x +a =0}. ∴{x |x 2-x +a =0}≠∅. 即x 2-x +a =0有实根. ∴Δ=(-1)2-4a ≥0,得a ≤14.【新方法、新技巧练习与巩固】一、基础达标1.下列命题中,正确的有( ) ①空集是任何集合的真子集; ②若A B ,B C ,则A C ;③任何一个集合必有两个或两个以上的真子集; ④如果不属于B 的元素也不属于A ,则A ⊆B . A .①② B .②③ C .②④ D .③④ 答案 C解析 ①空集只是空集的子集而非真子集,故①错;②真子集具有传递性,故②正确;③若一个集合是空集,则没有真子集,故③错;④由Venn 图易知④正确.2.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为( ) A .6 B .5 C .4 D .3 答案 A解析 集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个. 3.设集合P ={x |y =x 2},Q ={(x ,y )|y =x 2},则P 与Q 的关系是( ) A .P ⊆Q B .P ⊇Q C .P =Q D .以上都不对 答案 D解析 集合P 是指函数y =x 2的自变量x 的取值范围,集合Q 是指所有二次函数y =x 2图象上的点,故P ,Q 不存在谁包含谁的关系.4.已知集合A ={x |-1<x <4},B ={x |x <a },若A B ,则实数a 满足( ) A .a <4 B .a ≤4 C .a >4 D .a ≥4 答案 D解析 由A B ,结合数轴,得a ≥4. 5.集合{-1,0,1}共有________个子集. 答案 8解析 由于集合中有3个元素,故该集合有23=8个子集.6.设集合M ={x |2x 2-5x -3=0},N ={x |mx =1},若N ⊆M ,则实数m 的取值集合为________. 答案 {-2,0,13}.解析 集合M ={3,-12}.若N ⊆M ,则N ={3}或{-12}或∅.于是当N ={3}时,m =13;当N ={-12}时,m =-2;当N =∅时,m =0.所以m 的取值集合为{-2,0,13}.7.已知集合A ={(x ,y )|x +y =2,x ,y ∈N },试写出A 的所有子集. 解 ∵A ={(x ,y )|x +y =2,x ,y ∈N }, ∴A ={(0,2),(1,1),(2,0)}.∴A 的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}. 二、能力提升8.已知集合A ={x |ax 2+2x +a =0,a ∈R },若集合A 有且仅有2个子集,则实数a 的取值是( ) A .1 B .-1 C .0,1 D .-1,0,1 答案 D解析 因为集合A 有且仅有2个子集,所以A 仅有一个元素,即方程ax 2+2x +a =0(a ∈R )仅有一个根. (1)当a =0时,方程化为2x =0,此时A ={0},符合题意.(2)当a ≠0时,由Δ=22-4·a ·a =0,即a 2=1, ∴a =±1.此时A ={-1},或A ={1},符合题意. ∴a =0或a =±1.9.已知集合A =⎩⎨⎧⎭⎬⎫x |x =k 3,k ∈Z ,B =⎩⎨⎧⎭⎬⎫x |x =k 6,k ∈Z ,则( )A .AB B .B AC .A =BD .A 与B 关系不确定 答案 A解析 对B 集合中,x =k 6,k ∈Z ,当k =2m 时,x =m 3,m ∈Z ;当k =2m -1时,x =m 3-16,m ∈Z ,故按子集的定义,必有A B .10.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,则实数a 的值为________. 答案 -1或2解析 A ⊇B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.11.已有集合A ={x |x 2-4x +3=0},B ={x |mx -3=0},且B ⊆A ,求实数m 的集合. 解 由x 2-4x +3=0,得x =1或x =3. ∴集合A ={1,3}.(1)当B =∅时,此时m =0,满足B ⊆A .(2)当B ≠∅时,则m ≠0,B ={x |mx -3=0}=⎩⎨⎧⎭⎬⎫3m .∵B ⊆A ,∴3m =1或3m =3,解得m =3或m =1.综上可知,所求实数m 的集合为{0,1,3}. 三、探究与创新12.已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3},若B ⊆A ,求实数a 的取值范围.解 当B =∅时,只需2a >a +3, 即a >3. 当B ≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧ a +3≥2a ,a +3<-1或⎩⎪⎨⎪⎧a +3≥2a ,2a >4.解得a <-4或2<a ≤3. 综上,实数a 的取值范围为{a |a <-4或a >2}.13.若集合A ={x |ax 2+2x +1=0,x ∈R }至多有一个真子集,求a 的取值范围. 解 ①当A 无真子集时,A =∅, 即方程ax 2+2x +1=0无实根,所以⎩⎪⎨⎪⎧a ≠0,Δ=4-4a <0,所以a >1.②当A 只有一个真子集时,A 为单元素集,这时有两种情况: 当a =0时,方程化为2x +1=0,解得x =-12;。

高一数学集合间的基本关系

高一数学集合间的基本关系
1.子集的概念
一般地,对于两个集合A、B, 如果集合A中任
意一个元素都是集合B中的元素,我们就说这两个
集合有包含关系,称集合A为集合B的子集.
记作
A B (或B A)
Hale Waihona Puke 读作 “A含于B”(或“B包含A”)
BA
3.空集
我们知道,方程x2 1 0没有实数根,所以,方程 x2 1 0的实数组成的集合没有元素.
我们把不含任何元素 的集合叫做 空集,记为 并规定: 空集是任何集合的子集.
空集是任何非空集合的真子集.
4.集合之间的基本关系.
(1)任何一个集合是它本身的子集,即 A A (2)对于集合A、B、C,如果A B,B C,那么 A C.
例3、写出集合{a, b}的所有子集,并指出哪些是它 的真子集.
.
.
.
.
.
.
.
; 燕郊空调移机 燕郊空调移机

高一数学复习考点知识与题型专题讲解2--- 集合间的基本关系

高一数学复习考点知识与题型专题讲解2--- 集合间的基本关系

高一数学复习考点知识与题型专题讲解1.2集合间的基本关系【考点梳理】考点一子集、真子集、集合相等定义符号表示图形表示子集如果集合A中的任意一个元素都是集合B中的元素,就称集合A是集合B的子集A⊆B(或B⊇A)真子集如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集A B(或B A)集合相等如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B相等A=B考点二空集1.定义:不含任何元素的集合叫做空集,记为∅. 2.规定:空集是任何集合的子集.【题型归纳】题型一:子集、真子集的个数问题1.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅ÜA ,则A ≠∅.其中正确的个数是( ) A .0B .1C .2D .3 2.已知集合20,x A x x N x -⎧⎫=≤∈⎨⎬⎩⎭,{}2,B x x x Z =≤∈,则满足条件A C B ⊆⊆的集合C 的个数为( ) A .1B .2C .4D .83.已知集合{}{}2|320,R ,|04,N A x x x x B x x x =-+=∈=<≤∈,则满足条件A C B ⊆⊆的集合C的个数为( ) A .1B .2C .3D .4题型二:根据集合包含关系求参数4.已知集合{}12M x a x a =-<<,(1,4)N =,且M N ⊆,则实数a 的取值范围是( )A .(,2]-∞B .(,0]-∞C .1(,]3-∞D .1,23⎡⎤⎢⎥⎣⎦5.已知集合{}{}|0=|12A x x a B x x =≤≤≤≤,,若B A ⊆,则实数a 的取值范围为( ) A .0a ≤B .01a ≤≤C .12a ≤≤D .2a ≥6.已知集合{}12A x x =≤≤,{}2,B y y x a x A ==+∈,若A B ⊆,则实数a 的取值范围为( )A .[]1,2B .[]2,1--C .[]22-,D .[]1,1-题型三:根据集合相等关系求参数7.设a ,R b ∈,集合 {}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则 b a -=( ) A .1B .1-C .2D .2-8.已知集合0a A a b b ⎧⎫=+⎨⎬⎩⎭,,,{}011B b =-,,,若A =B ,则a +2b =( ) A .-2B .2C .-1D .19.已知a R ∈,b R ∈,若集合{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20212021a b +的值为( )A .2-B .1-C .1D .2题型四:与空集有的集合问题10.已知全集{}19U x x =-<<,{}1A x x a =<< ,A 是U 的子集.若A ≠∅,则a 的取值范围是( ) A .9a < B .9a ≤ C .9a ≥ D .19a <≤11.有下列命题:①mx 2+2x -1=0是一元二次方程;②抛物线y =ax 2+2x -1与x 轴至少有一个交点;③互相包含的两个集合相等;④空集是任何集合的真子集.其中真命题有( )A .1个B .2个C .3个D .4个12.若集合{}2|210A x mx x =++≤≠∅,则实数m 的取值范围是( )A .1m £B .01m ≤≤C .01m <≤D .1m <【双基达标】一、单选题13.设A ={(x ,y )||x +1|+(y -2)2=0},B ={-1,2},则必有( ) A .B A ÜB .A B ÜC .A =B D .A ∩B =∅14.若集合1|(21),9A x x k k Z ⎧⎫==+∈⎨⎬⎩⎭,41|,99B x x k k Z ⎧⎫==±∈⎨⎬⎩⎭,则集合,A B 之间的关系为( ) A .A B ÜB .B A ÜC .A B =D .A B ≠15.已知2{|1}A x x ==,集合{|1}B x mx ==,若B A ⊆,则m 的取值个数为( ) A .0B .1C .2D .316.下列所给的关系式正确的个数是( ) ①0N ⊆;②Q π∈;③{}{},,,a a b c d ⊆;④R ∅∈. A .1B .2C .3D .417.已知a ∈R ,b ∈R ,若集合{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20202021a b +的值为( )A .2-B .1C .1-D .218.若集合|24M x x k k Z ππ⎧⎫==⋅-∈⎨⎬⎩⎭,,|42N x x k k Z ππ⎧⎫==⋅+∈⎨⎬⎩⎭,,则( )A .M =NB .M ⊆NC .N ⊆MD .没有包含关系 19.已知111A x x ⎧⎫=<-⎨⎬-⎩⎭,{}240B x x x m =--≥,若A B ⊆且A B ≠,则实数m 的取值范围是( ) A .0m ≥ B .3m ≤- C .30m -≤≤D .3m ≤-或0m ≥20.下列各组集合中,表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={3,2},N ={2,3}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={3,2},N ={(3,2)}21.集合M =}|1,2nx x n Z ⎧=+∈⎨⎩,N =}1|,2x x m m Z ⎧=+∈⎨⎩,则两集合M ,N 的关系为( )A .M ∩N =∅B .M =NC .M ⊆ND .N ⊆M22.已知集合{}2,3,1A =-,集合{}23,B m =.若B A ⊆,则实数m 的取值集合为( )A .{}1B .{}3C .{}1,1-D .{}3,3-【高分突破】一:单选题 23.集合6{|}6x N N x∈∈-的子集个数为( ) A .2B .4C .8D .1624.下列与集合{}1,2A =-相等的是( ) A .(){}1,2-B .()1,2-C .(){},1,2x y x y =-=D .{}220x x x --=25.定义集合A ★B ={,,}xx ab a A b B =∈∈∣,设{2,3},{1,2}A B ==,则集合A ★B 的非空真子集的个数为( ) A .12B .14C .15D .1626.已知集合1{|}6A x x k k Z ==+∈,,1{|}23m B x x m Z ==-∈,,1{|}26n C x x n Z ==+∈,,则集合A B C ,,的关系是( ) A .A CB 苘B .C AB 苘C .A C B =ÜD .A B C ==27.已知集合A ={x |x 2+px +q =x },B ={x |(x -1)2+p (x -1)+q =x +3},当A ={2}时,集合B =( ) A .{1}B .{1,2} C .{2,5}D .{1,5}28.已知集合13{|}A x x =-≤≤,301x B x x -⎧⎫=≤⎨⎬+⎩⎭,则用韦恩图表示它们之间的关系正确的是( )A .B .C .D .29.设集合{|10}P m m =-<≤,2{|440}Q m R mx mx =∈+-< 对任意实数x 恒成立,则下列关系中成立的是( ) A .P 是Q 的真子集 B .Q 是P 的真子集 C .P Q = D .P 与Q 无关30.已知S 1,S 2,S 3为非空集合,且S 1,S 2,S 3⊆Z ,对于1,2,3的任意一个排列i ,j ,k ,若x ∈S i ,y ∈S j ,则x -y ∈S k ,则下列说法正确的是( ) A .三个集合互不相等B .三个集合中至少有两个相等 C .三个集合全都相等D .以上说法均不对二、多选题31.已知集合{}12A x x =<<,{}232B x a x a =-<<-,下列说法正确的是( ) A .不存在实数a 使得A B = B .当4a =时,A B ⊆ C .当04a ≤≤时,B A ⊆ D .存在实数a 使得B A ⊆32.若集合P ={x |x 2+x ﹣6=0},S ={x |ax ﹣1=0},且S ⊆P ,则实数a 的可能取值为( )A .0B .13-C .4D .12 33.下列说法正确的有( )A .设{,2}M m =,{2,2}N m m =+,且M N =,则实数0m =;B .若∅是{}2,x x a a R ≤∈的真子集,则实数0a ≥;C .集合{}{}2320,10,P x x x Q x mx =-+==-=若P Q ⊇,则实数11,2m ⎧⎫∈⎨⎬⎩⎭;D .设集合}{2320A x ax x =-+=至多有一个元素,则{}908a a a ⎧⎫∈⋃≥⎨⎬⎩⎭;34.已知集合{}23180A x x x =∈--<R ,{}22270B x x ax a =∈++-<R ,则下列命题中正确的是( )A .若AB =,则3a =-B .若A B ⊆,则3a =-C .若B =∅,则6a ≤-或6a ≥D .若B A Ü时,则63a -<≤-或6a ≥ 35.下列四个命题中,假命题的是( ) A .{}0是空集 B .若a N ∈,则a N -∉C .集合{}2210x x x -+=中只有1个元素D .对所有实数a 、b ,方程0ax b +=恰有一个解36.已知集合{}220,A x ax x a a R =++=∈,若集合A 有且仅有两个子集,则a 的值是( )A .1B .1-C .0D .237.定义集合运算:{}()(),,A B zz x y x y x A y B ⊗==+⨯-∈∈∣,设{}2,3A =,{}1,2B =,则( ) A .当2x =,2y =时,1z =B .x 可取两个值,y 可取两个值,()()z x y x y =+⨯-有4个式子C .A B ⊗中有4个元素D .A B ⊗的真子集有7个三、填空题38.某单位共有员工85人,其中68人会骑车,62人会驾车,既会骑车也会驾车的人有57人,则既不会骑车也不会驾车的人有___________人.39.已知集合{34},{211}A xx B x m x m =-≤≤=-<<+∣∣,且B A ⊆,则实数m 的取值范围是___________.40.已知{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则方程()202120202202020-+-=a x a b x a 的解为____.41.已知集合{}1A x ax a R ==∈,,{}240B x x =-=,若A B ⊆,则所有a 的取值构成的集合为________. 42.已知集合212|,,{|1,}33n n A x x n Z B x x n Z +⎧⎫==∈==+∈⎨⎬⎩⎭,则集合A 、B 的关系为A ____(B 从“,,⊆⊇=”选择合适的符号填空).43.下列各组中的两个集合相等的有____________ (1)P ={x |x =2n ,n ∈Z },Q ={x |x =2(n +1),n ∈Z } (2)P ={x |x =2n -1,n ∈N +},Q ={x |x =2n +1,n ∈N +};(3)P ={x |x 2-x =0},Q ={x |x =1(1)2n+-,n ∈Z }.(4)P ={x |y =x +1},Q ={(x ,y )|y =x +1}四、解答题44.已知集合 {|05}A x x a =<-…,{|6}2a B x x =-<…. (1)若A B ⊆,求 a的取值范围;(2)若 B A ⊆,求 a 的取值范围; (3)集合A与 B能够相等?若能,求出 a 的值,若不能,请说明理由.45.含有三个实数的集合可表示为{a ,b a,1},也可表示为{a 2,a +b ,0}.求a +a 2+a 3+…+a 2011+a 2012的值.46.已知集合{|4}A x x a =-=,集合{}1,2,B b =(1)是否存在实数a ,使得对任意实数b 都有A B ⊆成立?若存在,求出对应的a 值;若不存在,说明理由.(2)若A B ⊆成立,写出所有实数对(),a b 构成的集合.47.已知集合1{|24}2x A x =<< ,{}B x x a =<,{}121C x m x m =-<<+. (1)若A B ⊆时,求实数a 的取值范围; (2)若C 是A 的子集,求实数m 的取值范围.48.设集合{}21,1,33A a a a =--+-,{}2210B x x x =-+=,(){}210C x x a x a =-++=.(1)讨论集合B 与C 的关系; (2)若0a <,且C A ⊆,求实数a 的值.【答案详解】1.B①错,空集是任何集合的子集,有∅⊆∅;②错,如∅只有一个子集;③错,空集不是空集的真子集;④正确,因为空集是任何非空集合的真子集. 故选:B . 2.D 解:2{|0,}{|02,}{1x A x x N x x x Nx-=≤∈=<≤∈=,2} {|2,}{|04,}{0B x x x Z x x x Z =≤∈=≤≤∈=,1,2,3,4},因为A C B ⊆⊆,所以C 中元素至少有1,2;至多为:0,1,2,3,4; 所以集合C 的个数即为集合{0,3,4}子集的个数:328=. 故选:D . 3.D【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|04,1,2,3,4B x x x =<≤∈=N .因为A C B ⊆⊆,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选:D .4.C【详解】因M N ⊆,而N φ⊆,所以M φ=时,即21a a ≤-,则13a ≤,此时M φ≠时,M N ⊆,则1123110242a a a a a a a ⎧>⎪-<⎧⎪⎪-≥⇒≤⎨⎨⎪⎪≤≤⎩⎪⎩,无解, 综上得13a ≤,即实数a 的取值范围是1(,]3-∞.故选:C5.D【详解】因为集合{}{}|0=|12A x x a B x x =≤≤≤≤,,B A ⊆,所以2a ≥.故选:D6.B【详解】由题意,集合[]1,2A =,可得{}[]2,2,4B y y x a x A a a ==+∈=++,因为A B ⊆,所以2142a a +≤⎧⎨+≥⎩,解得[]2,1a ∈--. 故选:B.7.C【详解】解:{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,注意到后面集合中有元素 0, 由于集合相等的意义得 0a b += 或 0a =.0b a≠,0a ∴≠, 0a b ∴+=,即 =-a b ,1b a=-, 1b ∴=,1a =-,2b a ∴-=.故选:C8.D【详解】由于A B =,所以 (1)11a b a b b+=⎧⎪⎨=-⎪⎩,结合集合A 元素的互异性可知此方程组无解.(2)11a b b a b+=-⎧⎪⎨=⎪⎩解得1213a b a b ==⇒+=. 故选:D9.B【详解】 因为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭, 所以201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,解得01b a =⎧⎨=⎩或01b a =⎧⎨=-⎩, 当1a =时,不满足集合元素的互异性,故1a =-,0b =,即()2021202120212021101a b +=-+=-.故选:B.10.D【详解】由题意知,集合A ≠∅,所以1a >,又因为A 是U 的子集,故需9a ≤,所以a 的取值范围是19a <≤.故选:D11.A【详解】①错,当m =0时,不是一元二次方程;②错,Δ=4+4a ,并不一定大于或等于0;③正确;④错,空集是任何非空集合的真子集.故选:A.12.A【详解】若集合{}2|210A x mx x =++≤=∅,则不等式2210mx x ++>恒成立,当0m =时,不等式2210mx x ++>可化为210x +>,则12x >-,不满足题意;当0m ≠时,为使不等式2210mx x ++>恒成立,只需0440m m >⎧⎨∆=-<⎩,解得1m >, 综上集合{}2|210A x mx x =++≤=∅时,1m >;又集合{}2|210A x mx x =++≤≠∅,所以1m £.故选:A.13.D【详解】由于集合A 是点集而B 是数集,所以是两类集合,所以交集为空集,故选:D.14.C【详解】解析:设任意1x A ∈,则111(21),9x k k Z =+∈,当12,k n n Z =∈时1141(41)999x n n =+=+,所以1x B ∈;当121,k n n Z =-∈时,1141(41)999x n n =-=-,所以1x B ∈. 所以A B ⊆又设任意2x B ∈,则2222414(41),999x k k k Z =±=±∈因为22412(2)1k k +=+,22412(21)1k k -=-+,且22k 表示所有的偶数,221k -表示所有的奇数.所以2241k k Z ±∈()与21()n n Z +∈都表示所有的奇数. 所以2x A ∈.所以B A ⊆故A B =.故选:C .15.D【详解】解:由题意知,集合{}11A =-,, 由于1mx =,∴当0m =时,B =∅,满足B A ⊆;当0m ≠时,1B m ⎧⎫=⎨⎬⎩⎭,由于B A ⊆,所以11m=或11m =-, 1m ∴=或1m =-, 0m ∴=或1或1-.即m 的取值个数为3,故选:D .16.A【详解】解:①0N ⊆,0为集合N 的一个元素,0N ∈,故①错误,②Q π∈,因为π为无理数,Q π∉,故②错误,③{}{}a a b c d ⊆,,,,因为集合{}a 是集合{}a b c d ,,,的子集,故③正确,④R ∅∈,因为∅为R 的子集,故④错误.17.B【详解】 b a,0a ∴≠ {}2,,1,,0b a a a ba ⎧⎫=+⎨⎬⎩⎭0b a ∴=,即0b =, {}{}2,0,1,,0a a a ∴=∴当21a a a ⎧=⎨=⎩时,1a =-或1a =, 当1a =时,即得集合{}1,0,1,不符合元素的互异性,故舍去,当21a a a =⎧⎨=⎩时,1a =,即得集合{}1,0,1,不符合元素的互异性,故舍去, 综上,1a =-,0b =()2020202020212021101∴+=-+=a b ,故选:B18.B 【详解】 ()()|21,,|2,44M x x k k Z N x x k k Z ππ⎧⎫⎧⎫==⋅-∈==⋅+∈⎨⎬⎨⎬⎩⎭⎩⎭, 21k -为奇数,2k +为整数,所以M N ⊆.故选:B19.B【详解】集合A 中,由111x <--得,当1x >时,11x <-+,0x <(舍);当1x <时,11x >-+,0x >,所以集合{}01A x x =<<;集合B 中,若1640m ∆=+≤,4m ≤-,则B R =,符合要求;若4m >-,根据二次函数对称轴为2x =,若A B ⊆,则140m --≥,3m ≤-,综上可得:3m ≤-20.B【详解】对于A :M ,N 都是点集,(2,3)与(3,2)是不同的点则M ,N 是不同的集合,故不符合; 对于B :M ,N 都是数集,都表示2,3两个数,是同一个集合,复合要求;对于C :M 是点集,表示直线1x y +=上所有的点,而N 是数集,表示函数1x y +=的值域,则M ,N 是不同的集合,故不符合;对于D :M 是数集,表示1,2两个数,N 是点集,则M ,N 是不同的集合,故不符合;故选:B .21.D由题意,对于集合M ,当n 为偶数时,设n =2k (k ∈Z ),则x =k +1(k ∈Z ),当n 为奇数时,设n =2k +1(k ∈Z ),则x =k +1+12(k ∈Z ),∴N ⊆M ,故选:D.22.C【详解】因为B A ⊆,所以21m =或22m =-因为22m =-无解,所以22m =-不成立,由21m =得1m =±,所以实数m 的取值集合为{}1,1-.故选:C.23.D6{|}{0,3,4,5}6x N N x∈∈=-, ∴6{|}6x N N x∈∈-的子集的个数为4216=. 故选:D.24.D解:∵{}{}2201,2x x x --==-,∴与集合{}1,2A =-相等的是{}220x x x --=.故选:D25.B【详解】{2,3,4,6}A B =å,所以集合A B å的非空真子集的个数为42214-=, 故选:B .26.C【详解】 解:集合1{|}26n C x x n Z ==+∈,,∴当()2n a a Z =∈时,211266a x a =+=+, 当()21n a a Z =+∈时,2112263a x a +=+=+, 又集合1{|}6A x x k k Z ==+∈,,A C ∴Ü, 集合1{|}23m B x x m Z ==-∈,,集合1{|}26n C x n Z ==+∈,,1112326m m --=+, 可得C B =,综上可得A C B =.Ü 故选:C .27.D由A ={x |x 2+px +q =x }={2}知,x 2+px +q =x 即()210x p x q +-+=有且只有一个实数解2x =,∴22+2p +q =2,且Δ=(p -1)2-4q =0.计算得出p =-3,q =4.则(x -1)2+p (x -1)+q =x +3可化为(x -1)2-3(x -1)+4=x +3; 即(x -1)2-4(x -1)=0;则x -1=0或x -1=4,计算得出x =1或x =5.所以集合B ={1,5}.故选:D .28.C【详解】 解:因为集合301x B x x -⎧⎫=≤⎨⎬+⎩⎭, 所以{|13}B x x =-<≤,又集合13{|}A x x =-≤≤,所以B A Ü,根据韦恩图可得选项C 正确,故选:C.29.A【详解】由题意,由2{|440Q m R mx mx =∈+-<对任意的x 恒成立},对m 分类:①当0m =时,40-<恒成立,②当0m <时,则2(4)4(4)0m m ∆=-⨯⨯-<,解得0m <,综上可得0m ≤,即{|0}Q m R m =∈≤,所以P 是Q 的真子集.故选:A .30.B解:若x ∈S i ,y ∈S j ,则y -x ∈S k ,从而(y -x )-y =-x ∈S i ,所以S i 中有非负元素,由i ,j ,k 的任意性可知三个集合中都有非负元素,若三个集合都没有0,则取S 1∪S 2∪S 3中最小的正整数a (由于三个集合中都有非负整数,所以这样的a 存在),不妨设a ∈S 1,取S 2∪S 3中的最小正整数b ,并不妨设b ∈S 2,这时b >a (否则b 不可能大于a ,只能等于a ,所以b -a =0∈S 3,矛盾),但是,这样就导致了0<b -a <b ,且b -a ∈S 3,这时与b 为S 2∪S 3中的最小正整数矛盾,∴三个集合中必有一个集合含有0.∵三个集合中有一个集合含有0,不妨设0∈S 1,则对任意x ∈S 2,有x -0=x ∈S 3,∴S 2包含于S 3,对于任意y ∈S 3,有y -0=y ∈S 2,∴S 3包含于S 2,则S 2=S 3,综上所述,这三个集合中必有两个集合相等, 故选:B .31.AD【详解】选项A :若集合A B =,则有231,22,a a -=⎧⎨-=⎩,因为此方程组无解,所以不存在实数a 使得集合A B =,故选项A 正确. 选项B :当4a =时,{}52B x x =<<=∅,不满足A B ⊆,故选项B 错误. 若B A ⊆,则①当B =∅时,有232a a -≥-,1a ≥;②当B ≠∅时,有1,231,22a a a <⎧⎪->⎨⎪-<⎩此方程组无实数解; 所以若B A ⊆,则有1a ≥,故选项C 错误,选项D 正确.故选:AD .32.ABD解:P ={x |x 2+x ﹣6=0}={﹣3,2},①S =∅,a =0;②S ≠∅,S ={x |x 1a =},1a =-3,a 13=-, 1a =2,a 12=; 综上可知:实数a 的可能取值组成的集合为{12,0,13-}.故选:ABD .33.ABD【详解】对于A ,因为M N =,故222m m m =+⎧⎨=⎩(无解舍去)或222m m m =⎧⎨=+⎩,故0m =,故A 正确. 对于B ,因为∅是{}2,x x a a R ≤∈的真子集,故{}2,x x a a R ≤∈为非空集合,故0a ≥,故B 正确.对于C ,{}1,2P =,若0m =,则Q =∅,满足Q P ⊆;若0m ≠,则1Q m ⎧⎫=⎨⎬⎩⎭,又Q P ⊆,故11m =或12m=即1m =或12m =,综上,0m =或1m =或12m =,故C 错误.对于D ,因为A 至多有一个元素,故0a =或0980a a ≠⎧⎨∆=-≤⎩, 所以{}908a a a ⎧⎫∈⋃≥⎨⎬⎩⎭,故D 正确. 故选:ABD.34.ABC【详解】{}36A x x =∈-<<R ,若A B =,则3a =-,且22718a -=-,故A 正确.3a =-时,A B =,故D 不正确.若A B ⊆,则()()2233270a a -+⋅-+-≤且2266270a a ++-≤,解得3a =-,故B 正确.当B =∅时,()224270a a --≤,解得6a ≤-或6a ≥,故C 正确. 故选:ABC .35.ABD【详解】对于A 选项,{}0不是空集,A 错;对于B 选项,当0a =时,则a N ∈且N a -∈,B 错;对于C 选项,{}{}22101x x x -+==,C 对;对于D 选项,取0a =,0b ≠,则方程0ax b +=无实解,D 错.故选:ABD.36.ABC【详解】由于集合A 有且仅有两个子集,则集合A 为单元素集合,即方程220ax x a ++=只有一根. ①当0a =时,方程为20x =,解得0x =,合乎题意;②当0a ≠时,对于方程220ax x a ++=,2440a ∆=-=,解得1a =±.综上所述,0a =或1a =±.故选:ABC.37.BD【详解】{}{}22,,=1,0,2A B z z x y x A y B ⊗==-∈∈∣,故A B ⊗中有3个元素,其真子集的个数为3217-=,故C 错误,D 正确. 当2x =,2y =时,0z =,故A 错误.x 可取两个值,y 可取两个值,()()z x y x y =+⨯-共有4个算式,分别为:()()()()2121,3131+-+-,()()()()3232,2222+-+-, 故B 正确.故选:BD .38.12设会骑车的人组合的集合为A ,会驾车的人组成的集合为B ,既会骑车也会驾车的人组成的集合为集合C ,易知A B C =,记card()A 表示集合A 中的元素个数,则有()()()()68625773card A B card A card B card A B =+-=+-=,所以既不会骑车也不会驾车的人为857312-=.故答案为:1239.[)1,-+∞解:分两种情况考虑:①若B 不为空集,可得:211m m -<+,解得:2m <,{},|34B A A x x ⊆=-≤≤,213m ∴-≥-且14m +≤,解得:13m -≤≤,②若B 为空集,符合题意,可得:211m m -≥+,解得:2m ≥.综上,实数m 的取值范围是1m ≥-.故答案为:[)1,-+∞.40.{}1,2-【详解】{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭若0a =,则b a 无意义,故有0,0b b a=∴=,此时有a a b =+,21a ∴=.1a ∴=-或1a =(舍去,因为,,1b a a ⎧⎫⎨⎬⎩⎭中不满足集合的互异性) 1,0a b ∴=-=代入()202120202202020a x a b x a -+-=得220x x +-=,方程的解集为{}1,2-.故答案为:{}1,2-41.102⎧⎫±⎨⎬⎩⎭, 【详解】{}2,2B =-.当0a =时,A =∅,满足A B ⊆.当0a ≠时,1|A x x a ⎧⎫==⎨⎬⎩⎭, 由于A B ⊆,所以1122a a =-⇒=-或1122a a =⇒=.综上所述,所有a 的取值构成的集合为102⎧⎫±⎨⎬⎩⎭,. 故答案为:102⎧⎫±⎨⎬⎩⎭, 42.=【详解】解:由集合A 得:1|(21),3A x x n n Z ⎧⎫==+∈⎨⎬⎩⎭,由集合B 得:1|(23),3B x x n n Z ⎧⎫==+∈⎨⎬⎩⎭,{|21x x n =+,}{|23n Z x x n ∈==+,}n Z ∈, A B ∴=,故答案为:=.43.(1)(3)(1)中集合P ,Q 都表示所有偶数组成的集合,有P =Q ;(2)中P 是由1,3,5,…所有正奇数组成的集合,Q 是由3,5,7,…所有大于1的正奇数组成的集合,1∉Q ,所以P ≠Q .(3)中P ={0,1},当n 为奇数时,x =1(1)2n +-=0,当n 为偶数时,x =1(1)2n +-=1,所以Q ={0,1},P =Q .(4)中集合,P Q 的研究对象不相同,所以P ≠Q . 故答案为:(1)(3).44.【详解】(1) 集合 {|05}{|5}A x x a x a x a =<-=<≤+…,{|6}2a B x x =-<…. A B ⊆,562a a a +⎧⎪∴⎨-⎪⎩……,解得 01a 剟,a ∴ 的取值范围是 []01,.(2)B A ⊆,当 B =∅ 时,62a-…,12a -…;当 B ≠∅ 即12a >-时,562a a a +⎧⎪⎨-⎪⎩……,解得 a ∈∅,a ∴ 的取值范围是 (]12∞--,.(3)A B = 时,562a a a+=⎧⎪⎨-=⎪⎩ 无解,∴ 集合 A 与 B 不能相等.45.0【详解】由题可知a ≠0,b =0,即{a ,0,1}={a 2,a ,0},所以a 2=1⇒a =±1, 当a =1时,集合为{1,1,0},不合题意,应舍去; 当a =-1时,集合为{-1,0,1},符合题意. 故a =-1,∴a +a 2+a 3+…+a 2011+a 2012=0.46【详解】解:(1)由题意,集合{|4}A x x a =-={}4,4a a =-+, 因为b 是任意实数,要使A B ⊆,必有4142a a -=⎧⎨+=⎩或4241a a -=⎧⎨+=⎩, 两个方程组都没有实数解,所以不存在满足条件的实数a . (2)由(1)知{}4,4A a a =-+,要使A B ⊆,则满足414a a b -=⎧⎨+=⎩或424a a b -=⎧⎨+=⎩或441a b a -=⎧⎨+=⎩或442a b a -=⎧⎨+=⎩, 解得59a b =⎧⎨=⎩或610a b =⎧⎨=⎩或37a b =-⎧⎨=-⎩或26a b =-⎧⎨=-⎩, 所以实数对(),a b 构成的集合为()()()(){}596103726----,,,,,,,. 47.(1)2a ≥;(2)2m ≤-或102m ≤≤.【详解】(1)依题意得12222x -<<,{}12A x x =-<<,因为A B ⊆,所以2a ≥; (2)因为C 是A 的子集,当C =∅时,有121m m -≥+,解得2m ≤-;当C ≠∅时,有12111212m m m m -<+⎧⎪-≤-⎨⎪+≤⎩,解得102m ≤≤; 综上所述得2m ≤-或102m ≤≤. 48.(1){}1,{|(1)()0}B C x x x a ==--=, 当1a =时,{}1B C ==;当1a ≠时,{}1,,C a B =是C 的真子集. (2)当0a <时,因为C A ⊆,所以{}1,a A ⊆. 当233a a a +-=时,解得1a =(舍去)或3a =-,此时{}1,3,2A =-,符合题意.当1a a --=时,解得12a =-,此时1171,,24A ⎧⎫=--⎨⎬⎩⎭符合题意. 综上,3a =-或12a =-.。

高一数学集合间的基本关系

高一数学集合间的基本关系

第二节集合间的基本关系学习目标1、理解集合之间包含与相等的含义,能识别给定集合的子集2、在具体情境中,了解空集的含义知识框架1、子集定义:如果集合A中的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A是集合B的子集。

记作:BA⊆(或B⊇A)A⊆有两种可能B(1)A是B的一部分;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B 或B⊇/A2、真子集如果集合BA⊆,但存在元素x∈B且x¢A,则称集合A是集合B 的真子集如果A⊆B,且A≠B,那就说集合A是集合B的真子集,记作A B(或B A)读作A真包含于B3、集合相等元素相同则两集合相等,如果A⊆B同时B⊆A,那么A=B4、空集不含有任何元素的集合叫做空集,记为∅规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

5、集合的性质①任何一个集合是它本身的子集。

A⊆A②如果 A⊆B, B⊆C ,那么 A⊆C③如果A B且B C,那么A C④有n个元素的集合,有2n个子集,1n个真子集2-随堂练习1、设{},62,8|=≤=a x x P 则下列关系中正确的是( )A.P a ⊆B.P a ∉C.{}P a ⊆D.{}P a ∈2、集合{}3,2,1=M 的真子集的个数是( )A.6B.7C.8D.93、设集合{}{},,|),(,,|22R x x y y x Q R x x y y P ∈==∈==则P 与Q 的关系是A.Q P ⊆B.Q P ⊇C.Q P =D.以上都不正确4、已知集合A {},7,3,2且A 中至多有一个奇数,则这样的集合A 有A.3个B.4个C.5个D.6个5、已知集合{},12,3,1--=m A 集合{},,32m B =若,A B ⊆则.________=m6、设集合{}{},1212|,23|+≤≤-=≤≤-=k x k x B x x A 且,B A ⊇则实数k 的取值范围是.____________7、已知集合{}{},,01|,0158|2A B ax x B x x x A ⊆=-==+-=求实数a 的不同取值组成的集合.8、已知集合{}{},0))(1(|,31|=--=≤≤=a x x x B x x A(1)当集合B 是A 的子集时,求实数a 的取值范围;(2)是否存在实数a 使得B A =成立?。

大一高数一知识点总结

大一高数一知识点总结

大一高数一知识点总结大一高数一知识点总结有哪些呢?我们一起来看看吧!以下是小编为大家搜集整理提供到的大一高数一知识点总结,希望对您有所帮助。

欢迎阅读参考学习!一、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。

AA②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)③如果AB,BC,那么AC④如果AB同时BA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集二、集合及其表示1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。

数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。

比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。

a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作dA。

有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N*或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。

①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。

如{xR|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。

高一数学集合间的基本关系知识点详解

高一数学集合间的基本关系知识点详解

高一数学集合间的基本关系知识点详解高一的学生首先接触的就是集合间的知识点,下面店铺的小编将为大家带来高一数学关于集合间的基本关系的知识点的介绍,希望能够帮助到大家。

高一数学集合间的基本关系知识点集合知识点总结知识点包括集合的概念、集合元素的特性、集合的表示方法、常见的特殊集合、集合的分类和集合间的基本关系等知识点,除了集合的表示方法中的描述法较难理解,其它的都多是好理解的知识,只需加强记忆。

一、集合有关概念1、集合的含义2、集合中元素的三个特性:确定性、互异性、无序性。

整数集Z (包括负整数、零和正整数) (4)有理数集Q (5)实数集R6、集合的分类: (1)有限集;(2)无限集;(3)空集。

二、集合间的基本关系1、子集2、真子集3、空集集合考法集合是学习函数的基础知识,在段考和高考中是必考内容。

在段考中多考查集合间的子集和真子集关系,在高考中也是不可少的考查内容,多以选择题和填空题的形式出现,经常出现在选择填空题的前几小题,难度不大。

主要与函数和方程、不等式联合考查的集合的表示方法和集合间的基本关系。

误区提醒2、集合的关系问题,有同学容易忽视空集这个特殊的集合,导致错解。

空集是任何集合的子集,是任何非空集合的真子集。

3、集合的运算要注意灵活运用韦恩图和数轴,这实际上是数形结合的思想的具体运用。

4、集合的运算注意端点的取等问题。

最好是直接代入原题检验。

5、集合中的元素具有确定性、互异性和无序性三个特征,尤其是确定性和互异性。

在解题中,要注意把握与运用,例如在解答含有参数问题时,千万别忘了检验,否则很可能会因为不满足“互异性”而导致结论错误。

【典型例题】集合与集合的关系有“包含”与“不包含”,“相等”三种:1、子集概念:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,就说集合B包含A,记作AB(或说A包含于B),也可记为BA(B包含A),此时说A是B的子集;A不是B的子集,记作AB,读作A不包含于B2、集合相等:对于集合A和B,如果集合A中的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,即集合A是集合B的子集,且集合B是集合A的子集,我么就说集合A和集合B相等,记作A=B3、真子集:对于集合A与B,如果AB并且A≠B,则集合A是集合B的真子集,记作,读作A真包含于B(B真包含A)集合间基本关系:性质1:(1)空集是任何集合的子集,即A;(2)空集是任何非空集合的真子集;(3)传递性:AB,BCAC;AB,BCAC;(4)AB,BAA=B。

高一数学集合之间的关系与运算知识精讲

高一数学集合之间的关系与运算知识精讲

高一数学集合之间的关系与运算【本讲主要内容】集合之间的关系与运算子集、全集、补集、交集、并集等概念,集合的运算性质。

【知识掌握】 【知识点精析】1. (1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。

记作:A B B A ⊇⊆或,A ⊂B 或B ⊃A当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作:A ⊆/B 或B ⊇/A注:B A ⊆有两种可能: (1)A 是B 的一部分;(2)A 与B 是同一集合。

(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A =B 。

(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集。

记作:A B 或B A ,读作A 真包含于B 或B 真包含A 。

注:空集是任何集合的子集。

Φ⊆A空集是任何非空集合的真子集。

Φ A 若A ≠Φ,则Φ A任何一个集合是它本身的子集。

A A ⊆ 易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系。

如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合。

如Φ⊆{0}。

不能写成Φ={0},Φ∈{0}2. 全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示。

3. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集),记作A C S ,即C S A =},|{A x S x x ∉∈且4. 交集:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A ,B 的交集。

高中数学知识点大全之集合间的基本关系

高中数学知识点大全之集合间的基本关系

高中数学知识点大全之集合间的基本关系知识点概述本节包括集合的概念、集合元素的特性、集合的表示方法、常见的专门集合、集合的分类和集合间的差不多关系等知识点,除了集合的表示方法中的描述法较难明白得,其它的都多是好明白得的知识,只需加强经历。

知识点总结方法:常用数轴或韦恩图进行集合的交、并、补三种运算1.包含关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA2.不含任何元素的集合叫做空集,记为规定:空集是任何集合的子集,空集是任何非空集合的真子集3.相等关系(55,且55,则5=5)实例:设A={xx2-1=0}B={-11}元素相同结论:关于两个集合A与B,假如集合A的任何一个元素差不多上集合B的元素,同时集合B的任何一个元素差不多上集合A的元素,我们就说集合A等于集合B,即:A=B常见考点考法集合是学习函数的基础知识,在段考和高考中是必考内容。

在段考中多考查集合间的子集和真子集关系,在高考中也是不可少的考查内容,多以选择题和填空题的形式显现,经常显现在选择填空题的前几小题,难度不大。

要紧与函数和方程、不等式联合考查的集合的表示方法和集合间的差不多关系。

常见误区提醒1.集合的关系问题,有同学容易忽视空集那个专门的集合,导致错解。

空集是任何集合的子集,是任何非空集合的真子集。

2.集合的运算要注意灵活运用韦恩图和数轴,这实际上是数形结合的思想的具体运用。

事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。

不记住那些基础知识,如何会向高层次进军?专门是语文学科涉猎的范畴专门广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时刻让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

如此,就会在有限的时刻、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

高1数学必修1集合间的基本关系知识点

高1数学必修1集合间的基本关系知识点

高1数学集合间的基本关系知识点总结(一)集合知识点总结知识点包括集合的概念、集合元素的特性、集合的表示方法、常见的特殊集合、集合的分类和集合间的基本关系等知识点,除了集合的表示方法中的描述法较难理解,其它的都多是好理解的知识,只需加强记忆。

一、集合有关概念1、集合的含义2、集合中元素的三个特性:确定性、互异性、无序性。

整数集Z (包括负整数、零和正整数) (4)有理数集Q (5)实数集R6、集合的分类: (1)有限集;(2)无限集;(3)空集。

二、集合间的基本关系1、子集2、真子集3、空集集合考法集合是学习函数的基础知识,在段考和高考中是必考内容。

在段考中多考查集合间的子集和真子集关系,在高考中也是不可少的考查内容,多以选择题和填空题的形式出现,经常出现在选择填空题的前几小题,难度不大。

主要与函数和方程、不等式联合考查的集合的表示方法和集合间的基本关系。

误区提醒2、集合的关系问题,有同学容易忽视空集这个特殊的集合,导致错解。

空集是任何集合的子集,是任何非空集合的真子集。

3、集合的运算要注意灵活运用韦恩图和数轴,这实际上是数形结合的思想的具体运用。

4、集合的运算注意端点的取等问题。

最好是直接代入原题检验。

5、集合中的元素具有确定性、互异性和无序性三个特征,尤其是确定性和互异性。

在解题中,要注意把握与运用,例如在解答含有参数问题时,千万别忘了检验,否则很可能会因为不满足“互异性”而导致结论错误。

【典型例题】高1数学集合间的基本关系知识点总结(二)集合与集合的关系有“包含”与“不包含”,“相等”三种:1、子集概念:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,就说集合B包含A,记作AB(或说A包含于B),也可记为BA(B包含A),此时说A是B的子集;A不是B的子集,记作AB,读作A不包含于B2、集合相等:对于集合A和B,如果集合A中的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,即集合A是集合B的子集,且集合B是集合A的子集,我么就说集合A和集合B相等,记作A=B3、真子集:对于集合A与B,如果AB并且A≠B,则集合A是集合B的真子集,记作,读作A真包含于B(B真包含A)集合间基本关系:性质1:(1)空集是任何集合的子集,即A;(2)空集是任何非空集合的真子集;(3)传递性:AB,BCAC;AB,BCAC;(4)AB,BAA=B。

高一数学-集合间的基本关系ppt课件.ppt

高一数学-集合间的基本关系ppt课件.ppt
【解析】 由集合相等的概念得 a2-1=0 a2-3a=-2 ,解得 a=1.
写出满足{a,b} A⊆{a,b,c,d}的所有集合A. 【思路点拨】 由题目可获取以下主要信息: ①集合{a,b},{a,b,c,d}已知; ②集合A满足{a,b} A⊆{a,b,c,d}; ③求集合A. 解答本题可根据子集、真子集的概念求解. 【解析】 由题设可知,一方面A是集合{a,b,c,d}的子集, 另一方面A又真包含集合{a,b},故集合A中至少含有两个元素a,b, 且含有c,d两个元素中的一个或两个. 故满足条件的集合有{a,b,c},{a,b,d},{a,b,c,d}.
(3){0}与Ø的区别:{0}是含有一个元素的集合,Ø是不含任 何元素的集合.因此,有Ø⊆{0},不能写成Ø={0},Ø∈{0}.
3.两集合相等的证明 若A、B两个集合是元素较少的有限集,可用列举法将元素 列举出来,说明两个集合的元素完全相同,从而A=B;若A、 B是无限集时,欲证A=B,只需证A⊆B与B⊆A都成立即可.
1.子集、空集的概念的理解 (1)集合A是集合B的子集,不能简单地理解为集合A是由集合 B的“部分元素”所组成的集合。如A=Ø,则集合A不含B中的任 何元素. (2)如果集合A中存在着不属于集合B的元素,那么A不包含于 B,或B不包含A.这有两方面的含义,其一是A、B互不包含,如A ={a,b},B={b,c,d};其二是,A包含B,如A={a,b,c}, B={b,c}.
【解析】 ∵B⊆A,
①当 B=Ø 时,m+1<2m-1,解得 m>2;
②当 B≠Ø 时,有-m+3<12&解得-1<m≤2. 综上可知 m 的取值范围是{m|m>-1}.
(1)分析集合关系时,首先要分析、简化每个集合.(2)此类 问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表 示出来,以形定数,还要注意验证端点值,做到准确无误,一 般含“=”用实心点表示,不含“=”用空心点表示.

高一数学复习知识点专题讲解与训练3---集合间的基本关系

高一数学复习知识点专题讲解与训练3---集合间的基本关系

高一数学复习知识点专题讲解与训练集合间的基本关系课标要点课标要点学考要求高考要求1.子集、真子集的概念b b2.空集的概念b b3.Venn图a a知识导图,学法指导,1.注意辨析两大关系:(1)元素与集合的关系;(2)集合与集合的关系.2.本节的学习重点是子集、真子集、空集的概念;难点是集合之间关系的应用.3.学习中要注意集合之间的关系的几种表述方法:自然语言、符号语言、图形语言.知识点一子集文字语言符号语言图形语言对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A 为集合B的子集对任意元素x∈A,必有x∈B,则A⊆B(或B⊇A),读作A包含于B或B包含A“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即任意x∈A 都能推出x∈B.知识点二集合相等1.自然语言:如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等.2.符号语言:若A⊆B,又B⊆A,则A=B.(1)若A⊆B,又B⊆A,则A=B;反之,如果A=B,则A⊆B,且B⊆A.(2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.知识点三空集不含任何元素的集合叫做空集,记为∅.规定:空集是任何集合的子集.知识点四真子集文字语言符号语言图形语言对于两个集合A,B,如果集合A是集合B的子集,且在集合B中存在一个元素不是集合A的元素,我们称集合A是集合B的真子集若集合A⊆B,但x∈B,且x∉A,则A B(或B A)(读作“A 真包含于B”或“B真包含A”)在真子集的定义中,A B首先要满足A⊆B,其次至少有一个x∈B,但x∉A.知识点五子集的性质1.任何一个集合都是它本身的子集,即A⊆A.2.对于集合A,B,C,(1)若A⊆B,B⊆C,则A⊆C;(2)若A B,B C,则A C.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)空集中只有元素0,而无其余元素.()(2)任何一个集合都有子集.()(3)若A=B,则A⊆B.()(4)空集是任何集合的真子集.()答案:(1)×(2)√(3)√(4)×2.集合{0,1}的子集有()A.1个B.2个C.3个D.4个解析:集合{0,1}的子集为∅,{0},{1},{0,1}.答案:D3.已知集合A={x|-1-x<0},则下列各式正确的是()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A解析:集合A={x|-1-x<0}={x|x>-1},所以0∈A,{0}⊆A,D正确.答案:D4.能正确表示集合M={x|x∈R且0≤x≤1}和集合N={x∈R|x2=x}关系的Venn图是()解析:N={x∈R|x2=x}={0,1},M={x|x∈R且0≤x≤1},∴N M.答案:B类型一集合间关系的判断例1(1)下列各式中,正确的个数是()①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.A.1B.2C.3D.4(2)指出下列各组集合之间的关系:①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};②A={x|x是等边三角形},B={x|x是等腰三角形};③M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.【解析】(1)对于①,是集合与集合的关系,应为{0}{0,1,2};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,1}是含有两个元素0与1的集合,而{(0,1)}是以有序数组(0,1)为元素的单元素集合,所以{0,1}与{(0,1)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③是正确的,应选B.(2)①集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.②等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.③方法一两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.方法二由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.【答案】(1)B(2)见解析根据元素与集合、集合与集合之间的关系直接判断①②③④⑥,对于⑤应先明确两个集合中的元素是点还是实数.方法归纳判断集合间关系的方法(1)用定义判断首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A不是B的子集;其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B 不是A的子集;若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍.跟踪训练1(1)若集合M={x|x2-1=0},T={-1,0,1},则M与T的关系是() A.M T B.M T C.M=T D.M⃘T(2)用Venn图表示下列集合之间的关系:A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},D={x|x是正方形}.解析:(1)因为M={x|x2-1=0}={-1,1},又T={-1,0,1},所以M T.(2)根据几何图形的相关知识明确各元素所在集合之间的关系,再画Venn图.如图答案:(1)A(2)见解析学习完知识点后,我们可以得到B⊆A,C⊆A,D⊆A,D⊆B,D⊆C.类型二子集、真子集的个数问题例2(1)已知集合A={x∈R|x2-3x+2=0},B={x∈N|0<x<5},则满足条件A C B 的集合C的个数为()A.1B.2C.3D.4(2)已知集合A={x∈R|x2=a},使集合A的子集个数为2个的a的值为()A.-2 B.4 C.0 D.以上答案都不是【解析】(1)由x2-3x+2=0,得x=1或x=2,所以A={1,2}.由题意知B={1,2,3,4},所以满足条件的C可为{1,2,3},{1,2,4}.(2)由题意知,集合A中只有1个元素,必有x2=a只有一个解;若方程x2=a只有一个解,必有a=0.【答案】(1)B (2)C(1)先用列举法表示集合A,B,然后根据A C B确定集合C.(2)先确定关于x的方程x2=a解的个数,然后求a的值.方法归纳求集合子集、真子集个数的三个步骤跟踪训练2(1)已知集合M={x∈Z|1≤x≤m},若集合M有4个子集,则实数m=() A.1 B.2 C.3 D.4(2)若集合A{1,2,3},且A中至少含有一个奇数,则这样的集合有________个.解析:(1)根据题意,集合M有4个子集,则M中有2个元素,又由M={x∈Z|1≤x≤m},其元素为大于等于1而小于等于m的全部整数,则m=2.(2)若A中含有一个奇数,则A可能为{1},{3},{1,2},{3,2};若A中含有两个奇数,则A={1,3}.答案:(1)B(2)5由A中含有奇数的个数分类:A中含1个奇数,2个奇数.类型三根据集合的包含关系求参数例3已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.【解析】(1)当a=0时,①A =∅,满足A ⊆B .(2)当a >0时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a <x <2a. 又∵B ={x |-1<x <1},且A ⊆B ,∴⎩⎪⎨⎪⎧1a ≥-1,2a ≤1.②∴a ≥2. (3) 当a <0时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a <x <1a .③ ∵A ⊆B ,∴⎩⎪⎨⎪⎧2a ≥-1,1a ≤1.∴a ≤-2.综上所述,a 的取值范围是{a |a =0,或a ≥2,或a ≤-2}.①欲解不等式1<ax<2,需不等号两边同除以a ,而a 的正负不同时,不等号的方向不同,因此需对a 分a =0,a>0,a<0进行讨论.②A ⊆B 用数轴表示如图所示:由图易知,1a 和2a 需在-1与1之间.当1a =-1,或2a =1时,说明A 与B 的某一端点重合,并不是说其中的元素能够取到端点,如2a =1时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x<1,x 取不到1.③a<0时,不等式两端除以a ,不等号的方向改变.方法归纳(1)分析集合关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.(3)此类问题还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时,初学者会想当然认为非空集合而丢解,因此分类讨论思想是必需的.跟踪训练3 设集合A ={x |x 2-8x +15=0},B ={x |ax -1=0}. (1)若a =15,试判定集合A 与B 的关系; (2)若B ⊆A ,求实数a 的取值集合.解析:(1)由x 2-8x +15=0得x =3或x =5,故A ={3,5},当a =15时,由ax -1=0得x =5.所以B ={5},所以BA .(2)当B =∅时,满足B ⊆A ,此时a =0;当B ≠∅,a ≠0时,集合B =⎩⎨⎧⎭⎬⎫1a ,由B ⊆A 得1a =3或1a =5,所以a =13或a =15.综上所述,实数a 的取值集合为⎩⎨⎧⎭⎬⎫0,13,15,(1)解方程x 2-8x +15=0,求出A ,当a =15时,求出B ,由此能判定集合A 与B 的关系.(2)分以下两种情况讨论,求实数a 的取值集合.①B =∅,此时a =0;②B ≠∅,此时a ≠0.[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知集合P ={x |x 2=1},Q ={x |ax =1},若Q ⊆P ,则a 的值是( )A .1B .-1C .1或-1D .0,1或-1解析:由题意,当Q 为空集时,a =0;当Q 不是空集时,由Q ⊆P ,a =1或a =-1. 答案:D2.已知集合M ={y |y =x 2-2x -1,x ∈R },集合N ={x |-2≤x ≤4},则集合M 与N 之间的关系是( )A .M >NB .MN C .N M D .M ⊆N解析:因为y =(x -1)2-2≥-2,所以M={y|y≥-2},所以N M.答案:C3.已知集合A={1,2,3},B={3,x2,2},若A=B,则x的值是()A.1 B.-1C.±1 D.0解析:由A=B得x2=1,所以x=±1,故选C.答案:C4.已知集合A={-1,0,1},则含有元素0的A的子集的个数为()A.2 B.4C.6 D.8解析:根据题意,含有元素0的A的子集为{0},{0,1},{0,-1},{-1,0,1},共4个.答案:B5.设A={x|2<x<3},B={x|x<m},若A⊆B,则m的取值范围是()A.m>3 B.m≥3C.m<3 D.m≤3解析:因为A={x|2<x<3},B={x|x<m},A⊆B,将集合A,B表示在数轴上,如图所示,所以m≥3.答案:B二、填空题(每小题5分,共15分)6.已知集合A ={x |x -3>0},B ={x |2x -5≥0},则这两个集合的关系是________.解析:A ={x |x -3>0}={x |x >3},B ={x |2x -5≥0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≥52. 结合数轴知A B .答案:A B7.设集合A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,则a 的值为________.解析:∵A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,∴a 2-a +1∈A ,∴a 2-a +1=3或a 2-a +1=a .由a 2-a +1=3,得a =2或a =-1;由a 2-a +1=a ,得a =1.经检验,a =1时集合A ,B 不满足集合中元素的互异性,舍去.故a =-1或a =2.答案:-1或28.已知A ={x |-3<x <5},B ={x |x >a },A ⊆B ,则实数a 的取值范围是________. 解析:在数轴上画出集合A .又因为A ⊆B ,所以a <-3,当a =-3时也满足题意,所以a ≤-3.A.A⊆B B.B⊆CC.C⃘A D.B A解析:易知集合B,C是集合A的子集,且是真子集,而B,C之间没有关系,因此只有D选项正确,答案:D12.已知集合A={1,3,5},则集合A的所有子集的元素之和为________.解析:集合A的子集分别是:∅,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5}.注意到A中的每个元素出现在A的4个子集,即在其和中出现4次.故所求之和为(1+3+5)×4=36.答案:3613.已知集合A={1,3,x2},B={x+2,1}.是否存在实数x,使得B⊆A?若存在,求出集合A,B;若不存在,说明理由.解析:假设存在实数x,使B⊆A,则x+2=3或x+2=x2.(1)当x+2=3时,x=1,此时A={1,3,1},不满足集合元素的互异性.故x≠1.(2)当x+2=x2时,即x2-x-2=0,故x=-1或x=2.①当x=-1时,A={1,3,1},与集合元素的互异性矛盾,故x≠-1.②当x=2时,A={1,3,4},B={4,1},显然有B⊆A.综上所述,存在x=2,使A={1,3,4},B={4,1}满足B⊆A.14.已知集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且B⊆A.求实数m的取值范围.解析:∵B ⊆A ,(1)当B =∅时,m +1≤2m -1, 解得m ≥2.(2)当B ≠∅时,有⎩⎪⎨⎪⎧ -3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上得m ≥-1.即实数m 的取值范围为{m |m ≥-1}.。

高一数学备课系列课件集合间的基本关系

高一数学备课系列课件集合间的基本关系

02
根据题目要求,选择合适的集合运算进行计算,如交集、并集
等。
注意特殊情况的处理
03
对于空集、全集等特殊情况,需要特别处理,避免计算错误。
证明题解题思路与技巧
明确证明目标
仔细阅读题目,明确需要证明的结论。
选择合适的证明方法
根据题目特点,选择合适的证明方法,如直接证明、间接证明等 。
逻辑严密、条理清晰
,即如果A⊆B,不能推出B⊆A 。
判断题3
05 两个集合的并集等于它们各自
元素的和。
答案
错误。并集是指属于集合A或 属于集合B的所有元素组成的 集合,不是指元素的和。
06
计算题精选及答案解析
计算题1
已知集合A = {1, 2, 3},集合B = {2, 3, 4},求A∪B和A∩B。
答案
A∪B = {1, 2, 3, 4},A∩B = {2, 3}。
具有某种特定属性的事物的总体,称为集合。
集合表示方法
列举法、描述法。
3
列举法
把集合中的元素一一列举出来,并用大括号 “{}”括起来
02
03
04
子集
如果集合A的任意一个元素都 是集合B的元素,那么集合A
称为集合B的子集。
真子集
如果集合A是集合B的子集, 并且集合B不是集合A的子集 ,那么集合A称为集合B的真
补集与其他集合运算关系
与并集关系
对于任意两个集合$A$和$B$,有$complement_{U}(A cup B) = complement_{U}A cap complement_{U}B$,即两个集合的并集的补集等于这两个集合补集的交集。
与交集关系
对于任意两个集合$A$和$B$,有$complement_{U}(A cap B) = complement_{U}A cup complement_{U}B$,即两个集合的交集的补集等于这两个集合补集的并集。

1.2集合间的基本关系-2024-2025学年高一数学必修第一册+课件(人教A版2019)

1.2集合间的基本关系-2024-2025学年高一数学必修第一册+课件(人教A版2019)
当a=-3时,A={-4,-7,9},B={-8,4,9},且A∩B={9},符合题意.
(2)
集合

{a}
{a,b}
{a,b,c}
集合的子集

⌀,{a}
⌀,{a},{b},{a,b}
⌀,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}
子集的个数
1
2
4
8
由此猜想:含n个元素的集合{a1,a2,…,an}的所有子集的个数是2 ?真子集的个数
及非空真子集的个数是2 -2.
确定集合的子集、真子集
设A={x(x-16)(x+5x+4)=0},写出集合A的子集,并指出其中哪些是它的真子集?
解:由(x2-16)(x2+5x+4)=0,得(x-4)(x+1)(x+4)2=0,解方程得x=-4或x=-1
或x=4.
故集合A={-4,-1,4}.由0个元素构成的子集为∅;
由1个元素构成的子集为{-4},{-1},{4};
由2个元素构成的子集为{-4,-1},{-4,4},{-1,4};
由3个元素构成的子集为{-4,-1,4}.
因此集合A的子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4},{4,-1,4}.
真子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}.
知识讲解
2.填空
一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B
的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作
A=B.
也就是说,若A⊆B,且B⊆A,则A=B.
3.做一做

数学必修讲义

数学必修讲义

高一数学第一章集合一、集合有关概念1.集合的含义:2.集合的中元素的三个特性:3.集合的表示:A={…}有法和法。

如:A={我校的篮球队员},B={太平洋,大西洋},C={x?R|x-3>2}★注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R4、集合的分类:(1)有限集含有个元素的集合;(2)无限集含有个元素的集合;(3)空集元素的集合。

例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能:(1)A是B的一部分,;(2)A与B是同一集合。

注意:B另外规定:空集是的子集。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA真子集:如果那就说集合A是集合B的真子集,记作AB(或BA)规定:空集是任何非空集合的真子集。

有n个元素的集合,含有个子集,个真子集性质:如果A?B,B?C,那么AC;如果A?B同时B?A那么AB2.“相等”关系:A=B如:(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”记住这个结论:例1:设{}{}(){}2,|,,,y x ax b A x y x a M a b M =++====求例2:若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,求m 的值。

例3:已知集合{}|2A x x a =-≤≤,{}|23,B y y x x A ==+∈,{}2|,C z z x x A ==∈,且C B ⊆,求a 的取值范围。

巩固一下:请在30分钟内完成下列各题:1.若集合{},,Ma b c =中的元素是△ABC 的三边长,则△ABC 一定不是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 2.下列四个集合中,是空集的是()A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是() A .()()A C B C U I U B .()()A B A C U I U C .()()A B B C U I U D .()A B C U I 4.方程组⎩⎨⎧=-=+9122y x y x 的解集是()A .()5,4B .()4,5-C .(){}4,5-D .(){}4,5-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合间得基本关系
一、子集、空集等概念得教学:
比较下面几个例子,试发现两个集合之间得关系:
(1),;
(2),;
(3),
1.子集得定义:
对于两个集合A,B,如果集合A得任何一个元素都就是集合B得元素,我们说这两个集合有包含关系,称集合A就是集合B得子集(subset)。

记作:
读作:A包含于(is contained in)B,或B包含(contains)A
当集合A不包含于集合B时,记作
用Venn图表示两个集合间得“包含”关系:
2.集合相等定义:
如果A就是集合B得子集,且集合B就是集合A得子集,则集合A与集合B中得元素就是一样得,因此集合A与集合B相等,即若,则。

如(3)中得两集合。

3.真子集定义:
若集合,但存在元素,则称集合A就是集合B得真子集(proper subset)。

记作:
A B(或
B A)
读作:A真包含于B(或B真包含A)
4.空集定义:
不含有任何元素得集合称为空集(empty set),记作:。

用适当得符号填空:
; 0 ; ;
重要结论:
(1)空集就是任何集合得子集;
(2)空集就是任何非空集合得真子集;
(3)任何一个集合就是它本身得子集;
(4)对于集合A,B,C,如果,且,那么。

说明:
1.注意集合与元素就是“属于”“不属于”得关系,集合与集合就是“包含于”“不包含于”得关系; 2.在分析有关集合问题时,要注意空集得地位。

三、例题讲解:
例1.若集合B A,求m得值。

(m=0或)
例2.已知集合且,
求实数m得取值范围。

()
集合得基本运算㈠
教学目标:
(1)理解交集与并集得概念;
(2)掌握交集与并集得区别与联系;
(3)会求两个已知集合得交集与并集,并能正确应用它们解决一些简单问题。

一、复习回顾:
1.已知A={1,2,3},S={1,2,3,4,5},则A S;{x|x∈S且xA}= 。

2.用适当符号填空:
0 {0}; 0 Φ; Φ {x|x+1=0,x∈R}
{0} {x|x<3且x>5}; {x|x>6} {x|x<-2或x>5} ; {x|x>-3} {x>2}
二、交集、并集概念及性质得教学:
思考1:考察下列集合,说出集合C与集合A,B之间得关系:
(1),;
(2),;
1.并集得定义:
一般地,由所有属于集合A 或属于集合B 得元素所组成得集合,叫做集合A 与集合B 得并集(union set)。

记作:A ∪B(读作:“A 并B ”),即
用Venn 图表示:
这样,在问题(1)(2)中,集合A,B 得并集就是C,即
= C
讨论:A ∪B 与集合A 、B 有什么特殊得关系?
A ∪A = , A ∪Ф= , A ∪
B B ∪A
A ∪
B =A , A ∪B =B 、
巩固练习(口答):
①.A ={3,5,6,8},B ={4,5,7,8},则A ∪B = ;
②.设A ={锐角三角形},B ={钝角三角形},则A ∪B = ;
③.A ={x|x>3},B ={x|x<6},则A ∪B = 。

2.交集得定义:
一般地,由属于集合A 且属于集合B 得所有元素组成得集合,叫作集合A 、B 得交集(intersection set),记作A ∩B(读“A 交B ”)即:
A ∩
B ={x|x ∈A,且x ∈B}
用Venn 图表示:(阴影部分即为A 与B 得交集)
常见得五种交集得情况:
讨论:A ∩B 与A 、B 、B
∩A 得关系?
A ∩A = A ∩Ф= A ∩
B B ∩A
A ∩
B =A A ∩B =B
巩固练习(口答):
①.A ={3,5,6,8},B ={4,5,7,8},则A ∩B = ;
②.A ={等腰三角形},B ={直角三角形},则A ∩B =
;
A
③.A={x|x>3},B={x|x<6},则A∩B=。

三、例题讲解:
例1.(课本例5)设集合,求A∪B.
变式:A={x|-5≤x≤8}
例2.(课本例7)设平面内直线上点得集合为L1,直线上点得集合为L2,试用集合得运算表示,得位置关系。

例3.已知集合
就是否存在实数m,同时满足?
(m=-2)
集合得基本运算(二)
教学目标:
(1)掌握交集与并集得区别,了解全集、补集得意义,
(2)正确理解补集得概念,正确理解符号“”得涵义;
(3)会求已知全集得补集,并能正确应用它们解决一些具体问题。

一、复习回顾:
1. 提问:、什么叫子集、真子集、集合相等?符号分别就是怎样得?
2. 提问:什么叫交集、并集?符号语言如何表示?
3. 交集与补集得有关运算结论有哪些?
4. 讨论:已知A={x|x+3>0},B={x|x≤-3},则A、B与R有何关系?
思考: U={全班同学}、A={全班参加足球队得同学}、
B={全班没有参加足球队得同学},则U、A、B有何关系?
二、全集、补集概念及性质得教学:
1.全集得定义:
一般地,如果一个集合含有我们所研究问题中涉及得所有元素,那么就称这个集合为全集(universe set),记作U,就是相对于所研究问题而言得一个相对概念。

2.补集得定义:
对于一个集合A,由全集U中不属于集合A得所有元素组成得集合,叫作集合A相对于全集U得补集(plementary set),记作:,
读作:“A在U中得补集”,即
用Venn 图表示:(阴影部分即为A 在全集U 中得补集)
讨论:集合A 与之间有什么关系?→借助Venn 图分析
巩固练习(口答):
①.U={2,3,4},A={4,3},B=φ,则= ,= ;
②.设U ={x|x<8,且x ∈N},A ={x|(x-2)(x-4)(x-5)=0},则= ;
③.设U ={三角形},A ={锐角三角形},则= 。

三、例题讲解:
例1.(课本例8)设集,求,.
例2.设全集,求,
,,(),()(),()(),()U U U U U U A B C A B C A C B C A C B C A B ⋃⋂⋂⋃⋃。

(结论:)
例3.设全集U 为R,,若
,求。

(答案:)
集合复习课
一、复习回顾:
1. 提问:什么叫集合?元素?集合得表示方法有哪些?
2. 提问:什么叫交集?并集?补集?符号语言如何表示?图形语言如何表示?
3. 提问:什么叫子集?真子集?空集?相等集合?有何性质?
3. 交集、并集、补集得有关运算结论有哪些?
4. 集合问题得解决方法:Venn 图示法、数轴分析法。

二、集合性质得运用:
例3:A={x|x+4x=0},B={x|x+2(a+1)x +a -1=0}, 若A ∪B=A,求实数a 得值。

说明:注意B 为空集可能性;一元二次方程已知根时,用代入法、韦达定理,要注意判别式。

例4:已知集合A={x|x>6或x<-3},B={x|a<x<a+3},若A∪B=A,求实数a得取值范围。

(三)巩固练习:
1.已知A={x|-2<x<-1或x>1},A∪B={x|x+2>0},A∩B={x|1<x≦3},求集合B。

2.P={0,1},M={x|xP},则P与M得关系就是。

3.已知50名同学参加跳远与铅球两项测验,分别及格人数为40、31人,两项均不及格得为4人,那么两项
都及格得为人。

4.满足关系{1,2}A{1,2,3,4,5}得集合A共有个。

5.已知集合A∪B={x|x<8,x∈N},A={1,3,5,6},A∩B={1,5,6},则B得子集得集合一共有多少个元素?
6.已知A={1,2,a},B={1,a},A∪B={1,2,a},求所有可能得a值。

7.设A={x|x-ax+6=0},B={x|x-x+c=0},A∩B={2},求A∪B。

8.集合A={x|x2+px-2=0},B={x|x2-x+q=0},若AB={-2,0,1},求p、q。

9. A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB ={3,7},求B。

10.已知A={x|x<-2或x>3},B={x|4x+m<0},当AB时,求实数m得取值范围。

相关文档
最新文档