循环水中钾和钠的测定——火焰光度法
火焰光度计测定钾、钠含量
![火焰光度计测定钾、钠含量](https://img.taocdn.com/s3/m/2d41faa60975f46526d3e11a.png)
火焰光度计测定钾、钠含量1、方法提要试样以盐酸、氢氟酸、硝酸分解,高氯酸冒烟至近干。
在盐酸介质中分别测定钾钠含量。
2、试剂2.1高纯铁,大于99.98%;2.2盐酸;2.3硝酸;2.4氢氟酸;2.5高氯酸;2.6钾、钠标液:1000μg/mL,100μg/mL;2.7 铁基溶液10.0mg/L,取10.00g高纯铁于500mL烧杯中,加100mL盐酸(1+1),20mL硝酸,低温加热至纯铁溶解,煮沸驱尽氮氧化物,冷却至室温,移入1000mL容量瓶中,用水稀释至刻度,混匀。
3、分析步骤3.1试样量称取0.1000~0.5000g粒度不大于0.100mm,预先于105~110℃干燥2h的试样。
3.2空白试验随同试料加入与试料含铁量相当的纯铁做空白试验。
3.3试料分解将试料置于250ml聚四氟乙烯烧杯中,加入少量水润湿,加入15ml盐酸、5-10ml氢氟酸,低温加热10min后,加入5ml硝酸,蒸发至溶液体积小于3ml后,加入5ml高氯酸,低温加热至高氯酸冒烟,稍冷,用水冲洗杯壁,继续加热冒烟至近干。
冷却,用水冲洗杯壁,加入10ml盐酸(1+1)和适量水,加热溶解盐类。
冷却,移入100ml容量瓶中用水稀释到刻度,混匀。
若试样被测成分含量较高,可分取5.00-20.00ml试样溶液于100ml容量瓶中,并补加盐酸至于稀释前浓度一致。
3.4工作曲线校准溶液的制备于4-5个100ml容量瓶中分别加入不同量的待测元素标准溶液,使工作曲线各元素校准溶液浓度控制在0-5μg/mL,并加入与待测试样溶液中铁量相同的铁基溶液(10mg/L),10ml盐酸(1+1),用水稀释到刻度,混匀。
注:试样的含铁量一般可按50%-60%计,例如:称取0.2g试样,工作曲线需加10-12ml铁基溶液(10mg/L)。
3.5工作曲线的绘制工作曲线校准溶液的吸光度减去零浓度溶液的吸光度为元素的净吸光度。
以元素浓度为横坐标,经吸光度为纵坐标,绘制工作曲线。
火焰光度计测定钾、钠含量
![火焰光度计测定钾、钠含量](https://img.taocdn.com/s3/m/4c1a00ef76c66137ef0619cf.png)
精选文档火焰光度计测定钾、钠含量1、方法提要试样以盐酸、氢氟酸、硝酸分解,高氯酸冒烟至近干。
在盐酸介质中分别测定钾钠含量。
2、试剂2.1 高纯铁,大于99.98% ;2.2 盐酸;2.3 硝酸;2.4 氢氟酸;2.5 高氯酸;2.6 钾、钠标液:1000 呃/mL , 100 曲/mL ;2.7 铁基溶液10.0mg/L ,取10.00g 高纯铁于500mL 烧杯中,加100mL 盐酸(1+1 ),20mL 硝酸,低温加热至纯铁溶解,煮沸驱尽氮氧化物,冷却至室温,移入1000mL 容量瓶中,用水稀释至刻度,混匀。
3 、分析步骤3.1 试样量称取0.1000〜0.5000g 粒度不大于0.100mm,预先于105 - 110 C 干燥2h的试样。
3.2 空白试验随同试料加入与试料含铁量相当的纯铁做空白试验。
(G - c2)x fX V X1003.3试料分解将试料置于250ml聚四氟乙烯烧杯中,加入少量水润湿,加入15ml盐酸、5-10ml氢氟酸,低温加热10min后,加入5ml硝酸,蒸发至溶液体积小于3ml后,加入5ml高氯酸,低温加热至高氯酸冒烟,稍冷,用水冲洗杯壁,继续加热冒烟至近干。
冷却,用水冲洗杯壁,加入10ml盐酸(1+1 )和适量水,加热溶解盐类。
冷却,移入100ml容量瓶中用水稀释到刻度,混匀。
若试样被测成分含量较高,可分取 5.00-20.00ml试样溶液于100ml容量瓶中,并补加盐酸至于稀释前浓度一致。
3.4工作曲线校准溶液的制备于4-5个100ml容量瓶中分别加入不同量的待测元素标准溶液,使工作曲线各元素校准溶液浓度控制在0-5 gg/mL ,并加入与待测试样溶液中铁量相同的铁基溶液(10mg/L ),10ml盐酸(1+1 ),用水稀释到刻度,混匀。
注:试样的含铁量一般可按50%-60%计,例如:称取0.2g试样,工作曲线需加10-12ml铁基溶液(10mg/L )。
3.5工作曲线的绘制工作曲线校准溶液的吸光度减去零浓度溶液的吸光度为元素的净吸光度。
实验四火焰光度法测定钾钠
![实验四火焰光度法测定钾钠](https://img.taocdn.com/s3/m/32d8e1e0da38376baf1faee1.png)
电离和自吸收对钾校正曲线的影响
影响火焰光度分析的因素(3)
• 3 、试液中共存离子对测定有影响,如碱金 属共存时谱线增强,使结果偏高。 • 4、仪器的质量 • 单色器的质量好,可减少共存物质的干扰, 如采用较好的干涉滤光片时,5 × 10-6 g/L 的A12O3、Fe2O3、MgO或CaO均不影响K、 Na的测定。但如使用质量差的滤光片,则 1 ×10-4 g/L的CaO也将使Na的辐射强度急 剧增加,影响测定的准确性。
灵敏线通过。
仪器装置(3)
③ 常用的灵敏线是:锂 670.8nm( 红 ) , 钠589.3nm(黄),钾766.5nm(暗红), 钙422.7nm(砖红)。 ④ 检测系统:光电池(或光电管)和检 流计。
三、实验部分(1)
1、调节火焰光度计。调节使用方法及注意事项见实 验材料附录。 2、钾的标准曲线绘制及自来水中钾含量的测定。 ①取6个50ml容量瓶,依次分别加入0.10;0.20;0.50; 1.00;2.00;5.00毫升的0.100毫克/毫升钾标准溶液,用 去离子稀释至刻度。 ②液池中盛放去离子水使其喷雾,调读数为“0”,再 以上述标准系列中浓度最大的标准溶液喷雾,调节读数 为相应最大值,此调节重复三次。 ③将一系列标准溶液由稀至浓依次喷入火焰,读取显 示器读数,每个溶液重复读数三次。 ④取水样喷雾,读取显示器数值,重复三次
①快速:试样溶液于数分钟内可完成测定。 ②准确:火焰光源稳定性高,干扰较少,误差为 2%~5%,可用于微量分析和常量分析。 ③灵敏:分析碱金属与碱土金属,绝对灵敏度可达 0.1~10×10-6 g。 ④设备简单:被测试样易被火焰激发,产生的谱线 较简单,且均在可见光区,故使谱线分离和测量的 设备简单。 ⑤应用范围窄:主要用于碱金属和部分碱土金属的 测定。
《水质 钾和钠的测定 火焰原子吸收分光光度法》方法验证
![《水质 钾和钠的测定 火焰原子吸收分光光度法》方法验证](https://img.taocdn.com/s3/m/8b290f92168884868662d619.png)
xxxxxxx公司方法验证报告标题:水质钾的测定火焰原子吸收分光光度法仪器:公司头个字母缩写-YQ- 原子吸收分光光度计文件编号:参考方法/标准:本次方法验证人员及时间: 2021年0月0日编制:日期:审核:日期:批准:日期:目录1.依据 (1)2.仪器试剂条件参数 (1)2.1仪器参数条件 (1)2.2试剂 (1)2.3光谱条件 (1)3.试样处理 (2)3.1样品采集 (2)3.2样品的预处理 (2)3.3样品测定(空白测定) (2)4.人员确认 (2)5.方法检出限的统计依据 (2)6. 绘制标准曲线 (3)7.最低检出限和测定下限 (3)8.精密度和正确度 (4)9.结论 (5)10.附件 (5)1.依据RB/T 214-2017 检验检测机构资质认定能力评价检验检测机构通用要求国市监检测[2018]245号市场监管总局生态环境部关于印发《检验检测机构资质认定生态环境监测机构评审补充要求》的通知《CNAS-CL01:2018 检测和校准实验室能力认可准则》《GB/T 27417-2017 合格评定化学分析方法确认和验证指南》《GB/T 6379.2-2004 测量方法与结果的准确度第2部分:确定标准测量方法重复性与再现性的基本方法》《HJ 168-2020 环境监测分析方法标准制修订技术导则》2.仪器试剂条件参数2.1仪器参数条件2.2试剂2.3光谱条件仪器名称:原子吸收分光光度计载气流速:ml/min乙炔流量:ml/min 空气流量:ml/min13.试样处理3.1样品采集水样在采集后,应立即以0. 45um滤膜(或中速定量滤纸)过滤,其滤液用硝酸(1+1 )调至pH=l〜2, 于聚乙烯瓶中保存。
3.2样品的预处理如果对样品中钾浓度大体已知时,可直接取样,或者采用次灵敏线测定先求得其浓度范围。
然后再分取一定量(一般为2〜10 mL)的实验室样品于50 mL容量瓶中,加3. 0 mL 硝酸铯溶液,用水稀释至标线,摇匀。
氧化钾和氧化钠的测定——火焰光度计法
![氧化钾和氧化钠的测定——火焰光度计法](https://img.taocdn.com/s3/m/51578669302b3169a45177232f60ddccda38e6e9.png)
氧化钾和氧化钠的测定——火焰光度计法方法提要试样经氢氟酸-硫酸蒸发处理除去硅,用热水浸去残渣。
以氨水和碳酸铵除去铁、铝、钙、镁。
滤液中的钾、钠用火焰光度计进行测定。
分析步骤精确称取0.2g试样,精确至0.0001g,置于铂皿中,加入少量水润湿,加入5~7mL氢氟酸和15~20滴硫酸(1+1),放入通风橱内低温电热板上加热,近干时摇动铂皿,以防溅失。
待氢氟酸驱尽后逐渐升高温度,继续将三氧化硫白烟冒尽,取下冷却。
加入40~50mL热水,并将残渣压碎使其溶解,加1滴甲基红指示剂溶液(2g/L),用氨水(1+1)中和至黄色,再加入10mL新配制的碳酸铵溶液(100g/L),搅拌,然后放入通风橱内电热板上加热至沸,并继续微沸20~30min,至无二氧化碳气泡冒出为止。
用快速滤纸过滤,以热水洗涤,滤液及洗液盛于100mL容量瓶中,冷却至室温。
用盐酸(1+1)中和至溶液呈微红色,用水稀释至标线,摇匀。
在火焰光度计上,按仪器使用规程进行测定。
在工作曲线上分别查出氧化钾和氧化钠的含量。
结果的计算与表示氧化钾和氧化钠的质量分数W K2O 和W Na2O 分别按下式计算:式中:W K2O ——氧化钾的质量分数,%;W Na2O ——氧化钠的质量分数,%;m K2O ——l00 mL 测定溶液中氧化钾的含量,单位为毫克(mg);m Na2O ——100 mL 测定溶液中氧化钠的含量,单位为毫克(mg);m ——试料的质量,单位为克(g)。
注意事项a .一般加入5~10mL HF 即能达到要求,但为了与空白试验相吻合,规定加HF 的量为10mL 。
加入酸之前先用水将试样冲散,然后边摇动铂皿边加入酸,加入HF 时要十分小心,用塑料量杯最好带乳胶手套,防止沾在手上。
加完酸后一定要洗手。
b.加入的硫酸量应能满足各阳离子完全形成硫酸盐的需要,以免因硫酸量不足与钙形成氟化物,将氟铝酸钠或氟化m m m m w O K O K O K 1.0100100024222⨯=⨯⨯=m m m m w O Na O Na O Na 1.010********⨯=⨯⨯=钠紧紧包裹,从而使钠的测定结果偏低,一般加1 mL (1+1)H2SO4,根据二氧化硅的含量;c.加热时应低温,同时边加热边摇动铂皿几次,注意在钙含量很高的情况下,摇动铂皿一定要间隔时间尽量短,防止溅失。
实验四火焰光度法测定钾钠
![实验四火焰光度法测定钾钠](https://img.taocdn.com/s3/m/3340fae33968011ca2009146.png)
使校正曲线向横坐标方
向弯曲;在低浓度时则
由于电离增加,辐射增
强,校正曲线向纵坐标
电离和自吸收对钾校正曲线的影响
方向弯曲。
a
14
影响火焰光度分析的因素(3)
• 3、试液中共存离子对测定有影响,如碱金 属共存时谱线增强,使结果偏高。
• 4、仪器的质量
• 单色器的质量好,可减少共存物质的干扰, 如采用较好的干涉滤光片时,5 × 10-6 g/L的 A12O3、Fe2O3、MgO或CaO均不影响K、 Na的测定。但如使用质量差的滤光片,则 1 ×10-4 g/L的CaO也将使Na的辐射强度急剧 增加,影响测定的准确性。
a
4
二、仪器装置(1)
FP-640火焰光度计
火焰光度法分析示意图
1.光源系统2.光学系统3.检测系统
a
5
仪器装置(2)
① 光源:包括喷雾器、雾化室和喷灯。 试液经喷雾器分散在压缩空气中成为雾, 然后与可燃气体混合,在喷灯上燃烧, 待测组分被激发发射谱线。
②光学系统:包括滤光片、光栅等,目 的在于分离不需要的谱线,让被测元素 灵敏线通过。
a
9
三、实验部分(3)
序号
钠标准 溶液
乙醇
(mL)
三醇 (mL)
读 数
1
4
5
2
4
5
3
4
10
4
4
5
5
6
5
7
10
a
10
四、数据及处理
1、及时地记录实验条件和测量数据。 2、以浓度为横坐标,读数值为纵坐标,分 别绘制钾、钠的标准曲线,并求出水样中钾、 钠的含量(以mg/L表示)。 3、比较不同有机溶剂对钠的谱线发射强度 的影响,结论如何?
实验四火焰光度法测定钾钠
![实验四火焰光度法测定钾钠](https://img.taocdn.com/s3/m/3340fae33968011ca2009146.png)
a
8
三、实验部分(2)
3、钠的标准曲线绘制及自来水中的钠含量的测 定。
取六个50mL容量瓶,依次加入2.0;4.0;6.0;8.0; 10.0;15.0mL,浓度为0.100mg/mL钠标液,用去离 子水稀释至刻度。操作同上。
4、有机溶剂对火焰发射强度的影响。 取七个50mL容量瓶。按下表次序加入不同试剂, 用去离子水稀释至刻度。在绘制的标准曲线的相同 条件下喷雾,读取数值。
a
15
石油气-空气等低温火焰(约1900℃)较为合适和 方便; • ②适当的燃气与助燃气比例
• ③试样溶液提升量(毛细管每分钟吸入喷流液 毫升数)过大时会使火焰温度下降。
a
13
影响火焰光度分析的因素(2)
2、试样的种类和组成 • 元素的电离和自吸收 可导致校正曲线弯曲,
线性范围缩小。如钾在
高浓度时自吸收严重,
使校正曲线向横坐标方
向弯曲;在低浓度时则
由于电离增加,辐射增
强,校正曲线向纵坐标
电离和自吸收对钾校正曲线的影响
方向弯曲。
a
14
影响火焰光度分析的因素(3)
• 3、试液中共存离子对测定有影响,如碱金 属共存时谱线增强,使结果偏高。
• 4、仪器的质量
• 单色器的质量好,可减少共存物质的干扰, 如采用较好的干涉滤光片时,5 × 10-6 g/L的 A12O3、Fe2O3、MgO或CaO均不影响K、 Na的测定。但如使用质量差的滤光片,则 1 ×10-4 g/L的CaO也将使Na的辐射强度急剧 增加,影响测定的准确性。
a
6
仪器装置(3)
③ 常用的灵敏线是:锂670.8nm(红), 钠589.3nm(黄),钾766.5nm(暗红), 钙422.7nm(砖红)。
简述火焰光度法测钾钠的原理
![简述火焰光度法测钾钠的原理](https://img.taocdn.com/s3/m/2045ca4cf56527d3240c844769eae009581ba2b2.png)
简述火焰光度法测钾钠的原理火焰光度法是一种常用的分析化学方法,用于测定物质中某些金属元素的含量。
其中,钾钠元素的测定是火焰光度法中的一个重要应用。
火焰光度法测定钾钠的原理是基于钾钠元素在火焰中激发产生的特征光谱。
当钾钠元素与气体的火焰相结合时,它们会吸收火焰中的能量并处于激发态。
随后,在能级间跃迁的过程中,钾钠元素会释放出特定波长的光线。
通过测量这些特征光谱的强度,就可以确定钾钠元素的浓度。
火焰光度法测定钾钠的步骤如下:1. 样品处理:首先,需要将待测样品中的钾钠元素提取出来。
这一步通常涉及样品的溶解、稀释和过滤等处理过程。
目的是将钾钠元素从样品中分离出来,并转化为易于测量的形式。
2. 原子化:将处理后的样品溶液喷入火焰中,使其蒸发并转化为气态的金属原子。
这一步骤中,样品中的钾钠元素会得到激发,并跃迁到高能级。
3. 辐射:当钾钠元素处于激发态时,它们会释放出特定波长的光线。
这些光线经过适当的光学系统聚焦到光电倍增管等光电探测器上。
4. 信号处理:光电探测器将光信号转化为电信号,并进行放大和滤波等处理。
最终,信号会被传递给光谱仪或光度计进行检测。
5. 结果计算:通过比对待测样品的光谱强度与已知浓度的标准样品的光谱强度,可以计算出样品中钾钠元素的浓度。
火焰光度法测定钾钠的优点是操作简单、快速,并且具有较高的灵敏度和准确性。
然而,它也存在一些限制,例如可能受到干扰元素的影响,需要注意选择适当的光谱线进行测定。
此外,火焰光度法只适用于钾钠元素浓度较高的样品,对于浓度较低的样品,需要进行预处理或采用其他分析方法。
火焰光度法是一种常用的测定钾钠元素含量的方法,通过测量钾钠元素特征光谱的强度,可以计算出样品中的含量。
这一方法在食品、环境、冶金等领域有着广泛的应用,为分析化学研究提供了重要手段。
火焰光度法测定自来水中钾和钠的含量
![火焰光度法测定自来水中钾和钠的含量](https://img.taocdn.com/s3/m/71c9f75527284b73f342500d.png)
火 焰 光 度 法 测 定 量自 来 水 中 钾 和 钠 的 含
将废液管插入废液接受瓶,进样管插入纯水中,吸 入空白液,火焰再呈稳定的蓝色时,可开始测样。 3. 标准曲线及样品的测定 分别吸取钾、钠储备液适量,逐级稀释后配成系列
大 学 通 用 化 学 实 验 技 术
4/9
标准溶液 ( 见表 1) 。另取 2.00 mL 自来水于 100 mL 容量
95.4 注意事项
(1) 按照仪器的使用说明操作仪器。
(2) 注意保持雾化器、燃烧喷头的清洁。
(3) 燃气和助燃气的比例要合适,压力要恒定,以 保持火焰的稳定。 (4) 样品溶液应澄清,其组成与标准溶液的组成应 大致相仿。
大 学 通 用 化 学 实 验 技 术
6/9
火 焰 光 度 法 测 定 量自 来 水 中 钾 和 钠 的 含
95.5 问讨论
(1) 简述火焰光度法的主要特点及适用范围。 (2) 简述火焰光度法分析中的主要误差来源。
大 学 通 用 化 学 实 验 技 术
7/9
火 焰 光 度 法 测 定 量自 来 水 中 钾 和 钠 的 含
95.6 参考答案
(1) 简述火焰光度法的主要特点及适用范围。 答:1) 分析速度较快,试样处理好后数分钟内可 完成测定。 2) 准确度和灵敏度较高,干扰少,可用于微量分 析和常量分析。 3) 因火焰的激发能较低,产生的谱线较简单,故
瓶中,加入1滴硝酸后用水定容,作样品溶液。以纯水 调零,对上述溶液进行测定,结果列入表1中。样品测 定完后,进样管插入纯水中。
火 焰 光 度 法 测 定 量自 来 水 中 钾 和 钠 的 含
表1 钾、钠标准曲线及样品的测定
溶液编号 K+ 标液浓度 /(μ g·mL-1) 766.5 nm辐射强度 Na+ 标液浓度 /(μ g·mL-1) 589.3 nm辐射强度 1# 1 调为100 2 调为100 4 8 16 32 60 2# 2 3# 3 4# 4 5# 5 6# 6 样品溶液
试验四火焰光度法测定钾钠
![试验四火焰光度法测定钾钠](https://img.taocdn.com/s3/m/37a29e17f111f18583d05a3e.png)
• ③试样溶液提升量 ( 毛细管每分钟吸入喷流液 毫升数)过大时会使火焰温度下降。
影响火焰光度分析的因素(2)
2、试样的种类和组成 • 元素的电离和自吸收 可导致校正曲线弯曲, 线性范围缩小。如钾在 高浓度时自吸收严重, 使校正曲线向横坐标方 向弯曲;在低浓度时则 由于电离增加,辐射增 强,校正曲线向纵坐标 方向弯曲。
二、仪器装置(1)
FP-640火焰光度计
火焰光度法分析示意图
1.光源系统2.光学系统3.检测系统
仪器装置(2)
① 光源:包括喷雾器、雾化室和喷灯。 试液经喷雾器分散在压缩空气中成为雾,
然后与可燃气体混合,在喷灯上燃烧,
待测组分被激发发射谱线。
②光学系统:包括滤光片、光栅等,目
的在于分离不需要的谱线,让被测元素
五、思考题
1、若压缩空气输出压力不稳定,对 测定结果有何影响? 2、若标准系列浓度范围过大标准曲 线将发生什么变化?为什么?
六、影响火焰光度分析的因素(1)
• 1 、激发条件:火焰温度要适当,温度过低灵 敏度下降,温度太高则碱金属电离严重,影响 测量的线性关系。 • 影响火焰温度的因素有:
• ①燃气种类:一般认为采用丙烷 - 空气或液化 石油气-空气等低温火焰(约1900℃)较为合适和 方便; • ②适当的燃气与助燃气比例
①快速:试样溶液于数分钟内可完成测定。 ②准确:火焰光源稳定性高,干扰较少,误差为 2%~5%,可用于微量分析和常量分析。 ③灵敏:分析碱金属与碱土金属,绝对灵敏度可达 0.1~10×10-6 g。 ④设备简单:被测试样易被火焰激发,产生的谱线 较简单,且均在可见光区,故使谱线分离和测量的 设备简单。 ⑤应用范围窄:主要用于碱金属和部分碱土金属的 测定。
火焰光度计测定钾、钠含量3页
![火焰光度计测定钾、钠含量3页](https://img.taocdn.com/s3/m/2c09808268dc5022aaea998fcc22bcd127ff4274.png)
火焰光度计测定钾、钠含量3页火焰光度计是一种利用物质在火焰中产生特定波长的辐射发射光谱来分析物质的分析仪器,其广泛应用于矿物、冶金、地质、环境保护、医药、化工、食品等领域的分析检测中。
本文将介绍如何利用火焰光度计测定钾、钠含量。
一、测定原理钾、钠元素在火焰中燃烧产生特定的波长辐射,利用火焰光度计可以对这些辐射进行测量,并根据辐射的强度计算出样品中钾、钠的含量。
二、测定方法1. 仪器预热和校准首先需要将火焰光度计预热30分钟以上,然后进行校准。
校准时,使用已知含量的钾、钠标准溶液,按照仪器说明书中的方法进行校准。
2. 样品预处理将待检样品按照要求进行预处理。
通常情况下,样品需要经过消解、稀释等处理后再进行测定。
消解方法因样品不同而异,可以采用烘干、酸消解等方法。
3. 测定将样品加入称量好的氢氧化钠溶液中,加热至熔融,并在氢氧化钠溶液熔融状态下加入色谱纯甘油,混合均匀后将混合物喷入预热好的火焰中,然后读取相应的钾、钠含量值。
三、注意事项1. 样品处理前,要注意避免污染样品。
2. 样品处理和测定过程中,要注意安全,防止发生火灾和爆炸等事故。
3. 测定时要选择合适的检测波长,以获得准确的结果。
4. 测定前应检查仪器是否预热足够,并根据需要进行校准,确保测定结果准确可靠。
5. 测定结果应当根据实际情况对数据进行修约,报告测量结果时应当注明修约规则。
总之,利用火焰光度计测定钾、钠含量是一种简单、快速、准确的方法,可以应用于矿产、地质、环保、医药、食品等领域的分析检测中。
但在测定时,也需要注意多方面的问题,才能获得较为准确的结果。
火焰光度计测钾钠曲线
![火焰光度计测钾钠曲线](https://img.taocdn.com/s3/m/9fc8535b974bcf84b9d528ea81c758f5f61f2998.png)
火焰光度计测钾钠曲线
火焰光度法是一种常用的测定钾钠浓度的方法。
该方法利用钾钠溶液产生的黄色火焰吸收特定的波长光线,通过测量光线被吸收的程度来确定钾钠浓度。
实验装置:
1. 火焰光度计:用于测量光线的吸收程度。
2. 钾钠溶液:含有不同浓度的钾钠溶液。
实验步骤:
1. 准备一系列不同浓度的钾钠溶液。
可以通过逐渐稀释高浓度溶液或混合不同浓度的溶液来得到。
2. 打开火焰光度计并调整到合适的工作条件。
3. 使用火焰光度计测量每种钾钠溶液的吸光度。
根据吸光度和溶液浓度的关系,绘制出钾钠浓度与吸光度的曲线,即钾钠曲线。
钾钠曲线是一条连接不同浓度点的曲线,可以利用该曲线来测定未知浓度的钾钠溶液。
测量未知样品时,使用火焰光度计测量其吸光度,然后利用钾钠曲线可以确定样品的钾钠浓度。
需要注意的是,火焰光度法在样品含有其他金属离子时可能出现干扰,因此需要进行相应的校正。
此外,在测定过程中需要注意操作的准确性和实验条件的控制,以保证测量结果的准确性。
实验四火焰光度法测定钾钠
![实验四火焰光度法测定钾钠](https://img.taocdn.com/s3/m/32d8e1e0da38376baf1faee1.png)
三、实验部分(2)
3、钠的标准曲线绘制及自来水中的钠含量的测 定。 取六个50mL容量瓶,依次加入2.0;4.0;6.0;8.0; 10.0;15.0mL,浓度为0.100mg/mL钠标液,用去离 子水稀释至刻度。操作同上。 4、有机溶剂对火焰发射强度的影响。 取七个50mL容量瓶。按下表次序加入不同试剂, 用去离子水稀释至刻度。在绘制的标准曲线的相同 条件下喷雾,读取数值。
①快速:试样溶液于数分钟内可完成测定。 ②准确:火焰光源稳定性高,干扰较少,误差为 2%~5%,可用于微量分析和常量分析。 ③灵敏:分析碱金属与碱土金属,绝对灵敏度可达 0.1~10×10-6 g。 ④设备简单:被测试样易被火焰激发,产生的谱线 较简单,且均在可见光区,故使谱线分离和测量的 设备简单。 ⑤应用范围窄:主要用于碱金属和部分碱土金属的 测定。
二、仪器装置(1)
FP-640火焰光度计
火焰光度法分析示意图
1.光源系统2.光学系统3雾器、雾化室和喷灯。 试液经喷雾器分散在压缩空气中成为雾,
然后与可燃气体混合,在喷灯上燃烧,
待测组分被激发发射谱线。
②光学系统:包括滤光片、光栅等,目
的在于分离不需要的谱线,让被测元素
灵敏线通过。
仪器装置(3)
③ 常用的灵敏线是:锂 670.8nm( 红 ) , 钠589.3nm(黄),钾766.5nm(暗红), 钙422.7nm(砖红)。 ④ 检测系统:光电池(或光电管)和检 流计。
三、实验部分(1)
1、调节火焰光度计。调节使用方法及注意事项见实 验材料附录。 2、钾的标准曲线绘制及自来水中钾含量的测定。 ①取6个50ml容量瓶,依次分别加入0.10;0.20;0.50; 1.00;2.00;5.00毫升的0.100毫克/毫升钾标准溶液,用 去离子稀释至刻度。 ②液池中盛放去离子水使其喷雾,调读数为“0”,再 以上述标准系列中浓度最大的标准溶液喷雾,调节读数 为相应最大值,此调节重复三次。 ③将一系列标准溶液由稀至浓依次喷入火焰,读取显 示器读数,每个溶液重复读数三次。 ④取水样喷雾,读取显示器数值,重复三次
水质钾和钠的测定----火焰原子吸收分光光度法
![水质钾和钠的测定----火焰原子吸收分光光度法](https://img.taocdn.com/s3/m/5567a6ece53a580216fcfeed.png)
水质钾和钠的测定----火焰原子吸收分光光度法水质钾和钠的测定火焰原子吸收分光光度法1.主要内容与使用范围本标准规定了用火焰原子吸收分光光度法测定可过滤态钾和钠。
他适用于地面水和饮用水测定。
测定范围钾为0.05~4.00mg/L;钠为0.01~2.00mg/L。
对于钾和钠浓度较高的样品,应取较少的试料进行分析,或采用次灵敏线测定。
2.原理原子吸收光谱分析的基本原理是测量基态原子对共振辐射的吸收。
在高温火焰中,钾和钠很易电离,这样使得参于原子吸收的基态原子减少。
特别是钾在浓度低时表现更明显,一般在水中钠比钾浓度高,这时大量钠对钾产生增感作用。
为了克服这一现象,加入比钾和钠更易电离的铯作电离缓冲剂,以提供足够的电子使电离平衡向生成基态原子的方向移动。
这时即可在同一份试料中连续测定钾和钠。
3. 试剂除非另有说明,分析时均使用公认的分析纯试剂以及重蒸馏水或具有同等纯度的水 .3.1 硝酸(HNO3),ρ=1.42g/mL。
3.2 硝酸溶液,1+1。
3.3 硝酸溶液,0.2%(V/V):取2mL硝酸(3.1)加入998mL水中混合均匀。
3.4 硝酸铯溶液,10.0g/L:取1.0g硝酸铯(CsNO3)溶于100mL水中。
3.5 标准溶液:配制标准溶液时所用的基准氯化钾和基准氯化钠均要在150℃干燥2h,并在干燥器内冷至室温。
3.5.1 钾标准贮备溶液,含钾 1.000g/L:称取(1.9067±0.0003)g基准氯化钾 (KCl),以水溶解并移至1000mL容量瓶中,稀释至标线,摇匀,将此溶液及时转入聚乙烯瓶中保存。
3.5.2 钠标准贮备溶液,含钠 1.000g/L:称取(2.5421±0.0003)g基准氯化钠 (NaCl),以水溶解并移至1000mL容量瓶中,稀释至标线,摇匀,即时转入聚乙烯瓶中保存。
3.5.3 钾和钠混合标准贮备溶液,含钾和钠1.000g/L:称取(1.9067 ±0.0003)g 基准氯化钾和(2.5421±0.0003)g基准氯化钠于同一烧杯中,用水溶解并转移至 1000mL容量瓶中,稀释至标线,摇匀,将此溶液即时转入聚乙烯瓶中保存。
循环水中钾和钠的测定——火焰光度法
![循环水中钾和钠的测定——火焰光度法](https://img.taocdn.com/s3/m/3cc1c1ce524de518964b7d4d.png)
循环水中钾和钠的测定——火焰光度法1.范围本标准适用于循环冷却水中钾和钠的测定,测定范围K+为0.5 mg/L~10.0mg/L、Na+为1.0mg/L~20.0mg/L。
2.方法概要当一种元素的原子受火焰激发后,能发射出该元素特有波长的光谱线,其光谱强度与其元素浓度成正比,因此可采用比较法(与标准溶液比较)用火焰光度计来测定钾和钠的含量。
3.仪器3.1火焰光度计3.2无油气体压缩机4.试剂4.1钾标准溶液:准确称取1.9066克经110℃干燥过的分析纯氯化钾溶于100毫升蒸馏水中,然后转移到一升容量瓶中,用蒸馏水稀释至刻度、摇匀。
每毫升此溶液含K+ 1.00 mg。
4.2钠标准溶液:准确称取2.5420克经110℃干燥过的分析纯氯化钠溶于100毫升蒸馏水中,然后转移到一升容量瓶中,用蒸馏水稀释至刻度、摇匀。
每毫升此溶液含Na+ 1.00 mg。
4.3钾、钠混合标准溶液:用移液管移取5毫升 1.00mg/L钾标准溶液和20毫升1.00mg/L钠标准溶液于1升容量瓶中,用蒸馏水稀释至刻度、摇匀。
此溶液钾、钠的浓度分别为5.00mg/L和20.0mg/L。
5.分析步骤5.1开机5.1.1打开仪器开关,取下火焰上方的罩子,将燃气开关逆时针旋2.5~3圈(进样开关和助燃开关都处于关闭位置),按下点火按钮,开启压缩机至火焰点燃。
5.1.2打开进样开关,放入蒸馏水,调节助燃和燃气开关,使火焰高度在3cm~6cm 之间(火焰底部有十个光滑的圆锥状小突起,其周围有一圈清晰的波浪形圆环),放上罩子,将仪器预热约20分钟。
5.2测量5.2.1校正:首先将量程开关置于0档,用小起子调节“内调”电位器,使K、Na 两表头均指示在0位。
5.2.2调零:将置程开关置于2档(测K+,测Na+时用1档)调节“调零”旋钮使指针指示0位。
5.2.3定位:换上K+ ——Na+混合标准溶液(K+=5.00ppm, Na+=20.0ppm)调节“满度”旋钮使指针指示50格(或满度),重复5.2.1~5.2.3步骤。
实验名称:火焰光度法测定污水中的钾、钠教案
![实验名称:火焰光度法测定污水中的钾、钠教案](https://img.taocdn.com/s3/m/f92f523614791711cc79175b.png)
实验名称:火焰光度法测定污水中的钾、钠一、教学目的:1、加深对火焰光度法原理的理解;2、掌握火焰光度法测定钾、钠的方法;3、了解火焰光度计的主要组成部分的作用、学习火焰光度计的使用。
二、教学内容:(一)实验原理:用火焰进行激发并以光电检测系统来测量被激发元素辐射强度,进而求出该元素含量的分析方法,称为火焰光度法。
火焰光度计属于原子发射光谱的范畴。
元素发射的谱线强度随该元素含量的变化而变化,谱线强度可由下列经验公式来表示:I=aC b式中:I-谱线强度;C-元素的含量;a-常数,与元素的激发电位、激发温度、试样组成、仪器类型有关;b-自吸系数,其值为与谱的自吸情况有关。
浓度很低时计为1,即I=aC。
钾、钠、钙等碱土金属及碱土金属的激发电位较低,可在火焰中被激发,可采用测谱线绝对强度的方法进行定量分析。
用火焰光度法进行分析时,可采用标准加入法和标准曲线法,本实验采用标准曲线法,即先测定不同浓度的钠、钾标准溶液的谱线强度,将浓度对强度作图作出标准曲线,再测定未知水样中的钠或钾谱线强度,从标准曲线上可求出其含量。
(二)实验仪器及试剂:6400-A型火焰光度计;含铝为10mg/mL的三氯化铝溶液;1∶1的盐酸;氯化钠;氯化钾。
(三)实验步骤:1、标准系列的配制:(1)钾、钠混合标准溶液(钾:200μg/mL;钠:1mg/mL):迅速称取A.R并己烘干的氯化钾0.1097克,溶于水后,移入500mL的容量瓶中,迅速称取A.R并己烘干的氯化钠1.2711克,溶于水后,移入同一容量瓶中摇匀。
(2)标准系列的配制:吸收上述标准溶液1、2、3、4、5mL 于5个100mL容量瓶中,加入10mL三氯化铝,用蒸馏水定容到刻度。
2、样品处理:取100mL的污水,加入5mL1∶1的盐酸酸化,煮沸除去二氯化碳,将体积浓缩至80mL左右,冷却,移入100mL容量瓶中,加入10mL三氯化铝溶液,用水稀释至刻度。
3、待测液的测定(1)将仪器电源打开,开空压机,空气压力为0.1kg/cm2,打开液化气开关,点燃火焰,调整火焰高度为3-5cm,预热燃烧20分钟。
火焰光度法测定自来水中钾和钠的含量
![火焰光度法测定自来水中钾和钠的含量](https://img.taocdn.com/s3/m/52cab3abd0d233d4b14e6984.png)
95.5 问题讨论
(1) 简述火焰光度法的主要特点及适用范围。 (2) 简述火焰光度法分析中的主要误差来源。
大 学 通 用 化 学 实 验 技 术
7/9
火 焰 光 度 法 测 定 自 来 水 中 钾 和 钠 的 含 量
95.6 参考答案
(1) 简述火焰光度法的主要特点及适用范围。 答:1) 分析速度较快,试样处理好后数分钟内可 完成测定。 2) 准确度和灵敏度较高,干扰少,可用于微量分 析和常量分析。 3) 因火焰的激发能较低,产生的谱线较简单,故
大 学 通 用 化 学 实 验 技 术
5/9
589.3 nm辐射强度
调为100
根据表中数据,分别绘制钾、钠的标准曲线,并计算出 自来水中K+、Na+的含量。 4. 关闭仪器 按仪器说明书操作。一般的步骤是:关闭燃气阀,关闭 进样阀,火焰熄灭后关闭空气阀,最后断开仪器和通风罩的 电源。
火 焰 光 度 法 测 定 自 来 水 中 钾 和 钠 的 含 量
线性关系。
2) 若试液的组成与标液的组成相差较大,将影响 钾、钠的激发并产生干扰。 3) 若仪器单色器的质量不高,将产生较大的光谱 干扰,从而影响测量的准确性。
大 学 通 用 化 学 实 验 技 术
9/9
火 焰 光 度 法 测 定 自 来 水 中 钾 和 钠 的 含 量
95.4 注意事项
(1) 按照仪器的使用说明操作仪器。
(2) 注意保持雾化器、燃烧喷头的清洁。
(3) 燃气和助燃气的比例要合适,压力要恒定,以 保持火焰的稳定。 (4) 样品溶液应澄清,其组成与标准溶液的组成应 大致相仿。
大 学 通 用 化 学 实 验 技 术
6/9
火 焰 光 度 法 测 定 自 来 水 中 钾 和 钠 的 含 量
生化检验辅导:火焰光度法测定钾和钠
![生化检验辅导:火焰光度法测定钾和钠](https://img.taocdn.com/s3/m/618c63ff998fcc22bcd10dc6.png)
火焰光度法测定:Na+、K+测定可采用火焰光度法,火焰光度法是一种发射光谱分析法,利用火焰中激发态原子回降至基态时发射的光谱强度进行含量分析,可检测血清、尿液、脑脊液及胸腹水的Na+和K+,该方法属于经典的标准参考法,优点是结果准确可靠,广为临床采用。
通常采用的定量方法有标准曲线法、标准加入法和内标准法。
内标法是标本及标准液采用加进相同浓度的内部标准元素进行测定,一般是加入锂内标,测定的是锂/钠或锂/钾电流的比值,而不是单独的钠或钾的电流,这样,可减小燃气和火焰温度波动等因素引起的误差,因而有较好的准确性。
相关推荐>>2013年卫生职称考试宝典火爆热购中!
2013年全国卫生资格考试报名时间预测
2013年全国卫生资格考试时间预测。
实验四火焰光度法测定钾钠
![实验四火焰光度法测定钾钠](https://img.taocdn.com/s3/m/98bb5a99ba4cf7ec4afe04a1b0717fd5360cb2b7.png)
一、概述 二、仪器装置 三、试验环节 四、数据处理 五、思索题 六、影响火焰光度法分析成果旳原因
一、概述(1)
基本原理:
火焰光度法是用火焰作为激发光源旳一种发 射光谱法。测定时用助燃气(压缩空气)将试剂溶 液在喷雾室中喷成细雾,并伴随助燃气进入燃料气 (本试验用汽油)旳火焰中,被测物质旳原子受火 焰热能激发,产生一定波长旳特征辐射。控制一定 旳试验条件,根据待测元素特征辐射旳强度与其浓 度旳关系,即可用原则曲线进行定量测定。
强,校正曲线向纵坐标
电离和自吸收对钾校正曲线旳影响
方向弯曲。
影响火焰光度分析旳原因(3)
• 3、试液中共存离子对测定有影响,如碱金 属共存时谱线增强,使成果偏高。
• 4、仪器旳质量
• 单色器旳质量好,可降低共存物质旳干扰, 如采用很好旳干涉滤光片时,5 × 10-6 g/L 旳A12O3、Fe2O3、MgO或CaO均不影响K、 Na旳测定。但如使用质量差旳滤光片,则 1 ×10-4 g/L旳CaO也将使Na旳辐射强度急 剧增长,影响测定旳精确性。
一、概述(2)
试样溶液浓度 一定时,保持试验旳 条件不变,则火焰中基态原子浓度与火 焰中旳雾滴大小及雾量多少有关,试样 溶液中加入有机溶剂可变化液体旳表面 张力,粘度等物理性能。
表面张力小时 ,雾滴小,粘度小时, 吸喷速率大,可见有机溶液对火焰发射 强度有影响。
一、概述(3)
2、火焰光度法旳特点
①迅速:试样溶液于数分钟内可完毕测定。 ②精确:火焰光源稳定性高,干扰较少,误差为 2%~5%,可用于微量分析和常量分析。 ③敏捷:分析碱金属与碱土金属,绝对敏捷度可达 0.1~10×10-6 g。 ④设备简朴:被测试样易被火焰激发,产生旳谱线 较简朴,且均在可见光区,故使谱线分离和测量旳 设备简朴。 ⑤应用范围窄:主要用于碱金属和部分碱土金属旳 测定。
火焰原子吸收光谱法测定水中钾和钠
![火焰原子吸收光谱法测定水中钾和钠](https://img.taocdn.com/s3/m/cce72220bd64783e09122b4b.png)
和钠 的各个 步骤 , 影响测 定结 果的各 因素进行 了探 讨 。 对 关键词 : ; ; 钾 钠 火焰原子吸 收法 ; 火焰原 子发 射 法 中图分类 号 : 6 1 文献标 识码 : 文章编 号 :0 4 5 1 (0 2 0 一O 2 —0 P3 B 10 - 7 6 2 1 ) 8 1 2 2
14 2
西部 探矿 工程 2 42 灰化温 度及时 间 ..
21 02年第 8期
因此 , 1 0mgmI d NO ) 选 . 0 / P ( a。为基 体 改 进 剂 、 量 用
1 I测 定 S 。 0 n 2 3 进样量 的确定 .
灰化 步骤 的 目的是 让 与测 定元 素共 存 的那 些物 质 在原 子化 阶段 到来前走 掉 , 以免在 原子化 步骤 对测 定信
水样 应贮 于 聚 乙烯 瓶 中 , 硝 酸 调 至 p 用 H< 2 。不
宜用 玻璃瓶 , 别 不 能用 软 玻 璃瓶 贮 存 中 性 和 碱 性 水 特
系, 钾和钠 的含 量基 本 长期 不 变 。通 过钾 和钠 的、定 , 7 贝 4 可 以 了解 某一水 体 的 特性 。另 外水 中钾 和 钠 的含 量 测 定, 对保证 工农业 生产 和人 民群众身 体健康 具 有非常重
子发 射光 谱法 两方 法对 水 中 的钾 和钠 的测 定进 行 了研
究。 1 实验 部分
在高温 火焰 中 , 和 钠 易 发 生 电离 而 产 生 电离 干 钾
地消 除 电离 干扰 。
扰 , 水 的测 定 , 般将钾 和钠 配成 混合 标液 , 对 一 即可 有效
无 机 酸对钾 和钠 的测定有 影 响 , 浓度大 时 吸光度 酸
究 中心 ) 。
实验 用水 均为 去离子水 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
循环水中钾和钠的测定——火焰光度法
1.范围
本标准适用于循环冷却水中钾和钠的测定,测定范围K+为0.5 mg/L~10.0mg/L、Na+为1.0mg/L~20.0mg/L。
2.方法概要
当一种元素的原子受火焰激发后,能发射出该元素特有波长的光谱线,其光谱强度与其元素浓度成正比,因此可采用比较法(与标准溶液比较)用火焰光度计来测定钾和钠的含量。
3.仪器
3.1火焰光度计
3.2无油气体压缩机
4.试剂
4.1钾标准溶液:准确称取1.9066克经110℃干燥过的分析纯氯化钾溶于100毫升蒸馏水中,然后转移到一升容量瓶中,用蒸馏水稀释至刻度、摇匀。
每毫升此溶液含K+ 1.00 mg。
4.2钠标准溶液:准确称取2.5420克经110℃干燥过的分析纯氯化钠溶于100毫升蒸馏水中,然后转移到一升容量瓶中,用蒸馏水稀释至刻度、摇匀。
每毫升此溶液含Na+ 1.00 mg。
4.3钾、钠混合标准溶液:用移液管移取5毫升 1.00mg/L钾标准溶液和20毫升1.00mg/L钠标准溶液于1升容量瓶中,用蒸馏水稀释至刻度、摇匀。
此溶液钾、钠的浓度分别为
5.00mg/L和20.0mg/L。
5.分析步骤
5.1开机
5.1.1打开仪器开关,取下火焰上方的罩子,将燃气开关逆时针旋2.5~3圈(进样开关和助燃开关都处于关闭位置),按下点火按钮,开启压缩机至火焰点燃。
5.1.2打开进样开关,放入蒸馏水,调节助燃和燃气开关,使火焰高度在3cm~6cm 之间(火焰底部有十个光滑的圆锥状小突起,其周围有一圈清晰的波浪形圆环),放上罩子,将仪器预热约20分钟。
5.2测量
5.2.1校正:首先将量程开关置于0档,用小起子调节“内调”电位器,使K、Na 两表头均指示在0位。
5.2.2调零:将置程开关置于2档(测K+,测Na+时用1档)调节“调零”旋钮使指针指示0位。
5.2.3定位:换上K+ ——Na+混合标准溶液(K+=5.00ppm, Na+=20.0ppm)调节“满度”旋钮使指针指示50格(或满度),重复5.2.1~5.2.3步骤。
5.2.4换上蒸馏水检查0点后,再换上样品溶液,待指针趋于稳定后读取平均值T (格)。
5.3关机
5.3.1将量程开关置于0档,先后用蒸馏水、乙醇和蒸馏水清洗管路各几分钟。
5.3.2取下罩子,关闭压缩机(拔下电源插头),让火焰自然燃尽,然后关闭进样开关和助燃、燃气旋钮以及仪器开关(电源)。
5.3.3待仪器冷却后放上罩子。
6.结果计算
水样中K+ 、Na+含量以mg/L计,分别按式(1)、(2)计算:
K+ =T / 10 mg/L (1) Na+=(20 × T) / 50=(2 × T) / 5 mg/L (2)
取平行测定两结果的算数平均值作为水样中K+ 、Na+含量。
7.重复性
平行测定两结果的绝对差值不大于这两个测定值的算术平均值的10%。
8.注意事项
8.1由于火焰光度法的影响因素较多,测量条件较难控制一致,因此不采用标准曲线法,而采用与标准溶液相比较的方法。
最好配几种不同浓度的标准溶液,选择浓度与被测试样相近的标准溶液进行比较测量。
8.2所用火焰光度计的型号不同,其分析步骤略有不同,具体分析步骤可根据仪器说明书上所写的分析步骤或根据经过自己试验所定的分析步骤进行操作。
8.3≤1000倍的Na+、Ca2+、Zn2+、HCO3-、六偏磷酸钠;≤100倍的Mg2+、Fe3+、SiO2、PO43-以及≤20倍的SO42-对K+的测定无干扰。
8.4水样测定超过量程范围时需稀释。
(若测定K+的目的,在于确定循环冷却水浓缩倍数时,可将循环冷却水按运行状态进行稀释,使其含盐量接近补水状况,再进行测定,这样可相对消除干扰。
)。