《等比数列》教案(2)

合集下载

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的性质。

2. 引导学生掌握等比数列的通项公式,并能运用通项公式解决实际问题。

3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。

二、教学内容1. 等比数列的概念2. 等比数列的性质3. 等比数列的通项公式4. 等比数列的求和公式5. 运用通项公式解决实际问题三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式及其应用。

2. 教学难点:等比数列通项公式的推导和运用。

四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。

2. 利用多媒体课件,生动展示等比数列的图形和性质,提高学生的直观认识。

3. 结合例题,讲解等比数列通项公式的应用,培养学生解决问题的能力。

4. 开展小组讨论,促进学生之间的交流与合作,提高学生的团队意识。

五、教学过程1. 引入新课:通过讲解现实生活中的例子,引出等比数列的概念。

2. 讲解等比数列的性质:引导学生发现等比数列的规律,总结等比数列的性质。

3. 推导等比数列的通项公式:引导学生利用已知的数列性质,推导出通项公式。

4. 讲解等比数列的求和公式:结合通项公式,讲解等比数列的求和公式。

5. 运用通项公式解决实际问题:选取典型例题,讲解等比数列通项公式的应用。

6. 课堂练习:布置适量习题,巩固所学知识。

7. 总结与反思:引导学生总结本节课所学内容,反思自己的学习过程。

8. 课后作业:布置课后作业,巩固所学知识,提高学生的应用能力。

9. 教学评价:对学生的学习情况进行评价,了解学生对等比数列知识的掌握程度。

10. 教学反思:总结本节课的教学效果,针对存在的问题,调整教学策略。

六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生深刻理解等比数列的概念和性质。

2. 互动教学:鼓励学生积极参与课堂讨论,提问引导学生思考,增强课堂的互动性。

高中数学选择性必修二 4 3 1(第2课时)等比数列的性质及应用 教案

高中数学选择性必修二 4 3 1(第2课时)等比数列的性质及应用 教案
6数据分析:等比数列的性质及推导、运用,提高学生数学判断以及参与数学活动的能力
重点
等比数列的性质、等比数列的应用
难点
等比数列的运算、等比数列的性质及应用
教学过程
教学环节
教师活动
学生活动
设计意图
导入新课
温故知新
等比数列
等差数列
定义
公比(公差)
q不可以是0
d可以是0
等比(差)中项
等比中项
等差中项 2A=a+b
等比数列的性质及应用教学设计
课题
等比数列的性质及应用
单元
第一单元
学科
数学
年级
高二
教材分析
《等比数列》是人教A版数学选择性必修第二册第四章的内容。本节是数列这一章的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中蕴涵的类比、化归、分类讨论、整体变换和方程思想方法,都是学生今后学习和工作中必备的数学素养。
分析:复利是把前一期的利息与本金之和算作本金,再计算下一期的利息,所以若原始本金为a元,每期的利率为r,则从第一期开始,各期的本利和 构成等比数列.
解:(1)设这笔钱存n个月以后的本利和组成一个数列 ,则 是等比数列,
首项 ,
公比q=1+0.400%,所以
所以,
12个月后的利息为 (元)
(2)设季度利率为r,这笔钱存n个季度以后的本金和组成一个数列 ,则 也是一个等比数列,首项 ,公比为1+r,于是
因此,以季度复利计息,存4个季度后的利息为 元.
解不等式 ,得
所以,当季度利率不小于1.206%时,按季结算的利息不少于按月结算的利息.
例5已知数列Байду номын сангаас的首项 .

高三数学必修五《等比数列》教案

高三数学必修五《等比数列》教案

高三数学必修五《等比数列》教案教案【一】教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。

教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。

教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列如何确定一个等差数列(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。

而这个数列就是我们今天要研究的等比数列了。

)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

这个常数叫做公比。

师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的类似于等差数列,要想确定一个等比数列的通项公式,要知道什么师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

等比数列性质教学教案

等比数列性质教学教案

等比数列性质教学教案一、教学目标:1. 理解等比数列的概念。

2. 掌握等比数列的性质。

3. 学会运用等比数列的性质解决问题。

二、教学内容:1. 等比数列的概念。

2. 等比数列的性质。

3. 等比数列的通项公式。

4. 等比数列的前n项和公式。

5. 等比数列的应用。

三、教学重点:1. 等比数列的概念及性质。

2. 等比数列的通项公式和前n项和公式。

四、教学难点:1. 等比数列的性质的理解和应用。

2. 等比数列的通项公式和前n项和公式的推导。

五、教学方法:1. 讲授法:讲解等比数列的概念、性质、通项公式和前n项和公式。

2. 案例分析法:分析等比数列的应用实例。

3. 练习法:让学生通过练习题巩固所学知识。

六、教学过程:1. 引入:通过生活中的实例,引导学生思考等比数列的概念。

2. 讲解:讲解等比数列的概念、性质、通项公式和前n项和公式。

3. 案例分析:分析等比数列的应用实例,让学生理解等比数列的实际意义。

4. 练习:让学生通过练习题,巩固所学知识。

5. 总结:对本节课的内容进行总结,强调等比数列的性质和应用。

七、课后作业:1. 等比数列的概念和性质的复习。

2. 等比数列的通项公式和前n项和公式的应用。

八、教学评价:1. 课堂讲解的清晰度和准确性。

2. 学生对等比数列的概念和性质的理解程度。

3. 学生对等比数列的通项公式和前n项和公式的掌握程度。

九、教学反思:在课后,教师应反思本节课的教学效果,是否达到了教学目标,学生是否掌握了等比数列的概念和性质,以及教学过程中是否存在需要改进的地方。

十、教学拓展:1. 等比数列在实际生活中的应用。

2. 等比数列与其他数列的关系。

3. 等比数列的进一步研究。

六、教学策略:1. 采用互动式教学,鼓励学生积极参与讨论,提高学生的思维能力。

2. 通过数学软件或教具展示等比数列的性质,增强学生的直观理解。

3. 设计具有梯度的练习题,让学生在练习中不断深化对等比数列性质的理解。

七、教学准备:1. 准备等比数列的相关教学素材,如PPT、教学案例、练习题等。

高中数学 第1章 数列 3.1 等比数列 第2课时 等比数列的性质教案 高二数学教案

高中数学 第1章 数列 3.1 等比数列 第2课时 等比数列的性质教案 高二数学教案

第2课时 等比数列的性质阅读教材P 23思考交流以下P 24例3以上部分,完成下列问题.对于等比数列{a n },通项公式a n =a 1·q n -1=a 1q·q n.根据指数函数的单调性,可分析当q >0时的单调性如下表:思考:(1)若等比数列{a n }中,a 1=2,q =2,则数列{a n }的单调性如何?[提示] 递减数列.(2)等比数列{a n }中,若公比q <0,则数列{a n }的单调性如何? [提示] 数列{a n }不具有单调性,是摆动数列. 2.等比中项阅读教材P 25练习2以上最后两段部分,完成下列问题. (1)前提:在a 与b 中间插入一个数G ,使得a ,G ,b 成等比数列.(2)结论:G 叫作a ,b 的等比中项. (3)满足关系式:G 2=ab .思考:(1)任意两个数都有等差中项,任意两个数都有等比中项吗?[提示] 不是,两个同号的实数必有等比中项,它们互为相反数,两个异号的实数无等比中项.(2)两个数的等差中项是唯一的,若两个数a ,b 存在等比中项,唯一吗?[提示] 不唯一,如2和8的等比中项是4或-4.1.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A .-12B .-2C .2D .12D [由a 5=a 2q 3,得q 3=a 5a 2=142=18,所以q =12,故选D .]2.将公比为q 的等比数列{a n }依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,…,则此数列是( )A .公比为q 的等比数列B .公比为q 2的等比数列 C .公比为q 3的等比数列 D .不一定是等比数列B [由于a n a n +1a n -1a n =a n a n -1×a n +1a n=q ·q =q 2,n ≥2且n ∈N +,所以{a n a n +1}是以q 2为公比的等比数列,故选B .]3.等比数列{a n }中,若a 1=2,且{a n }是递增数列,则数列{a n }的公比q 的取值范围是________.(1,+∞) [因为a 1=2>0,要使{a n }是递增数列,则需公比q >1.]4.4-23与4+23的等比中项是________. 2或-2 [由题意知4-23与4+23的等比中项为 ±4-234+23=±16-12=±2.]等比中项及应用x =_____________.(2)设a ,b ,c 是实数,若a ,b ,c 成等比数列,且1a ,1b ,1c成等差数列,则c a +ac的值为________.(1)-4 (2)2 [(1)由题意得(2x +2)2=x (3x +3),x 2+5x +4=0,解得x =-1或x =-4,当x =-1时,2x +2=0,不符合题意,舍去, 所以x =-4.(2)由a ,b ,c 成等比数列,1a ,1b ,1c成等差数列,得⎩⎪⎨⎪⎧b 2=ac ,2b =1a +1c,即4ac =⎝ ⎛⎭⎪⎫1a +1c 2,故(a -c )2=0, 则a =c ,所以c a +ac=1+1=2.]应用等比中项解题的两个注意点(1)要证三数a ,G ,b 成等比数列,只需证明G 2=ab ,其中a ,b ,G 均不为零.(2)已知等比数列中的相邻三项a n -1,a n ,a n +1,则a n 是a n -1与a n +1的等比中项,即a 2n =a n -1·a n +1,运用等比中项解决问题,会大大减少运算过程.1.(1)已知1既是a 2与b 2的等比中项,又是1a 与1b的等差中项,则a +ba 2+b2的值是( ) A .1或12B .1或-12C .1或13D .1或-13(2)已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________.(1)D(2)4×⎝ ⎛⎭⎪⎫32n -1[(1)由题意得,a 2b 2=(ab )2=1,1a +1b=2,所以⎩⎪⎨⎪⎧ab =1,a +b =2或⎩⎪⎨⎪⎧ab =-1,a +b =-2.因此a +b a 2+b 2的值为1或-13.(2)由已知可得(a +1)2=(a -1)(a +4), 解得a =5,所以a 1=4,a 2=6,所以q =a 2a 1=64=32,所以a n =4×⎝ ⎛⎭⎪⎫32n -1.]等比数列的设法与求解【例2】 已知四个实数,前三个数依次成等比数列,它们的积是-8,后三个数依次成等差数列,它们的积是-80,则这四个数为________.1,-2,4,10或-45,-2,-5,-8 [由题意设此四个数分别为b q,b ,bq ,a ,则b 3=-8,解得b =-2,q 与a 可通过解方程组⎩⎪⎨⎪⎧2bq =a +b ,ab 2q =-80求出,即为⎩⎪⎨⎪⎧a =10,b =-2,q =-2或⎩⎪⎨⎪⎧a =-8,b =-2,q =52,所以此四个数为1,-2,4,10或-45,-2,-5,-8.]灵活设项求解等比数列的技巧(1)三个数成等比数列设为aq,a ,aq .(2)四个符号相同的数成等比数列设为a q 3,a q,aq ,aq 3.(3)四个数成等比数列,不能确定它们的符号相同时,可设为:a ,aq ,aq 2,aq 3.2.已知三个数成等比数列,其积为1,第2项与第3项之和为-32,则这三个数依次为________.-25,1,-52 [设这三个数分别为aq,a ,aq ,则⎩⎪⎨⎪⎧a 3=1,a +aq =-32,解得a =1,q =-52,所以这三个数依次为-25,1,-52.]等比数列的性质及应用[探究问题]1.在等差数列{a n }中,a n =a m +(n -m )d ,类比等差数列中通项公式的推广,你能得出等比数列通项公式推广的结论吗?[提示] a n =a m ·qn -m.2.在等差数列{a n }中,由2a 2=a 1+a 3,2a 3=a 2+a 4,…我们推广得到若2p =m +n ,则2a p =a m +a n ,若{a n }是等比数列,我们能得到什么类似的结论.[提示] 若2p =m +n ,则a 2p =a m ·a n .3.在等差数列{a n }中,若m +n =p +q ,则a m +a n =a p +a q ,类比这个性质,若{a n }是等比数列,有哪个结论成立?[提示] 若m +n =p +q ,则a m ·a n =a p ·a q .【例3】 (1)在等比数列{a n }中,a n >0,若a 3·a 5=4,则a 1a 2a 3a 4a 5a 6a 7=________.(2)设{a n }为公比q >1的等比数列,若a 2 018和a 2 019是方程4x 2-8x +3=0的两根,则a 2 030+a 2 031=________.(3)在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比q 为整数,则a n =________.思路探究:利用等比数列的性质求解.(1)128 (2)2·312 (3)-(-2)n -1[(1)a 3a 5=a 24=4,又a n>0,所以a 4=2,a 1a 2a 3a 4a 5a 6a 7=(a 1·a 7)·(a 2·a 6)·(a 3·a 5)·a 4=a 24·a 24·a 24·a 4=a 74=27=128.(2)解方程4x 2-8x +3=0得x 1=12,x 2=32,因为q >1,故a 2 019=32,a 2 018=12,故q =3, ∴a 2 030+a 2 031=a 2 018q 12+a 2 019·q 12=(a 2 018+a 2 019)q 12=2·312.(3)在等比数列{a n }中,由a 4a 7=-512得a 3a 8=-512, 又a 3+a 8=124,解得a 3=-4,a 8=128或a 3=128,a 8=-4,因为公比q 为整数,所以q =5a 8a 3=-51284=-2, 故a n =-4×(-2)n -3=-(-2)n -1.]1.(变条件)将例3(3)中等比数列满足的条件改为“a 4+a 7=2,a 5a 6=-8”,求a 1+a 10.[解] 因为{a n }是等比数列,所以a 5a 6=a 4a 7=-8, 又a 4+a 7=2,解得a 4=4,a 7=-2或a 4=-2,a 7=4, 当a 4=4,a 7=-2时,q 3=-12,a 1+a 10=a 4q3+a 7q 3=-7,当a 4=-2,a 7=4时,q 3=-2,a 1+a 10=a 4q3+a 7q 3=-7.故a 1+a 10=-7.2.(变结论)例3(3)题的条件不变,求log 4|a 2|+log 4|a 3|+log 4|a 8|+log 4|a 9|.[解] 因为a 4a 7=-512,所以a 2a 9=a 3a 8=-512, 故log 4|a 2|+log 4|a 3|+log 4|a 8|+log 4|a 9| =log 4(|a 2a 9|·|a 3a 8|)=log 45122=log 229=9.等比数列的常用性质性质1:通项公式的推广:a n =a m ·qn -m(m ,n ∈N +).性质2:若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n .特别的,若k +φ=2m (m ,k ,φ∈N +),则a k ·a φ=a 2m .性质3:若{a n },{b n }(项数相同)是等比数列,则{λb n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 仍是等比数列.性质4:在等比数列{a n }中,序号成等差数列的项仍成等比数列.性质5:⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1⇔{a n }递增;⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1⇔{a n }递减;q =1⇔{a n }为常数列;q<0⇔{a n }为摆动数列.1.解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法.2.所谓通式通法,指应用通项公式,前n 项和公式,等差中项,等比中项等列出方程(组),求出基本量.3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.1.判断正误(正确的打“√”,错误的打“×”)(1)数列-1,-2,-4,-8,-16是递减数列.( ) (2)等比数列{a n }中,a 1>1,q <0,则数列|a 1|,|a 2|,|a 3|,…,|a n |,…是递增数列.( )(3)若G 是a ,b 的等比中项,则G 2=ab ,反之也成立.( ) [答案] (1)√ (2)× (3)× [提示] (1)正确;(2)不正确,如a 1=2,q =⎝ ⎛⎭⎪⎫-12,则|a n |=2×12n -1=12n -2是递减数列;(3)不正确,当G 是a ,b 的等比中项时,G 2=ab 成立,但当G 2=ab 时,G 不一定是a ,b 的等比中项,如G=a =b =0.2.在等比数列{a n }中,a 4=6,则a 2a 6的值为( ) A .4 B .8 C .36D .32C [因为{a n }是等比数列,所以a 2a 6=a 24=36.]3.在等比数列{a n }中,a 888=3,a 891=81,则公比q =_____________.3 [因为a 891=a 888q891-888=a 888q 3,所以q 3=a 891a 888=813=27.所以q =3.]4.在等比数列{a n }中,a 3a 4a 5=8,求a 2a 3a 4a 5a 6的值.[解] 在等比数列{a n }中,由a 3a 4a 5=a 34=8,得a 4=2,又因为a2a6=a3a5=a24,所以a2a3a4a5a6=a54=25=32.。

人教A版高中数学必修五2.4《等比数列(二)》

人教A版高中数学必修五2.4《等比数列(二)》
解析:∵数列{an}成等比数列, ∴a6·a15=a9·a12, ∴a6·a15=15, ∴a1·a2·a3·a4·…·a20=(a1·a20)10=(a6·a15)10 =1510.
答案:1510
要点阐释
1.等比数列的性质 (1)在等比数列中,我们随意取出连续的三项以上的数, 把它们重新依次看成一个数列,则仍是等比数列. (2)在等比数列中,我们任取“间隔相同”的三项以上的数, 把它们重新依次看成一个数列,则仍是等比数列,如:等比 数列a1,a2,a3,… ,an,….那么a2,a5,a8,a11,a14,…; a3,a5,a7,a9,a11…各自仍构成等比数列.
已知等比数列an
满足
an>0,n=1,2,…,
且 a5·a2n-5=22n(n≥3),则当 n≥1 时,log2a1+log2a3+…
+log2a2n-1=
()
A.(n-1)2
B.n2
C.(n+1)2
D.n(2n-1)
错解:易得 an=2n,且 log2a1+log2a3+…+log2a2n-1 =log2(a1a3…a2n-1)=log221+3+…+(2n-1) =1+3+ …+(2n-1)=1+22n-1(2n-1) =n(2n-1).从而错选 D 错因分析:对等差数列1,3,…,2n-1的项数没 数清.
即aa1122-+22aa11aa55++aa5522==330422,, 两式相减得 a1a5=64,即 a32=64, 又 a5>a1,故 a3=8. 答案:A
2.在等
比数列an
中,
a8

a4
与________的等比中项
A.a9
B.a10
C.a11
() D.a12

中职教育数学《等比数列》教案

中职教育数学《等比数列》教案
什么是等差数列?等差数列的数学语言表示?等差数列的通项公式?
创设情境兴趣导入
1.细胞分裂的个数组成的数列1,2,4,8,16,…
2.庄子曰:“一尺之棰,日取其半,万世不竭。”

3.计算机病毒传播时,假设每一轮每一台计算机都感染20台计算机,则这种病毒每一轮感染的计算机数构成的数列是:
1, …
4.【观察】1,2,4,8,16,…(1)
由定义知,若数列 为等比数列,q为公差,则, 即
思考
理解
记忆
巩固知识典型例题
如果是请说出公比是多少?
练习:
观察
思考
主动
求解
创设情境兴趣导入
你能求出数列中的任意一项吗?
动手
求解
动脑思考探索新知
与等差数列相类似,我们通过观察等比数列各项之间的关系,分析、探求规律.
设等比数列 的公比为q,则
……
【说明】
依此类推,得到等比数列的通项公式:
中职教育数学《等比数列》教案
教学课题
6.3等比数列
教学班级
听课人员
数ቤተ መጻሕፍቲ ባይዱ教研组教师
教学目标
知识目标:
(1)理解等比数列的定义;
(2)理解等比数列通项公式.
能力目标:
通过学习等比数列的通项公式,培养学生处理数据的能力
教学重点
等比数列的通项公式
教学难点
等比数列通项公式的推导
教学过程
教师活动
学生活动
复习数列的知识
解由于 , ,
故,数列的通项公式为

所以

练习:
例3在等比数列 中, , ,求 .
解由 有
,(1)
,(2)

必修5-2-6教学案等比数列(2)

必修5-2-6教学案等比数列(2)
6、将20,50,100这三个数加上相同的常数,使它们成为等比数列,则其公比是________
7、已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则 的值为______
8、设数列 满足,
求通项公式 。
自我纠错
本节内容个人掌握情况反思:
学习心得
1.如果an≠0,且an+12=anan+2对任意的n∈N*都成立,则数列{an}是等比数列吗?.
2.等比数列的性质:
1) ( );
2)对于k、l、m、n∈N*,若 ,则akal=aman.;
3)每隔 项( )取出一项,按原来顺序排列,所得的新数列仍为等比数列;
4) 仍成等比数列;
5)在等比数列中,从第二项起,每一项都是与它等距离的前后两项的等比中项.
课题
等比数列的概念和通项公式(2)
编号
7
学习目标
1.灵活应用等比数列的定义及通项公式.
2.熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法.
教学重点、难点
重点:等比中项的应用及等比数列性质的应用。
难点:灵活应用等比数列定义、通项公式、性质解决一些相关问题。
教学方法
引导探究讲练结合
学习要点及自主学习导引
2,x,y,z,162是成等比数列的五个正整数,则z=
3.若 成等比数列,则称 为 和 的等比中项.
(1) 和 的等比中项为;
(2)已知两个数 和 的等比中项是 ,则
4、已知{an}是等比数列,且an>0,a2a4+2a3a5+a4a6=25,那么a3+a5=
5、已知等比数列中a3=-4,a6=54,则a9=______
3.(1)若{an}为等比数列,公比为q,则{a2n}也是等比数列,公比为.

人教A版高中数学 必修五 2.4 第2课时 等比数列的性质(教案)

人教A版高中数学 必修五 2.4 第2课时 等比数列的性质(教案)

2.4等比数列(2)教学重点1.探究等比数列更多的性质;2.解决生活实际中的等比数列的问题.教学难点渗透重要的数学思想.教具准备多媒体课件、投影胶片、投影仪等三维目标一、知识与技能1.了解等比数列更多的性质;2.能将学过的知识和思想方法运用于对等比数列性质的进一步思考和有关等比数列的实际问题的解决中;3.能在生活实际的问题情境中,抽象出等比数列关系,并能用有关的知识解决相应的实际问题.二、过程与方法1.继续采用观察、思考、类比、归纳、探究、得出结论的方法进行教学;2.对生活实际中的问题采用合作交流的方法,发挥学生的主体作用,引导学生探究问题的解决方法,经历解决问题的全过程;3.当好学生学习的合作者的角色.三、情感态度与价值观1.通过对等比数列更多性质的探究,培养学生的良好的思维品质和思维习惯,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2.通过生活实际中有关问题的分析和解决,培养学生认识社会、了解社会的意识,更多地知道数学的社会价值和应用价值.教学过程导入新课师教材中第59页练习第3题、第4题,请学生课外进行活动探究,现在请同学们把你们的探究结果展示一下.生由学习小组汇报探究结果.师对各组的汇报给予评价.师出示多媒体幻灯片一:第3题、第4题详细解答:第3题解答:(1)将数列{a n }的前k 项去掉,剩余的数列为a k+1,a k+2,….令b i =a k+i ,i=1,2,…, 则数列a k+1,a k+2,…,可视为b 1,b 2,…. 因为q a a b b ik i k i i ==++++11 (i≥1),所以,{b n }是等比数列,即a k+1,a k+2,…是等比数列. (2){a n }中每隔10项取出一项组成的数列是a 1,a 11,a 21,…,则109101101121111......q a a a a a a k k =====-+ (k≥1). 所以数列a 1,a 11,a 21,…是以a 1为首项,q 10为公比的等比数列.猜想:在数列{a n }中每隔m(m 是一个正整数)取出一项,组成一个新数列,这个数列是以a 1为首项、q m 为公比的等比数列.◇本题可以让学生认识到,等比数列中下标为等差数列的子数列也构成等比数列,可以让学生再探究几种由原等比数列构成的新等比数列的方法. 第4题解答:(1)设{a n }的公比是q ,则 a 52=(a 1q 4)2=a 12q 8, 而a 3·a 7=a 1q 2·a 1q 6=a 12q 8, 所以a 52=a 3·a 7. 同理,a 52=a 1·a 9.(2)用上面的方法不难证明a n 2=a n -1·a n +1(n >1).由此得出,a n 是a n -1和a n +1的等比中项,同理可证a n 2=a n -k ·a n +k (n >k >0).a n 是a n -k 和a n +k 的等比中项(n >k >0).师 和等差数列一样,等比数列中蕴涵着许多的性质,如果我们想知道的更多,就要对它作进一步的探究.推进新课 [合作探究] 师 出示投影胶片1例题1 (教材P 61B 组第3题)就任一等差数列{a n },计算a 7+a 10,a 8+a 9和a 10+a 40,a 20+a 30,你发现了什么一般规律,能把你发现的规律用一般化的推广吗?从等差数列和函数之间的联系的角度来分析这个问题.在等比数列中会有怎样的类似结论?师 注意题目中“就任一等差数列{a n }”,你打算用一个什么样的等差数列来计算?生 用等差数列1,2,3,…师 很好,这个数列最便于计算,那么发现了什么样的一般规律呢? 生 在等差数列{a n }中,若k+s=p+q(k,s,p,q ∈N *),则a k +a s =a p +a q .师 题目要我们“从等差数列与函数之间的联系的角度来分析这个问题”,如何做? 生 思考、讨论、交流.师 出示多媒体课件一:等差数列与函数之间的联系. [教师精讲]师 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{a n }的图象,可以看出qs a a p k a a q s p k ==,, 根据等式的性质,有1=++=++qp sk a a a a q p s k .所以a k +a s =a p +a q .师 在等比数列中会有怎样的类似结论?生 猜想对于等比数列{a n },类似的性质为:k+s=p+t(k,s,p,t ∈N *),则 a k ·a s =a p ·a t .师 让学生给出上述猜想的证明. 证明:设等比数列{a n }公比为q , 则有a k ·a s =a 1q k-1·a 1q s-1=a 12·q k+s-2,a p ·a t =a 1q p-1·a 1q t-1=a 12·q p+t-2.因为k+s=p+t, 所以有a k ·a s =a p ·a t .师 指出:经过上述猜想和证明的过程,已经得到了等比数列的一个新的性质. 即等比数列{a n }中,若k+s=p+t(k,s,p,t ∈N *),则有a k ·a s =a p ·a t . 师 下面有两个结论:(1)与首末两项等距离的两项之积等于首末两项的积;(2)与某一项距离相等的两项之积等于这一项的平方. 你能将这两个结论与上述性质联系起来吗? 生 思考、列式、合作交流,得到:结论(1)就是上述性质中1+n =(1+t)+(n -t)时的情形; 结论(2)就是上述性质中k+k=(k+t)+(k-t)时的情形. 师 引导学生思考,得出上述联系,并给予肯定的评价. 师 上述性质有着广泛的应用. 师 出示投影胶片2:例题2例题2(1)在等比数列{a n }中,已知a 1=5,a 9a 10=100,求a 18; (2)在等比数列{b n }中,b 4=3,求该数列前七项之积; (3)在等比数列{a n }中,a 2=-2,a 5=54,求a 8.例题2 三个小题由师生合作交流完成,充分让学生思考,展示将问题与所学的性质联系到一起的思维过程. 解答:(1)在等比数列{a n }中,已知a 1=5,a 9a 10=100,求a 18.解:∵a 1a 18=a 9a 10,∴a 18=51001109=a a a =20. (2)在等比数列{b n }中,b 4=3,求该数列前七项之积. 解:b 1b 2b 3b 4b 5b 6b 7=(b 1b 7)(b 2b 6)(b 3b 5)b 4.∵b 42=b 1b 7=b 2b 6=b 3b 5,∴前七项之积(32)3×3=37=2 187. (3)在等比数列{a n }中,a 2=-2,a 5=54,求a 8. 解:.∵a 5是a 2与a 8的等比中项,∴542=a 8×(-2). ∴a 8=-1 458. 另解:a 8=a 5q 3=a 5·2545425-⨯=a a =-1 458. [合作探究]师 判断一个数列是否成等比数列的方法:1、定义法;2、中项法;3、通项公式法. 例题3:已知{a n }{b n }是两个项数相同的等比数列,仿照下表中的例子填写表格.从中你能得出什么结论?证明你的结论.a nb n a n ·b n 判断{a n ·b n }是否是等比数列例 n )32(3⨯-5×2n -1 1)34(10-⨯-n是自选1 自选2师 请同学们自己完成上面的表.师 根据这个表格,我们可以得到什么样的结论?如何证明?生 得到:如果{a n }、{b n }是两个项数相同的等比数列,那么{a n ·b n }也是等比数列. 证明如下:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的第n 项与第n +1项分别为a 1p n -1b 1q n -1与a 1p n b 1q n ,因为pq qb p a q b p a b a b a n n nn n n n n ==•--++11111111, 它是一个与n 无关的常数,所以{a n ·b n }是一个以pq 为公比的等比数列. [教师精讲]除了上面的证法外,我们还可以考虑如下证明思路: 证法二:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的第n 项、第n -1项与第n +1项(n >1,n ∈N *)分别为a 1p n -1b 1q n -1、a 1p n -2b 1q n -2与a 1p n b 1q n ,因为 (a n b n )2=(a 1p n -1b 1q n -1)2=(a 1b 1)2(pq) 2(n -1),(a n -1·b n -1)(a n +1·b n +1)=(a 1p n -2b 1q n -2)(a 1p n b 1q n )=(a 1b 1)2(pq)2(n -1), 即有(a n b n )2=(a n -1·b n -1)(a n +1·b n +1)(n >1,n ∈N *),所以{a n ·b n }是一个等比数列.师 根据对等比数列的认识,我们还可以直接对数列的通项公式考察: 证法三:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的通项公式为 a n b n =a 1p n -1b 1q n -1=(a 1b 1)(pq) n -1,设c n =a n b n ,则c n =(a 1b 1)(pq) n -1, 所以{a n ·b n }是一个等比数列. 课堂小结本节学习了如下内容:1.等比数列的性质的探究.2.证明等比数列的常用方法.布置作业课本第60页习题2.4 A组第3题、B组第1题.板书设计等比数列的基本性质及其应用例1例2例3。

等比数列教案(中职)

等比数列教案(中职)

等比数列教案教学目标:(1)掌握等比数列的定义;归纳出等比数列的通项公式。

(2)通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;会解决关于等比数列的简单问题。

(3)进行史志教育,激发学生学习的学习兴趣;渗透数学中的类比、归纳、猜测等合情推理方法;充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的。

重难点:等比数列的定义及通项公式、性质。

教学重点:灵活应用定义式及通项公式、性质解决相关问题。

教学过程:1、复习导入:(1)等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d来表示。

(2)等差数列的通项公式:An=A1+(n-1)d(3)An=Am+(n-m)d (n>m)(4)若m+n=p+q,则Am+An=Ap+Aq.2、引入:早在春秋战国时代,我国名家公孙子龙就有个著名论断:“一尺之锤,日取其半,万世不竭。

”(用粉笔在手中演练)若设该锤的单位长度为1,则每天所得的长度构成一个数列:1/2,1/4,1/8,1/16……在此引入数学史料,进行数学史志教育。

在印度有这样一个美妙的传说,印度国王为了嘉奖国际象棋的发明者,将他召到王宫,并让他尽管提条件,这个发明者说:“请国王在国际象棋棋盘的第1个格子里放上1粒麦子,第2个格子里放上2粒麦子,第3个格子里放上4粒麦子,第4个格子里放上8粒麦子,以此类推,直到最后一个格子。

国王听后哈哈大笑,说他条件太少了,便吩咐人去办,可经办人一算,吓了一跳,发现全印度的麦子给了他还远远不够。

那在这里呢,毎格的麦子数构成了这样一个数列:1,2,4,8,……由此激发学生的学习兴趣。

3、定义:在认真考察以上两个数列,寻求他们的共同点,并对照等差数列的定义,绝大部分同学都非常轻松地自己给出等比数列的定义。

等比数列的性质教案及学案

等比数列的性质教案及学案

2.4.2等比数列性质学案一.复习引入:问题:已知等比数列{}n a 中,179a a ⋅=,求26a a ⋅和35a a ⋅值,从中你有何结论?二.新课:等比数列性质探究类比等差数列的定义和性质,猜想等比数列对应的性质,并证明.1.证明性质(1){}()+⋅=⋅∈比,,,,n n m p q a m n p q a a a a n m p q N 在等数列中:若+=+,则2.证明性质(2){},(,)n m nn ma a q n m N a -+=∈在等比数列中,已知公比为q,则有例:1.在等比数列{}n a 中,已知15a =,910100a a =,求18a2. 在等比数列{}n a 中,352,8a a ==,求7a3. 在等比数列{}n b 中,32b =,求该数列前五项之积4.在等比数列{}n a 中,11,a =,公比1q ≠,若23m a a a =,求m 值.注意点:等比数列角标性质中要求等号两侧项数相同随堂练习: 1.已知等差数列{}n a 满足27124,a a a -+=数列{}n b 是等比数列,且77b a =,求311b b 值2. 已知等比数列{}n a 满足3424a a a =,求15a a3.已知等比数列{}n a 中各项均为正数,且+=564718a a a a ,求+31310log log a a 值4.已知各项均为正数的等比数列{}n a 中,13795,20a a a a ==,求46a a 值小结:等比数列的角标性质及通项公式的推广通过与等差数列的性质相类比对等比数列性质进行探究课后思考:你能通过类比等差数列其他性质的到别的等比数列的性质吗?试证明.作业:{}==求37114,6,n a a a a 1.等比数列中{}+=+++=等比数列的各项均为正数,且则56473132393102.18,log log log log __________n a a a a a a a a a{}=求162284,n a a a a a a 3.等比数列中{}{}{}求证:4.n n n n a b a b 若数列是项数相同的等比数列,数列也是等比数列。

2.4.2《等比数列(第二课时)》

2.4.2《等比数列(第二课时)》

a1 1, q 2或a1 4, q
1 2
3.1《等比数列》 (第二课时)
教学目标
• • • • • • • • • • • 知识与技能目标 等比中项的概念; 掌握"判断数列是否为等比数列"常用的方法; 进一步熟练掌握等比数列的通项公式、性质及应用. 过程与能力目标 明确等比中项的概念; 进一步熟练掌握等比数列的通项公式、性质及应用. 教学重点 等比数列的通项公式、性质及应用. 教学难点 灵活应用等比数列的定义及性质解决一些相关问题.
an amq
nm
试比较 a n =a1qn-1 与上式
练习
已知等比数列an , a5 20, a15 5, 求a20.
解:由a15 =a 5q
5
10
2 5 5 5 a20 a15 q 或 2 2
变式:已知等比数列
q
1 得 q 4 1
10
an, a2010 8a2007 , 求公比q
等比数列的通项公式:
an=a1qn-1 (n∈N﹡,q≠0)
特别地,等比数列{an}中,a1≠0,q≠0
二.学以致用
已知等比数列的公比为q,第m项为 am ,求 an .
解:由等比数列的通项公式可知 an a1q n 1 am a1q m 1
an 两式相除,得 q n m am
详见P25
等比数列的判定
在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*. (1)证明:数列{an-n}是等比数列; 【思路点拨】 证明一个数列是等比数列常用定义法,
即 an+1 =
an
q,对于本例(1)适当变形即
可求证
四、判断等比数列的方法

等比数列教案

等比数列教案

等比数列教案
教学目标:
1. 理解等比数列的概念,掌握等比数列的通项公式和求和公式;
2. 能够根据已知条件求等比数列的其他项;
3. 能够利用等比数列解决实际问题。

教学过程:
步骤一:引入
1. 教师可以通过展示一张有规律的图片或者给出一组有规律的数字,引导学生思考其中的规律,并引入等比数列的概念。

2. 教师提问:什么是等比数列?学生可以在讨论的过程中得出等比数列的定义。

步骤二:探究
1. 教师给出一个等比数列的例子,让学生进行观察并总结规律。

2. 学生可以利用观察到的规律,猜测等比数列的通项公式,并进行验证。

步骤三:归纳
1. 学生通过对多个等比数列的观察和总结,归纳出等比数列的通项公式。

2. 教师提问:如何求等比数列的前n项和?学生可以在讨论的过程中得出等比数列的求和公式。

步骤四:练习与巩固
1. 学生完成一些基础练习,如求等比数列的第n项、求等比数列的前n项和等。

2. 学生解决一些实际问题,如利用等比数列解决物理问题、经济问题等。

步骤五:拓展与应用
1. 学生可以自己发现并总结等比数列在生活中的应用场景,如利润增长、人口增长等方面的问题。

2. 学生可以尝试寻找更复杂的等比数列,并对其进行分析与研究。

步骤六:总结与反思
1. 学生进行本节课的总结,并回答教师的提问:你理解了等比数列的概念吗?掌握了等比数列的通项公式和求和公式吗?
2. 学生思考:如何将等比数列的知识应用到实际问题中?如何更好地理解和掌握等比数列的概念和公式?
这样的教案可以避免标题重复的问题。

高中数学必修5教案等比数列第2课时

高中数学必修5教案等比数列第2课时

高中数学必修5教案等比数列第2课时第一篇:高中数学必修5教案等比数列第2课时等比数列第2课时授课类型:新授课●教学目标知识与技能:灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法过程与方法:通过自主探究、合作交流获得对等比数列的性质的认识。

情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。

●教学重点等比中项的理解与应用●教学难点灵活应用等比数列定义、通项公式、性质解决一些相关问题●教学过程Ⅰ.课题导入首先回忆一下上一节课所学主要内容:1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q≠an0),即:=q(q≠0)an-12.等比数列的通项公式:an=a1⋅q3.{an}成等比数列⇔列的必要非充分条件4.既是等差又是等比数列的数列:非零常数列Ⅱ.讲授新课1.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项.即G=±ab(a,b同号)如果在a与b中间插入一个数G,使a,G,b成等比数列,则n-1(a1⋅q≠0),an=am⋅qn-m(am⋅q≠0)an+1+=q(n∈N,q≠0)“an≠0”是数列{an}成等比数anGb=⇒G2=ab⇒G=±ab,aG反之,若G=ab,则≠0)[范例讲解] 课本P58例4 证明:设数列{an}的首项是a1,公比为q1;{bn}的首项为b1,公比为q2,那么数列{an⋅bn}的第n项与第n+1项分别为:2Gb2=,即a,G,b成等比数列。

∴a,G,b成等比数列⇔G=ab(a·baGa1⋅q1n-1⋅b1⋅q2与a1⋅q1⋅b1⋅q2即为a1b1(q1q2)n-1与a1b1(q1q2)nn-1nnan+1⋅bn+1a1b1(q1q2)nΘ==q1q2.n-1an⋅bna1 b1(q1q2)它是一个与n无关的常数,所以{an⋅bn}是一个以q1q2为公比的等比数列拓展探究:对于例4中的等比数列{an}与{bn},数列{an}也一定是等比数列吗? bnana,则cn+1=n+1 bnbn+1探究:设数列{an}与{bn}的公比分别为q1和q2,令cn=∴cn+1bn+1abqa==(n+1)γ(n+1)=1,所以,数列{n}也一定是等比数列。

高三数学《等比数列》教案

高三数学《等比数列》教案

高三数学《等比数列》教案【小编寄语】查字典数学网小编给大伙儿整理了2021高三数学《等比数列》教案,期望能给大伙儿带来关心!§17等比数列【考点及要求】:1.明白得等比数列的概念.2.把握等比数列的通项公式、前项和的公式,能运用公式解决一些简单问题.【基础知识】:1.一样地,假如一个数列从第_____项起,每一项与它的前一项所得的比都等于____________,那么那个数列就叫做____________,那个常数叫做等比数列的____ _,其通项公式为_____________.2.前n项和公式:Sn=3.等比中项:若a,G,b成等比数列,则__________,G叫做a与b 的等比中项.4.在等比数列中,若,则_____________.【差不多训练】:1.已知等比数列中, =3, ,则该数列的通项.2.设等比数列的公比,前项和为,则.3.在等比数列中,若则.4.在等比数列中,,,则.5.等比数列中, 是数列的前项和, = ,则公比.【典型例题讲练】例1.等比数列的前三项依次为,求数列的通项公式.练习.等比数列中,已知,,求项数和公比的值.例2.等比数列前项的和为,求数列前项和.练习.等比数列前项的和为,若,求.【课堂小结】1等比数列的概念及前项和公式;一样说来,“教师”概念之形成经历了十分漫长的历史。

杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。

这儿的“师资”,事实上确实是先秦而后历代对教师的别称之一。

《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”因此也指教师。

这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副事实上的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。

2等比数列的性质.观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。

等比数列教学设计教案

等比数列教学设计教案

等比数列教学设计教案一、教学目标1.了解等比数列的定义和基本性质;2.掌握通项公式和求和公式的推导和应用;3.能够应用等比数列的知识解决实际问题;4.培养学生的数学思维能力和解决问题的能力,激发数学兴趣。

二、教学内容第一部分:引入1.通过生活中的例子,引出等比数列的概念;2.学生回顾等差数列的知识,引导学生思考等比数列和等差数列的关系。

第二部分:概念介绍2.引导学生掌握等比数列的特点和基本性质。

第三部分:公式推导2.案例分析和练习巩固应用。

第四部分:应用举例1.引导学生联系实际应用,掌握等比数列的应用方法;2.案例分析和练习,加深对等比数列的理解。

第五部分:课堂互动与思考1.对学生提出的问题进行回答;2.鼓励学生思考和探究,促进课堂交流和合作。

第六部分:练习与巩固1.课后布置相关练习和作业;2.课堂检查和解答,帮助学生解决疑惑和困惑。

三、教学方法1.讲解和演示相结合的教学方法;3.课堂互动和思考,激发学生的数学兴趣和探究欲望。

四、教学手段1.多媒体课件和投影仪;2.教师板书和讲解;3.教学案例和练习题集。

五、评价方法1.课堂表现评价;2.小组合作评价;3.作业和考试评价。

六、教学流程1.讲解等比数列的概念和定义,引导学生理解等比数列的特点和基本性质,如“公比为正数时,数列单调递增或单调递减”。

2.通过练习让学生自己验证等比数列的性质,如“判断数列a1=2,a2=4,a3=8,a4=16是否为等比数列,确定其公比”。

1.讲解等比数列的通项公式和求和公式的推导过程,引导学生掌握公式的使用方法和推导思路;2.通过练习和实例,让学生巩固公式的应用,如“已知数列和为105,公比为2,求数列的首项和项数”。

2.通过案例分析和练习,加深学生对等比数列的理解,如“某校人数为800人,每年增长20%,问6年后该校有多少学生”。

1.布置相关练习和作业,要求认真分析问题和思考解题方法;七、教学时数2课时八、课后作业2.根据所学知识,思考并回答生活中的一些问题。

高一数学《等比数列的性质及应用》教案设计【8篇】

高一数学《等比数列的性质及应用》教案设计【8篇】

高一数学《等比数列的性质及应用》教案设计【8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!高一数学《等比数列的性质及应用》教案设计【8篇】等比数列的性质是什么呢?是什么意思?等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。

等比数列教案(精选7篇)

等比数列教案(精选7篇)

等比数列教案等比数列教案什么是教案?教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

等比数列教案(精选7篇)作为一名辛苦耕耘的教育工作者,很有必要精心设计一份教案,教案是教学活动的总的组织纲领和行动方案。

那么优秀的教案是什么样的呢?下面是小编为大家收集的等比数列教案(精选7篇),希望能够帮助到大家。

等比数列教案1教学目标1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;(3)通过通项公式认识等比数列的性质,能解决某些实际问题.2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.教材分析(1)知识结构等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.(2)重点、难点分析教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.教学建议(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用. 等比数列教案2教学目标1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.教学重点,难点重点、难点是等比数列的定义的归纳及通项公式的推导.教学用具投影仪,多媒体软件,电脑.教学方法讨论、谈话法.教学过程一、提出问题给出以下几组数列,将它们分类,说出分类标准.(幻灯片)①-2,1,4,7,10,13,16,19,②8,16,32,64,128,256,③1,1,1,1,1,1,1,④-243,81,27,9,3,1,,,⑤31,29,27,25,23,21,19,⑥1,-1,1,-1,1,-1,1,-1,⑦1,-10,100,-1000,10000,-100000,⑧0,0,0,0,0,0,0,由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).二、讲解新课请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等比数列教学目标:灵活应用等比数列的定义及通项公式,深刻理解等比中项概念,掌握等比数列的性质;提高学生的数学素质,增强学生的应用意识. 教学重点:1.等比中项的理解与应用.2.等比数列定义及通项公式的应用. 教学难点:灵活应用等比数列定义、通项公式、性质解决一些相关问题. 教学过程: Ⅰ.复习回顾等比数列定义,等比数列通项公式 Ⅱ.讲授新课根据定义、通项公式,再与等差数列对照,看等比数列具有哪些性质?(1)若a ,A ,b 成等差数列⇔a =a +b2,A 为等差中项.那么,如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,…… 则即G a =b G,即G 2=ab反之,若G 2=ab ,则G a =b G,即a ,G ,b 成等比数列∴a ,G ,b 成等比数列⇔G 2=ab (a ·b ≠0)总之,如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么称这个数G 为a与b 的等比中项.即G =±ab ,(a ,b 同号)另外,在等差数列中,若m +n =p +q ,则a m +a n =a p +a q ,那么,在等比数列中呢?由通项公式可得:a m =a 1q m -1,a n =a 1q n -1,a p =a 1q p -1,a q =a 1·q q -1不难发现:a m ·a n =a 12q m +n -2,a p ·a q =a 12q p +q -2若m +n =p +q ,则a m ·a n =a p ·a q下面看应用这些性质可以解决哪些问题?[例1]在等比数列{a n }中,若a 3·a 5=100,求a 4.分析:由等比数列性质,若m +n =p +q ,则a m ·a n =a p ·a q 可得:解:∵在等比数列中,∴a 3·a 5=a 42又∵a 3·a 5=100,∴a 4=±10.[例2]已知{a n }、{b n }是项数相同的等比数列,求证{a n ·b n }是等比数列. 分析:由等比数列定义及通项公式求得.解:设数列{a n }的首项是a 1,公比为p ;{b n }的首项为b 1,公比为q .则数列{a n }的第n 项与第n +1项分别为a 1p n -1,a 1p n数列{b n }的第n 项与第n +1项分别为b 1q n -1,b 1q n.数列{a n ·b n }的第n 项与第n +1项分别为a 1·p n -1·b 1·qn -1与a 1·p n ·b 1·q n,即为a 1b 1(pq )n -1与a 1b 1(pq )n∵a n +1a n ·b n +1b n =a 1b 1(pq )n a 1b 1(pq )n -1=pq 它是一个与n 无关的常数,∴{a n ·b n }是一个以pq 为公比的等比数列.特别地,如果{a n }是等比数列,c 是不等于0的常数,那么数列{c ·a n }是等比数列. [例3]三个数成等比数列,它们的和等于14,它们的积等于64,求这三个数. 解:设m ,G ,n 为此三数由已知得:m +n +G =14,m ·n ·G =64,又∵G 2=m ·n ,∴G 3=64,∴G =4,∴m +n =10 ∴⎩⎨⎧m =2n =8或⎩⎨⎧m =8n =2即这三个数为2,4,8或8,4,2.评述:结合已知条件与定义、通项公式、性质,选择解题捷径. Ⅲ.课堂练习课本P 50练习1,2,3,4,5. Ⅳ.课时小结本节主要内容为:(1)若a ,G ,b 成等比数列,则G 2=ab ,G 叫做a 与b 的等比中项. (2)若在等比数列中,m +n =p +q ,则a m ·a n =a p ·a q Ⅴ.课后作业课本P 52习题 5,6,7,9等比数列(二)1.已知数列{a n }为等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值等于( )A.5B.10C.15D.202.在等比数列中,a 1=1,q ∈R 且|q |≠1,若a m =a 1a 2a 3a 4a 5,则m 等于 ( )A.9B.10C.11D.12 3.非零实数x 、y 、z 成等差数列,x +1、y 、z 与x 、y 、z +2分别成等比数列,则y 等于( )A.10B.12C.14D.164.有四个数,前三个数成等比数列,其和为19,后三个数成等差数列,其和为12,求此四数.5.在数列{a n }和{b n }中,a n >0,b n >0,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,a 1=1,b 1=2,a 2=3,求a n ∶b n 的值.6.设x >y >2,且x +y ,x -y ,xy ,y x能按某种顺序构成等比数列,试求这个等比数列.7.有四个数,前三个数成等比数列,后三个数成等差数列,首末两项的和为21,中间两项的和为18,求这四个数.等比数列(二)答案1.已知数列{a n }为等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值等于( )A.5B.10C.15D.20分析:要确定一个等比数列,必须有两个独立条件,而这里只有一个条件,故用先确定基本量a 1和q ,再求a 3+a 5的方法是不行的,而应寻求a 3+a 5整体与已知条件之间的关系.解法一:设此等比数列的公比为q ,由条件得a 1q ·a 1q 3+2a 1q 2·a 1q 4+a 1q 3·a 1q 5=25即a 12q 4(q 2+1)2=25,又a n >0,得q >0∴a 1q 2(q 2+1)=5a 3+a 5=a 1q 2+a 1q 4=a 1q 2(q 2+1)=5 解法二:∵a 2a 4+2a 3a 5+a 4a 6=25由等比数列性质得a 32+2a 3a 5+a 52=25即(a 3+a 5)2=25,又a n >0,∴a 3+a 5=5评述:在运用方程思想方法的过程中,还要注意整体观念,善于利用等比数列的性质,以达到简化解题过程、快速求解的目的.2.在等比数列中,a 1=1,q ∈R 且|q |≠1,若a m =a 1a 2a 3a 4a 5,则m 等于 ( )A.9B.10C.11D.12解:∵a m =a 1a 2a 3a 4a 5=a 15q 1+2+3+4=a 15q 10=a 15q 11-1又∵a 1=1,∴a m =q 11-1,∴m =11. 答案:C 3.非零实数x 、y 、z 成等差数列,x +1、y 、z 与x 、y 、z +2分别成等比数列,则y 等于( )A.10B.12C.14D.16解:由已知得⎩⎪⎨⎪⎧2y =x +z y 2=(x +1)z y 2=x (z +2) ⇒⎩⎪⎨⎪⎧2y =x +z y 2=(x +1)z z =2x ⇒⎩⎨⎧2y =3x y 2=(x +1)2x ⇒y =12答案:B4.有四个数,前三个数成等比数列,其和为19,后三个数成等差数列,其和为12,求此四数.解:设所求的四个数分别为a ,x -d ,x ,x +d则⎩⎪⎨⎪⎧(x -d )2=ax ①a +(x -d )+x =19 ②(x -d )+x +(x +d )=12③解得x =4,代入①、②得⎩⎨⎧(4-d )2=4a a -d =11解得⎩⎨⎧a =25d =14或⎩⎨⎧a =9d =-2故所求四个数为25,-10,4,18或9,6,4,2.5.在数列{a n }和{b n }中,a n >0,b n >0,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,a 1=1,b 1=2,a 2=3,求a n ∶b n 的值.分析:关键是求出两个数列的通项公式.根据条件,应注意两个数列之间的联系及相互转换.解:由题意知:⎩⎨⎧2b n =a n +a n +1①a n +12=b n b n +1②∴a n +1=b n b n +1 ,a n =b n b n -1 (n ≥2) 代入①得2b n =b n b n +1 +b n b n -1 即2b n =b n +1 +b n -1 (n ≥2) ∴{b n }成等差数列,设公差为d又b 1=2,b 2=a 22b 1 =92 ,∴d =b 2 -b 1 =322- 2 =22∴b n = 2 +22(n -1)=22(n +1),b n =12(n +1)2, 当n ≥2时,a n =b n b n -1 =n (n +1)2③ 且a 1=1时适合于③式,故 a nb n=nn +1.评述:对于通项公式有关系的两个数列的问题,一般采用消元法,先消去一个数列的项,并对只含另一个数列通项的关系进行恒等变形,构造一个新的数列.6.设x >y >2,且x +y ,x -y ,xy ,y x能按某种顺序构成等比数列,试求这个等比数列.分析:先由x >y >2,可知x -y <x +y <xy ,下来只需讨论 y x和x -y 的大小关系,分成两种情况讨论.解:∵x >y >2,x +y >x -y ,xy >x +y ,而 y x<1<x -y 当 y x <x -y 时,由 y x,x -y ,x +y ,xy 顺次构成等比数列.则有⎩⎪⎨⎪⎧y x ·xy =(x -y )(x +y )(x +y )2=(x -y )xy解方程组得x =7+5 2 ,y =5+72 2∴所求等比数列为22,2+32 2 ,12+172 2 ,70+9922 . 当 yx >x -y 时,由x -y ,y x,x +y ,xy 顺次构成等比数列则有⎩⎨⎧y x·xy =(x +y )2yx (x +y )=(x -y )xy解方程组得y =112,这与y >2矛盾,故这种情况不存在. 7.有四个数,前三个数成等比数列,后三个数成等差数列,首末两项的和为21,中间两项的和为18,求这四个数. 分析一:从后三个数入手.解法一:设所求的四个数为 (x -d )2x,x -d ,x ,x +d ,根据题意有⎩⎪⎨⎪⎧(x -d )2x +(x +d )=21(x -d )+x =18,解得⎩⎨⎧x =12d =6 或⎩⎨⎧x =274 d =92274 ∴所求四个数为3,6,12,18或754 ,454 ,274 ,94 .分析二:从前三数入手.解法二:设前三个数为 xq,x ,xq ,则第四个数为2xq -x .依题设有⎩⎪⎨⎪⎧x q +2xq -x =21x +xq =18,解得⎩⎨⎧x =6q =2 或⎩⎨⎧x =454 q =35故所求的四个数为3,6,12,18或754 ,454 ,274 ,94 .分析三:从首末两项的和与中间两项的和入手.解法三:设欲求的四数为x ,y ,18-y ,2-x ,由已知得: ⎩⎨⎧y 2=x (18-y )2(18-y )=y +(21-x ) ,解得⎩⎨⎧x =3y =6或⎩⎨⎧x =754 y =454∴所求四数为3,6,12,18或754 ,454 ,274 ,94 .。

相关文档
最新文档