阿基米德简介
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阿基米德简介
阿基米德(Archimedes,公元前287---前212)是数学历史上最伟大的数学家之一,近代数学史家贝尔(E.T.Bell,1883---1960)说:“任何一张列出有史以来三个最伟大的数学家的名单中,必定包括阿基米德,另外两个通常是牛顿和高斯.不过以他们的丰功伟绩和所处的时代背景来比,拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德.”阿基米德的名字在他同时代的人们中成为贤明的象征,他会用简单的方法解最难的问题.古希腊著名的作家和历史学家普鲁塔克(Plutarch,公元前1世纪)说:把这样困难的题目解决得如此简单和明白,在数学里没有听到过,假如有谁尝试一下自己解这些题目,他会什么也得不到.但是,如果他熟悉了阿基米德的解法,那么他就会立刻得出这样的印象,这个解法他自己也会找到.阿基米德用如此容易和简明的方法把我们引向目的.
阿基米德出生于意大利半岛南端西西里岛的叙拉古,他的父亲是天文学家,曾撰写过有关太阳和月球直径的文章.阿基米德早年在亚历山大学习,以后和亚历山大的学者一直保持联系.
阿基米德终生倾心对科学的研究,常常沉浸于忘我的思考之中,普鲁塔克曾写道:阿基米德废寝忘食,完全忽视关心自己的身体.经常要强迫他去洗澡,在洗澡中,擦上香油膏,然而就在这时,他用手指在自己擦上油膏的身体上画几何图形.古罗马建筑师维脱罗卫(Vitruvius,公元前2世纪)记述的阿基米德发现浮体规律的情景,令人感叹不已.有一次叙拉古的亥厄洛(Hieron)王让人制造纯金的皇冠.做成后国王怀疑是否完全用纯金制成,便请素称多能的阿基米德来鉴定.阿基米德曾长时间地思考解决的方法,正在苦闷之中,他到公共浴池洗澡,当浸入装满水的浴盆中时,水漫溢到盆外,而身体重量顿觉减轻.于是,他忽然想到不同质料的东西,虽然重量相同,但因体积不同,排去的水必不相等.根据这一道理,不仅可以判断皇冠是否掺有杂质,而且知道偷去黄金的重量.这次成功的发现使阿基米德大吃一惊,他光着身子跑出浴池,大声喊:“我找到了”.经过仔细地实验,他终于发现了流体静力学的基本原理:“阿基米德原理”---
物体在液体中减轻的重量,等于排去液体的重量.
在阿基米德一生的最后几年中,表现出了真挚的爱国热情.他为祖国的安危献出了自己全部力量和智慧.当罗马军队首领马塞拉斯率领大军进攻叙拉古时,阿基米德发挥了自己的聪明才智,制造新的机械对抗罗马当时先进的军事设施.他制造了许多武器,做好在任何情况下击退敌人的准备.若敌人离城市很远,便用巨大的远射程投射机器,发射大量的“重炮弹”和“火箭”,击败敌人的战船.当阿基米德发觉炮弹落得太远,不能击中船只时,便使用了适合较小距离的投射机器.这样,使罗马军队胆战心惊,以致他们无力再向前推进.希腊文献记载,当罗马兵船靠近城下,阿基米德用巨大火镜反射日光使兵船焚烧.另一种说法是他用投火器,将燃烧着的东西弹出去,烧毁敌人的战船.总之,阿基米德竭尽全力,发明各种新式器械,给罗马军队以沉重的打击,为保卫祖国作出了重大贡献.后来,终因叛徒的出卖,叙拉古城失守了.一种说法是阿基米德似乎并不知道城池已破,仍沉迷于数学的深思,埋头画几何图形.当一个罗马士兵冲到他面前时,阿基米德严肃地说:“走开,不要动我的图.”罗马士兵听了,觉得受到污辱,就拔剑刺死了阿基米德.终年75岁.根据阿基米德生前遗嘱,在墓碑上刻着球内切于圆柱的图形,象征着他特别珍视的发明.
阿基米德在数学中做出很多贡献,他的许多著作的手稿一直保存到现在.一些数学史家都把他的原著译成现代文字.例如,希思的英译本,兹瓦利那的德译本,维尔·埃斯克(P.Ver.Ee -cke)的法译本,还有荷兰的迪克特赫斯(E.J.Dijksterhuis)的名著《阿基米德》.其著作涉及的范围很广,也说明他对前人在数学中的一切发现具有渊博的知识.保存下来的阿基米德著作
多半是几何内容的著作,也有一部分力学和计算问题的著作.主要是《论球与圆柱》(On the Sphere and Cylin der),《论抛物线求积法》(On Quadrature of the Parabola),《圆的度量》(Measurement of a Circle),《论螺线》(OnSpirals),《论平板的平衡》(On Plane Equilibriums),《论锥型体与球型体》(On Conoids Spheroids),《砂粒计算》(The Sand Reckoner),《论方法》(On Method)(阿基米德给厄拉托塞的书信中,关于几何学的某些定理),《论浮体》(On Floating Bodies),《引理》.在这些著作中的几何方面,他补充了许多关于平面曲线图形求积法和确定曲面所包围体积方面的独创研究.在这些研究中,他预见到了极微分割的概念,这个观念在17世纪的数学中起到了重要作用,其本身就是微积分的先声,但缺乏极限概念.阿基米德的求积法蕴育着积分思想的萌芽,利用这种方法,发现了定理
阿基米德研究了曲线图形求积的问题,并且用穷竭法建立了这样的结果:“任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),
下面是阿基米德的简略证明,可以揭示他的研究方法.AQ1Q4是一抛物线弓形,抛物线顶点为A(如图3.14).Q1Q4交抛物线的轴于O点.Q1O和Q4O各在Q2和Q3处平分,作图中所示的各线段就可完成图形.现在,Q1O2=4Q2O2=4BC2,AO=4AC,因此BQ2=3AC.
采用同样方法重复把Q1Q2,Q2O平分就可证明(1)式的右方加上
等.在这些线上不断这样做下去,就可证明抛物线弓形面积是
这里△是指△AQ1O4.
然而阿基米德没有求极限的观念,他是用归谬法来证明他的结论的.这种证法的要点是,如果所求面积不等于给定的面积S,它就一定同时大于它又小于它.而这是不合理的,由此,推知
抛物线弓形的面积等于
阿基米德在《圆的度量》(Measurement of acircle)一文中,利用外切与内接96边形求得圆周率π:
史上最早给出的关于圆周率的误差估计.
在进行证明时,阿基米德避免了借助无穷小量这个概念,因为这个概念一直是希腊人所怀疑的.他考虑了内接多边形和外切多边形.他确立这个基本原理的方法是说明并证明:“给定二不等量,则不论大量与小量之比如何接近1,都有可能:(1)求出两条直线,使得较长的与较短的之比更小(大于1);(2)作一圆或扇形的相似外切多边形和内接多边形,使得外切多边形的周长或面积,与内接多边形的周长或面积之比小于给定的比”.然后就像欧几里得所做过的那样,他证明如果不断把边数加倍,最后会留下一些弓形,它们加起来比任何指定的面积都要小.阿基米德对