关于动生电动势中洛伦兹力的在认识

关于动生电动势中洛伦兹力的在认识
关于动生电动势中洛伦兹力的在认识

物理科郑生

人教版高中物理教材“选修3-2第四章第5节电磁感应现象的两类情况”中,讲述了感生电动势和动生电动势问题,在讲到动生电动势中的非静电力问题时,讲了这样一句话:“非静电力与洛伦兹力有关”,这句话讲得很含糊,到底非静电力是不是洛伦兹力,如果不是,那么非静电力又是什么力?教材未作进一步阐述,笔者查阅与教材相配套的教师教学用书后发现,教材这样处理“主要是为了降低难度”,这是可以理解的,然而,这却导致了学生对这一问题产生了疑惑,搞不清非静电力是什么力,从而也搞不清动生电动势是如何产生的、非静电力是如何做功的、棒中能量是如何转化的、安培力与洛伦兹力之间是什么关系等问题。针对目前的现状,笔者认为有必要对相关问题进行深入探讨。

本文先回顾相关内容,再澄清错误认识。

如图所示,水平放置的导体框架,宽L=0.50 m,接有电阻R=0.20 Ω,匀强磁场垂直框架平面向里,磁感应强度B=0.40 T.一导体棒ab垂直框边跨放在框架上,并能无摩擦地在框架上滑动,框架和导体ab的电阻均不计.当ab以v=4.0 m/s的速度向右匀速滑动时,求:(1)ab棒中产生的感应电动势大小;

(2)维持导体棒ab做匀速运动的外力F的大小;

二、内容的回顾

1.教材中的内容

教材选修3-2第四章第5节在阐述“电磁感应现象中的洛伦兹力”问题时,给出了一个栏目“思考与讨论”,内容如下:

图1如图1,导体棒在匀强磁场中运动。

(1)自由电荷会随着导体棒运动,并因此受到洛伦兹力。导体棒中自由电荷相对于纸面的运动大致沿什么方向?

(2)导体棒一直运动下去,自由电荷是否总会沿着导体棒运动?为什么?

(3)导体棒哪端的电势比较高?

(4)如果用导线把C、D两端连接到磁场外的一个用电器上,导体棒中的电流是沿什么方向的?

在这一栏目之后,教材未作阐述就直接给出了结论:导体棒“相当于一个电源”,同时指出:“非静电力与洛伦兹力有关。”可见,教材中的阐述较简单。

2.某些资料中的内容

笔者翻阅了一部分教辅资料后发现,关于动生电动势中洛伦兹力的认识有错误,不妨列举两例:

(1)在“创新方案?高中新课标同步创新课堂?物理(配人教版选修3-2)”中是这样说的:“导体在磁场中做切割磁感线运动时产生的感应电动势叫动生电动势,它是由于导体中自由电子受到洛伦兹力作用而引起的,使自由电子做定向移动的非静电力就是洛伦兹力。”

该表述中的错误之处是:非静电力就是洛伦兹力。

(2)在“教材解析?高中物理?选修3-2”中是这样说的:“产生动生电动势的导体相当于电源,其中所谓的非静电力就是洛伦兹力,”“电动势的大小等于移动单位正电荷时洛伦兹力所做的功。”

该表述中的错误之处是:非静电力就是洛伦兹力,洛伦兹力做了功。

综合以上回顾可见,关于动生电动势中洛伦兹力的认识,现行教材进行了淡化处理,而部分教辅资料中则存在错误,加上部分教师对此也有模糊认识,从而导致教学中出现混乱局面,搞不清是怎么回事,教师如不及时澄清,势必影响后续知识的学习。

三、认识的澄清

1.洛伦兹力与非静电力的关系

图2(1)问题:如图2所示,空间存在垂直于纸面向内的匀强磁场,磁感应强度大小为B,一根导体棒垂直于磁场方向竖直放置,棒长为l,电阻忽略不计。现让导体棒向右做匀速运动,速度为v,根据已经学过的法拉第电磁感应定律可得出这样的结论:导体棒相当于一个电源,产生的动生电动势为E=Blv。在此基础上,教师可以引导学生探讨此电源的非静电力是什么力。

(2)探讨:对金属导体棒来说,自由电荷是电子,开始时,因为导体棒向右运动,带着电子向右运动,从而使电子受到向下的洛伦兹力,电子便沿导体棒向下运动。这时,电子参与了两个方向的分运动,一是随导体棒一起向右运动;二是相对于导体棒向下运动,电子的合运动方向是向右下方的,由左手定则可知这时的洛伦兹力的方向是向左下方的,如图2所示,将其分解后,我们发现,洛伦兹力在竖直方向的分力Fy是推动电子沿导体棒向下运动的力,所以这个分力Fy就是非静电力!

(3)结论:在动生电动势中,非静电力是洛伦兹力沿导体棒方向的分力,不是洛伦兹力。

2.洛伦兹力与动生电动势的关系

(1)问题:通过上面的探讨,我们知道了洛伦兹力与非静电力的关系,从而搞清了动生电动势产生的机理,但这种讨论还停留在定性层面,如果作定量分析,能否导出动生电动势的计算公式?如果能够导出,它与用法拉第电磁感应定律导出的结论是否一致呢?

(2)探讨:如图3所示,当导体棒以速度v向右运动时,棒中的自由电子会受到洛伦兹力沿竖直方向的分力qvxB作用而积聚到棒的下端,在棒的上端留下正电荷,这时在导体棒内部会产生一个附加电场,从而使其中的电子受到电场力作用,电场力方向与洛伦兹力方向相反,由于这个附加电场会随着电荷的进一步积聚而不断增强,所以,电子所受电场力会不断增大,从而合力不断减小,图3当电场增强到一定程度时,电场力与洛伦兹力相等,电子所受合力为零,电子不再定向运动,电路达到稳定状态,这时,可进行如下推导(其中E 为电动势,E电为电场强度):

可见,用这种方法推导出来的结论与用法拉第电磁感应定律推导出来的结论是一致的,动生电动势的大小均为E=Blv,不过,我们应注意到,法拉第电磁感应定律揭示的是导体棒有这个电动势,而洛伦兹力作用揭示的是导体棒为什么有这个电动势,简单地说,法拉第电磁感应定律回答了“是什么”,而洛伦兹力作用回答了“为什么”。

(3)结论:按洛伦兹力作用机理推出的动生电动势公式也是E=Blv。

3.洛伦兹力与能量转化的关系

(1)问题:在导体棒切割磁感线运动的过程中,导体棒相当于一个电源。既然是电源,就应该具有电源的性质,在人教版高中物理教材“选修3-1第二章第2节电动势”中,关于电源,是这样描述的:“电源是通过非静电力做功把其他形式的能转化为电势能的装置”这就是说,在电源中存在着非静电力做功引起能量转化的情况,那么,对导体棒,非静电力是如何做功的呢?在导体棒内部能量又是如何转化的呢?如果非静电力做了功,与大家熟悉的“洛伦兹力不做功”是否矛盾呢?图4(2)探讨:如图4所示,当导体棒向右运动并对外供电时,棒中电子是向右下方运动的,电子共受三个力作用:第一个力是导体棒带着电子向右运动时施加给电子的力,方向水平向右;第二个力是外磁场对电子产生的洛伦兹力F 洛,方向向左下方;第三个力是棒中附加电场对电子产生的电场力F电,方向竖直向上。下面讨论各力做功及能量转化情况。

关于洛伦兹力,因其方向与合速度方向垂直,所以,洛伦兹力肯定不做功,这一点是不用怀疑的!部分教辅资料上所说的洛伦兹力做功,是错误的!

在图4中,将洛伦兹力分解为竖直向下的分力Fy和水平向左的分力Fx后,我们会发现,对于分力Fy来说,它是做正功的,其实,这就是非静电力做功的情况!从理论上讲,

由于这个分力Fy做了正功,从而引起了能量转化;但要注意的是,另一个分力Fx是做负功的,也引起了能量转化,由于这两个分力所做的总功一直为零,所以,能量转化的总量一直为零。说到这里,我们应该清楚,这种说法只在理论上有意义,在实际问题中,我们还是简化为:洛伦兹力不做功,也不引起能量转化。

关于导体棒内部能量转化情况,由图4可知,拉力F做正功,导致外界能量转化为电子的动能,电场力F电做负功,导致电子的动能又转化为电势能,即:

外界能量拉力F对电子做正功电子的动能电子克服电场力做功电势能

(3)结论:在理论研究中,可以这样认为:洛伦兹力的两个分力分别做功,并分别引起了能量转化,但总功一直为零,能量转化的总量也一直为零。在实际问题中,可简化为:洛伦兹力不做功,也不引起能量转化。

4.洛伦兹力与安培力的关系

(1)问题:人教版高中物理教材选修3-1第三章第5节“磁场对运动电荷的作用力”中有这样一句话:“电荷定向运动时所受洛伦兹力的矢量和,表现为导线所受的安培力。”许多教师在上课时也经常说这句话,这句话在这里是否正确呢?

图5(2)探讨:如图5所示,导体棒在水平向右的外力作用下做切割磁感线运动并对外供电时,从宏观角度来看,导体棒中将出现持续电流,方向向上,所以导体棒受到了安培力,安培力的方向是水平向左的,与导体棒垂直。从微观角度看,棒中电子受到了洛伦兹力,这个洛伦兹力的方向是向左下方的,这一点前面已经作了分析,显然,在这种情况下,安培力不等于洛伦兹力的合力,因为它们的方向是不一样的。

那么,教材中所说的“电荷定向运动时,所受洛伦兹力的矢量和,表现为导线所受的安培力”这句话又如何理解呢?仔细分析后不难发现,这句话是指通电导体棒处在磁场中静止不动时的受力关系。现在我们研究的不是这种情况,而是导体棒在磁场中运动的情况,条件不一样了,结论自然不一样了,这一点应引起注意!其实,此时导体棒所受安培力等于所有电子所受洛伦兹力在水平方向上分力的矢量和。

(3)结论:当导体棒做切割磁感线运动时,导体棒所受安培力等于所有电子所受洛伦兹力在运动方向上分力的矢量和,不等于洛伦兹力的矢量和。

计算动生电动势的方法

计算动生电动势的方法 在高中物理第二册电磁感应这一章中,经常看到一些计算动生电动势的习题,计算动生电动势的步骤是:①弄清所求的电动势是瞬时电动势还是平均电动势。 ②确定导体切割磁感线的有效长度、运动速度、V与B之间的夹角。③将B、L、V、θ的值代入动生电动势公式E=BLVsinθ中,求出电动势的值。 现举例介绍计算动生电动势的方法。 1 导体平动产生的电动势的计算方法 例1,如图1所示,导体abc以V=2m/s的速度沿水平方向向右运动,ab=bc=1m,导体的bc段与水平方向成30°角,匀强磁场的磁感应强度B=0.4T,方向垂直纸面向里,导体abc水平向右运动时产生的电动势是多少? 解:导体abc水平向右运动时,导体的ab段不切割磁感线,不产生电动势。 导体的bc段切割磁感线的有效长度L=lsin300 =1×0.5m=0.5m 导体的bc段的速度方向与磁感应强度方向之间的夹角θ=90° 导体的bc段产生的瞬时电动势E2=BLVsinθ=0.4×0.5×2×sin90°=0.4V,导体abc 产生的电动势E=E1+E2=0+0.4V=0.4V 2 导体转动产生的电动势的计算方法 例2,如图2所示,长L=1m的导体OA绕垂直于纸面的转轴O以ω=10rad/s 的角速度转动,匀强磁场的磁感应强度,B=0.2T,方向垂直纸面向里,求导体OA产生的电动势。 解:导体OA在匀强磁场中绕轴O转动时,导体各部分的速度不同,可将导体各部分速度的平均值代入动生电动势公式E=BLVsinθ中,求出导体OA产生的平均电动势。 导体OA切割磁感线的有效长度L=1m 导体OA的平均速度V==1×102m/s=5m/s 导体OA的速度与方向磁感应强度方向的夹角θ=90° 导体OA产生的平均电动势E=BLVsinθ=0.2×1×5×sin90°=1V 3 线圈转动产生的电动势的计算方法

感生电动势和动生电动势要点及例题解析(答案)

1 [典型例题] 例1 如图1所示,在竖直向下的磁感应强度为B 的匀强磁场中,有两根水平放置且足够长的平行金属导轨AB 、CD ,在导轨的AC 端连接一阻值为R 的电阻,一根质量为m 的金属棒ab ,垂直导轨放置,导轨和金属棒的电阻不计。金属棒与导轨间的动摩擦因数为μ,若用恒力 F 沿水平向右拉导体棒运动,求金属棒的最大速度。 分析:金属棒向右运动切割磁感线,产生动生电动势,由右手定则知,棒中有ab 方向的电流;再由左手定则,安培力向左,导体棒受到的合力减小,向右做加速度逐渐减小的加速运动;当安培力与摩擦力的合力增大到大小等于拉力F 时,加速度减小到零,速度达到 最大,此后匀速运动,所以, m g BIL F μ+=, R BLV I = 2 2)(L B R mg F V μ- = 例2 如图2所示,线圈内有理想的磁场边界,当磁感应强度均匀增加时,有一带电量为q ,质量为m 的粒子静止于水平放置的平行板电容器中间,则此粒子带 ,若线圈的匝数为n ,线圈面积为S ,平行板电容器的板间距离为d ,则磁感应强度的变化率为 。 分析:线圈所在处的磁感应强度增加,发生变化,线圈中有感生电动势;由法拉第电 磁感应定律得, t B t nS n E ????==φ ,再由楞次定律线圈中感应电流沿逆时针方向,所以,板间的电场强度方向向上。带电粒子在两板间平衡,电场力与重力大小相等方向相反,电场力竖直向上,所以粒子带正电。 B qns E q mg ?= = q n s m g d t B = ?? [针对训练] 1.通电直导线与闭合线框彼此绝缘,它们处在同一平面内,导线位置与线框对称轴重合,为了使线框中产生如图3所示的感应电流,可采取的措施是:

感应电动势方向判断

左手定则、右手定则和安培定则 A比B的电势高,B是电源正极,A是电源负极 在高中物理部分有三种“定则”①左手定则②右手定则③安培定则(用的是右手) ①左手定则:1.用于判断通电直导线在磁场中的的受力方向 2.用于判断带电粒子在磁场中的的受力方向 方法:伸开左手,使拇指跟其余四指垂直,并且都跟手掌在同一个平面内,让磁感线穿入手心,并使四指指向电流的方向,大拇指所指的方向就是通电导线所受安培力的方向(书上定义),我在这里想说一点,是不是左手定则只可以判断受力方向,我的答案是非也,在判断力的方向时,是知二求一(知道电流方向与磁场方向求力的方向),所以也可以知道力与电流求磁场,或是知道力与磁场求电流。 ②右手定则:1.用于判断运动的直导线切割磁感线时,感应电动势的方向。 方法:伸开右手,使拇指跟其余四指垂直,并且都跟手掌在同一个平面内,大拇指所指的方向为直导线运动方向,四指方向即是感应电动势的方向。 ③安培定则:1.判断通电直导线周围的磁场情况。 2.判断通电螺线管南北极。 3.判断环形电流磁场的方向。 方法:右手握住通电导线,让伸直的拇指的方向与电流的方向一致,那么,弯曲的四指所指的方向就是磁感线的环绕方向; 右手握住通电螺线管,四指的方向与电流方向相同,大拇指方向即为北极方向。 谢谢,物理友人 感应电动势方向判断 右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向为导线中感应电流的方向。 电磁学中,右手定则判断的主要是与力无关的方向。 感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极

动生电动势公式的推导及产生的机理

动生电动势公式的推导及产生的机理 摘要:在本文中,应用导数的知识推导出动生电动势在各种特殊情况下的表达形式,并进一步探究了动生电动势产生的机理。揭示了产生动生电动势的实质是运动电荷在磁场中受到洛伦磁力的结果。 关键词:电磁感应定律;动生电动势;洛伦磁力 法拉第电磁感应定律告诉我们,只要通过回路所围面积中的磁通 量发生变化,回路中就会产生感应电动势。由公式 s B dS φ=??可知,使磁通量发生变化的方法是多种多样的,但从本质上讲,可归纳为两类:一类是磁场保持不变,导体回路或导体在磁场中的运动;另一类是导体回路不动,磁场发生变化。前者产生的感应电动势称为动生电动势,后者产生的电动势为感生电动势。在本文中,主要对动生电动势公式的推导及其产生的机理作浅显的阐释。 一、动生电动势在各种特殊情况下的表达形式 在磁场保持不变的情况下,由于导体回路或导体运动而产生的感应电动势称为动生电动势 (一)、在磁场中运动的导线内的动生电动势 例1,如图1所示,一个由导线做成的回路ABCDA,其中长度为l 的导线段AB在磁感应强度为B的匀强磁场中以速度V向右作匀速直线运动,AB、V和B 三者相互垂直,求运动导线AB 段上产生的动生电动

势。 解析:由题意可知,导线AB 、V 和B 三者相互垂直。若在dt 时间内,导线AB 移动的距离为dx ,如右图所示,则在这段时间内回路面积的增量为dS ldx =。如果选取回路面积矢量的方向垂直纸面向里,则通过回路所围面积磁通量的增量为: d ΦB S Bldx == 根据法拉第电磁感应定律知,导线AB 内所产生的感应电动势为[1] d Φε dt =- 其中,负号代表感应电动势的方向。所以,在运动导线AB 段上产生的动生电动势的表达式为 dx εBlv dt Bl =-=- 即运动导线AB 段上产生的动生电动势的 大小为:Blv ,方向:B A →. 例2、如图2所示,在方向垂直纸面向 内的均匀磁场 B 中,一长为 l 的导体棒 OA 绕其一端 O 点为轴,以角速度大小 为ω逆时针转动,求导体棒OA 上所产生 的动生电动势。 解析:设导体棒OA 在t ?时间内所转过的角度为θ?,所扫过的扇形面积为: 212 S l θ=?

电磁感应原理

? 什么是电源
电源是通过非静电力做功把其他形式能转化为电能的装置
? 什么是电动势
如果电源移送电荷q时非静电力所做的功为W,那么W与q的比值
W W E = ,叫做电源的电动势。用E表示电动势,则: q q

一、感生电场与感生电动势 感生电场与感生电动势
由电磁感应可知: 由电磁感应可知 闭合电路位于变化的磁场中必然引 起电路中磁通量的变化,从而产 生感应电流。
磁场变强
思考:导线中的电荷此时定向 变化的磁场会在空间激 移动形成电流,那么一定有力 移动形成电流 那么 定有力 发一种电场,这种电场对 使电子移动,这个力究竟是什 电荷会产生力的作用 么力呢?

一、感生电场与感生电动势 感生电场与感生电动势
英国物理学家麦克斯韦在他的电磁场理论中指出
? 变化的的磁场能在周围空间激发电场,这种电场叫感生 电场 ? 由感生电场产生的感应电动势称为感生电动势.也叫感 应电动势。

一、感生电场与感生电动势 感生电场与感生电动势

一、感生电场与感生电动势 感生电场与感生电动势
例2、如图所示,一个闭合电路静止于磁场中,由于磁场 强弱的变化,而使电路中产生了感应电动势,下列说法中正 确的是( AC ) A.磁场变化时,会在在空间中激发一种电场 B.使电荷定向移动形成电流的力是磁场力 C.使电荷定向移动形成电流的力是电场力 D.以上说法都不对
磁场变强

一、感生电场与感生电动势 感生电场与感生电动势
? 例3:如图面积为0.2 m2的100匝线圈处在匀 强磁场中,磁场方问垂直于线圈平面,已知 磁感应强度随时间变化的规律为B=(2+0.2t) T,定值电阻 定值电阻R1=6?,线圈电阻 线圈电阻R2=4?,求: 求: (1)磁通量变化率,回路的感应电动势; (2)a、b两点间电压Uab

关于动生电动势中洛伦兹力的在认识

物理科郑生 人教版高中物理教材“选修3-2第四章第5节电磁感应现象的两类情况”中,讲述了感生电动势和动生电动势问题,在讲到动生电动势中的非静电力问题时,讲了这样一句话:“非静电力与洛伦兹力有关”,这句话讲得很含糊,到底非静电力是不是洛伦兹力,如果不是,那么非静电力又是什么力?教材未作进一步阐述,笔者查阅与教材相配套的教师教学用书后发现,教材这样处理“主要是为了降低难度”,这是可以理解的,然而,这却导致了学生对这一问题产生了疑惑,搞不清非静电力是什么力,从而也搞不清动生电动势是如何产生的、非静电力是如何做功的、棒中能量是如何转化的、安培力与洛伦兹力之间是什么关系等问题。针对目前的现状,笔者认为有必要对相关问题进行深入探讨。 本文先回顾相关内容,再澄清错误认识。 如图所示,水平放置的导体框架,宽L=0.50 m,接有电阻R=0.20 Ω,匀强磁场垂直框架平面向里,磁感应强度B=0.40 T.一导体棒ab垂直框边跨放在框架上,并能无摩擦地在框架上滑动,框架和导体ab的电阻均不计.当ab以v=4.0 m/s的速度向右匀速滑动时,求:(1)ab棒中产生的感应电动势大小; (2)维持导体棒ab做匀速运动的外力F的大小;

二、内容的回顾 1.教材中的内容 教材选修3-2第四章第5节在阐述“电磁感应现象中的洛伦兹力”问题时,给出了一个栏目“思考与讨论”,内容如下: 图1如图1,导体棒在匀强磁场中运动。 (1)自由电荷会随着导体棒运动,并因此受到洛伦兹力。导体棒中自由电荷相对于纸面的运动大致沿什么方向? (2)导体棒一直运动下去,自由电荷是否总会沿着导体棒运动?为什么? (3)导体棒哪端的电势比较高? (4)如果用导线把C、D两端连接到磁场外的一个用电器上,导体棒中的电流是沿什么方向的? 在这一栏目之后,教材未作阐述就直接给出了结论:导体棒“相当于一个电源”,同时指出:“非静电力与洛伦兹力有关。”可见,教材中的阐述较简单。 2.某些资料中的内容 笔者翻阅了一部分教辅资料后发现,关于动生电动势中洛伦兹力的认识有错误,不妨列举两例: (1)在“创新方案?高中新课标同步创新课堂?物理(配人教版选修3-2)”中是这样说的:“导体在磁场中做切割磁感线运动时产生的感应电动势叫动生电动势,它是由于导体中自由电子受到洛伦兹力作用而引起的,使自由电子做定向移动的非静电力就是洛伦兹力。” 该表述中的错误之处是:非静电力就是洛伦兹力。 (2)在“教材解析?高中物理?选修3-2”中是这样说的:“产生动生电动势的导体相当于电源,其中所谓的非静电力就是洛伦兹力,”“电动势的大小等于移动单位正电荷时洛伦兹力所做的功。” 该表述中的错误之处是:非静电力就是洛伦兹力,洛伦兹力做了功。 综合以上回顾可见,关于动生电动势中洛伦兹力的认识,现行教材进行了淡化处理,而部分教辅资料中则存在错误,加上部分教师对此也有模糊认识,从而导致教学中出现混乱局面,搞不清是怎么回事,教师如不及时澄清,势必影响后续知识的学习。 三、认识的澄清 1.洛伦兹力与非静电力的关系

感应电动势大小计算

感应电动势大小的计算 适用学科高中物理适用年级高中二年级适用区域安徽课时时长(分钟)60 知识点1、电磁感应产生的条件、法拉第电磁感应定律 2、导线切割磁感线感应电动势的公式 教学目标1、理解感应电动势的概念,明确感应电动势的作用。 2、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能与磁通量的变化相区别。 3、理解感应电动势的大小与磁通变化率的关系,掌握法拉第电磁感应定律及应用。 4、知道公式θ是如何推导出的,知道它只适用于导体切 割磁感线运动的情况。会用它解答有关的问题。 5、通过法拉第电磁感应定律的建立,进一步揭示电与磁的关系,培养学生空间思维能力和通过观察、实验寻找物理规律的能力。 教学重点理解感应电动势的大小与磁通变化率的关系,掌握法拉第电磁感应定律及应用 教学难点法拉第电磁感应定律及应用 教学过程 一、复习预习 1、复习楞次定律; 2、复习感应电流产生的条件; 3、通过感应电流方向的判断。 二、知识讲解 (一)、感应电动势 在电磁感应现象中产生的电动势叫感应电动势. 注意:(1)不管电路是否闭合,只要穿过电路的磁通量发生变化都产生感应电动势;(2)

产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源的内阻;(3)要产生感应电流,电路还必须闭合,感应电流的大小不仅与感应电动势的大小有关,还与闭合电路的电阻有关. (二)、法拉第电磁感应定律 1.内容:回路中感应电动势的大小,跟穿过这一回路的磁通量的变化率成正比. 2.公式t ??Φ (1 1 ) 式中n 为线圈匝数,t ??Φ 称磁通量的变化率. 注意它与磁通量Φ和磁通量变化量ΔΦ的区别. 说明:(1)若B 不变,线圈面积S 变化,则t S ??. (2)若S 不变,磁感应强度B 变化,则t B ??. (三)、运动导体做切割磁感线运动时,产生感应电动势的大小,其中v 为导体垂直切割磁感线的速度,L 是导体垂直于磁场方向的有效长度. 四、转动产生感应电动势 1.导体棒(长为L )在磁感应强度为B 的匀强磁场中匀速转动(角速度为ω时),导体棒产生感应电动势. ??? ??? ??? -===)(212102 2212 L L B E L B E E ωω以任意点为轴时以端点为轴时以中点为轴时 2.矩形线圈(面积为S )在匀强磁场B 中以角速度ω绕线圈平面内的任意轴匀速转动,产生的感应电动势ωθ,θ为线圈平面与磁感线方向的夹角.该结论与线圈的形状和转轴具体位置无关(但是轴必须与B 垂直). 考点1: 严格区别磁通量Φ、磁通量的变化量ΔΦ及磁通量的变化率t ??Φ 磁通量Φ表示穿过一平面的磁感线条数,磁通量的变化量ΔΦ=Φ2-Φ1,表示磁通量变化的 多少,磁通量的变化率t ??Φ表示磁通量变化的快慢.Φ大,ΔΦ及t ??Φ不一定大;t ??Φ 大, Φ及ΔΦ也不一定大.它们的区别类似于力学中的v 、Δv 及t v ??的区别. 考点2: 对t ??Φ 的理解 1.公式t ??Φ 计算的是在Δt 时间内的平均电动势;公式中的v 代入瞬时速度,则E 为瞬时电 动势;v 代入平均速度,则E 为平均电动势.这样在计算感应电动势时,就要审清题意是求平均电动势还是求瞬时电动势,以便正确地选用公式.

动生电动势和感生电动势

§6-2 动生电动势和感生电动势 动生电动势:回路或其一部分在磁场中的相对运动所产生的感应电动势。 感生电动势:仅由磁场的变化而产生的感应电动势。 一 动生电动势 图6 - 5 动生电动势 动生电动势的产生可以用洛伦兹力来解释。 长为l 的导体棒与导轨构成矩形回路abcd 平放在纸面内,均匀磁场B 垂直纸面向里。当导体棒ab 以速度v 沿导轨向右滑动时,导体棒内自由电子也以速度v 随之一起向右运动。每个自由电子受到的洛伦兹力为 B v F ?-)(=e , 方向从b 指向a ,在其作用下自由电子向下运动。 如果导轨是导体,在回路中将形成沿着abcd 逆时针方向的电流。如果导轨是绝缘体,则洛伦兹力将使自由电子在a 端累积,从而使a 端带负电,b 端带正电,在ab 棒上产生自上而下的静电场。当作用在自由电子上的静电力与洛伦兹力大小相等时达到平衡,ab 间电压达到稳定值,b 端电势比a 端高。这一段运动导体相当于一个电源,它的非静电力就是洛伦兹力。 电动势定义为单位正电荷从负极通过电源内部移到正极的过程中,非静电力K 所作的功,即 B v F K ?=-= e . 动生电动势为 ε ??+ -??=?= l B v l K d )(d b a . (6.4) 均匀磁场情况:若v ⊥ B , 则有ε = B l v ;若导体顺着磁场方向运动,v // B ,则有 v ? B = 0,没有动生电动势产生。因此,可以形象地说,只有当导线切割磁感应线而运动时,才产生动生电动势。 普遍情况:在任意的恒定磁场中,一个任意形状的导线线圈L (闭合的或不闭合的)

在运动或发生形变时,各个线元d l 的速度v 的大小和方向都可能是不同的。这时,在整个线圈L 中产生的动生电动势为 ε l B v d )() (??= ?L . (6.5) 图6 - 6 洛伦兹力不作功 洛伦兹力对电荷不作功:洛伦兹力总是垂直于电荷的运动速度,即v ⊥F v ,因此洛伦兹力对电荷不作功。然而,当导体棒与导轨构成回路时会有感应电流出现,这时感应电动势却是要作功的。 感应电动势作功能量的来源:在运动导体中的自由电子不但具有导体本身的运动速度v ,而且还具有相对于导体的定向运动速度u ,与此相应的洛伦兹力u ⊥F u . 自由电子所受到的总的洛伦兹力为 B v u F ?+-)(= e v u F F +=, 它与合成速度v u +垂直,总的洛伦兹力不对电子作功,即 0)(=+?v u F . 利用0=?v F v 和0=?u F u ,由上式可得 )(v u F +?0)()(=?+?=+?+=v F u F v u F F u v u v , 或 u F v F ?=?-v u . 实际上,为了使导体棒能够在磁场中以速度v 匀速运动,必须施加外力F 0,以克服洛伦兹力的一个分力u =F e -?u B . 利用上式的结果可以看到,F 0克服u F 所作的功为 u F v F v F ??-?v u ==0. 外力克服洛伦兹力的一个分量u F 所作的功0?F v ,通过洛伦兹力的另一个分量v F 对电子的定向运动作了正功v ?F u ,从而全部转化成了感应电流的能量。因此,洛伦兹力并不提供能量,而只是传递能量。洛伦兹力在这里起了能量转化作用,其前提是运动物体中必须有能够自由移动的电荷。

动生电动势和感生电动势同时存在的试题解题策略

原创作品 严禁盗用 第 1 页 共 3 页 动生电动势和感生电动势同时存在的试题解题策略 张阿兵 电磁感应的条件是: 闭合回路磁通量发生变化。即:?Φ变化,见情况可归为3种类型: 1. 通常把导体棒切割磁感线运动时所产生的电动势称为动生电动势 即:B 不变,(S 变)切割类。E BLV =。。。动生电动势 2. 由于磁感应强度变化引起的电动势称为感生电动势 即:B 变,(S 不变)感生类。B E n S t ?=?。。。感生电动势 3. 闭合回路或闭合回路中部分导体在磁场中做切割磁感线运动同时磁场变化,这种情况产生的感应电动势大小 为: ()()BS B S E n n n S B t t t t ?Φ???===+???? 其中S n B BLV t ?=?即:动生电动势,B n S t ??即:感生电动势。 对于第3类,两者同时存在问题比较复杂,在近年的高考模拟试题中,常常出现导体棒切割磁感线的同时磁感应强度强弱也在发生变化的情况。此类问题,如果处理方法不当,难得其果,现介绍两种常用的方法。 方法一:运用12B E E E BLV n S t ?=+=+?解答。即:分别计算出动生感应电动势和感生感应电动势,然后代数和。 应用注意12,E E 的方向问题,当12,E E 方向相同时,取“+”; 当12,E E 方向相反时,取“-” 所以方向相同或相反指各自产生的感应电流在回路中流动方向情况。 方法二:运用E n t ?Φ=?直接计算 具体方法是:先任取t 时刻,写出()t Φ表达式,然后求导可得:'E =Φ。两种方式,都应掌握,因在不同题中两种方法的繁简程度有区别。 具体见例题: 例1.如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r 0=0.10Ω/m ,导轨的端点P 、Q 用电阻可以忽略的导线相连,两导轨间的距离0.20l =m .有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B 与时间t 的关系为B=kt ,比例系数k=0.020T/s .一电阻不计的金属杆可在导轨上无摩擦的滑动,在滑动过程中保持与导轨垂直.在t=0时刻,金属杆紧靠在P 、Q 端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t=6.0s 时金属杆所受的安培力. 解法一:用a 表示金属杆的加速度,在t 时刻,金属杆的位移212 L at = 回路总电阻R=2Lr 0, 此时杆的速度v=at , 杆与导轨构成的回路的面积S=L l ,回路中的感应电动势 12E E E =+其中:21E BLV Kt l at Klat ==??= 设B 方向垂直纸面向里,由右手定则知:1I 的方向为逆时针 2221122 B E S K l at Klat t ?==??=?

知识讲解 电磁感应现象 感应电流方向的判断(提高)

物理总复习:电磁感应现象 感应电流方向的判断 编稿:李传安 审稿:张金虎 【考纲要求】 1、知道磁通量的变化及其求解方法,理解产生感应电流、感应电动势的条件; 2、理解楞次定律的基本含义与拓展形式; 3、理解安培定则、左手定则、右手定则、楞次定律的异同,并能在实际问题中熟练 运用。 【知识络】 【考点梳理】 考点一、磁通量 1、定义: 磁感应强度B 与垂直场方向的面积S 的乘积叫做穿过这个面积的磁通量,BS φ=。如果面积S 与B 不垂直,如图所示,应以B 乘以在垂直于磁场方向上的投影面积S '。即 cos BS φθ'=。 2、磁通量的物理意义: 磁通量指穿过某一面积的磁感线条数。 3、磁通量的单位:Wb 21 1Wb T m =?。 要点诠释: (1)磁通量是标量,当有不同方向的磁感线穿过某面时,常用正负加以区别,这时穿过某面的磁通量指的是不同方向穿过的磁通量的代数和。另外,磁通量与线圈匝数无关。 磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负。穿过某一面积的磁通量一般指合磁通量。 (2)磁通量的变化21φφφ?=-,它可由B 、S 或两者之间的夹角的变化引起。 4、磁通量的变化 要点诠释: (一)、磁通量改变的方式有以下几种 (1)线圈跟磁体间发生相对运动,这种改变方式是S 不变而相当于B 变化。 (2)线圈不动,线圈所围面积也不变,但穿过线圈面积的磁感应强度是时间的函数。 (3)线圈所围面积发生变化,线圈中的一部分导体做切割磁感线运动。其实质也是B 不变,而S 增大或减小。 (4)线圈所围面积不变,磁感应强度也不变,但二者间的夹角发生变化,如在匀强磁场中转动矩形线圈。

4关于动生电动势中洛伦兹力的在认识

感生电动势和动生电动势问题探讨 物理科郑生 人教版高中物理教材“选修3-2第四章第5节电磁感应现象的两类情况”中,讲述了感生电动势和动生电动势问题,在讲到动生电动势中的非静电力问题时,讲了这样一句话:“非静电力与洛伦兹力有关”,这句话讲得很含糊,到底非静电力是不是洛伦兹力,如果不是,那么非静电力又是什么力?教材未作进一步阐述,笔者查阅与教材相配套的教师教学用书后发现,教材这样处理“主要是为了降低难度”,这是可以理解的,然而,这却导致了学生对这一问题产生了疑惑,搞不清非静电力是什么力,从而也搞不清动生电动势是如何产生的、非静电力是如何做功的、棒中能量是如何转化的、安培力与洛伦兹力之间是什么关系等问题。针对目前的现状,笔者认为有必要对相关问题进行深入探讨。 本文先回顾相关内容,再澄清错误认识。 如图所示,水平放置的导体框架,宽L=0.50m ,接有电阻R=0.20Ω,匀强磁场垂直框架平 面向里,磁感应强度B=0.40T.一导体棒ab 垂直框边跨放在框架上,并能无摩擦地在框架上滑动,框架和导体ab 的电阻均不计.当ab 以v=4.0m/s 的速度向右匀速滑动时,求: (1)ab 棒中产生的感应电动势大小; (2)维持导体棒ab 做匀速运动的外力F 的大小;υ 1 F 1=q υ1B F 2=q υ2B υ2 υ1F 1=q υ1B F 2=q υ2B υ2F 合F 外

υ1 F 1=q υ1B F 2=q υ2B υ2 +++ E F 电=q E 二、内容的回顾 1.教材中的内容 教材选修3-2第四章第5节在阐述“电磁感应现象中的洛伦兹力”问题时,给出了一个栏目“思考与讨论”,内容如下: 图1如图1,导体棒在匀强磁场中运动。 (1)自由电荷会随着导体棒运动,并因此受到洛伦兹力。导体棒中自由电荷相对于纸面的运动大致沿什么方向? (2)导体棒一直运动下去,自由电荷是否总会沿着导体棒运动?为什么? (3)导体棒哪端的电势比较高? (4)如果用导线把C 、D 两端连接到磁场外的一个用电器上,导体棒中的电流是沿什么方向的? 在这一栏目之后,教材未作阐述就直接给出了结论:导体棒“相当于一个电源”,同时指出:“非静电力与洛伦兹力有关。”可见,教材中的阐述较简单。 2.某些资料中的内容 笔者翻阅了一部分教辅资料后发现,关于动生电动势中洛伦兹力的认识有错误,不妨列举两例: (1)在“创新方案?高中新课标同步创新课堂?物理(配人教版选修3-2)”中是这样说的:“导体在磁场中做切割磁感线运动时产生的感应电动势叫动生电动势,它是由于导体中自由电子受到洛伦兹力作用而引起的,使自由电子做定向移动的非静电力就是洛伦兹力。” 该表述中的错误之处是:非静电力就是洛伦兹力。 (2)在“教材解析?高中物理?选修3-2”中是这样说的:“产生动生电动势的导体相当于电源,其中所谓的非静电力就是洛伦兹力,”“电动势的大小等于移动单位正电荷时洛伦兹力所做的功。” 该表述中的错误之处是:非静电力就是洛伦兹力,洛伦兹力做了功。 综合以上回顾可见,关于动生电动势中洛伦兹力的认识,现行教材进行了淡化处理,而部分教辅资料中则存在错误,加上部分教师对此也有模糊认识,从而导致教学中出现混乱局面,搞不清是怎么回事,教师如不及时澄清,势必影响后续知识的学习。 三、认识的澄清 1.洛伦兹力与非静电力的关系 -----F 外

物理从一道电磁感应习题谈两种电动势的能量问题

从一道电磁感应习题谈两种电动势的能量问题 张平昭 (江阴市青阳中学,江苏 214401) 对于感生电动势和动生电动势的产生机理,一般学生都能理解,但对于它们的区别大部分学生不能正确地认识。很多参考书在处理此类题目时,都是采用感生电动势加动生电动势等于总电动势的方法帮助大家快速处理问题,这样导致很多学生认为这两个电动势只是分别由磁场变化和回路面积变化而产生的,而没有从能量转化上进行本质地辨析。 电动势是一个能量的概念,它的定义为:非静电力把1C 的正电荷在电源内从负极移送到正极所做的功。所以我们在讲两种电动式的区别时,应把握住在电源内部是什么力在推动电荷做功,能量的来源是什么。感生电动势是:变化的磁场产生非静电场,由电场力推动电荷做功,将磁场能转变为电势能;而动生电动势是:随导杆运动的电荷受到洛伦兹力,从导杆一端移动到另一端,是一个与洛伦兹力有关的非静电力做功,将其他形式的能变为电势能。可见这两者有着本质的区别,但在处理很多题目时,并不涉及到这两个电动势的本质,基本只要将两个电动势相加减就可以了,学生也觉得没有理解上述问题的必要。 如何找到一个情景能让学生很好的认识到这个问题呢?也许让学生在做题时碰到困惑,他们才能体会到吧!笔者在教学中发现下述这个题目的情景可以从能量角度帮助学生理解这两个电动势的不同。 【例】如图所示,在水平面上有一个固定的两根光滑金属杆制成的37°角的导轨AO 和BO ,在导轨上放置一根和OB 垂直的金属杆CD ,导轨和金属杆是用同种材料制成的, 单位长度的电阻值均为0.1Ω/m ,整个装置位于垂直纸面向里的匀强 磁场中,匀强磁场的磁感应强度随时间的变化关系为B =0.2t T ,现给 棒CD 一个水平向右的外力,使CD 棒从t =0时刻从O 点处开始向 右做匀加速直线运动,运动中CD 棒始终垂直于OB ,加速度大小为 0.1m/s 2,求(1)t =4s 时,回路中的电流大小;(2)t =4s 时,CD 棒上 安培力的功率是多少? 【分析】本题与2003江苏高考第18题很相似。属于动生和感生同时存在的情况,正如前文所说,大部分同学将两个电动势相加很快可以求出第(1)问I=1A 。但在第二问的求解中出现了如下两种情况: 一是利用W at ktIl BIlv v F P CD 192.0===?=安安; 二是利用W R I P P 24.02===电安。 同学们都知道第一种情况肯定是对的,但第二种情况错在那里呢?而我们在大部分电路问题中都讲过安培力的功率数值上就等于电路中的电功率。其实这就是学生对两种电动势能量问题不够理解的表现。 我们讲安培力的功率等于回路中产生的电功率实际是仅在动生的情况下提出的,即通过克服安培力做功将其他形式的能转化为电能。但在本道题中不仅仅有动生电动势同时还存在感生电动势,也就是说电能的来源不仅仅是由与洛伦兹力有关的非静电力搬运电荷做功(在宏观上表现为克服安培力做功)将机械能转化为电能,还存在由磁场变化产生的非静电场力搬运电荷做功将磁场能转化为电能。所以在上述两种解法中,第二种情况的值大于第一种情况就是由于这个原因造成的。 到这里笔者原以为学生应该已经理解这个问题,但突然有学生提出在第一种情况中电流I 是两个电动势共同作用的结果,所以这个功率也应该是总功率。这个问题马上引起似是而

高中阶段推导动生电动势的四种方法辨析

高中阶段推导动生电动势的四种方法辨析 山东省邹城市第一中学物理组 陈霞(273500) 一、根据法拉第电磁感应定律推导 若导轨间距为l ,运动速度为v ,匀强磁场的磁感应强 度为B ,B 、l 、v 两两垂直,如图1所示,根据法拉第电磁感应定律Blv t t Blv t S B t E =??=???=??Φ=。 二、根据洛仑兹力与电场力平衡来推导 在磁感应强度为B 的匀强磁场中,直导线ab 以垂直磁场的速度v 匀速运动,导体中的自由电子也同样在磁场中做定向运动,因此会受到洛仑兹力的作用, evB F =洛,方向竖直向下,使电子向导线的b 端积聚,同时使a 端显出正电性, 从而产生一个向下的电场。当电场力与洛仑兹力达到平衡时,电荷停止积累,在a 、b 两端形成稳定的动生电动势。设此时ab 间的电势差为U ,则有eU evB U Blv l =?=。如果用导线将两端连起来,就产生了电流,运动的导线就是电源,洛仑兹力不断的把自由电子从电源的正极拉到负极,使电路里产生稳定持续的电流,洛仑兹力就是非静电力,U Blv =中的U 就是感应电动势E ,即E Blv =。 三、根据能量守恒定律推导 如图2所示,自由电荷随导体运动的速度为1v ,受到的洛 仑兹力为B ev F 11=,自由电子沿导体做定向移动的速度为2v ,受到的洛仑兹力B ev F 22=。1F 与2v 同向,做正功,2F 与1v 反向,做负功,但电子的合速度为v ,洛仑兹力的合力为evB F =,F 垂直v ,所以洛仑兹力总的不做功,即洛仑兹力并不提供能量,1F 做的正功与2F 做的负功,正好抵消。 1F 做正功使自由电子沿导体定向运动产生电能,2F 做负功,使自由电子沿导体运动方向的速度减小。从大量自由电子的宏观表现来看,阻力2F 的宏观表现就是安培力,外力必须克服安培力做功将其他形式的能量转化为电能。洛仑兹力起到能量传递的作用,并没有对外输出能量,这与洛仑兹力永不作功并不矛盾! 当导体棒匀速运动时,回路中的电功率为P EI =,克服安培力做功的功率为× × × × × × × × × × × 图1 图2

专题讲解_感生与动生电动势同时存在的情况

感生电动势与动生电动势的比较 感生与动生电动势同时存在的情况 例1(2003卷).如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r0=0.10Ω/m,导轨的端点P、Q用电阻可以忽略的导线相连,两导轨间的距离l=0.20m.有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B与时间t的关系为B=kt,比例系数k=0.020T/s.一电阻不计的金属杆可在导轨上无摩擦低滑动,在滑动过程中保持与导轨垂直.在t=0时刻,金属杆紧靠在P、Q端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t=6.0s时金属杆所受的安培力. 例2.如图所示,两根完全相同的光滑金属导轨OP、OQ固定在水平桌面上,导轨间的夹角为θ=74°,导轨单位长度的电阻为r0=0.10Ω/m.导轨所在空间有垂直于桌面向下的匀强磁场,且磁场随时间变化,磁场的磁感应强度B与时间t的关系为B=k/t,其中比例系数k=2T?s.将电阻不计的金属杆MN放置在水平桌面上,在外力作用下,t=0时刻金属杆以恒定速度v=2m/s 从O点开始向右滑动.在滑动过程中保持MN垂直于两导轨间夹角的平分线,且与导轨接触良好.(已知导轨和金属杆均足够长,sin37°=0.6,cos37°=0.8) 求在t=6.0s时,金属杆MN所受安培力的大小。

练习1.(2016全国卷三卷).如图,两条相距l 的光滑平行金属导轨位于同一水平面(纸面),其左端接一阻值为R 的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S 的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B 1随时间t 的变化关系为B 1=kt ,式中k 为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN (虚线)与导轨垂直,磁场的磁感应强度大小为B 0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN ,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求: (1)在t =0到t =t 0时间间隔,流过电阻的电荷量的绝对值;(2)在时刻t (t >t 0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小. 练习2.如图(a )所示,一端封闭的两条足够长平行光滑导轨固定在水平面上,相距L ,其中宽为L 的abdc 区域无磁场,cd 右段区域存在匀强磁场,磁感应强度为B 0,磁场方向垂直于水平面向上;ab 左段区域存在宽为L 的均匀分布但随时间线性变化的磁场B ,如图(b )所示,磁场方向垂直水平面向下。一质量为m 的金属棒ab ,在t =0的时刻从边界ab 开始以某速度向右匀速运动,经时间3/t 0运动到cd 处。设金属棒在回路中的电阻为R ,导轨电阻不计。求: (1)求金属棒从边界ab 运动到cd 的过程中回路中感应电流产生的焦耳热量Q; (2)经分析可知金属棒刚进入cd 右段的磁场时做减速运动,求金属棒在该区域克服安培力做的功W 。 V 0 B B 0 b a d c L L L (a ) (b) t t B 2B 0 B 0

应用楞次定律判断感应电动势的方法

授课计划表

感应电动势:在电磁感应现象里面,既然闭合电路里有感应电流,那么这个电路中也必定有电动势,在电磁感应现象中产生的电动势叫做。 要求学员以电磁感应现象来判定感应电流方向做个实验:(1)在研究判定感应电流方向的实验中,为了能明确感应电流的具体

方向,有一个如图(a )所示的重要实验步骤(查明灵敏电流计指针偏转方向 和电流方向间的关系【电流计指针是电流哪边流进往哪边偏】)。 (2)(多选题)经检验发现:电流从灵敏电流计右边接线柱流入时其指针向右偏转.图(b )所示是通电螺线管L 1加速插入螺线管L 2时的情景.通过以上信息可以判断出_____ (A )通电螺线管L 1的下端相当于条形磁铁的N 极 (B )两通电螺线管中电流的环绕方向一定相反 (C )如通电螺线管L 1匀速插入螺线管L 2时,灵敏电流计指针将指在正中央 (D )如通电螺线管L 1减速插入螺线管L 2时,灵敏电流计指针将向右偏转. 二、 电磁感应定律 1. 法拉第电磁感应定律:线圈中感应电动势的大小与通过同一线圈的 磁通变化率(即变化快慢)成正比。 公式: 其式中: N--线圈的匝数,匝; △t--磁通变化所需的时间,s ; △Ф--N 匝线圈的磁通变化量,Wb ; е--在△t 时间内感应电动势的平均值,V 。 2.楞次定律: 1)楞次定律是用来判定线圈中的感应电动势或感应电流的方向。 其内容是:当穿过线圈的磁通(原有的磁通)变化时,感应电动势的方向总是企图使它的感应电流产生的磁通阻碍原有磁通的变化。 t Φ t Φe ΔΔΔΔN ==

也就是说,当线圈原磁通增加时,感应电流就要产生与它方向相反的磁通去阻碍它的增加;当线圈中的磁通减少时,感应电流就要产生与它方向相同的磁通去阻碍它的减少。 2)对‘阻碍’的理解: 谁起阻碍作用? --感应电流产生的磁场; 阻碍什么? --引起感应电流的磁通量的变化; ‘阻碍’就是感应电流的磁场总与原磁场的方向相反吗? --不一定!‘增反减同’; 阻碍是阻止吗? --否,只是使磁通量的变化变慢; 为何阻碍? --遵守能量守恒定律。 3.思考与讨论: 如图A.B都是很轻的铝环,环A是闭合的,环B是断开的,用磁铁的任一极去接近环A, (1)A环将 (A)和磁铁相互吸引(B)和磁铁相互排斥 (C)和磁铁之间没有力的作用(D)无法判断和磁铁之间没有力的作用

补偿原理测电动势

用补偿法测电动势 Determinnation of Electromotive Force by Potentionmeter 电位差计是利用补偿原理测量电动势(或电压)的一种精密仪器。通过实验,要求掌握补偿法测量电动势的原理,以及使用电位差计的方法和技巧,从中还可受到正确使用精密仪器的训练。 [实验器材] UJ31型低电势直流电位差计一台、检流计一台、标准电池一个、直流稳压电源一台、温差电偶一付、导线6根、温度计一个。 [实验原理] 1.热电偶测量温度的物理基础 由两种不同的金属或组份不同的合金构成回路,若两个接点A、B处于不同的温度t0和t,则回路中将有电流产生,这就是温差电现象,相应的电动势称为温差电动势。这两种金属(或组份不同的合金)所构成的回路称为热电偶。 温差电动势的大小除了和热电偶材料性质有关外,唯一决定的因素就是两个接触点的温度差(t-t0)。在一定的温度范围内,热电偶的温差电动势E与温度差的关系近于线性,即E=C(t-t i)。 2.电位差计的工作原理 UJ31型电位差计是采用补偿原理测量电动 势(或电压)的一种精密仪器,工作原理如图5-1 所示。其中R t、R N和具有滑点C点的电阻R AB均 是电位差计的构件。而由工作电源E、电阻R i(可 以调节)、R N及R AB串联而成的电路称辅助电路。 通过调节Rt可改变电路的工作电流。使用电位差 计,基本上可分为两个步骤掌握用万用电表测量 电流、电压、电阻的方法。 (1)校准将开关K与“1”接通,则标准电池 图5-1 电位差计原理 E N、检流计G与R N形成补偿电路(也称标准电路)。调节R t使辅助电路的工作电流I0为某值时,可使RN两端的电压与标准电池电动势E N相补偿,检流计中无电流通过,所示 E N=I0R N 即 I0=E N/R N

同时存在动生电动势和感生电动势问题方法例析(可打印修改)

同时存在动生电动势和感生电动势问题方法例析 一、磁感应强度按B=kt 规律变化 例1:如图1所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r 0=0.10Ω/m,导轨的端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离=0.20m 。有l 随时间变化的匀强磁场垂直于桌面,已知磁感强度B 与时间t 的关系为B =kt ,比例系数k =0.020T/s ,一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直,在t =0时刻,金属杆紧靠在P 、Q 端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t =6.0s 时金属杆所受的安培力。 分析和解::以表示金属杆运动的加速度,在时刻, a t 金属杆的位移: ①22 1at L =回路电阻: ② 02Lr R =解法一:求磁感应强度的变化率,需要将感生电动势和动生电动势叠加 由图2据(斜率)k t B =??=于kt B 金属杆的速度: ③ at v =回路的面积: ④ Ll S =回路的电动势等于感生电动势与动生电动势的代数和 ⑤Blv t B S +??=ε感应电流: ⑥ R i ε =作用于杆的安培力: ⑦ Bli F =解以上诸式得 ,代入数据为t r l k F 0 2 2123=N F 31044.1-?=解法二:求磁通量的变化率(勿须再求感生电动势)t 时刻的磁通量:3 22 121klat at ktl BlL =?==?磁通量的变化量:)(2121213132313212t t kla klat klat -=-= -=????感应电动势:)(2 121222*********t t t t kla t t t t kla t ++=--=??=?ε在上式中当klL klat t t t t 32 3 于于于0221====→?ε安培力:.t r l k Lr klL ktl R ktl Bli F 02 202323====ε 代入数据,与解法一所得结果相同 二、磁感应强度按 B=k/t 规律变化

感应电动势 自感

一、法拉第电磁感应定律 1.感应电动势 (1)概念:在电磁感应现象中产生的电动势。 (2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。 (3)方向判断:感应电动势的方向用楞次定律或右手定则判断。 2.法拉第电磁感应定律 (1)内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。 (2)公式:E =n ΔΦΔt ,其中n 为线圈匝数。 (3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I =E R +r 。 3.导体切割磁感线时的感应电动势 (1)导体垂直切割磁感线时,感应电动势可用E =Blv 求出,式中l 为导体切割磁感线的有效长度。 (2)导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速 转动产生感应电动势E =Bl v =12Bl 2ω(平均速度等于中点位置的线速度12 lω)。 二、自感、涡流 1.自感现象 (1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感。 (2)自感电动势 ①定义:在自感现象中产生的感应电动势叫做自感电动势。 ②表达式:E =L ΔI Δt 。 (3)自感系数L ①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关。 ②单位:亨利(H),1 mH =10-3 H,1 μH =10- 6 H 。 2.涡流 当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的漩涡所以叫涡流。 高频考点一 法拉第电磁感应定律的理解及应用 例1.(2016·北京理综·16)如图所示,匀强磁场中有两个导体圆环a 、b ,磁场方向与圆环所在平面垂直。磁感应强度B 随时间均匀增大。两圆环半径之比为2∶1,圆环中产生

相关文档
最新文档