高中数学必修四:1.1.2+弧度制+学案
人教a版必修4学案:1.1.2弧度制(含答案)
1.1.2 弧度制自主学习知识梳理 1.角的单位制(1)角度制:规定周角的________为1度的角,用度作为单位来度量角的单位制叫做角度制.(2)弧度制:把长度等于__________的弧所对的圆心角叫做1弧度的角,记作________. (3)角的弧度数求法:如果半径为r 的圆的圆心角α所对的弧长为l ,那么l ,α,r 之间存在的关系是:__________;这里α的正负由角α的____________________决定.正角的弧度数是一个________,负角的弧度数是一个________,零角的弧度数是______.23.我们已经学习过角度制下的弧长公式和扇形面积公式,请根据“一周角(即360°)的弧度数为2π”这一事实化简上述公式.(设半径为r ,圆心角弧度数为α).对点讲练知识点一 角度制与弧度制的换算例1 (1)把112°30′化成弧度;(2)把-7π12化成角度.回顾归纳 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记π rad =180°即可解.把弧度转化为角度时,直接用弧度数乘以180°π即可.变式训练1 将下列角按要求转化: (1)300°=________rad ;(2)-22°30′=________rad ; (3)8π5=________度.知识点二 利用弧度制表示终边相同的角例2 把下列各角化成2k π+α (0≤α<2π,k ∈Z )的形式,并指出是第几象限角:(1)-1 500°; (2)23π6; (3)-4.回顾归纳 在同一问题中,单位制度要统一.角度制与弧度制不能混用. 变式训练2 将-1 485°化为2k π+α (0≤α<2π,k ∈Z )的形式是________.知识点三 弧长、扇形面积的有关问题例3 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?回顾归纳 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.变式训练3 一个扇形的面积为1,周长为4,求圆心角的弧度数.1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad ”这一关系式.易知:度数×π180rad =弧度数,弧度数×⎝⎛⎭⎫180π°=度数. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.课时作业一、选择题 1.与30°角终边相同的角的集合是( )A.⎩⎨⎧⎭⎬⎫α|α=k ·360°+π6,k ∈Z B .{α|α=2k π+30°,k ∈Z } C .{α|α=2k ·360°+30°,k ∈Z }D.⎩⎨⎧⎭⎬⎫α|α=2k π+π6,k ∈Z 2.集合A =⎩⎨⎧⎭⎬⎫α|α=k π+π2,k ∈Z 与集合B ={α|α=2k π±π2,k ∈Z }的关系是( )A .A =B B .A ⊆BC .B ⊆AD .以上都不对3.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )A .2B .sin 2C.2sin 1D .2sin 1 4.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4},则A ∩B 等于( ) A .∅B .{α|-4≤α≤π}C .{α|0≤α≤π}D .{α|-4≤α≤-π,或0≤α≤π}5.扇形圆心角为π3,半径长为a ,则扇形内切圆的圆面积与扇形面积之比为( )A .1∶3B .2∶3C .4∶3D .4∶9二、填空题6.若扇形圆心角为216°,弧长为30π,则扇形半径为________.7.若2π<α<4π,且α与-7π6角的终边垂直,则α=________.8.若角α的终边与角π6的终边关于直线y =x 对称,且α∈(-4π,4π),则α=____________.三、解答题9.用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(包括边界,如图所示).10. 如右图,已知扇形OAB 的中心角为4,其面积为2 cm 2,求扇形的周长和弦AB 的长.1.1.2 弧度制答案知识梳理1.(1)1360 (2)半径长 1 rad(3)|α|=lr终边的旋转方向 正数 负数 0解 半径为r ,圆心角n °的扇形弧长公式为l =n πr180,扇形面积公式为S 扇=n πr2360.∵l 2πr =|α|2π,∴l =|α|r . ∵S 扇S 圆=S 扇πr 2=|α|2π,∴S 扇=12|α|r 2.∴S 扇=12|α|r 2=12lr .对点讲练例1 解 (1)∵112°30′=112.5°=⎝⎛⎭⎫2252° =2252×π180=5π8. (2)-7π12=-7π12×⎝⎛⎭⎫180π°=-105°.变式训练1 (1)5π3 (2)-π8(3)288例2 解 (1)∵-1 500°=-1 800°+300° =-5×360°+300°.∴-1 500°可化成-10π+5π3,是第四象限角.(2)∵23π6=2π+11π6,∴23π6与11π6终边相同,是第四象限角.(3)∵-4=-2π+(2π-4),∴-4与2π-4终边相同,是第二象限角.变式训练2 -10π+7π4解析 ∵-1 485°=-5×360°+315°,∴-1 485°可以表示为-10π+7π4.例3 解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r .∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010rad =2 rad.所以当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2. 变式训练3 解 设扇形的半径为R ,弧长为l ,则2R +l =4,∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad. 课时作业 1.D 2.A3.C [r =1sin 1,∴l =|α|r =2sin 1.]4.D [集合A 限制了角α终边只能落在x 轴上方或x 轴上.]5.B [设扇形的半径为R ,扇形内切圆半径为r ,则R =r +rsinπ6=r +2r =3r .∴S 内切=πr 2.S 扇形=12αR 2=12×π3×R 2=12×π3×9r 2=32πr 2.∴S 内切∶S 扇形=2∶3.] 6.25解析 216°=216×π180=6π5,l =30π=α·r =6π5r ,∴r =25.7.7π3或10π3解析 -7π6+7π2=14π6=7π3,-7π6+9π2=20π6=10π3. 8.-11π3,-5π3,π3,7π3解析 由题意,角α与π3终边相同,则π3+2π=7π3, π3-2π=-5π3,π3-4π=-11π3. 9.解 (1)⎩⎨⎧⎭⎬⎫α|2k π-π6≤α≤2k π+5π12,k ∈Z .(2)⎩⎨⎧⎭⎬⎫α|2k π-34π≤α≤2k π+3π4,k ∈Z .(3)⎩⎨⎧⎭⎬⎫α|k π+π6≤α≤k π+π2,k ∈Z .10.解 设AB 的长为l ,半径OA =r ,则S 扇形=12lr =2,∴lr =4, ①设扇形的中心角∠AOB 的弧度数为α,则|α|=lr =4,∴l =4r , ② 由①、②解得r =1,l =4.∴扇形的周长为l +2r =6 (cm), 如图作OH ⊥AB 于H ,则AB =2AH =2r sin 2π-42=2r sin(π-2)=2r sin 2(cm).。
最新人教A版数学必修四导学案:1.1.2弧度制
1.
2.已知一扇形的周长为c(c>0),当扇形的弧长为何值时,它有最大面积?并求出面积的最大值.
3.如果弓形的弧所对的圆心角为 ,弓形的弦长为4 cm,则弓形的面积是____cm2.
4.已知扇形的圆心角为2 rad,扇形的周长为8 cm,则扇形的面积为_________cm2.
3.记住公式 ( 为以角 作为圆心角时所对圆弧的长, 为圆半径)。
二:课前预习
我们把周角的 规定为1度的角,而把这种用度作单位来度量角的单位制叫做角度制.
1.弧度角的定义:
规定:我们把长度等于半径的弧所对的圆心角叫做1弧度的角,记此角为 .
练习:圆的半径为 ,圆弧长为 、 、 的弧所对的圆心角分别为多少?
说明:一个角的弧度由该角的大小来确定,与求比值时所取的圆的半径大小无关。
思考:什么 弧度角?一个周角的弧度是多少?一个平角、直角的弧度分别又是多少?
2.弧度的推广及角的弧度数的计算:
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;角 的弧度数的绝对值是 ,(其中 是以角 作为圆心角时所对弧的长, 是圆的半径)。
规定:我们把长度等于半径的弧所对的圆心角叫做1弧度的角,记此角为 .
练习:圆的半径为 ,圆弧长为 、 、 的弧所对的圆心角分别为多少?
说明:一个角的弧度由该角的大小来确定,与求比值时所取的圆的半径大小无关。
思考:什么 弧度角?一个周角的弧度是多少?一个平角、直角的弧度分别又是多少?
2.弧度的推广及角的弧度数的计算:
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;角 的弧度数的绝对值是 ,(其中 是以角 作为圆心角时所对弧的长, 是圆的半径)。
说明:我们用弧度制表示角的时候,“弧度”或 经常省略,即只写一实数表示角的度量。
1.1.2弧度制学案
1.1.2 弧度制一、【课前导学】 1.弧度角的定义:思考:圆的半径为r ,圆弧长为r π、2r 、3r 的弧所对的圆心角分别为多少?说明:一个角的弧度由该角的大小来确定,与求比值时所取的圆的半径大小无关。
思考:弧度角π是什么?一个周角的弧度是多少?一个平角、直角的弧度分别又是多少?2.弧度的推广及角的弧度数的计算: 规定:说明:我们用弧度制表示角的时候,“弧度”或rad 经常省略,即只写一实数表示角的度量。
3.角度与弧度的换算3602π=rad 180π=rad1801π=︒rad 0.01745≈rad 1rad =︒)180(π5718'≈5.在角度制下,弧长公式及扇形面积公式如何表示? 圆的半径为r ,圆心角为n 所对弧长为: 扇形面积为 :6.弧长公式:在弧度制下,弧长公式和扇形面积公式又如何表示? 二、【典例示范】例1 (1)'3067︒化成弧度.(2)35πrad 化成度。
例2 用弧度制分别表示轴线角、象限角的集合。
(1)终边落在x 轴的非正、非负半轴,y 轴的非正、非负半轴的角的集合。
(2)第一、二、三、四象限角的弧度表示。
OAB例3 将下列各角化为2(02,)k k Z πααπ+≤<∈的形式,并判断其所在象限。
(1)π319; (2)o 315-; (3)o 1485-.(练习)写出阴影部分的角的集合:例4 (1)已知扇形OAB 的圆心角α为120,半径6r =,求弧长AB 及扇形面积。
(2)已知扇形周长为20cm ,当扇形的中心角为多大时它有最大面积,最大面积是多少?例5 如图,扇形OAB 的面积是24cm ,它的周长是8cm ,求扇形的中心角及弦AB 的长。
1502101.1.2 弧度制(作业)一、选择题 1.π43sin的值是( ). A . 22-B . 22C . 21-D . 212.一条弦长等于半径的21,则此弦所对圆心角( ). A .等于6π弧度 B .等于 3π弧度 C .等于21弧度 D .以上都不对 3.扇形的周长是16,圆心角是2弧度,则扇形面积是( ).A .B .C .16D .324.集合|,,|2,22A k k Z B k k Z ππααπααπ⎧⎫⎧⎫==+∈==±∈⎨⎬⎨⎬⎩⎭⎩⎭的关系是( ) (A )A B = (B )A B ⊆ (C )A B ⊇ (D )以上都不对5.已知集合{}{}|2(21),,|44A k k k Z B απαπαα=≤≤+∈=-≤≤,则A B =( )(A )φ (B ){}|44αα-≤≤(C ){}|0ααπ≤≤ (D ){|4ααπ-≤≤-或0}απ≤≤二、填空题6.把化为的形式是 . 7.圆的半径变为原来的12,而弧长不变,则该弧所对的圆心角是原来的 倍。
高一数学人教A版必修4第一章1.1.2 弧度制 教学设计
长来定义角度,而产生新的角度单位呢?那么我们就先通过简单的计算来看看能不能发现什么规律?【学生活动】分组讨论,探索研究探究1:角度为30,60的圆心角,当半径1,2,3,4r =时,分别计算对应的弧长l ,计算后你们能发现什么规律?有没有什么比值或者量是不变的?30θ=, 1r =时,3011801806n r l πππ⨯⨯===,6π=r l 2r =时,3021801803n r l πππ⨯⨯===,6π=r l3r =时,3031801802n r l πππ⨯⨯===,6π=r l4r =时,30421801803n r l πππ⨯⨯===,6π=r l 60θ=,1r =时,6011801803n r l πππ⨯⨯===,3π=r l2r =时,60221801803n r l πππ⨯⨯===,3π=r l 3r =时,603180180n r l πππ⨯⨯===,3π=r l4r =时,60441801803n r l πππ⨯⨯===,3π=r l 发现结论:圆心角不变则比值不变,这个比值与弧长和半径的大小无关,只和角度大小有关。
(抽取两个小组分享他们的发现)因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是度量角的另外一种单位制——弧度制(客观性,有理可循)。
环节三:归纳概括(新概念和新公式),初步巩固及总结(一收)【教师活动】弧度制的定义:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,用符号1 rad 表示,读作1弧度。
这种以弧度为单位来度量角的制度叫做弧度制。
如图, 角在形成过程中,射线上的任意一点在旋转过程中,走过的弧长以及圆弧所在圆的半径虽然不同,但是走过的角度是相同的(几何画板展示)【学生活动】即时回答:弧长分别为r,2r,半圆,一个圆所对的圆心角的弧度数,可以发现圆心角弧度数等于弧长和半径的比值,得出结论rl=α 【教师活动】几何画板展示问题,并顺便说明正角的弧度数为正,负角弧度数为负,零角的弧度数为0.【教师活动】提问:弧度制与角度制相比,不同之处在哪里? (教师引导学生进行小结) 【学生活动】在教师的引导下,整理得:1.定义方式不同:弧度制是以“弧度”为单位的度量角的单位制,角度制是以“度”教师提供的素材,通过小组探究讨论,让学生有充足的时间空间自主完成知识建构让学生体会数学中下定义本质上是抓住事物的本质,而事物的本质则是变化过程中的不变性.通过具体图象,以形助数,直观定义新概念。
2024-2025学年高中数学第一章三角函数1.1.2弧度制(1)教学教案新人教A版必修4
(二)课堂导入(预计用时:3分钟)
激发兴趣:
提出问题或设置悬念,引发学生的好奇心和求知欲,引导学生进入弧度制学习状态。
回顾旧知:
简要回顾上节课学习的角度制内容,帮助学生建立知识之间的联系。
提出问题,检查学生对角度制的掌握情况,为弧度制新课学习打下基础。
(三)新课呈现(预计用时:25分钟)
3. 学生可能遇到的困难和挑战:在学习了角度制后,学生可能对弧度制的概念和运用感到困惑,特别是在理解和转换弧度制与角度制时。此外,学生可能对弧度制在三角函数中的应用感到困难,特别是如何利用弧度制来表示和计算三角函数值。学生可能还需要加强对弧度制与角度制之间关系的直观想象,以更好地理解和运用这一概念。六、 Nhomakorabea学资源拓展
(一)拓展资源:
1. 弧度制在实际应用中的例子:
- 物理学科中,可以介绍弧度制在描述角速度、角加速度等方面的应用。
- 工程学科中,弧度制在测量角度、绘制曲线等方面的应用。
2. 数学软件资源:
- 介绍几何画板等软件,让学生学会用软件绘制弧度制的图形。
- 介绍MATLAB等软件,让学生学会用软件进行弧度制的计算。
(4)数学工具软件:教授学生使用数学工具软件,如几何画板、MATLAB等,进行弧度制的图形绘制和计算,提高学生的实践操作能力。
(5)互动环节:设置课堂互动环节,如提问、解答、游戏等,激发学生的学习兴趣,提高学生的参与度和积极性。
(6)课后辅导:提供课后在线辅导,解答学生疑问,及时了解学生的学习情况,针对性地进行教学调整。
在教学反思中,我发现自己在课堂导入和知识讲解环节做得比较好,能够有效地激发学生的兴趣和引导学生深入思考。但在互动探究和技能训练环节,我发现自己在组织学生讨论和指导学生实践方面还有待提高,需要进一步加强对学生的引导和鼓励。此外,我在板书设计方面也有所欠缺,需要更加简洁明了地展示教学内容,方便学生理解和记忆。
学案4:1.1.2 弧度制
1.1.2弧度制【课标要求】1.了解角的另外一种度量方法——弧度制.2.能进行弧度与角度的互化.3.掌握弧度制中扇形的弧长公式和面积公式.【核心扫描】1.对弧度制概念的理解.(难点)2.弧度制与角度制的互化.(重点、易错点)新知导学1.度量角的单位制(1)角度制用度作为单位来度量角的单位制叫做角度制,规定1度的角等于周角的1360.(2)弧度制①弧度制的定义长度等于的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度.以弧度作为单位来度量角的单位制叫做弧度制.②任意角的弧度数与实数的对应关系正角的弧度数是一个;负角的弧度数是一个;零角的弧度数是零.③角的弧度数的计算如果半径为r的圆的圆心角α所对弧的长为l,那么,角α的弧度数的绝对值是|α|=l r.温馨提示:圆心角α所对的弧长与半径的比值lr与半径的大小无关,仅与角的大小有关.2.角度制与弧度制的换算(1)温馨提示:角度制与弧度制是两种不同的度量单位,两者之间可相互转化,并且角度与弧度是一一对应的关系.在表示角时,角度制与弧度制不能混用,在表达式中,要保持单位一致,防止出现π3+k ·180°或60°+2k π等这类错误的写法.3.扇形的弧长及面积公式设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则 温馨提示:扇形的面积公式S =12lR 与三角形的面积公式极为相似(把弧长看作底),可以类比记忆.在弧度制下的弧长公式、面积公式有诸多优越性,但如果已知角是以“度”的单位,则必须先化成弧度后再计算.互动探究探究点1 角α=2这种表达方式正确吗?探究点2 弧度制与角度制有何区别与联系?探究点3 如何用弧度制表示直角坐标系中的角?题型探究类型一 角度制与弧度制的换算 【例1】 将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)7π12;(4)-11π5.[规律方法] (1)进行角度与弧度换算时,要抓住关系:π rad =180°.(2)熟记特殊角的度数与弧度数的对应值.【活学活用1】 (1)把112°30′化成弧度; (2)把-5π12化成度.类型二 用弧度制表示终边相同的角【例2】 (1)将-1 500°表示成2k π+α(0≤α<2π,k ∈Z )的形式,并指出它是第几象限角; (2)在0°~720°范围内,找出与角2π5终边相同的角.[规律方法] 用弧度制表示终边相同的角2k π+α(k ∈Z )时,其中2k π是π的偶数倍,而不是整数倍,还要注意角度制与弧度制不能混用.【活学活用2】 设α1=-570°,α2=750°,β1=3π5,β2=-π3.(1)将α1,α2用弧度制表示出来,并指出它们各自的终边所在的象限;(2)将β1,β2用角度制表示出来,并在-720°~0°范围内找出与它们终边相同的所有角.类型三 扇形的弧长及面积公式的应用【例3】 已知一个扇形的周长为a ,求当扇形的圆心角多大时,扇形的面积最大,并求这个最大值.[规律方法] (1)联系半径、弧长和圆心角的有两个公式:一是S =12lr =12|α|r 2,二是l =|α|r ,如果已知其中两个,就可以求出另一个.(2)当扇形周长一定时,其面积有最大值,最大值的求法是把面积S 转化为r 的函数. 【活学活用3】 已知一个扇形的周长为8π9+4,圆心角为80°,求这个扇形的面积.易错辨析 角的度量单位不统一及角的大小不清楚【示例】 用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在如图所示的阴影部分内的角的集合(不包括边界).[错解] (1)330°+2k π<θ<75°+2k π(k ∈Z ),(2)225°+2k π<θ<135°+2k π(k ∈Z ).[错因分析] 在用角度或弧度表示角时,不要混用;此外,对于区域角,要注意旋转方向,并注意把结果写成集合的形式.[正解] (1)∵330°的终边也可看作-30°的终边,∴-30°=-π6,75°=5π12,∴⎩⎨⎧⎭⎬⎫θ⎪⎪-π6+2k π<θ<5π12+2k π,k ∈Z . (2)∵225°的终边也可看作-135°的终边,∴-135°=-3π4,135°=3π4,∴⎩⎨⎧⎭⎬⎫θ⎪⎪-3π4+2k π<θ<3π4+2k π,k ∈Z . [防范措施] 一定要使用统一的角的度量单位,另外要弄清角的大小,不要出现矛盾不等式.课堂达标1.下列说法中,错误的说法是( ). A .半圆所对的圆心角是π rad B .周角的大小等于2πC .1弧度的圆心角所对的弧长等于该圆的半径D .长度等于半径的弦所对的圆心角的大小是1弧度 2.α=-2,则α的终边在( ). A .第一象限 B .第二象限 C .第三象限D .第四象限3.-2312π rad 化为角度应为________.4.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.5.已知集合A ={α|2k π<α<π+2k π,k ∈Z },B ={α|-4≤α≤4},求A ∩B .课堂小结1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 易知:度数×π180rad =弧度数,弧度数×⎝⎛⎭⎫180π°=度数. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单 位取弧度.参考答案新知导学1.(2)①半径长②正数负数2.角度制与弧度制的换算(1) 2π 360° π 180°(2) 90° 180°3.α·R互动探究探究点1提示正确.用弧度制表示角时,“弧度”二字或“rad”通常略去不写,角α=2就表示α是2 rad的角.探究点2提示(1)区别:①弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制.②1弧度的角是指等于半径长的弧所对的圆心角,而1度的角是指等于周角的1360的角,二者大小显然不同.③用弧度制表示角时,单位“弧度”两个字可以省略不写,但用角度制表示角时,单位“°”不能省略.(2)联系:无论是以“弧度”还是以“度”为单位,角的大小都是一个与“半径”大小无关的值.探究点3提示(1)利用弧度制表示终边落在坐标轴上的角的集合.(2)类型一 角度制与弧度制的换算 【例1】 【解】(1)20°=20π180=π9.(2)-15°=-15180π=-π12.(3)7π12=712×180°=105°. (4)-11π5=-115×180°=-396°.【活学活用1】 【解】(1)112°30′=⎝⎛⎭⎫2252°=2252×π180=5π8. (2)-5π12=-⎝⎛⎭⎫5π12×180π°=-75°. 类型二 用弧度制表示终边相同的角【例2】 【解】(1)-1 500°=-1 500×π180=-25π3=-10π+5π3.∵5π3是第四象限角,∴-1 500°是第四角限角. (2)∵2π5=25×180°=72°,∴终边与角2π5相同的角为θ=72°+k ·360°(k ∈Z ),当k =0时,θ=72°;当k =1时,θ=432°,∴在0°~720°范围内,与2π5角终边相同的角为72°,432°.【活学活用2】 【解】(1)∵180°=π rad , ∴α1=-570°=-570π180=-19π6=-2×2π+5π6,α2=750°=750π180=25π6=2×2π+π6.∴α1的终边在第二象限,α2的终边在第一象限. (2)β1=3π5=35×180°=108°,设θ=108°+k ·360°(k ∈Z ),则由-720°≤θ<0°,即-720°≤108°+k ·360°<0°,得k =-2,或k =-1.故在-720°~0°范围内,与β1终边相同的角是-612°和-252°.β2=-π3=-60°,设γ=-60°+k ·360°(k ∈Z ),则由-720°≤-60°+k ·360°<0°,得k =-1,或k =0. 故在-720°~0°范围内,与β2终边相同的角是-420°.类型三 扇形的弧长及面积公式的应用【例3】 【解】设扇形的弧长为l ,半径为r ,圆心角为α,面积为S . 由已知,2r +l =a ,即l =a -2r . ∴S =12l ·r =12(a -2r )·r =-r 2+a 2r=-⎝⎛⎭⎫r -a 42+a 216. ∵r >0,l =a -2r >0,∴0<r <a 2,∴当r =a 4时,S max =a 216.此时,l =a -2·a 4=a2,∴α=lr=2.故当扇形的圆心角为2 rad 时,扇形的面积最大,为a 216.【活学活用3】【解】设扇形的半径为r ,面积为S ,由已知,扇形的圆心角为80×π180=4π9, ∴扇形的弧长为4π9r ,由已知,得4π9r +2r =8π9+4,∴r =2, ∴S =12·4π9r 2=8π9.故扇形的面积是8π9.课堂达标1.D【解析】根据弧度的定义及角度与弧度的换算知A 、B 、C 均正确,D 错误. 2.C【解析】1 rad≈57.30°,∴-2 rad≈-114.60°.故α的终边在第三象限. 3.-345°【解析】-2312π=-2312×180°=-345°.4.34【解析】由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .5.【解】∵A ={α|2k π<α<π+2k π,k ∈Z }, 令k =1,有2π<α<3π,而2π>4;令k=0,有0<α<π;令k=-1,有-2π<α<-π.而-2π<-4<-π,故A∩B={α|-4≤α<-π或0<α<π}.。
高中数学1_1_2弧度制导学案苏教版必修4
1.1.2 弧度制(1)概念:①规定周角的1360为1度的角,这种用度作为单位来度量角的单位制叫做角度制.②长度等于半径的圆弧所对的圆心角叫做1弧度的角,记作1 rad.用弧度作为角的单位来度量角的单位制称为弧度制.(2)弧度与角度的换算:①360°=2π rad ;②1°=π180rad≈0.017 45 rad;③1 rad =180π度≈57.30°.α=k ·360°+π3(k ∈Z )这种写法正确吗?为什么? 提示:不正确.虽然弧度制与角度制都可度量角的大小,但单位不同,所以不能混用.2.弧长公式及弧度数与实数间的关系(1)扇形的弧长及面积公式:设扇形的半径为r ,弧长为l ,α为圆心角的弧度数,则l =|α|r ,扇形的面积S 扇形=12rl =12|α|r 2. (2)角的集合与实数集之间的关系:正角的弧度数是正数,负角的弧度数是负数,零角的弧度数为0.角的概念推广以后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:即每一个角都对应惟一的一个实数(即这个角的弧度数);反过来,每一个实数也都对应惟一的一个角(即弧度数等于这个实数的角).预习交流2(1)将5π12化为角度制是__________,5 rad 是第__________象限角; (2)将54°化为弧度制是__________;(3)地球的赤道半径约为6 370 km ,则赤道上1度的圆心角所对的弧长是__________,1弧度的圆心角所对的弧长是__________.提示:(1)75° 四 (2)3π10 (3)637π18km 6 370 km 预习交流弧度制与角度制有何区别与联系?提示:区别:(1)单位不同:弧度制是以“弧度”为单位,角度制是以“度”为单位;(2)进位制不同:弧度制是10进制,角度制是60进制;(3)单位“1”不同:弧度制中“1”代表长度等于半径长的圆弧所对的圆心角为1弧度的角,角度制中“1”代表周角的1360为1度的角.联系:(1)角度与弧度可以相互转化;(2)无论角度制还是弧度制,角的大小都是一个与半径无关的定值;(3)两种单位制下,都能在角的集合与实数集R 之间建立一种一一对应关系.一、角度数与弧度数的换算将下列各角的弧度化为度,度化为弧度:(1)92°30′;(2)-1 080°;(3)-7π18;(4)2. 思路分析:对于角度与弧度之间的换算问题,解题的关键是要抓住π=180°的关系,由比例关系得:弧度数=度数×π180,度数=弧度数×⎝ ⎛⎭⎪⎫180°π. 解:(1)92°30′=92.5°=92.5×π180=37π72; (2)-1 080°=-1 080×π180=-6π; (3)-7π18 rad =-7π18×180°π=-70°; (4)2 rad =2×180°π=⎝ ⎛⎭⎪⎫360π°. 将下列各角的弧度化为度,度化为弧度:(1)-9π4;(2)2 160°;(3)-11π5;(4)33°45′. 解:(1)-9π4 rad =-9π4×180°π=-405°; (2)2 160°=2 160×π180=12π; (3)-11π5 rad =-11π5×180°π=-396°; (4)33°45′=33.75°=33.75×π180=3π16. 二、用弧度制表示终边相同的角将下列各角化成2k π+α(k ∈Z )且0≤α<2π的形式,并指出它们是第几象限角:(1)-1725°;(2)64π3. 思路分析:先把-1 725°化成k ·360°+α(k ∈Z )的形式,再用弧度制表示. 解:(1)∵-1 725°=-5×360°+75°,∴-1 725°=-10π+5π12. ∴-1 725°角与5π12角的终边相同. 又5π12角是第一象限角, ∴-1 725°角是第一象限角.(2)∵64π3=20π+4π3,∴64π3角与4π3角的终边相同. ∴64π3角是第三象限角. 把下列各角化成2k π+α(0≤α<2π,k ∈Z )的形式,并指出它们是第几象限角:(1)-11π4;(2)1 485°;(3)-4.解:(1)-11π4=-4π+5π4,是第三象限角. (2)1 485°=1 485×π180=33π4=8π+π4,是第一象限角. (3)-4=-2π+(2π-4),π2<2π-4<π,是第二象限角. 在角度制中,所有与α终边相同的角可以写成α+k ·360°(k ∈Z )的形式,而在弧度制中可以写成α+2k π(k ∈Z )的形式,0≤α<2π,且α为弧度数;判断一个用弧度数表示的角所在的象限,一般是先将其化成2k π+θ(k ∈Z,0≤θ<2π)的形式,然后再根据θ所在的象限进行判断.三、与弧长和扇形面积有关的问题一扇形的周长为20,则扇形的半径和圆心角各取什么值时,才能使扇形面积最大? 思路分析:设扇形圆心角、半径→求圆心角→求面积→转化为二次函数 解:设扇形圆心角为θ,半径为r ,则2r +θ·r =20.∴θ=20-2r r. ∴S 扇形=12θr 2=12·20-2r r·r 2=(10-r )r =-(r -5)2+25(0<r <20).∴当r =5时,扇形面积的最大值为25.此时θ=2.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为__________.答案:2解析:如图.设内切圆半径为r ,则OO ′=2r ,R =3r .由弧长公式得2π=π3·3r ,解得r =2.弧度制下涉及扇形问题的解题思想:(1)明确弧度制下扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)涉及扇形的周长、弧长、圆心角、面积等的计算,关键是先分析题目已知哪些量求哪些量,然后灵活运用弧长公式、扇形面积公式直接求解或列方程(组)求解.1.72°对应的弧度数为__________,4π5化为角度是__________. 答案:2π5144° 解析:72°=72×π180=2π5;4π5=4π5×180°π=144°. 2.下列各命题中,正确命题的个数是__________.①用弧度来表示的角都是正角;②“度”与“弧度”是度量角的两种不同的度量单位;③1°的角是周角的1360,1弧度的角是周角的12π; ④根据弧度的定义,180°一定等于π弧度;⑤不论是用角度制还是用弧度制度量角,它们均与圆的半径长短有关.答案:3解析:①⑤不正确.②③④正确.3.把角-570°化为2k π+α(0≤α<2π,k ∈Z )的形式为______.答案:-4π+5π6解析:方法一:-570°=-⎝⎛⎭⎪⎫570×π180=-196π, ∴-196π=-4π+5π6. 方法二:-570°=-2×360°+150°,∴-570°=-4π+5π6. 4.如图,公路弯道处AB 的长度l (精确到1 m ,图中长度单位:m)为__________m. 答案:47解析:∵60°=π3,∴l =|α|r =π3×45=15π≈47(m). 5.把下列各角化成2k π+α(0≤α<2π,k ∈Z )的形式,写出终边相同的角的集合,并指出它们是第几象限角:(1)-46π3;(2)-1 485°. 解:(1)-46π3=-8×2π+2π3,是第二象限角, 终边相同的角的集合为⎩⎨⎧⎭⎬⎫α|α=2k π+2π3,k ∈Z . (2)-1 485°=-5×360°+315°=-10π+7π4,是第四象限角, 终边相同的角的集合为⎩⎨⎧⎭⎬⎫α|α=2k π+7π4,k ∈Z .。
1.1.2 弧度制 学案
1.1.2 弧度制1.弧度制(1)定义:以__ __为单位度量角的单位制叫做弧度制.(2)度量方法:长度等于______的弧所对的圆心角叫做1弧度的角.如图所示,圆O 的半径为r ,AB ︵的长等于r ,∠AOB 就是1弧度的角.(3)记法:弧度单位用符号 表示,或用“弧度”两个字表示.在用弧度制表示角时,单位通常省略不写. 2.弧度数一般地,正角的弧度数是一个__ __数,负角的弧度数是一个__ __数,零角的弧度数是____. 如果半径为r 的圆的圆心角α 所对弧的长为l ,那么角α的弧度数的绝对值是|α|= . 3.弧度与角度的换算公式(1)周角的弧度数是2π,而在角度制下的度数是360,于是360°=2π rad ,即弧度与角度的换算公式如下:若一个角的弧度数为α,角度数为n ,则α rad =(180απ)°,n °=n ·π180 rad .(2)常用特殊角的弧度数(3)角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起_______ __关系:每一个角都有唯一的一个__ __(即这个角的弧度数)与它对应;反过来,任一个实数也都有唯一的一个__ __(即弧度数等于这个实数的角)与它对应.4.弧长公式与扇形面积公式 (1)弧长公式在半径为r 的圆中,弧长为l 的弧所对的圆心角大小为α,则|α|=lr ,变形可得l =|α|r ,此公式称为弧长公式,其中α的单位是弧度.(2)扇形面积公式由圆心角为1 rad 的扇形面积为πr 22π=12r 2,而弧长为l 的扇形的圆心角大小为l r rad ,故其面积为S =l r ×r 22=12lr ,将l=|α|r 代入上式可得S =12lr =12|α|r 2,此公式称为扇形面积公式.(3)弧长公式及扇形面积公式的两种表示Y 预习自测u xi zi ce1.下列表述中正确的是( ) A .一弧度是一度的圆心角所对的弧 B .一弧度是长度为半径的弧 C .一弧度是一度的弧与一度的角之和D .一弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位 2.-300°化为弧度是( )A .-4π3B .-5π3C .-7π4D .-7π63.已知半径为10 cm 的圆上,有一条弧的长是40 cm ,则该弧所对的圆心角的弧度数是____. 4.α=-2 rad ,则α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限命题方向1 ⇨有关“角度”与“弧度”概念的理解典例1 下列命题中,正确的命题是____.①1°的角是周角的1360,1 rad 的角是周角的12π;②1 rad 的角等于1度的角; ③180°的角一定等于π rad 的角;④“度”和“弧度”是度量角的两种单位.〔跟踪练习1〕在半径不等的圆中,半径长的弦所对的圆心角( ) A .为1弧度 B .各不相等,半径长则圆心角大 C .各不相等,半径长则圆心角小 D .都相等,为π3弧度命题方向2 ⇨角度制与弧度制的转化典例2 (1)将下列各角化为弧度:①112°30′;②-315°;(2)将下列各弧度化为角度:①-5π12 rad ;②193π.〔跟踪练习2〕设α1=-570°、α2=750°、β1=3π5、β2=-π3.(1)将α1、α2用弧度制表示出来,并指出它们各自所在的象限; (2)将β1、β2用角度制表示出来,并指出它们各自所在象限.命题方向3 ⇨用弧度制表示区域角典例3 用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(不包括边界,如下图).〔跟踪练习3〕用弧度制表示顶点在原点,始边与x 轴的非负半轴重合,终边落在阴影部分的角的集合 (不包括边界),如图所示.X求扇形面积最值的函数思想典例4 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?〔跟踪练习4〕(1)已知扇形的周长为20 cm ,面积为9 cm 2,求扇形圆心角的弧度数;(2)一个扇形的周长为20 cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求出这个扇形的最大面积.Y 易混易错警示i hun yi cuo jing shi 角度和弧度混用致错典例5 求终边在如图所示阴影部分(不包括边界)内的角的集合.〔跟踪练习5〕把角-585°化为2k π+α(0≤α<2π)的形式为( ) A .-3π-34π B .-4π+135° C .-3k π-45° D .-4π+34πK 课堂达标验收e tang da biao yan shou1.在不等圆中1 rad 的圆心角所对的是( ) A .弦长相等 B .弧长相等C .弦长等于所在圆的半径D .弧长等于所在圆的半径2.-10π3转化为角度是( )A .-300°B .-600°C .-900°D .-1200°3.圆弧长度等于圆弧所在圆的内接正三角形的边长,则圆弧所对圆心角的弧度数为( ) A .π3 B .23π C . 3D .2 4.(2018·沈阳铁路中学期末)已知扇形面积为38π,半径是1,则扇形的圆心角是( )A .316πB .38πC .34πD .32π5.与-133π终边相同的角的集合是( )A .{-π3}B .{5π3}C .{α|a =2k π+π3,k ∈Z }D .{α|a =2k π+53π,k ∈Z }A 级 基础巩固一、选择题1.下列各式正确的是( )A .π2=90B .π18=10°C .3°=60πD .38°=38π2.2145°转化为弧度数为( ) A .163 B .322 C .16π3D .143π123.下列各式不正确的是( )A .-210°=-7π6B .405°=9π4C .335°=23π12D .705°=47π124.在(0,2π)内,终边与-1035°相同的角是( ) A .π3 B .π4 C .π6D .2π35.(2016·青岛高一检测)将-1485°化成α+2k π(0≤α<2π,k ∈Z )的形式是( ) A .-π4-8π B .74π-8π C .π4-10π D .74π-10π6.圆的半径变为原来的2倍,弧长也增加到原来的2倍,则( ) A .扇形的面积不变 B .扇形的圆心角不变C .扇形的面积增大到原来的2倍D .扇形的圆心角增大到原来的2倍 二、填空题7.扇形AOB ,半径为2 cm ,|AB |=2 2 cm ,则AB ︵所对的圆心角弧度数为 . 8.(2016·山东潍坊高一检测)如图所示,图中公路弯道处AB ︵的弧长l =__ __.(精确到1m).三、解答题9.一个半径为r 的扇形,如果它的周长等于弧所在圆的周长的一半,那么这个扇形的圆心角是多少弧度?是多少度?扇形的面积是多少?10.(1)把310°化成弧度; (2)把5π12rad 化成角度; (3)已知α=15°、β=π10、γ=1、θ=105°、φ=7π12,试比较α、β、γ、θ、φ的大小.B 级 素养提升一、选择题1.若α3=2k π+π3(k ∈Z ),则α2的终边在( )A .第一象限B .第四象限C .x 轴上D .y 轴上2.下列表述中不正确的是( )A .终边在x 轴上角的集合是{α|α=k π,k ∈Z }B .终边在y 轴上角的集合是{α|α=π2+k π,k ∈Z }C .终边在坐标轴上角的集合是{α|α=k ·π2,k ∈Z }D .终边在直线y =x 上角的集合是{α|α=π4+2k π,k ∈Z }3.若2弧度的圆心角所对的弧长为4 cm ,则这个圆心角所对的扇形面积是( ) A .4 cm 2 B .2 cm 2 C .4π cm 2D .2π cm 2 4.一个半径为R 的扇形,它的周长是4R ,则这个扇形所含弓形的面积是( ) A .12(2-sin1cos1)R 2B .12R 2sin1cos1C .12R 2D .R 2-R 2sin1cos1二、填空题5.已知两角和为1弧度,且两角差为1°,则这两个角的弧度数分别是 ___,______. 6.已知θ∈{α|α=k π+(-1)k ·π4,k ∈Z },则θ的终边所在的象限是_________________ _.三、解答题7.如图所示,用弧度制表示顶点在原点,始边重合于x轴的非负半轴,终边落在阴影部分的角的集合.8.如图,圆周上点A以逆时针方向做匀速圆周运动.已知点A经过1 min转过θ(0<θ<π)角,2 min到达第三象限,14 min后回到原来的位置,求θ.C级能力拔高集合A={α|α=nπ2,n∈Z}∪{α|α=2nπ±2π3,n∈Z},B={β|β=23nπ,n∈Z}∪{β|β=nπ+π2,n∈Z},求A与B的关系.。
高中数学必修四1.1.2弧度制学案新人教A版必修4
度制.
2.弄清 1 弧度的角的含义是了解弧度制,并能进行弧度与角度换算的关键.
3.引入弧度制后,应与角度制进行对比,明确角度制和弧度制下弧长公式和扇形面积公式的
联系与区别 .
1. 1 弧度的角:把长度等于
的弧所对的圆心角叫做
读作
.
2.弧度制:用
作为单位来度量角的单位制叫做弧度制.
3.角的弧度数的规定:
最大面积是多少?
解 设扇形的圆心角为 θ,半径为 r ,弧长为 l ,面积为 S,
1 ∴ S= 2lr
=
1 2×
(40
-
2r
)
r
=
20r
-
r
2=-
(
r
-
10)
2+ 100.
∴当半径 r = 10 cm 时,扇形的面积最大,最大值为 100 cm 2,
l 40-2×10 此时 θ =r = 10 rad =2 rad.
l 径为 r 的圆的圆心角 α 所对弧的长为 l ,那么,角 α 的弧度数的绝对值是 | α | = r . 这里, α
的正负由角 α 的终边的旋转方向决定.
问题 4 角度制与弧度制换算时,灵活运用下表中的对应关系,请补充完整
.
角度化弧度
弧度化角度
360°= rad
2π rad =
180°= rad
180
12
180 π °即可化为角度.
225
225 π 5π
所以, (1)112 °30′= 112.5 °= 2 °= 2 × 180= 8 .
7π 7π 180 (2) - 12 =- 12 × π °=- 105°.
小结 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记
最新人教版数学必修4第一章1.1.2弧度制教学设计
1.1.2 弧度制教学设计一、教学目标(一)知识与技能目标(1)理解并掌握弧度制的定义;能正确地进行角度制与弧度制的换算;(2)角的集合与实数集R之间建立的一一对应关系;(3)熟记特殊角的弧度数;(4)掌握并运用弧度制表示的弧长公式、扇形面积公式.(二)过程与方法目标培养学生通过探究已学知识,发现新知识的能力.(三)情感、态度与价值观目标通过新的度量角的单位制(弧度制)的引进,让学生感受数学表示的多样性;培养学生求异创新的精神,增强学习数学的兴趣;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.二、教学重点难点教学重点:理解弧度的意义,能正确地进行角度制与弧度制度的换算;弧长公式及扇形的面积公式的推导与证明.教学难点:理解弧度制的定义,“角度制”与“弧度制”的区别与联系.三、教学方法与教学用具教学方法:让学生通过观察、类比、思考、交流、讨论,理解弧度的意义.教学用具:多媒体.四、教学过程(一)问题情境1.最近有人在网上这样调侃通货膨胀求:1元=1分解:1元=100分=10分10分=0.1元0.1元=0.01元=1分这样的解法你觉得正确吗?2.我们从度量长度和重量等等上知道,不同的单位制能给我们解决问题带来方便.那么角的度量是否也能用不同单位制呢?设计意图创设问题1来源于网络,跟生活密切相关,更能激起学生参与的兴趣,此巧妙的让学生看到同样多的钱可以用不同的单位表示,也让学生看到不同的单位做运算导致这样的笑话,进而明白在同一个等式里有不同的单位运算是容易出问题的。
问题2通过类比导入本节课的课题,激起学生学习的欲望.(二)研讨新知1.探究新知问题①:在初中几何里,我们学过角的度量,1度的角是怎样定义的呢? 那么对于角的大小,我们常用度、分、秒这些单位来度量, 度、分、秒之间是几进制的?讨论结果:1°的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1°.它是一个定值,与所取圆的半径大小无关.其中1度等于60分,1分等于60秒.设计意图问题①让学生回忆初中有关角度的知识,这是认识弧度制的关键,为更好地理解角度弧度的关系奠定基础.追溯数学史角度制源于天文观测:古代认为一年是360天,而在天文学测量中我们必须关注一天太阳绕过地球的距离(弧长),于是认为一天太阳做过的弧长为1度,这弧长所对应的圆心角也称为1度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.1 rad的角比1°的角要大
D.用角度制和弧度制度量角,都与圆的半径有关
2.时针经过一小时,转过了()
A. radB.- rad
C. radD.- rad
3.若θ=-5,则角θ的终边在()
A.第四象限B.第三象限
C.第二象限D.第一象限
4.已知扇形的周长是6 cm,面积是2 cm2,则扇形圆心角的弧度数是()
(2)一些特殊角的度数与弧度数的对应关系
度
0°
1°
30°
60°
120°
150°
180°
360°
弧度
π
2π
知识点三 扇形的弧长及面积公式
思考扇形的面积与弧长公式用弧度怎么表示?
类型一 角度与弧度的互化
例1将下列角度与弧度进行互化.
(1)20°;(2)-15°;(3) ;(4)- .
跟踪训练1(1)把112°30′化成弧度;(2)把- 化成度.
3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,在具体应用时,要注意角的单位取弧度.
五、反思质疑
学习完本节课,我的收获(或反思静悟、体验成功)
六、布置作业
板书设计
教学反思
二次备课
弧度制
长度等于________的弧所对的________叫做1弧度的角,用符号rad表示,读作________.以________作为单位来度量角的单位制叫做弧度制
(2)角的弧度数的计算
如果半径为r的圆的圆心角α所对弧的长为l,那么,角α的弧度数的绝对值是|α|= .
知识点二 角度制与弧度制的换算
思考
学流程
自主学习—探究新知—当堂检测—反思质疑—布置作业
学习活动
二次备课
一、问题导学
知识点一 角度制与弧度制
思考1在初中学过的角度制中,1度的角是如何规定的?
思考2在弧度制中,1弧度的角是如何规定的,如何表示?
思考3“1弧度的角”的大小和所在圆的半径大小有关系吗?
梳理(1)角度制和弧度制
角度制
用________作为单位来度量角的单位制叫做角度制,规定1度的角等于周角的
例3(1)若扇形的中心角为120°,半径为 ,则此扇形的面积为()
A.π B. C. D.
(2)如果2弧度的圆心角所对的弦长为4,那么这个圆心角所对的弧长为()
A.2 B. C.2sin 1 D.
跟踪训练3一个扇形的面积为1,周长为4,求圆心角的弧度数.
1.下列说法中,错误的是()
A.“度”与“弧度”是度量角的两种不同的度量单位
A.1B.4
C.1或4D.2或4
5.已知⊙O的一条弧 的长等于该圆内接正三角形的边长,则从OA顺时针旋转到OE所形成的角α的弧度数是________.
四、小结
1.每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.
2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式.易知:度数× rad=弧度数,弧度数× °=度数.
类型二 用弧度制表示终边相同的角
例2把下列各角化成2kπ+α(0≤α<2π,k∈Z)的形式,并指出是第几象限角.(1)-1 500°;(2) ;(3)-4.
跟踪训练2(1)把-1 480°写成α+2kπ(k∈Z)的形式,其中0≤α≤2π;
(2)在[0°,720°]内找出与 角终边相同的角.
类型三 扇形的弧长及面积公式的应用
角度制和弧度制都是度量角的单位制,它们之间如何进行换算呢?
梳理(1)角度与弧度的互化
角度化弧度
弧度化角度
360°=________ rad
2π rad=________
180°=________ rad
π rad=________
1°= rad≈________ rad
1 rad= °≈________
人教版高一数学必修四第一章三角函数导学案设计:
课题
1.1.2弧度制
课时
1课时
课型
新授课
姓名
学习目标
1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换.
2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系.
3.掌握并能应用弧度制下的弧长公式和扇形面积公式.
重点难点
对弧度和角度进行正确的转换并能应用弧度制下的弧长公式和扇形面积公式.