高三一轮复习解三角形近几年高考题
三角函数、解三角形——2024届高考数学试题分类汇编(解析版)
2024高考复习·真题分类系列2024高考试题分类集萃·三角函数、解三角形
微专题总述:三角函数的图像与性质
【扎马步】2023高考三角函数的图像与性质方面主要考察“卡根法”的运用,是最为基础的表现
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,加强图像考察与其他知识点如几何、函数的结合,对称思想的隐含
微专题总述:正弦定理与余弦定理的应用
【扎马步】2023高考解三角形小题部分紧抓“教考衔接”基础不放,充分考察正余弦定理的运用
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,在考察正余弦定理时与角平分线定理结合(初中未涉及此定理)
微专题总述:解三角形综合问题
【扎马步】2023高考解三角形大题部分仍然与前几年保持一直模式,结构不良题型日益增多,但方向不变,均是化为“一角一函数”模式是达到的最终目的,考察考生基本计算与化简能力
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,如新高考卷中出现的数形结合可加快解题速度,利用初中平面几何方法快速求出对应参量在近几年高考题中频繁出现,可见初高中结合的紧密 2023年新课标全国Ⅰ卷数学
16.已知在ABC 中,
()3,2sin sin A B C A C B +=−=. (1)求sin A ;
(2)设5AB =,求AB 边上的高.
2023高考试题分类集萃·三角函数、解三角形参考答案
2。
2023年高考数学一轮复习第四章三角函数与解三角形7正弦定理余弦定理练习含解析
正弦定理、余弦定理考试要求 1.掌握正弦定理、余弦定理及其变形.2.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.知识梳理1.正弦定理与余弦定理定理正弦定理余弦定理内容asin A=b sin B =csin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)a sin B =b sin A ,b sin C =c sin B , a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.三角形中常用的面积公式 (1)S =12ah a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论在△ABC 中,常有以下结论: (1)∠A +∠B +∠C =π.(2)任意两边之和大于第三边,任意两边之差小于第三边. (3)a >b ⇔A >B ⇔sin A >sin B ,cos A <cos B .(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sinA +B2=cosC2;cosA +B2=sin C2. (5)三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( × ) (2)在△ABC 中,若sin A >sin B ,则A >B .( √ )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( × ) (4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形.( × ) 教材改编题1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC 等于( ) A.π6 B.π3 C.2π3D.5π6答案 C解析 因为在△ABC 中,设AB =c =5,AC =b =3,BC =a =7, 所以由余弦定理得cos∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角, 所以∠BAC =2π3.2.在△ABC 中,若A =60°,a =43,b =42,则B =. 答案 45°解析 由正弦定理知a sin A =bsin B ,则sin B =b sin A a =42×3243=22.又a >b ,则A >B ,所以B 为锐角,故B =45°.3.在△ABC 中,a =2,b =3,C =60°,则c =,△ABC 的面积=. 答案7 332解析 易知c =4+9-2×2×3×12=7,△ABC 的面积等于12×2×3×32=332.题型一 利用正弦定理、余弦定理解三角形例1 (12分)(2021·新高考全国Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD ·sin∠ABC =a sin C . (1)证明:BD =b ;[切入点:角转化为边](2)若AD =2DC ,求cos∠ABC .[关键点:∠BDA 和∠BDC 互补]高考改编在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知b sin C +a sin A =b sin B +c sin C . (1)求A ;(2)设D 是线段BC 的中点,若c =2,AD =13,求a . 解 (1)根据正弦定理,由b sin C +a sin A =b sin B +c sin C , 可得bc +a 2=b 2+c 2, 即bc =b 2+c 2-a 2,由余弦定理可得,cos A =b 2+c 2-a 22bc =12,因为A 为三角形内角,所以A =π3.(2)因为D 是线段BC 的中点,c =2,AD =13, 所以∠ADB +∠ADC =π, 则cos∠ADB +cos∠ADC =0,所以AD 2+BD 2-AB 22AD ·BD +AD 2+DC 2-AC 22AD ·DC=0,即13+a 24-22213·a 2+13+a 24-b2213·a2=0,整理得a 2=2b 2-44,又a 2=b 2+c 2-2bc cos A =b 2+4-2b , 所以b 2+4-2b =2b 2-44, 解得b =6或b =-8(舍), 因此a 2=2b 2-44=28, 所以a =27.思维升华 解三角形问题的技巧(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.跟踪训练1 (2021·北京)已知在△ABC 中,c =2b cos B ,C =2π3.(1)求B 的大小;(2)在下列三个条件中选择一个作为已知,使△ABC 存在且唯一确定,并求出BC 边上的中线的长度.①c =2b ;②周长为4+23;③面积为S △ABC =334.解 (1)∵c =2b cos B ,则由正弦定理可得sin C =2sin B cos B , ∴sin2B =sin2π3=32,∵C =2π3, ∴B ∈⎝ ⎛⎭⎪⎫0,π3,2B ∈⎝⎛⎭⎪⎫0,2π3, ∴2B =π3,解得B =π6.(2)若选择①:由正弦定理结合(1)可得 c b =sin C sin B =3212=3, 与c =2b 矛盾,故这样的△ABC 不存在; 若选择②:由(1)可得A =π6,设△ABC 的外接圆半径为R , 则由正弦定理可得a =b =2R sinπ6=R , c =2R sin2π3=3R , 则周长为a +b +c =2R +3R =4+23, 解得R =2,则a =2,c =23, 由余弦定理可得BC 边上的中线的长度为232+12-2×23×1×cosπ6=7; 若选择③:由(1)可得A =π6,即a =b ,则S △ABC =12ab sin C =12a 2×32=334,解得a =3,则由余弦定理可得BC 边上的中线的长度为b 2+⎝ ⎛⎭⎪⎫a 22-2×b ×a 2×cos 2π3=3+34+3×32=212. 题型二 正弦定理、余弦定理的简单应用 命题点1 三角形形状判断 例2 在△ABC 中,c -a 2c =sin 2 B 2(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形 答案 A解析 由cos B =1-2sin 2B2,得sin 2B 2=1-cos B2,所以c -a 2c =1-cos B2, 即cos B =ac.方法一 由余弦定理得a 2+c 2-b 22ac =ac,即a 2+c 2-b 2=2a 2,所以a 2+b 2=c 2.所以△ABC 为直角三角形,无法判断两直角边是否相等. 方法二 由正弦定理得cos B =sin Asin C ,又sin A =sin(B +C )=sin B cos C +cos B sin C , 所以cos B sin C =sin B cos C +cos B sin C , 即sin B cos C =0,又sin B ≠0,所以cos C =0,又角C 为三角形的内角,所以C =π2,所以△ABC 为直角三角形,无法判断两直角边是否相等.延伸探究将“c -a 2c =sin 2 B 2”改为“sin A sin B =a c,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状.解 因为sin A sin B =ac ,所以a b =a c,所以b =c . 又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3, 所以△ABC 是等边三角形.思维升华 判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论. 命题点2 三角形的面积例3 (2022·沧州模拟)在①sin A ,sin C ,sin B 成等差数列;②a ∶b ∶c =4∶3∶2;③b cos A =1这三个条件中任选一个,补充在下面问题中.若问题中的三角形存在,求该三角形面积的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且a (sin A -sin B )+b sinB =c sinC ,c =1,?注:如果选择多个条件分别解答,按第一个解答计分. 解 因为a (sin A -sin B )+b sin B =c sin C , 由正弦定理得a (a -b )+b 2=c 2, 即a 2+b 2-c 2=ab ,所以cos C =a 2+b 2-c 22ab =12,又C ∈(0,π), 所以C =π3.选择①:因为sin A ,sin C ,sin B 成等差数列, 所以sin A +sin B =2sin C ,即a +b =2c =2, 由a 2+b 2-c 2=a 2+b 2-1=ab , 得(a +b )2-3ab =1,所以ab =1, 故存在满足题意的△ABC ,S △ABC =12ab sin C =12×1×sin π3=34. 选择②:因为a ∶b ∶c =4∶3∶2, 所以A >B >C =π3,这与A +B +C =π矛盾,所以△ABC 不存在. 选择③: 因为b cos A =1,所以b ·b 2+1-a 22b=1,得b 2=1+a 2=c 2+a 2, 所以B =π2,此时△ABC 存在.又C =π3,所以A =π6,所以a =1×tanπ6=33, 所以S △ABC =12ac =36.思维升华 三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 命题点3 与平面几何有关的问题例4 如图,在平面四边形ABCD 中,已知A =π2,B =2π3,AB =6.在AB 边上取点E ,使得BE=1,连接EC ,ED .若∠CED =2π3,EC =7.(1)求sin∠BCE 的值; (2)求CD 的长.解 (1)在△BEC 中,由正弦定理, 知BE sin∠BCE =CEsin B.∵B =2π3,BE =1,CE =7,∴sin∠BCE =BE ·sin B CE =327=2114. (2)∵∠CED =B =2π3,∴∠DEA =∠BCE ,∴cos∠DEA =1-sin 2∠DEA =1-sin 2∠BCE =1-328=5714. ∵A =π2,∴△AED 为直角三角形,又AE =5,∴ED =AE cos∠DEA =55714=27.在△CED 中,CD 2=CE 2+DE 2-2CE ·DE ·cos∠CED=7+28-2×7×27×⎝ ⎛⎭⎪⎫-12=49. ∴CD =7. 教师备选1.在△ABC 中,已知a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,则该三角形的形状是( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .钝角三角形答案 C解析 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又C ∈(0,π), ∴C =π3,由2cos A sin B =sin C ,得cos A =sin C 2sin B =c 2b =c 2+b 2-a22bc ,∴b 2=a 2,即b =a ,又C =π3,故三角形为等边三角形.2.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C -c cos(B +C )=-b3cos A +B .(1)求tan C ;(2)若c =3,sin A sin B =1627,求△ABC 的面积.解 (1)∵a cos C -c cos(B +C ) =-b3cos A +B ,∴a cos C +c cos A =b3cos C.由正弦定理得sin A cos C +sin C cos A =sin B3cos C ,∴sin(A +C )=sin B3cos C ,即sin B =sin B3cos C ,又∵sin B ≠0, ∴cos C =13,∴sin C =1-⎝ ⎛⎭⎪⎫132=223, tan C =sin Ccos C =2 2.(2)若c =3,由正弦定理asin A =bsin B =csin C,得asin A =b sin B =3223=924, 则a =924sin A ,b =924sin B ,则ab =924sin A ·924sin B =16216sin A sin B=16216×1627=6, ∴S △ABC =12ab sin C =12×6×223=2 2.思维升华 平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之,若研究最值,常使用函数思想.跟踪训练 2 (1)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c -a cos B = (2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形答案 D解析 因为c -a cos B =(2a -b )cos A ,C =π-(A +B ),所以由正弦定理得sin C -sin A cos B=2sin A cos A -sin B cos A ,所以sin A cos B +cos A sin B -sin A cos B=2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A 或B =π-A (舍去), 所以△ABC 为等腰或直角三角形.(2)(2022·郑州模拟)如图,在△ABC 中,AB =9,cos B =23,点D 在BC 边上,AD =7,∠ADB 为锐角.①求BD ;②若∠BAD =∠DAC ,求sin C 的值及CD 的长.解 ①在△ABD 中,由余弦定理得AB 2+BD 2-2AB ·BD ·cos B =AD 2,整理得BD 2-12BD +32=0,所以BD =8或BD =4.当BD =4时,cos∠ADB =16+49-812×4×7=-27,则∠ADB >π2,不符合题意,舍去; 当BD =8时,cos∠ADB =64+49-812×8×7=27,则∠ADB <π2,符合题意,所以BD =8.②在△ABD 中,cos∠BAD =AB 2+AD 2-BD 22AB ·AD =92+72-822×9×7=1121,所以sin∠BAD =8521,又sin∠ADB =357,所以sin C =sin(∠ADB -∠CAD )=sin(∠ADB -∠BAD )=sin∠ADB cos∠BAD -cos∠ADB sin∠BAD=357×1121-27×8521=175147,在△ACD 中,由正弦定理得CD sin∠CAD =ADsin C ,即CD =ADsin C ·sin∠CAD =7175147×8521=39217.课时精练1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C 等于() A.π2 B.π3C.π4D.π6答案 C 解析 根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24, 所以sin C =a 2+b 2-c 22ab=cos C , 所以在△ABC 中,C =π4. 2.(2022·北京西城区模拟)在△ABC 中,C =60°,a +2b =8,sin A =6sin B ,则c 等于( ) A.35 B.31 C .6D .5答案 B解析 因为sin A =6sin B ,由正弦定理可得a =6b ,又a +2b =8,所以a =6,b =1,因为C =60°,所以c 2=a 2+b 2-2ab cos C ,即c 2=62+12-2×1×6×12, 解得c =31.3.(2022·济南质检)已知△ABC 的内角A ,B ,C 对应的边分别为a ,b ,c ,a =4,cos2A = -725,则△ABC 外接圆半径为( ) A .5B .3C.52D.32答案 C解析 因为cos2A =-725, 所以1-2sin 2A =-725, 解得sin A =±45, 因为A ∈(0,π),所以sin A =45,又a =4,所以2R =a sin A =445=5, 所以R =52. 4.(2022·河南九师联盟联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c =2b ,sin 2A -3sin 2B =12sin A sin C ,则角C 等于( ) A.π6B.π3C.π2D.2π3答案 B解析 ∵sin 2A -3sin 2B =12sin A sin C , 由正弦定理可得a 2-3b 2=12ac , ∵c =2b ,∴a 2-3b 2=12a ·2b =ab , 由余弦定理可得cos C =a 2+b 2-c 22ab =a 2-3b 22ab =12, ∵0<C <π,∴C =π3. 5.(多选)(2022·山东多校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2b sin A =5a cos B ,AB =2,AC =26,D 为BC 的中点,E 为AC 上的点,且BE 为∠ABC 的平分线,下列结论正确的是( )A .cos∠BAC =-66 B .S △ABC =3 5 C .BE =2D .AD = 5答案 AD解析 由正弦定理可知2sin B sin A =5sin A cos B ,∵sin A ≠0,∴2sin B =5cos B .又sin 2B +cos 2B =1,∴sin B =53,cos B =23,在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC cos B ,得BC =6.A 项,cos∠BAC =AB 2+AC 2-BC 22AB ·AC =4+24-362×2×26=-66;B 项,S △ABC =12AB ·BC sin B =12×2×6×53=25;C 项,由角平分线性质可知AEEC =AB BC =13,∴AE =62.BE 2=AB 2+AE 2-2AB ·AE cos A =4+32-2×2×62×⎝ ⎛⎭⎪⎫-66=152,∴BE =302;D 项,在△ABD 中,AD 2=AB 2+BD 2-2AB ·BD cos B=4+9-2×2×3×23=5,∴AD = 5.6.(多选)(2022·张家口质检)下列命题中,正确的是( )A .在△ABC 中,A >B ,则sin A >sin BB .在锐角△ABC 中,不等式sin A >cos B 恒成立C .在△ABC 中,若a cos A =b cos B ,则△ABC 必是等腰直角三角形D .在△ABC 中,若B =60°,b 2=ac ,则△ABC 必是等边三角形答案 ABD解析 对于A ,由A >B ,可得a >b ,利用正弦定理可得sin A >sin B ,正确;对于B ,在锐角△ABC 中,A ,B ∈⎝ ⎛⎭⎪⎫0,π2,∵A +B >π2, ∴π2>A >π2-B >0, ∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B , ∴不等式sin A >cos B 恒成立,正确;对于C ,在△ABC 中,由a cos A =b cos B ,利用正弦定理可得sin A cos A =sin B cos B ,∴sin2A =sin2B ,∵A ,B ∈(0,π),∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2, ∴△ABC 是等腰三角形或直角三角形,∴是假命题,错误;对于D ,由于B =60°,b 2=ac ,由余弦定理可得b 2=ac =a 2+c 2-ac ,可得(a -c )2=0,解得a =c ,可得A =C =B =60°,故正确.7.(2022·潍坊质检)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且b =3,a -c =2,A =2π3.则△ABC 的面积为. 答案 1534解析 由余弦定理得a 2=b 2+c 2-2bc cos A ,∵b =3,a -c =2,A =2π3, ∴(c +2)2=32+c 2-2×3c ×⎝ ⎛⎭⎪⎫-12, 解得c =5,则△ABC 的面积为S =12bc sin A =12×3×5×32=1534. 8.(2021·全国乙卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,B =60°,a 2+c 2=3ac ,则b =.答案 2 2解析 由题意得S △ABC =12ac sin B =34ac =3,则ac =4,所以a 2+c 2=3ac =3×4=12,所以b 2=a 2+c 2-2ac cos B =12-2×4×12=8,则b =22(负值舍去).9.(2022·南平模拟)在①2c cos B =2a -b ,②△ABC 的面积为34(a 2+b 2-c 2),③cos 2A -cos 2C =sin 2B -sin A sin B ,这三个条件中任选一个,补充在下面的问题中,并加以解答.(如果选择多个条件作答,则按所选的第一个条件给分)已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且.(1)求角C 的大小;(2)若c =2且4sin A sin B =3,求△ABC 的面积.解 (1)若选条件①2c cos B =2a -b ,则2c ·a 2+c 2-b 22ac=2a -b , 即a 2+b 2-c 2=ab ,所以cos C =12, 又因为C ∈(0,π),所以C =π3. 若选条件②△ABC 的面积为34(a 2+b 2-c 2), 则34(a 2+b 2-c 2)=12ab sin C , 即sin C =3cos C ,所以tan C =3,又因为C ∈(0,π),所以C =π3. 若选条件③cos 2A -cos 2C =sin 2B -sin A sin B ,则(1-sin 2A )-(1-sin 2C )=sin 2B -sin A sin B ,即sin 2A +sin 2B -sin 2C =sin A sin B ,即a 2+b 2-c 2=ab ,所以cos C =12,又因为C ∈(0,π),所以C =π3. (2)因为c =2, 所以a sin A =b sin B =c sin C =2sin π3=43, 所以sin A =34a ,sin B =34b , 又因为4sin A sin B =3,所以ab =4,△ABC 的面积为12ab sin C = 3. 10.(2022·湘豫联盟联考)如图,在△ABC 中,∠B =60°,AB =8,AD =7,点D 在BC 上,且cos∠ADC =17.(1)求BD ;(2)若cos∠CAD =32,求△ABC 的面积. 解 (1)∵cos∠ADB =cos(π-∠ADC )=-cos∠ADC =-17. 在△ABD 中,由余弦定理得82=BD 2+72-2·BD ·7·cos∠ADB ,解得BD =3或BD =-5(舍).(2)由已知sin∠ADC =437,sin∠CAD =12, ∴sin C =sin(∠ADC +∠CAD )=437×32+17×12=1314. 由正弦定理得CD =AD sin∠CAD sin C =7×121314=4913, ∴BC =3+4913=8813,∴S △ABC =12×8×8813×32=176313.11.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且4S =(a+b )2-c 2,则sin ⎝ ⎛⎭⎪⎫π4+C 等于 ( ) A .1B .-22C.22D.32 答案 C解析 因为S =12ab sin C , cos C =a 2+b 2-c 22ab, 所以2S =ab sin C ,a 2+b 2-c 2=2ab cos C .又4S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,所以2ab sin C =2ab cos C +2ab .因为ab ≠0,所以sin C =cos C +1.因为sin 2C +cos 2C =1,所以(cos C +1)2+cos 2C =1,解得cos C =-1(舍去)或cos C =0,所以sin C =1,则sin ⎝ ⎛⎭⎪⎫π4+C =22(sin C +cos C )=22. 12.(2022·焦作模拟)在△ABC 中,内角A ,B ,C 的对边a ,b ,c 依次成等差数列,△ABC 的周长为15,且(sin A +sin B )2+cos 2C =1+sin A sin B ,则cos B 等于( )A.1314B.1114C.12D .-12答案 B解析 因为(sin A +sin B )2+cos 2C=1+sin A sin B ,所以sin 2A +sin 2B +2sin A ·sin B +1-sin 2C=1+sin A ·sin B ,所以由正弦定理得a 2+b 2-c 2=-ab ,又a ,b ,c 依次成等差数列,△ABC 的周长为15,即a +c =2b ,a +b +c =15, 由⎩⎪⎨⎪⎧ a 2+b 2-c 2=-ab ,a +c =2b ,a +b +c =15,解得⎩⎪⎨⎪⎧ a =3,b =5,c =7.cos B =a 2+c 2-b 22ac =32+72-522×3×7=1114. 13.(2022·开封模拟)在平面四边形ABCD 中,BC ⊥CD ,∠B =3π4,AB =32,AD =210,若AC =35,则CD 为.答案 1或5解析 因为在△ABC 中,∠B =3π4,AB =32, AC =35,由正弦定理可得AC sin B =AB sin∠ACB, 所以sin∠ACB =AB ·sin B AC =32×2235=55, 又BC ⊥CD ,所以∠ACB 与∠ACD 互余,因此cos∠ACD =sin∠ACB =55, 在△ACD 中,AD =210,AC =35,由余弦定理可得cos∠ACD =55=AC 2+CD 2-AD 22AC ·CD =5+CD 265CD, 所以CD 2-6CD +5=0,解得CD =1或CD =5.14.(2022·大连模拟)托勒密(Ptolemy)是古希腊天文学家、地理学家、数学家,托勒密定理就是由其名字命名,该定理指出:圆的内接凸四边形两组对边乘积的和等于两条对角线的乘积.已知凸四边形ABCD 的四个顶点在同一个圆的圆周上,AC ,BD 是其两条对角线,AB =AD ,∠BAD =120°,AC =6,则四边形ABCD 的面积为.答案 9 3 解析 在△ABD 中,设AB =a ,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD ·cos∠BAD =3a 2,所以BD =3a ,由托勒密定理可得a (BC +CD )=AC ·3a ,即BC +CD =3AC ,又∠ABD =∠ACD =30°,所以四边形ABCD 的面积 S =12BC ·AC sin30°+12CD ·AC sin30°=14(BC +CD )·AC =34AC 2=9 3.15.(多选)中国南宋时期杰出数学家秦九韶在《数书九章》中提出了“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.把以上文字写成公式,即S =14⎣⎢⎡⎦⎥⎤c 2a 2-⎝ ⎛⎭⎪⎫c 2+a 2-b 222(S 为三角形的面积,a ,b ,c 为三角形的三边).现有△ABC 满足sin A ∶si n B ∶sin C =2∶3∶7,且△ABC 的面积S △ABC =63,则下列结论正确的是( )A .△ABC 的周长为10+27B .△ABC 的三个内角满足A +B =2CC .△ABC 的外接圆半径为4213D .△ABC 的中线CD 的长为3 2答案 AB解析 A 项,设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,因为sin A ∶sin B ∶sin C =2∶3∶7,所以由正弦定理可得a ∶b ∶c =2∶3∶7,设a =2t ,b =3t ,c =7t (t >0),因为S △ABC =63,所以63=14⎣⎢⎡⎦⎥⎤7t 2×4t 2-⎝ ⎛⎭⎪⎫7t 2+4t 2-9t 222,解得t =2,则a =4,b =6,c =27,故△ABC 的周长为10+27,A 正确;B 项,因为cos C =a 2+b 2-c 22ab =16+36-282×4×6=12, 所以C =π3,A +B =π-π3=2π3=2C , 故B 正确;C 项,因为C =π3,所以sin C =32, 由正弦定理得2R =c sin C =2732=4213, R =2213, C 错误;D 项,由余弦定理得cos B =a 2+c 2-b 22ac =16+28-362×4×27=714, 在△BCD 中,BC =4,BD =7,由余弦定理得cos B =16+7-CD 22×4×7=714, 解得CD =19,D 错误.16.(2021·新高考全国Ⅱ)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,b =a +1,c =a +2.(1)若2sin C =3sin A ,求△ABC 的面积;(2)是否存在正整数a ,使得△ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由. 解 (1)因为2sin C =3sin A ,则2c =2(a +2)=3a ,则a =4,故b =5,c =6,cos C =a 2+b 2-c 22ab =18,所以C 为锐角, 则sin C =1-cos 2C =378,因此, S △ABC =12ab sin C =12×4×5×378=1574. (2)显然c >b >a ,若△ABC 为钝角三角形,则C 为钝角,由余弦定理可得cos C =a 2+b 2-c 22ab =a 2+a +12-a +222a a +1=a 2-2a -32a a +1<0,则0<a <3,由三角形三边关系可得a +a +1>a +2, 可得a >1,因为a ∈N *,故a =2.。
2024届高三数学一轮复习-三角函数与解三角形 第4练 二倍角公式及应用(解析版)
B. cos A cos B
C. sin 2A sin 2B
D. cos 2A cos 2B
12.(2023·全国·高三专题练习)给出下列说法,其中正确的是( )
A.若 cos 1 ,则 cos 2 7
3
9
C.若 x 1 ,则 x 1 的最小值为 2
2
x
B.若 tan 2 4 ,则 tan 1
D. 5 或
5
5
)
D. 24 25
7.(2023·全国·高三专题练习)下列四个函数中,最小正周期与其余三个函数不同的是( )
A. f x cos2 x sin x cos x
B. f x 1 cos 2 x
2sin x cos x
C.
f
x
cos
x
π 3
cos
x
π 3
D.
f
x
sin
D
不
正确,
故选:BC.
10.AD
【分析】根据二倍角正弦公式、辅助角公式,结合正弦型函数的单调性、平移的性质、对称
性、换元法逐一判断即可.
【详解】 f (x) sin x cos x 1 sin 2x, g(x) sin x cos x 2 sin(x π ) ,
2
4
当
x
0,
π 4
时,
3 5 8
2
5 1 5 1.
16
4
故选:D.
2.B 【分析】根据三角恒等变换公式求解.
【详解】
sin
π 6
cos
3 sin 1 cos cos 3 ,
2
2
5
所以 3 sin 1 cos 3 ,
2023年高考数学一轮复习第四章三角函数与解三角形5三角函数的图象与性质练习含解析
三角函数的图象与性质考试要求 1.能画出三角函数的图象.2.了解三角函数的周期性、奇偶性、最大(小)值.3.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质.知识梳理1.用“五点法”作正弦函数和余弦函数的简图(1)在正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)在余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin x y =cos x y =tan x图象定义域 R R ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π2值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数偶函数奇函数递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝⎛⎭⎪⎫k π-π2,k π+π2递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π]对称中心 (k π,0)⎝ ⎛⎭⎪⎫k π+π2,0⎝ ⎛⎭⎪⎫k π2,0对称轴方程x =k π+π2x =k π常用结论1.对称性与周期性(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ).(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)正切函数y =tan x 在定义域内是增函数.( × ) (2)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (3)y =sin|x |是偶函数.( √ )(4)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( √ ) 教材改编题1.若函数y =2sin2x -1的最小正周期为T ,最大值为A ,则( ) A .T =π,A =1 B .T =2π,A =1 C .T =π,A =2 D .T =2π,A =2答案 A2.函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠π6B.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠-π12 C.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π+π6k ∈Z D.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π2+π6k ∈Z答案 D解析 由2x +π6≠k π+π2,k ∈Z ,得x ≠k π2+π6,k ∈Z . 3.函数y =3cos ⎝ ⎛⎭⎪⎫2x -π3的单调递减区间是________. 答案 ⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z解析 因为y =3cos ⎝ ⎛⎭⎪⎫2x -π3,令2k π≤2x -π3≤2k π+π,k ∈Z ,求得k π+π6≤x ≤k π+2π3,k ∈Z ,可得函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z .题型一 三角函数的定义域和值域例1 (1)函数y =1tan x -1的定义域为________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4+k π,且x ≠π2+k π,k ∈Z 解析 要使函数有意义, 则⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+k π,k ∈Z ,即⎩⎪⎨⎪⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z .故函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4+k π,且x ≠π2+k π,k ∈Z .(2)函数y =sin x -cos x +sin x cos x 的值域为________.答案 ⎣⎢⎡⎦⎥⎤-1+222,1解析 设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x ·cos x ,sin x cos x =1-t22,且-2≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1,t ∈[-2,2].当t =1时,y max =1;当t =-2时,y min =-1+222.∴函数的值域为⎣⎢⎡⎦⎥⎤-1+222,1.教师备选1.函数y =sin x -cos x 的定义域为________. 答案 ⎣⎢⎡⎦⎥⎤2k π+π4,2k π+5π4(k ∈Z )解析 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .2.函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.答案 1解析 由题意可得f (x )=-cos 2x +3cos x +14=-⎝ ⎛⎭⎪⎫cos x -322+1. ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1]. ∴当cos x =32,即x =π6时,f (x )取最大值为1. 思维升华 (1)三角函数定义域的求法求三角函数的定义域实际上是构造简单的三角不等式(组),常借助三角函数的图象来求解.(2)三角函数值域的不同求法①把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域. ②把sin x 或cos x 看作一个整体,转换成二次函数求值域. ③利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.跟踪训练 1 (1)(2021·北京)函数f (x )=cos x -cos2x ,试判断函数的奇偶性及最大值( )A .奇函数,最大值为2B .偶函数,最大值为2C .奇函数,最大值为98D .偶函数,最大值为98答案 D 解析 由题意,f (-x )=cos (-x )-cos (-2x )=cos x -cos2x =f (x ), 所以该函数为偶函数,又f (x )=cos x -cos2x =-2cos 2x +cos x +1=-2⎝ ⎛⎭⎪⎫cos x -142+98,所以当cos x =14时,f (x )取最大值98.(2)函数y =lg(sin2x )+9-x 2的定义域为________. 答案 ⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2 解析 ∵函数y =lg(sin2x )+9-x 2,∴应满足⎩⎪⎨⎪⎧sin2x >0,9-x 2≥0,解得⎩⎪⎨⎪⎧k π<x <π2+k π,-3≤x ≤3,其中k ∈Z ,∴-3≤x <-π2或0<x <π2,∴函数的定义域为⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2.题型二 三角函数的周期性、奇偶性、对称性例2 (1)(2019·全国Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2上单调递增的是( )A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |答案 A解析 A 中,函数f (x )=|cos2x |的周期为π2,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,2x ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )单调递增,故A 正确;B 中,函数f (x )=|sin2x |的周期为π2,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,2x ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )单调递减,故B 不正确;C 中,函数f (x )=cos|x |=cos x 的周期为2π,故C 不正确;D 中,f (x )=sin|x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x )均以2π为周期,但在整个定义域上f (x )不是周期函数,故D 不正确.(2)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ+1,φ∈(0,π),且f (x )为偶函数,则φ=________,f (x )图象的对称中心为________.答案5π6⎝ ⎛⎭⎪⎫π4+k π2,1,k ∈Z 解析 若f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ+1为偶函数,则-π3+φ=k π+π2,k ∈Z ,即φ=5π6+k π,k ∈Z ,又∵φ∈(0,π), ∴φ=5π6.∴f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π2+1=3cos2x +1, 由2x =π2+k π,k ∈Z 得x =π4+k π2,k ∈Z ,∴f (x )图象的对称中心为⎝ ⎛⎭⎪⎫π4+k π2,1,k ∈Z .教师备选1.下列函数中,是周期函数的为( ) A .y =sin|x | B .y =cos|x | C .y =tan|x | D .y =(x -1)0答案 B解析 ∵cos|x |=cos x ,∴y =cos|x |是周期函数.其余函数均不是周期函数. 2.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ,φ∈(0,π),若f (x )为奇函数,则φ=________.答案π3解析 若f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ为奇函数, 则-π3+φ=k π,k ∈Z ,即φ=π3+k π,k ∈Z ,又∵φ∈(0,π), ∴φ=π3.思维升华 (1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.跟踪训练2 (1)(2021·全国乙卷)函数f (x )=sin x3+cos x3最小正周期和最大值分别是( ) A .3π和 2 B .3π和2 C .6π和 2 D .6π和2答案 C解析 因为函数f (x )=sin x 3+cos x3=2⎝⎛⎭⎪⎫22sin x 3+22cosx 3=2⎝⎛⎭⎪⎫sin x 3cos π4+cos x 3sin π4 =2sin ⎝ ⎛⎭⎪⎫x 3+π4, 所以函数f (x )的最小正周期T =2π13=6π,最大值为 2.(2)已知f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)是定义域为R 的奇函数,且当x =3时,f (x )取得最小值-3,当ω取得最小正数时,f (1)+f (2)+f (3)+…+f (2022)的值为( )A.32 B .-6-3 3 C .1 D .-1答案 B解析 ∵f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)是定义域为R 的奇函数, ∴φ=π2+k π,k ∈Z ,则φ=π2,则f (x )=-A sin ωx .当x =3时,f (x )取得最小值-3, 故A =3,sin3ω=1, ∴3ω=π2+2k π,k ∈Z .∴ω的最小正数为π6,∴f (x )=-3sin π6x ,∴f (x )的周期为12,∴f (1)+f (2)+f (3)+…+f (12)=0, ∴f (1)+f (2)+f (3)+…+f (2022) =168×0+f (1)+f (2)+…+f (6) =-6-3 3.(3)(2022·杭州模拟)设函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3+34,则下列叙述正确的是( ) A .f (x )的最小正周期为2π B .f (x )的图象关于直线x =π12对称 C .f (x )在⎣⎢⎡⎦⎥⎤π2,π上的最小值为-54 D .f (x )的图象关于点⎝ ⎛⎭⎪⎫2π3,0对称答案 C解析 对于A ,f (x )的最小正周期为2π2=π,故A 错误;对于B ,∵sin ⎝ ⎛⎭⎪⎫2×π12-π3=-12≠±1, 故B 错误;对于C ,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,2x -π3∈⎣⎢⎡⎦⎥⎤2π3,5π3,∴sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-1,32,∴2sin ⎝⎛⎭⎪⎫2x -π3+34∈⎣⎢⎡⎦⎥⎤-54,3+34, ∴f (x )在⎣⎢⎡⎦⎥⎤π2,π上的最小值为-54,故C 正确;对于D ,∵f ⎝⎛⎭⎪⎫2π3=2sin ⎝⎛⎭⎪⎫2×2π3-π3+34=34,∴f (x )的图象关于点⎝⎛⎭⎪⎫2π3,34对称,故D 错误.题型三 三角函数的单调性 命题点1 求三角函数的单调区间例3 函数f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 答案 ⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z )解析 f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3=sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2x -π3=-sin ⎝⎛⎭⎪⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).延伸探究 f (x )=sin ⎝⎛⎭⎪⎫-2x +π3在[0,π]上的单调递减区间为________. 答案 ⎣⎢⎡⎦⎥⎤0,5π12和⎣⎢⎡⎦⎥⎤11π12,π解析 令A =⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z ,B =[0,π],∴A ∩B =⎣⎢⎡⎦⎥⎤0,5π12∪⎣⎢⎡⎦⎥⎤11π12,π,∴f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤0,5π12和⎣⎢⎡⎦⎥⎤11π12,π. 命题点2 根据单调性求参数例4 (1)若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________. 答案 32解析 ∵f (x )=sin ωx (ω>0)过原点, ∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 单调递增;当π2≤ωx ≤3π2, 即π2ω≤x ≤3π2ω时,y =sin ωx 单调递减. 由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在⎣⎢⎡⎦⎥⎤π3,π2上单调递减,知π2ω=π3,∴ω=32.(2)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤12,54解析 由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4, 因为y =sin x 的单调递减区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2,k ∈Z ,所以⎩⎪⎨⎪⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-⎝⎛⎭⎪⎫2k +54≤0,k ∈Z ,且2k +54>0,k ∈Z ,解得k =0,所以ω∈⎣⎢⎡⎦⎥⎤12,54. 教师备选(2022·长沙模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .1 答案 B解析 因为x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,所以2n +14·T =π2(n ∈N ),即2n +14·2πω=π2(n ∈N ), 所以ω=2n +1(n ∈N ),即ω为正奇数.因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调, 则5π36-π18=π12≤T 2, 即T =2πω≥π6,解得ω≤12.当ω=11时,-11π4+φ=k π,k ∈Z ,因为|φ|≤π2,所以φ=-π4,此时f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4. 当x ∈⎝⎛⎭⎪⎫π18,5π36时,11x -π4∈⎝ ⎛⎭⎪⎫13π36,46π36,所以f (x )在⎝ ⎛⎭⎪⎫π18,5π36上不单调,不满足题意; 当ω=9时,-9π4+φ=k π,k ∈Z ,因为|φ|≤π2,所以φ=π4,此时f (x )=sin ⎝ ⎛⎭⎪⎫9x +π4. 当x ∈⎝⎛⎭⎪⎫π18,5π36时, 9x +π4∈⎝ ⎛⎭⎪⎫3π4,3π2,此时f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调递减,符合题意. 故ω的最大值为9.思维升华 (1)已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.跟踪训练3 (1)(2021·新高考全国Ⅰ)下列区间中,函数f (x )=7sin ⎝⎛⎭⎪⎫x -π6的单调递增区间是( )A.⎝⎛⎭⎪⎫0,π2B.⎝ ⎛⎭⎪⎫π2,πC.⎝ ⎛⎭⎪⎫π,3π2D.⎝⎛⎭⎪⎫3π2,2π答案 A解析 令-π2+2k π≤x -π6≤π2+2k π,k ∈Z ,得-π3+2k π≤x ≤2π3+2k π,k ∈Z .取k=0,则-π3≤x ≤2π3.因为⎝ ⎛⎭⎪⎫0,π2⎣⎢⎡⎦⎥⎤-π3,2π3,所以区间⎝ ⎛⎭⎪⎫0,π2是函数f (x )的单调递增区间.(2)(2022·济南模拟)已知函数y =sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)在区间⎝ ⎛⎭⎪⎫-π6,π3上单调递增,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤0,12B.⎣⎢⎡⎦⎥⎤12,1C.⎝ ⎛⎦⎥⎤13,23 D.⎣⎢⎡⎦⎥⎤23,2 答案 A解析 当-π6<x <π3时,-πω6+π3<ωx +π3<πω3+π3, 当x =0时,ωx +π3=π3.因为函数y =sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)在区间⎝ ⎛⎭⎪⎫-π6,π3上单调递增,所以⎩⎪⎨⎪⎧-πω6+π3≥-π2,πω3+π3≤π2,解得ω≤12,因为ω>0,所以ω的取值范围是⎝ ⎛⎦⎥⎤0,12.课时精练1.y =|cos x |的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2 B .[0,π] C.⎣⎢⎡⎦⎥⎤π,3π2 D.⎣⎢⎡⎦⎥⎤3π2,2π答案 D解析 将y =cos x 的图象位于x 轴下方的部分关于x 轴对称向上翻折,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.2.函数f (x )=2sin π2x -1的定义域为( )A.⎣⎢⎡⎦⎥⎤π3+4k π,5π3+4k π(k ∈Z )B.⎣⎢⎡⎦⎥⎤13+4k ,53+4k (k ∈Z )C.⎣⎢⎡⎦⎥⎤π6+4k π,5π6+4k π(k ∈Z )D.⎣⎢⎡⎦⎥⎤16+4k ,56+4k (k ∈Z )答案 B解析 由题意,得2sinπ2x -1≥0, π2x ∈⎣⎢⎡⎦⎥⎤π6+2k π,5π6+2k π(k ∈Z ), 则x ∈⎣⎢⎡⎦⎥⎤13+4k ,53+4k (k ∈Z ). 3.函数f (x )=sin ⎝⎛⎭⎪⎫x +5π12cos ⎝ ⎛⎭⎪⎫x -π12是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的非奇非偶函数D .最小正周期为π的非奇非偶函数 答案 D解析 由题意可得f (x )=sin ⎝⎛⎭⎪⎫x +5π12cos ⎝ ⎛⎭⎪⎫x -π12 =sin ⎝⎛⎭⎪⎫x +5π12cos ⎝ ⎛⎭⎪⎫x +5π12-π2 =sin 2⎝⎛⎭⎪⎫x +5π12, ∴f (x )=12-12cos ⎝⎛⎭⎪⎫2x +5π6,故f (x )的最小正周期T =2π2=π,由函数奇偶性的定义易知,f (x )为非奇非偶函数.4.函数f (x )=sin x +xcos x +x2在[-π,π]的图象大致为( )答案 D解析 由f (-x )=sin -x +-xcos -x +-x 2=-sin x -xcos x +x2=-f (x ),得f (x )是奇函数,其图象关于原点对称,排除A ;又f ⎝ ⎛⎭⎪⎫π2=1+π2⎝ ⎛⎭⎪⎫π22=4+2ππ2>1, f (π)=π-1+π2>0,排除B ,C.5.(多选)关于函数f (x )=sin2x -cos2x ,下列命题中为真命题的是( ) A .函数y =f (x )的周期为πB .直线x =π4是y =f (x )图象的一条对称轴C .点⎝ ⎛⎭⎪⎫π8,0是y =f (x )图象的一个对称中心 D .y =f (x )的最大值为 2 答案 ACD解析 因为f (x )=sin2x -cos2x =2sin ⎝⎛⎭⎪⎫2x -π4,所以f (x )最大值为2,故D 为真命题. 因为ω=2,故T =2π2=π,故A 为真命题;当x =π4时,2x -π4=π4,终边不在y 轴上,故直线x =π4不是y =f (x )图象的一条对称轴,故B 为假命题;当x =π8时,2x -π4=0,终边落在x 轴上,故点⎝ ⎛⎭⎪⎫π8,0是y =f (x )图象的一个对称中心,故C 为真命题. 6.(多选)(2022·广州市培正中学月考)关于函数f (x )=sin|x |+|sin x |,下列叙述正确的是( ) A .f (x )是偶函数B .f (x )在区间⎝ ⎛⎭⎪⎫π2,π上单调递增C .f (x )的最大值为2D .f (x )在[-π,π]上有4个零点 答案 AC解析 f (-x )=sin|-x |+|sin(-x )| =sin|x |+|sin x |=f (x ),f (x )是偶函数,A 正确;当x ∈⎝⎛⎭⎪⎫π2,π时,f (x )=sin x +sin x =2sin x , 单调递减,B 错误;f (x )=sin|x |+|sin x |≤1+1=2,且f ⎝ ⎛⎭⎪⎫π2=2,C 正确; 在[-π,π]上,当-π<x <0时,f (x )=sin(-x )+(-sin x )=-2sin x >0,当0<x <π时,f (x )=sin x +sin x =2sin x >0,f (x )的零点只有π,0,-π共三个,D 错.7.写出一个周期为π的偶函数f (x )=________.(答案不唯一) 答案 cos2x8.(2022·鞍山模拟)若在⎣⎢⎡⎦⎥⎤0,π2内有两个不同的实数值满足等式cos2x +3sin2x =k +1,则实数k 的取值范围是________. 答案 0≤k <1解析 函数f (x )=cos2x +3sin2x =2sin ⎝⎛⎭⎪⎫2x +π6,当x ∈⎣⎢⎡⎦⎥⎤0,π6时, f (x )=2sin ⎝⎛⎭⎪⎫2x +π6单调递增;当x ∈⎣⎢⎡⎦⎥⎤π6,π2时,f (x )=2sin ⎝⎛⎭⎪⎫2x +π6单调递减,f (0)=2sin π6=1, f ⎝ ⎛⎭⎪⎫π6=2sin π2=2, f ⎝ ⎛⎭⎪⎫π2=2sin 7π6=-1, 所以在⎣⎢⎡⎦⎥⎤0,π2内有两个不同的实数值满足等式cos2x +3sin2x =k +1,则1≤k +1<2, 所以0≤k <1.9.已知函数f (x )=4sin ωx sin ⎝ ⎛⎭⎪⎫ωx +π3-1(ω>0)的最小正周期为π.(1)求ω及f (x )的单调递增区间; (2)求f (x )图象的对称中心.解 (1)f (x )=4sin ωx ⎝ ⎛⎭⎪⎫12sin ωx +32cos ωx -1=2sin 2ωx +23sin ωx cos ωx -1 =1-cos 2ωx +3sin 2ωx -1 =3sin 2ωx -cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx -π6.∵最小正周期为π, ∴2π2ω=π, ∴ω=1,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6, 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,解得-π6+k π≤x ≤π3+k π,k ∈Z ,∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π6+k π,π3+k π(k ∈Z ).(2)令2x -π6=k π,k ∈Z ,解得x =π12+k π2,k ∈Z ,∴f (x )图象的对称中心为⎝⎛⎭⎪⎫π12+k π2,0,k ∈Z .10.(2021·浙江)设函数f (x )=sin x +cos x (x ∈R ).(1)求函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π22的最小正周期;(2)求函数y =f (x )f ⎝⎛⎭⎪⎫x -π4在⎣⎢⎡⎦⎥⎤0,π2上的最大值.解 (1)因为f (x )=sin x +cos x ,所以f ⎝ ⎛⎭⎪⎫x +π2=sin ⎝ ⎛⎭⎪⎫x +π2+cos ⎝⎛⎭⎪⎫x +π2=cos x -sin x ,所以y =⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫x +π22=(cos x -sin x )2=1-sin2x .所以函数y =⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎪⎫x +π22的最小正周期T =2π2=π.(2)f ⎝ ⎛⎭⎪⎫x -π4=sin ⎝ ⎛⎭⎪⎫x -π4+cos ⎝⎛⎭⎪⎫x -π4=2sin x ,所以y =f (x )f ⎝⎛⎭⎪⎫x -π4=2sin x (sin x +cos x ) =2(sin x cos x +sin 2x ) =2⎝ ⎛⎭⎪⎫12sin2x -12cos2x +12=sin ⎝⎛⎭⎪⎫2x -π4+22. 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4, 所以当2x -π4=π2,即x =3π8时,函数y =f (x )f ⎝⎛⎭⎪⎫x -π4在⎣⎢⎡⎦⎥⎤0,π2上取得最大值,且y max =1+22.11.(多选)(2022·苏州模拟)已知函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3,则( )A .函数f ⎝⎛⎭⎪⎫x -π3是偶函数B .x =-π6是函数f (x )的一个零点C .函数f (x )在区间⎣⎢⎡⎦⎥⎤-5π12,π12上单调递增 D .函数f (x )的图象关于直线x =π12对称答案 BCD解析 对于A 选项,令g (x )=f ⎝ ⎛⎭⎪⎫x -π3=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π3+π3=sin ⎝⎛⎭⎪⎫2x -π3,则g ⎝ ⎛⎭⎪⎫π6=0,g ⎝ ⎛⎭⎪⎫-π6=sin ⎝ ⎛⎭⎪⎫-2π3≠0, 故函数f ⎝ ⎛⎭⎪⎫x -π3不是偶函数,A 错;对于B 选项,因为f ⎝ ⎛⎭⎪⎫-π6=sin0=0,故x =-π6是函数f (x )的一个零点,B 对;对于C 选项,当-5π12≤x ≤π12时,-π2≤2x +π3≤π2, 所以函数f (x )在区间⎣⎢⎡⎦⎥⎤-5π12,π12上单调递增,C 对;对于D 选项,因为对称轴满足2x +π3=π2+k π,k ∈Z ,解得x =π12+k π2,k ∈Z ,k =0时,x =π12,D 对.12.(多选)(2022·厦门模拟)已知函数f (x )=cos 2⎝ ⎛⎭⎪⎫x -π6-cos2x ,则( )A .f (x )的最大值为1+32B .f (x )的图象关于点⎝⎛⎭⎪⎫7π6,0对称C .f (x )图象的对称轴方程为x =5π12+k π2(k ∈Z )D .f (x )在[0,2π]上有4个零点 答案 ACD解析 f (x )=1+cos ⎝⎛⎭⎪⎫2x -π32-cos2x=12+12⎝ ⎛⎭⎪⎫12cos2x +32sin2x -cos2x =34sin2x -34cos2x +12 =32sin ⎝⎛⎭⎪⎫2x -π3+12,则f (x )的最大值为1+32,A 正确;易知f (x )图象的对称中心的纵坐标为12,B 错误;令2x -π3=π2+k π(k ∈Z ),得x =5π12+k π2(k ∈Z ),此即f (x )图象的对称轴方程,C 正确; 由f (x )=32sin ⎝⎛⎭⎪⎫2x -π3+12=0,得sin ⎝⎛⎭⎪⎫2x -π3=-33,当x ∈[0,2π]时,2x -π3∈⎣⎢⎡⎦⎥⎤-π3,11π3,作出函数y =sin x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤-π3,11π3的图象,如图所示.所以方程sin ⎝⎛⎭⎪⎫2x -π3=-33在[0,2π]上有4个不同的实根, 即f (x )在[0,2π]上有4个零点,D 正确.13.(2022·唐山模拟)已知sin x +cos y =14,则sin x -sin 2y 的最大值为______. 答案 916解析 ∵sin x +cos y =14,sin x ∈[-1,1], ∴sin x =14-cos y ∈[-1,1], ∴cos y ∈⎣⎢⎡⎦⎥⎤-34,54, 即cos y ∈⎣⎢⎡⎦⎥⎤-34,1, ∵sin x -sin 2y =14-cos y -(1-cos 2y ) =cos 2y -cos y -34=⎝⎛⎭⎪⎫cos y -122-1, 又cos y ∈⎣⎢⎡⎦⎥⎤-34,1, 利用二次函数的性质知,当cos y =-34时, (sin x -sin 2y )max =⎝ ⎛⎭⎪⎫-34-122-1=916. 14.(2022·苏州八校联盟检测)已知f (x )=sin x +cos x ,若y =f (x +θ)是偶函数,则cos θ=________.答案 ±22解析 因为f (x )=2sin ⎝⎛⎭⎪⎫x +π4, 所以f (x +θ)=2sin ⎝⎛⎭⎪⎫x +θ+π4, 又因为y =f (x +θ)是偶函数,所以θ+π4=π2+k π,k ∈Z ,即θ=π4+k π,k ∈Z , 所以cos θ=cos ⎝ ⎛⎭⎪⎫π4+k π=±22.15.(多选)(2022·邯郸模拟)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0),已知f (x )在[0,2π]内有且仅有2个零点,则下列结论成立的有( ) A .函数y =f (x )+1在(0,2π)内没有零点B .y =f (x )-1在(0,2π)内有且仅有1个零点C .f (x )在⎝ ⎛⎭⎪⎫0,2π3上单调递增D .ω的取值范围是⎣⎢⎡⎭⎪⎫58,98答案 BCD解析 如图,由函数f (x )的草图可知,A 选项不正确,B 选项正确;若函数f (x )在[0,2π]内有且仅有2个零点,则5π4ω≤2π<9π4ω, 得58≤ω<98,当x ∈⎝ ⎛⎭⎪⎫0,2π3时,t =ωx -π4∈⎝ ⎛⎭⎪⎫-π4,2π3ω-π4⊆⎝ ⎛⎭⎪⎫-π4,π2,此时函数单调递增,故CD 正确.16.已知f (x )=sin 2⎝ ⎛⎭⎪⎫x +π8+2sin ⎝ ⎛⎭⎪⎫x +π4·cos ⎝ ⎛⎭⎪⎫x +π4-12.(1)求f (x )的单调递增区间;(2)若函数y =|f (x )|-m 在区间⎣⎢⎡⎦⎥⎤-5π24,3π8上恰有两个零点x 1,x 2.①求m 的取值范围;②求sin(x 1+x 2)的值.解 (1)f (x )=sin 2⎝ ⎛⎭⎪⎫x +π8+2sin ⎝ ⎛⎭⎪⎫x +π4·cos ⎝ ⎛⎭⎪⎫x +π4-12 =1-cos ⎝ ⎛⎭⎪⎫2x +π42+22sin ⎝⎛⎭⎪⎫2x +π2-12 =12-24cos 2x +24sin 2x +22cos 2x -12=24sin 2x +24cos 2x =12sin ⎝⎛⎭⎪⎫2x +π4, 结合正弦函数的图象与性质,可得当-π2+2k π≤2x +π4≤π2+2k π(k ∈Z ), 即-3π8+k π≤x ≤π8+k π(k ∈Z )时,函数单调递增, ∴函数y =f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z ). (2)①令t =2x +π4,当x ∈⎣⎢⎡⎦⎥⎤-5π24,3π8时, t ∈⎣⎢⎡⎦⎥⎤-π6,π,12sin t ∈⎣⎢⎡⎦⎥⎤-14,12, ∴y =⎪⎪⎪⎪⎪⎪12sin t ∈⎣⎢⎡⎦⎥⎤0,12(如图).∴要使y =|f (x )|-m 在区间⎣⎢⎡⎦⎥⎤-5π24,3π8上恰有两个零点,m 的取值范围为14<m <12或m =0. ②设t 1,t 2是函数y =⎪⎪⎪⎪⎪⎪12sin t -m 的两个零点⎝⎛⎭⎪⎫即t 1=2x 1+π4,t 2=2x 2+π4, 由正弦函数图象性质可知t 1+t 2=π,即2x 1+π4+2x 2+π4=π. ∴x 1+x 2=π4,∴sin(x 1+x 2)=22.。
2022届高三数学(理)一轮总复习练习-第三章 三角函数、解三角形 3-6 Word版含答案
课时规范训练[A级基础演练]1.在锐角△ABC中,角A,B所对的边长分别为a,b,若2a sin B=3b,则角A等于()A.π12 B.π6C.π4D.π3解析:选D.在△ABC中,利用正弦定理得2sin A sin B =3sin B,∴sin A=3 2.又A为锐角,∴A=π3.2.(2022·高考天津卷)在△ABC中,若AB=13,BC=3,∠C=120°,则AC=() A.1 B.2C.3 D.4解析:选A.在△ABC中,角A,B,C的对边分别为a,b,c,则a=3,c=13,∠C=120°,由余弦定理得13=9+b2+3b,解得b=1,即AC=1.3.在△ABC,已知∠A=45°,AB=2,BC=2,则∠C等于()A.30°B.60°C.120°D.30°或150°解析:选A.在△ABC中,ABsin C=BCsin A,∴2sin C=2sin 45°,∴sin C=12,又AB<BC,∴∠C<∠A,故∠C=30°.4.一艘海轮从A处动身,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观看灯塔,其方向是南偏东70°,在B处观看灯塔,其方向是北偏东65°,那么B,C两点间的距离是()A.102海里B.103海里C.203海里D.202海里解析:选A.如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,依据正弦定理得BCsin 30°=ABsin 45°,解得BC=102(海里).5.(2022·高考山东卷)△ABC中,角A,B,C的对边分别是a,b,c.已知b=c,a2=2b2(1-sin A),则A=()A.3π4B.π3C.π4D.π6解析:选C.由余弦定理得a2=b2+c2-2bc cos A=2b2-2b2cos A,所以2b2(1-sin A)=2b2(1-cos A),所以sin A=cos A,即tan A=1,又0<A<π,所以A=π4.6.(2022·高考北京卷)在△ABC中,∠A=2π3,a=3c,则bc=.解析:∵a=3c,∴sin A=3sin C,∵∠A=2π3,∴sin A=32,∴sin C=12,又∠C必为锐角,∴∠C=π6,∵∠A+∠B+∠C=π,∴∠B=π6,∴∠B=∠C,∴b=c,∴bc=1.答案:17.在△ABC中,已知AB=3,A=120°,且△ABC的面积为1534,则BC边的长为.解析:由S△ABC=1534得12×3×AC sin 120°=1534,所以AC=5,因此BC2=AB2+AC2-2AB·AC·cos 120°=9+25+2×3×5×12=49,解得BC=7.答案:78.已知△ABC的内角A,B,C的对边分别为a,b,c,且c-bc-a=sin Asin C+sin B,则B=() A.π6B.π4C.π3 D .3π4解析:选C.依据正弦定理:a sin A =b sin B =csin C =2R ,得c -b c -a=sin Asin C +sin B =a c +b,即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.9.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,且c =2a ,求cos B 的值. 解:(1)证明:∵三角形的三边a ,b ,c 成等差数列, ∴a +c =2b .由正弦定理得sin A +sin C =2sin B . ∵sin B =sin [π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ).(2)由题设有b 2=ac ,c =2a ,∴b =2a ,由余弦定理得cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin 2A -B2+4sin A sin B =22.(1)求角C 的大小;(2)已知b =4,△ABC 的面积为6,求边长c 的值.解:(1)由已知得2[1-cos(A -B )]+4sin A sin B =2+2,化简得-2cos A cos B +2sin A sin B 2,故cos(A +B )=-22,所以A +B =3π4,从而C =π4. (2)由于S △ABC =12ab sin C ,由S △ABC =6,b =4,C =π4,得a =3 2.由余弦定理c 2=a 2+b 2-2ab cos C ,得c =10. [B 级 力量突破]1.(2021·辽宁五校联考)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a ,3sin A =5sin B ,则角C =( )A.2π3 B .π3 C.3π4D .5π6解析:选A.由3sin A =5sin B ,得3a =5b . 又由于b +c =2a , 所以a =53b ,c =73b ,所以cos C =a 2+b 2-c 22ab =⎝ ⎛⎭⎪⎫53b 2+b 2-⎝ ⎛⎭⎪⎫73b 22×53b ×b=-12.由于C ∈(0,π),所以C =2π3.2.(2021·北京东城一模)在锐角△ABC 中,AB =3,AC =4,S △ABC =33,则BC =( ) A .5 B .13或37 C.37D .13解析:选D.由S △ABC =12AB ·AC ·sin ∠BAC =12×3×4×sin ∠BAC =33,得sin ∠BAC =32,由于△ABC 为锐角三角形,所以∠BAC ∈⎝ ⎛⎭⎪⎫0,π2,故∠BAC =π3,在△ABC 中,由余弦定理得,BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC =42+32-2×4×3×cos π3=13.所以BC =13,故选D.3.(2021·厦门模拟)在不等边三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a 为最大边,假如sin 2(B +C )<sin 2B +sin 2C ,则角A 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,π2 B .⎝ ⎛⎭⎪⎫π4,π2C.⎝ ⎛⎭⎪⎫π6,π3 D .⎝ ⎛⎭⎪⎫π3,π2解析:选D.由题意得sin 2A <sin 2B +sin 2C , 再由正弦定理得a 2<b 2+c 2, 即b 2+c 2-a 2>0. 则cos A =b 2+c 2-a 22bc >0, ∵0<A <π,∴0<A <π2.又a 为最大边,∴A =A ,A >B ,A >C , 即3A >A +B +C =π,∴A >π3. 因此得角A 的取值范围是⎝ ⎛⎭⎪⎫π3,π2.4.(2021·云南第一次检测)已知a 、b 、c 分别为△ABC 三个内角A ,B ,C 的对边,若cos B =45,a =10,△ABC 的面积为42,则b +asin A的值等于 . 解析:依题意可得sin B =35,又S △ABC =12ac sin B =42,则c =14.故b =a 2+c 2-2ac cos B =62,所以b +a sin A =b +bsin B =16 2.答案:16 25.海上一观测站测得方位角240°的方向上有一艘停止待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90海里.此时海盗船距观测站107海里,20分钟后测得海盗船距观测站20海里,再过 分钟,海盗船即可到达商船.解析:如图,设开头时观测站、商船、海盗船分别位于A 、B 、C 处,20分钟后,海盗船到达D 处,在△ADC 中,AC =107,AD =20,CD =30,由余弦定理得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD=400+900-7002×20×30=12.∴∠ADC =60°,在△ABD 中由已知得∠ABD =30°. ∠BAD =60°-30°=30°,∴BD =AD =20,2090×60=403(分钟). 答案:4036.(2021·成都外国语学校模拟)已知函数f (x )=23sin 2⎝ ⎛⎭⎪⎫π4+x +2sin ⎝ ⎛⎭⎪⎫π4+x ·cos ⎝ ⎛⎭⎪⎫π4+x . (1)求函数f (x )的单调递增区间;(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c 且角A 满足f (A )=3+1.若a =3,BC 边上的中线长为3,求△ABC 的面积S .解:(1)由题意知,f (x )=3⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫π2+2x +sin ⎝ ⎛⎭⎪⎫π2+2x=3()1+sin 2x +cos 2x =3+3sin 2x +cos 2x =3+2sin ⎝ ⎛⎭⎪⎫2x +π6,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,解得 k π-π3≤x ≤k π+π6,k ∈Z ,∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z .(2)由f (A )=3+1,得sin ⎝ ⎛⎭⎪⎫2A +π6=12,∴2A +π6=π6或5π6,即A =0或π3. 又A 为△ABC 的内角,∴A =π3. 由A =π3,a =3.得|BC→|=|AC →-AB →|=a =3,① 又BC 边上的中线长为3,知|AB →+AC →|=6.②联立①②,解得AB →·AC→=274,即|AB →|·|AC →|·cos π3=274, ∴|AB →|·|AC →|=272. ∴△ABC 的面积为S =12|AB →|·|AC →|·sin π3=2738.。
2024年高考数学一轮复习课件(新高考版) 第4章 必刷大题9 解三角形
(2)若c=6,△ABC的面积S=6bsin B,求S.
123456
由 S=6bsin B,根据面积公式得 6bsin B=12acsin B=3asin B, 所以a=2b. 由余弦定理得 cos C=a2+2ba2b-c2=12, 整理得a2+b2-ab=36,即3b2=36, 所以 b=2 3,a=4 3. 所以△ABC 的面积 S=12absin C=12×4 3×2 3sin π3=6 3.
123456
(2)若△ABC是锐角三角形,且AB=4 km,求养殖区△ABC面积(单位: km2)的取值范围.
123456
因为AB=4,∠BAC=60°, 所以△ABC 的面积 S=12AB·ACsin∠BAC= 3AC. 在△ABC 中,由正弦定理可得sin∠ABACB=sin∠ACABC, 则 AC=ABsisni∠n∠ACABBC=4sin1si2n0∠°-AC∠BACB=tan∠ 2 A3CB+2. 因为△ABC 是锐角三角形,所以00°°<<∠ 12A0°C-B<∠9A0°C,B<90°,
1-2
5
52=
55,
sin∠ADC=sin∠ACB-4π
= 22(sin∠ACB-cos∠ACB)= 22×255- 55= 1100,
在△ACD 中,由正弦定理得sin∠CDDAC=sinπ-A∠D ACB=sin∠ACADC,
123456
即CD2 = A1C0=2105=5 5,解得 CD=5 210,AC=522, 2 10 5
123456
2.(2023·唐山模拟)如图,在锐角△ABC中,内角A,B,C所对的边分别为 a,b,c,4 5 a=bsin 2C+2c(sin A-sin Bcos C).
高考数学一轮复习 第3章 三角函数、解三角形 热点探究课2 三角函数与解三角形中的高考热点问题教师用
热点探究课(二) 三角函数与解三角形中的高考热点问题[命题解读] 从近五年全国卷高考试题来看,解答题第1题(全国卷T 17)交替考查三角函数、解三角形与数列,本专题的热点题型有:一是三角函数的图像与性质;二是解三角形;三是三角恒等变换与解三角形的综合问题,中档难度,在解题过程中应挖掘题目的隐含条件,注意公式的内在联系,灵活地正用、逆用、变形应用公式,并注重转化思想与数形结合思想的应用.热点1 三角函数的图像与性质(答题模板)要进行五点法作图、图像变换,研究三角函数的单调性、奇偶性、周期性、对称性,求三角函数的单调区间、最值等,都应先进行三角恒等变换,将其化为一个角的一种三角函数,求解这类问题,要灵活利用两角和(差)公式、倍角公式、辅助角公式以及同角关系进行三角恒等变换.(本小题满分12分)已知函数f (x )=23sin ⎝ ⎛⎭⎪⎫x 2+π4·cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图像向右平移π6个单位长度,得到函数g (x )的图像,求函数g (x )在区间[0,π]上的最大值和最小值. 【导学号:66482187】[思路点拨] 1.先逆用倍角公式,再利用诱导公式、辅助角公式将f (x )化为正弦型函数,然后求其周期.2.先利用平移变换求出g (x )的解析式,再求其在给定区间上的最值.[规X 解答] (1)f (x )=23sin ⎝ ⎛⎭⎪⎫x 2+π4·cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π)3分 =3cos x +sin x =2sin ⎝⎛⎭⎪⎫x +π3,5分 于是T =2π1=2π. 6分 (2)由已知得g (x )=f ⎝ ⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫x +π6. 8分 ∵x ∈[0,π],∴x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴sin ⎝⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤-12,1,10分 ∴g (x )=2sin ⎝⎛⎭⎪⎫x +π6∈[-1,2]. 11分故函数g (x )在区间[0,π]上的最大值为2,最小值为-1. 12分[答题模板] 解决三角函数图像与性质的综合问题的一般步骤为:第一步(化简):将f (x )化为a sin x +b cos x 的形式.第二步(用辅助角公式):构造f (x )=a 2+b 2·⎝ ⎛⎭⎪⎫sin x ·a a 2+b 2+cos x ·b a 2+b 2. 第三步(求性质):利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质.第四步(反思):反思回顾,查看关键点、易错点和答题规X .[温馨提示] 1.在第(1)问的解法中,使用辅助角公式a sin α+b cos α=a 2+b 2 sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a ,在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.2.求g (x )的最值一定要重视定义域,可以结合三角函数图像进行求解.[对点训练1] (2016·某某模拟)已知函数f (x )=A sin ωx +B cos ωx (A ,B ,ω是常数,ω>0)的最小正周期为2,并且当x =13时,f (x )max =2. (1)求f (x )的解析式; (2)在闭区间⎣⎢⎡⎦⎥⎤214,234上是否存在f (x )的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.[解] (1)因为f (x )=A 2+B 2sin(ωx +φ),由它的最小正周期为2,知2πω=2,ω=π. 2分又因为当x =13时,f (x )max =2,知13π+φ=2k π+π2(k ∈Z ),φ=2k π+π6(k ∈Z ),4分所以f (x )=2sin ⎝ ⎛⎭⎪⎫πx +2k π+π6=2sin ⎝⎛⎭⎪⎫πx +π6(k ∈Z ). 故f (x )的解析式为f (x )=2sin ⎝⎛⎭⎪⎫πx +π6. 5分 (2)当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2(k ∈Z ),解得x =k +13(k ∈Z ). 7分 由214≤k +13≤234,解得5912≤k ≤6512,9分 又k ∈Z ,知k =5,10分由此可知在闭区间⎣⎢⎡⎦⎥⎤214,234上存在f (x )的对称轴,其方程为x =163. 12分热点2 解三角形从近几年全国卷来看,高考命题强化了解三角形的考查力度,着重考查正弦定理、余弦定理的综合应用,求解的关键是实施边角互化,同时结合三角恒等变换进行化简与求值.(2015·全国卷Ⅱ)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin B sin C; (2)若AD =1,DC =22,求BD 和AC 的长. [解] (1)S △ABD =12AB ·AD sin ∠BAD , S △ADC =12AC ·AD sin ∠CAD . 2分因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理,得sin B sin C =AC AB =12. 5分 (2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 7分在△ABD 和△ADC 中,由余弦定理,知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB ,AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 9分故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6.由(1),知AB =2AC ,所以AC =1. 12分[规律方法] 解三角形问题要关注正弦定理、余弦定理、三角形内角和定理、三角形面积公式,要适时、适度进行“角化边”或“边化角”,要抓住能用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则两个定理都有可能用到.[对点训练2] (2016·某某高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin2B =3b sin A .(1)求B ;(2)若cos A =13,求sin C 的值. [解] (1)在△ABC 中,由a sin A =bsin B, 可得a sin B =b sin A .2分又由a sin2B =3b sin A ,得2a sin B cos B =3b sin A =3a sin B ,所以cos B =32,得B =π6. 5分 (2)由cos A =13,可得sin A =223,则 sin C =sin[π-(A +B )]=sin(A +B )=sin ⎝⎛⎭⎪⎫A +π6 =32sin A +12cos A =26+16. 12分 热点3 三角恒等变换与解三角形的综合问题以三角形为载体,三角恒等变换与解三角形交汇命题,是近几年高考试题的一大亮点,主要考查和、差、倍角公式以及正、余弦定理的综合应用,求解的关键是根据题目提供的信息,恰当地实施边角互化.(2017·东北三省四市一联)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos B -2cos A 2a -b =cos C c . (1)求ab 的值;(2)若角A 是钝角,且c =3,求b 的取值X 围.[解] (1)由题意及正弦定理得sin C cos B -2sin C cos A =2sin A cos C -sin B cos C ,2分 ∴sin C cos B +sin B cos C =2(sin C cos A +sin A cos C ).∴sin(B +C )=2sin(A +C ).∵A +B +C =π,∴sin A =2sin B ,∴ab=2. 5分 (2)由余弦定理得cos A =b 2+9-a 22b ·3=b 2+9-4b 26b =9-3b 26b<0, ∴b > 3. ①7分∵b +c >a ,即b +3>2b ,∴b <3, ②由①②得b 的X 围是(3,3). 12分[规律方法] 1.以三角形为载体,实质考查三角形中的边角转化,求解的关键是抓住边角间的关系,恰当选择正、余弦定理.2.解三角形常与三角变换交汇在一起(以解三角形的某一结论作为条件),此时应首先确定三角形的边角关系,然后灵活运用三角函数的和、差、倍角公式化简转化.[对点训练3] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝ ⎛⎭⎪⎫π4+A =2.(1)求sin 2Asin 2A +cos 2A 的值;(2)若B =π4,a =3,求△ABC 的面积.【导学号:66482188】 [解] (1)由tan ⎝ ⎛⎭⎪⎫π4+A =2,得tan A =13,所以sin 2A sin 2A +cos 2A =2tan A2tan A +1=25. 5分(2)由tan A =13,A ∈(0,π),得sin A =1010,cos A =31010. 7分由a =3,B =π4及正弦定理a sin A =bsin B ,得b =3 5. 9分 由sin C =sin(A +B )=sin ⎝ ⎛⎭⎪⎫A +π4,得sin C =255.设△ABC 的面积为S ,则S =12ab sin C =9. 12分。
解三角形的综合问题(高三一轮复习)
数学 N
— 15 —
思维点睛►
三角形中的最值或范围问题的解法 (1)三角函数法:通过正、余弦定理将边转化为角,再根据三角恒等变换及三角 形内角和定理转化为“一角一函数”的形式,最后结合角的范围利用三角函数的单 调性和值域求解. (2)基本不等式法:利用正、余弦定理,面积(周长)公式建立a+b,ab,a2+b2之 间的等量关系,然后利用基本不等式求解.
79× 22=8+178
2 .
数学 N
— 10 —
命题点2 解三角形中的最值(范围)问题
例2 (2022·新高考Ⅰ卷)记△ABC的内角A,B,C的对边分别为a,b,c,已知 1+cossinAA=1+sinco2sB2B.
(1)若C=23π,求B; (2)求a2+c2 b2的最小值.
数学 N 解 (1)因为1+cossinAA=1+sinco2sB2B, 所以1+cossinAA=1+2si2ncoBsc2oBs-B1, 所以1+cossinAA=csoins BB, 所以cos Acos B=sin B+sin Asin B, 所以cos(A+B)=sin B, 所以sin B=-cos C=-cos23π=12, 因为B∈0,3π,所以B=6π.
第四章 三角函数、解三角形
第6讲 正弦定理和余弦定理 第2课时 解三角形的综合问题
数学 N
— 2—
命题点1 平面多边形中的解三角形问题 例1 从①BD·sin∠ABD=3sin A,②S△ABD=3 3 这两个条件中任选一个,补充 在下面的问题中,并作答.
数学 N
— 3—
问题:如图,在平面四边形ABCD中,已知AB=4,A=3π,且
数学 N
— 28 —
证法二:因为a2=3(b+c),且b=3,
2023年高考数学一轮复习第四章三角函数与解三角形6函数y=Asinωx φ练习含解析
函数y=A sin(ωx+φ)考试要求 1.结合具体实例,了解y=A sin(ωx+φ)的实际意义;能借助图象理解参数ω,φ,A的意义,了解参数的变化对函数图象的影响.2.会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型.知识梳理1.简谐运动的有关概念y =A sin(ωx +φ) (A>0,ω>0),x≥0振幅周期频率相位初相A T=2πωf=1T=ω2πωx+φφ2.用“五点法”画y=A sin(ωx+φ)(A>0,ω>0)一个周期内的简图时,要找五个特征点ωx+φ0π2π3π22πx 0-φωπ2-φωπ-φω3π2-φω2π-φωy=A sin(ωx+φ)0 A 0-A 0 3.函数y=sin x的图象经变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的两种途径常用结论1.函数y=A sin(ωx+φ)+k图象平移的规律:“左加右减,上加下减”.2.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.3.函数y =A sin(ωx +φ)图象的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx+φ=k π,k ∈Z 确定其横坐标. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)把y =sin x 的图象上各点的横坐标缩短为原来的12,纵坐标不变,所得图象对应的函数解析式为y =sin 12x .( × )(2)将y =sin2x 的图象向右平移π6个单位长度,得到y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象.( √ ) (3)函数f (x )=A sin(ωx +φ)(A ≠0)的最大值为A ,最小值为-A .( × )(4)如果y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的相邻两个对称中心之间的距离为T2.( √ )教材改编题1.为了得到函数y =sin ⎝ ⎛⎭⎪⎫3x -π4的图象,只要把y =sin3x 的图象( ) A .向右平移π4个单位长度B .向左平移π4个单位长度C .向右平移π12个单位长度D .向左平移π12个单位长度答案 C2.为了得到y =3cos ⎝ ⎛⎭⎪⎫3x +π8的图象,只需把y =3cos ⎝ ⎛⎭⎪⎫x +π8图象上的所有点的( ) A .纵坐标伸长到原来的3倍,横坐标不变 B .横坐标伸长到原来的3倍,纵坐标不变 C .纵坐标缩短到原来的13,横坐标不变D .横坐标缩短到原来的13,纵坐标不变答案 D3.如图,某地一天从6~14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b ,A >0,0<φ<π,则这段曲线的函数解析式为__________________________.答案 y =10sin ⎝⎛⎭⎪⎫π8x +3π4+20,x ∈[6,14]解析 从题图中可以看出,从6~14时的图象是函数y =A sin(ωx +φ)+b 的半个周期, 所以A =12×(30-10)=10,b =12×(30+10)=20,又12×2πω=14-6, 所以ω=π8.又π8×10+φ=2k π,k ∈Z ,0<φ<π, 所以φ=3π4,所以y =10sin ⎝ ⎛⎭⎪⎫π8x +3π4+20,x ∈[6,14].题型一 函数y =A sin(ωx +φ)的图象及变换例1 (1)(2021·全国乙卷)把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x -π4的图象,则f (x )等于( )A .sin ⎝ ⎛⎭⎪⎫x 2-7π12B .sin ⎝ ⎛⎭⎪⎫x 2+π12C .sin ⎝ ⎛⎭⎪⎫2x -7π12D .sin ⎝⎛⎭⎪⎫2x +π12 答案 B解析 依题意,将y =sin ⎝ ⎛⎭⎪⎫x -π4的图象向左平移π3个单位长度,再将所得曲线上所有点的横坐标扩大到原来的2倍,得到f (x )的图象,所以y =sin ⎝ ⎛⎭⎪⎫x -π4――――――――――――――――――――――――――――――――――――――――→将其图象向左平移π3个单位长度y =sin ⎝ ⎛⎭⎪⎫x +π12的图象―――――――――――――――――――――――――――――――――――――――――――――――→所有点的横坐标扩大到原来的2倍f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π12的图象.(2)(2022·天津二中模拟)将函数y =sin2x 的图象向左平移φ⎝ ⎛⎭⎪⎫0≤φ<π2个单位长度后,得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π6的图象,则φ等于( )A.π12 B.π6 C.π3 D.5π3答案 C解析 y =sin2x =cos ⎝⎛⎭⎪⎫2x -π2. 将函数y =sin2x 的图象向左平移φ个单位长度后, 得到函数y =cos ⎣⎢⎡⎦⎥⎤2x +φ-π2=cos ⎝ ⎛⎭⎪⎫2x +2φ-π2=cos ⎝⎛⎭⎪⎫2x +π6, 由题意知2φ-π2=π6+2k π(k ∈Z ),则φ=π3+k π(k ∈Z ),又0≤φ<π2,所以φ=π3.教师备选1.要得到函数y =cos ⎝ ⎛⎭⎪⎫2x -π6的图象,可以把函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的图象( )A .向右平移π6个单位长度B .向右平移π12个单位长度C .向左平移π6个单位长度D .向左平移π12个单位长度答案 D解析 函数y =cos ⎝ ⎛⎭⎪⎫2x -π6 =sin ⎝ ⎛⎭⎪⎫2x -π6+π2=sin ⎝⎛⎭⎪⎫2x +π6+π6 =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π6, 所以只需将y =sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度就可以得到y =cos ⎝ ⎛⎭⎪⎫2x -π6的图象.2.(2020·江苏)将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是________. 答案 x =-5π24解析 将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移π6个单位长度, 所得图象的函数解析式为y =3sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π4=3sin ⎝⎛⎭⎪⎫2x -π12.令2x -π12=k π+π2,k ∈Z ,得对称轴的方程为x =k π2+7π24,k ∈Z ,分析知当k =-1时,对称轴为直线x =-5π24,与y 轴最近.思维升华 (1)由y =sin ωx 的图象到y =sin(ωx +φ)的图象的变换:向左平移φω(ω>0,φ>0)个单位长度而非φ个单位长度.(2)如果平移前后两个图象对应的函数的名称不一致,那么应先利用诱导公式化为同名函数,ω为负时应先变成正值.跟踪训练 1 (1)(多选)(2020·天津改编)已知函数f (x )=sin ⎝⎛⎭⎪⎫x +π3.下列结论正确的是( )A .f (x )的最小正周期为2πB .f ⎝ ⎛⎭⎪⎫π2是f (x )的最大值C .把函数y =sin x 的图象上所有点向左平移π3个单位长度,可得到函数y =f (x )的图象D .把函数y =f (x )图象上所有点的横坐标伸长到原来的3倍,纵坐标不变,得到g (x )=sin ⎝ ⎛⎭⎪⎫3x +π3的图象 答案 AC解析 T =2π1=2π,故A 正确.当x +π3=π2+2k π(k ∈Z ),即x =π6+2k π(k ∈Z )时,f (x )取得最大值,故B 错误.y =sin x 的图象―――――――――――――――――――――――――――――→向左平移π3个单位长度y =sin ⎝⎛⎭⎪⎫x +π3的图象,故C 正确.f (x )=sin ⎝ ⎛⎭⎪⎫x +π3图象上所有点的――――――――――――――――――――――――――――――――――→横坐标伸长到原来的3倍纵坐标不变g (x )=sin ⎝⎛⎭⎪⎫13x +π3的图象,故D错误.(2)(2022·开封模拟)设ω>0,将函数y =sin ⎝ ⎛⎭⎪⎫ωx +π6的图象向右平移π6个单位长度后,所得图象与原图象重合,则ω的最小值为( ) A .3B .6C .9D .12 答案 D解析 将函数y =sin ⎝ ⎛⎭⎪⎫ωx +π6的图象向右平移π6个单位长度后,所得图象与原图象重合,故π6为函数y =sin ⎝ ⎛⎭⎪⎫ωx +π6的周期, 即2k πω=π6(k ∈N *), 则ω=12k (k ∈N *),故当k =1时,ω取得最小值12.题型二 由图象确定y =A sin(ωx +φ)的解析式例2 (1)(2022·安徽芜湖一中模拟)已知函数f (x )=A cos(ωx +φ)+b ⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的大致图象如图所示,将函数f (x )的图象上点的横坐标拉伸为原来的3倍后,再向左平移π2个单位长度,得到函数g (x )的图象,则函数g (x )的单调递增区间为( )A.⎣⎢⎡⎦⎥⎤-3π2+3k π,3k π(k ∈Z ) B.⎣⎢⎡⎦⎥⎤3k π,3k π+3π2(k ∈Z )C.⎣⎢⎡⎦⎥⎤-7π4+3k π,-π4+3k π(k ∈Z )D.⎣⎢⎡⎦⎥⎤-π4+3k π,5π4+3k π(k ∈Z ) 答案 C 解析 依题意,⎩⎪⎨⎪⎧A +b =1,-A +b =-3,解得⎩⎪⎨⎪⎧A =2,b =-1,故f (x )=2cos(ωx +φ)-1,而f ⎝ ⎛⎭⎪⎫π12=1,f ⎝ ⎛⎭⎪⎫π3=-1,∴T 4=π3-π12=π4, 故T =π=2πω,则ω=2;∴2cos ⎝⎛⎭⎪⎫π6+φ-1=1,故π6+φ=2k π(k ∈Z ), 又|φ|<π2,故φ=-π6,∴f (x )=2cos ⎝⎛⎭⎪⎫2x -π6-1;将函数f (x )的图象上点的横坐标拉伸为原来的3倍后,得到y =2cos ⎝ ⎛⎭⎪⎫23x -π6-1, 再向左平移π2个单位长度,得到g (x )=2cos ⎝ ⎛⎭⎪⎫23x +π3-π6-1=2cos ⎝ ⎛⎭⎪⎫23x +π6-1,令-π+2k π≤23x +π6≤2k π(k ∈Z ),故-7π4+3k π≤x ≤-π4+3k π(k ∈Z ),故函数g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-7π4+3k π,-π4+3k π(k ∈Z ).(2)(2021·全国甲卷)已知函数f (x )=2cos (ωx +φ)的部分图象如图所示,则f ⎝ ⎛⎭⎪⎫π2=______.答案 - 3解析 由题意可得,34T =13π12-π3=3π4,∴T =π,ω=2πT=2,当x =13π12时,ωx +φ=2×13π12+φ=2k π,k ∈Z ,∴φ=2k π-136π(k ∈Z ).令k =1可得φ=-π6,据此有f (x )=2cos ⎝⎛⎭⎪⎫2x -π6,f ⎝ ⎛⎭⎪⎫π2=2cos ⎝⎛⎭⎪⎫2×π2-π6=2cos 5π6=- 3.教师备选1.(2022·天津中学月考)把函数f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π4个单位长度,得到函数g (x )的图象,已知函数g (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则f (x )等于( )A .sin ⎝⎛⎭⎪⎫4x +π3 B .sin ⎝⎛⎭⎪⎫4x +π6C .sin ⎝⎛⎭⎪⎫x +π6D .sin ⎝⎛⎭⎪⎫x +π3答案 D解析 先根据函数图象求函数g (x )=A sin(ωx +φ)的解析式, 由振幅可得A =1,显然T 4=π3-π12=π4,所以T =π,所以2πω=π,所以ω=2,所以g (x )=sin(2x +φ),再由g ⎝ ⎛⎭⎪⎫π12=sin ⎝ ⎛⎭⎪⎫π6+φ=0, 由|φ|<π2可得φ=-π6,所以g (x )=sin ⎝⎛⎭⎪⎫2x -π6,反向移动先向左平移π4个单位长度可得sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4-π6=sin ⎝ ⎛⎭⎪⎫2x +π3,再将横坐标伸长到原来的2倍可得f (x )=sin ⎝⎛⎭⎪⎫x +π3.2.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG (点G 是图象的最高点)是边长为2的等边三角形,则f (1)=________.答案 - 3解析 由题意得,A =3,T =4=2πω,ω=π2.又因为f (x )=A cos(ωx +φ)为奇函数, 所以φ=π2+k π,k ∈Z ,由0<φ<π,取k =0,则φ=π2,所以f (x )=3cos ⎝ ⎛⎭⎪⎫π2x +π2,所以f (1)=- 3.思维升华 确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b .确定函数的最大值M 和最小值m ,则A =M -m2,b =M +m2.(2)求ω.确定函数的最小正周期T ,则ω=2πT.(3)求φ,常用方法如下:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.跟踪训练2 (1)(2020·全国Ⅰ改编)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π6在[-π,π]上的图象大致如图,则f (x )的解析式为( )A .f (x )=cos ⎝ ⎛⎭⎪⎫-32x +π6B .f (x )=cos ⎝ ⎛⎭⎪⎫32x +π6C .f (x )=cos ⎝ ⎛⎭⎪⎫34x -π6D .f (x )=cos ⎝ ⎛⎭⎪⎫34x +π6答案 B解析 由图象知π<T <2π,即π<2π|ω|<2π,所以1<|ω|<2.因为图象过点⎝ ⎛⎭⎪⎫-4π9,0, 所以cos ⎝ ⎛⎭⎪⎫-4π9ω+π6=0,所以-4π9ω+π6=k π+π2,k ∈Z ,所以ω=-94k -34,k ∈Z .因为1<|ω|<2, 故k =-1,得ω=32,所以f (x )=cos ⎝ ⎛⎭⎪⎫32x +π6.(2)(2022·张家口市第一中学模拟)已知函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则ω=________,为了得到偶函数y =g (x )的图象,至少要将函数y =f (x )的图象向右平移________个单位长度.答案π86 解析 由图象可知,函数f (x )的最小正周期为T =2×[6-(-2)]=16, ∴ω=2π16=π8,则f (x )=2sin ⎝⎛⎭⎪⎫πx 8+φ,由于函数f (x )的图象过点(-2,0)且在x =-2附近单调递增, ∴-2×π8+φ=2k π(k ∈Z ),可得φ=2k π+π4(k ∈Z ),∵-π2<φ<π2,∴φ=π4,∴f (x )=2sin ⎝⎛⎭⎪⎫πx 8+π4,假设将函数f (x )的图象向右平移t 个单位长度可得到偶函数g (x )的图象, 且g (x )=f (x -t )=2sin ⎣⎢⎡⎦⎥⎤π8x -t +π4=2sin ⎝⎛⎭⎪⎫π8x -πt 8+π4,∴-πt 8+π4=π2+k π(k ∈Z ),解得t =-2-8k (k ∈Z ),∵t >0,当k =-1时,t 取最小值6.题型三 三角函数图象、性质的综合应用 命题点1 图象与性质的综合应用例3 (2022·衡阳模拟)若函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且其图象向左平移π6个单位长度后所得图象对应的函数g (x )为偶函数,则f (x )的图象( )A .关于直线x =π3对称B .关于点⎝ ⎛⎭⎪⎫π6,0对称 C .关于直线x =-π6对称D .关于点⎝ ⎛⎭⎪⎫5π12,0对称答案 D解析 依题意可得ω=2ππ=2,所以f (x )=2sin(2x +φ),所以f (x )的图象向左平移π6个单位长度后所得图象对应的函数为g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+φ,又函数g (x )为偶函数, 所以π3+φ=π2+k π,k ∈Z ,解得φ=π6+k π,k ∈Z ,又|φ|<π2,所以φ=π6,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6, 由2x +π6=π2+k π,k ∈Z ,得x =π6+k π2,k ∈Z ,所以f (x )图象的对称轴为x =π6+k π2,k ∈Z ,排除A ,C ,由2x +π6=k π,k ∈Z ,得x =-π12+k π2,k ∈Z ,则f (x )图象的对称中心为⎝ ⎛⎭⎪⎫-π12+k π2,0,k ∈Z ,排除B ,当k =1时,-π12+π2=5π12,故D 正确.命题点2 函数零点(方程根)问题例4 已知关于x 的方程2sin 2x -3sin2x +m -1=0在⎝ ⎛⎭⎪⎫π2,π上有两个不同的实数根,则m 的取值范围是____________.答案 (-2,-1)解析 方程2sin 2x -3sin2x +m -1=0可转化为m =1-2sin 2x +3sin2x =cos2x +3sin2x=2sin ⎝ ⎛⎭⎪⎫2x +π6,x ∈⎝ ⎛⎭⎪⎫π2,π.设2x +π6=t ,则t ∈⎝ ⎛⎭⎪⎫7π6,13π6,∴题目条件可转化为m 2=sin t ,t ∈⎝ ⎛⎭⎪⎫7π6,13π6有两个不同的实数根.∴y =m 2和y =sin t ,t ∈⎝ ⎛⎭⎪⎫7π6,13π6的图象有两个不同交点,如图:由图象观察知,m 2的取值范围是⎝ ⎛⎭⎪⎫-1,-12,故m 的取值范围是(-2,-1).延伸探究 本例中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是_____. 答案 [-2,1)解析 同例题知,m 2的取值范围是⎣⎢⎡⎭⎪⎫-1,12, ∴-2≤m <1,∴m 的取值范围是[-2,1). 命题点3 三角函数模型例5 (多选)(2022·佛山一中月考)摩天轮常被当作一个城市的地标性建筑,如深圳前海的“湾区之光”摩天轮,如图所示,某摩天轮最高点离地面高度128米,转盘直径为120米,设置若干个座舱,游客从离地面最近的位置进舱,开启后按逆时针匀速旋转t 分钟,当t =15时,游客随舱旋转至距离地面最远处.以下关于摩天轮的说法中,正确的为( )A .摩天轮离地面最近的距离为4米B .若旋转t 分钟后,游客距离地面的高度为h 米,则h =-60cosπ15t +68 C .若在t 1,t 2时刻,游客距离地面的高度相等,则t 1+t 2的最小值为30 D .∃t 1,t 2∈[0,20],使得游客在该时刻距离地面的高度均为90米 答案 BC解析 由题意知,摩天轮离地面最近的距离为128-120=8(米),故A 不正确;t 分钟后,转过的角度为π15t ,则h =60-60cosπ15t +8=-60cos π15t +68,故B 正确; h =-60cosπ15t +68,周期为2ππ15=30,由余弦型函数的性质可知,若t 1+t 2取最小值,则t 1,t 2∈[0,30],又高度相等, 则t 1,t 2关于t =15对称, 则t 1+t 22=15,则t 1+t 2=30,故C 正确;令0≤π15t ≤π,解得0≤t ≤15,令π≤π15t ≤2π,解得15≤t ≤30,则h 在t ∈[0,15]上单调递增,在t ∈[15,20]上单调递减, 当t =15时,h max =128, 当t =20时,h =-60cosπ15×20+68=98>90, 所以h =90在t ∈[0,20]只有一个解, 故D 不正确. 教师备选(多选)(2022·福州模拟)如图所示,一半径为4米的水轮,水轮圆心O 距离水面2米,已知水轮每60秒逆时针转动一圈,如果当水轮上点P 从水中浮现时(图中点P 0)开始计时,则( )A .点P 第一次到达最高点需要20秒B .当水轮转动155秒时,点P 距离水面2米C .当水轮转动50秒时,点P 在水面下方,距离水面2米D .点P 距离水面的高度h (米)与t (秒)的函数解析式为h =4cos ⎝ ⎛⎭⎪⎫π30t +π3+2答案 ABC解析 设点P 距离水面的高度h (米)和时间t (秒)的函数解析式为h =A sin(ωt +φ)+B ⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2,由题意得⎩⎪⎨⎪⎧h max =A +B =6,h min=-A +B =-2,T =2πω=60,h 0=A sin ω·0+φ+B =0,解得⎩⎪⎨⎪⎧A =4,B =2,ω=2πT =π30,φ=-π6,故h =4sin ⎝⎛⎭⎪⎫π30t -π6+2.故D 错误;对于A ,令h =6,即h =4sin ⎝ ⎛⎭⎪⎫π30t -π6+2=6,解得t =20,故A 正确;对于B ,令t =155,代入h =4sin ⎝ ⎛⎭⎪⎫π30t -π6+2,解得h =2,故B 正确; 对于C ,令t =50,代入h =4sin ⎝ ⎛⎭⎪⎫π30t -π6+2, 解得h =-2,故C 正确.思维升华 (1)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.(2)方程根的个数可转化为两个函数图象的交点个数.(3)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,利用三角函数的有关知识解决问题.跟踪训练3 (1)(多选)(2022·青岛模拟)已知函数f (x )=cos2x cos φ-sin2x sin φ⎝ ⎛⎭⎪⎫0<φ<π2的图象的一个对称中心为⎝ ⎛⎭⎪⎫π6,0,则下列说法正确的是( )A .直线x =512π是函数f (x )的图象的一条对称轴B .函数f (x )在⎣⎢⎡⎦⎥⎤0,π6上单调递减C .函数f (x )的图象向右平移π6个单位长度可得到y =cos2x 的图象D .函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为-1答案 ABD解析 ∵f (x )=cos2x cos φ-sin2x sin φ=cos(2x +φ)的图象的一个对称中心为⎝ ⎛⎭⎪⎫π6,0,∴2×π6+φ=π2+k π,k ∈Z ,∴φ=π6+k π,k ∈Z .∵0<φ<π2,∴φ=π6.则f (x )=cos ⎝ ⎛⎭⎪⎫2x +π6.∵f ⎝⎛⎭⎪⎫5π12=cos ⎝⎛⎭⎪⎫2×5π12+π6=cosπ=-1,∴直线x =512π是函数f (x )的图象的一条对称轴,故A 正确;当x ∈⎣⎢⎡⎦⎥⎤0,π6时,2x +π6∈⎣⎢⎡⎦⎥⎤π6,π2,∴函数f (x )在⎣⎢⎡⎦⎥⎤0,π6上单调递减,故B 正确;函数f (x )的图象向右平移π6个单位长度,得到y =cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π6=cos ⎝ ⎛⎭⎪⎫2x -π6的图象,故C 错误;当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为cosπ=-1,故D 正确.(2)(多选)(2022·西南大学附中模拟)水车在古代是进行灌溉引水的工具,亦称“水转筒车”,是一种以水流作动力,取水灌田的工具.据史料记载,水车发明于隋而盛于唐,距今已有1000多年的历史,是人类的一项古老的发明,也是人类利用自然和改造自然的象征,如图是一个半径为R 的水车,一个水斗从点A (3,-33)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时120秒.经过t 秒后,水斗旋转到P 点,设点P 的坐标为(x ,y ),其纵坐标满足y =f (t )=R sin(ωt +φ)⎝⎛⎭⎪⎫t ≥0,ω>0,|φ|<π2,则下列叙述正确的是( )A .水斗作周期运动的初相为-π3B .在水斗开始旋转的60秒(含)中,其高度不断增加C .在水斗开始旋转的60秒(含)中,其最高点离平衡位置的纵向距离是3 3D .当水斗旋转100秒时,其和初始点A 的距离为6 答案 AD解析 对于A ,由A (3,-33), 知R =32+-332=6,T =120,所以ω=2πT =π60;当t =0时,点P 在点A 位置,有-33=6sin φ, 解得sin φ=-32,又|φ|<π2, 所以φ=-π3,故A 正确;对于B ,可知f (t )=6sin ⎝⎛⎭⎪⎫π60t -π3,当t ∈(0,60],π60t -π3∈⎝ ⎛⎦⎥⎤-π3,2π3,所以函数f (t )先增后减,故B 错误; 对于C ,当t ∈(0,60], π60t -π3∈⎝ ⎛⎦⎥⎤-π3,2π3,sin ⎝ ⎛⎭⎪⎫π60t -π3∈⎝ ⎛⎦⎥⎤-32,1,所以点P 到x 轴的距离的最大值为6,故C 错误; 对于D ,当t =100时,π60t -π3=4π3,P 的纵坐标为y =-33,横坐标为x =-3,所以|PA |=|-3-3|=6,故D 正确.课时精练1.函数f (x )=-2cos ⎝ ⎛⎭⎪⎫12x +π4的振幅、初相分别是( )A .-2,π4B .-2,-π4C .2,π4D .2,-π4答案 C解析 振幅为2,当x =0时,φ=π4,即初相为π4.2.将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4的图象,向右平移π4个单位长度后得到函数g (x )的解析式为( ) A .g (x )=sin2x B .g (x )=sin ⎝ ⎛⎭⎪⎫2x +π4C .g (x )=sin ⎝ ⎛⎭⎪⎫2x -π4D .g (x )=sin ⎝ ⎛⎭⎪⎫2x +3π4 答案 C解析 向右平移π4个单位长度后得,g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π4=sin ⎝ ⎛⎭⎪⎫2x -π4.3.(2022·苏州模拟)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,将其图象向左平移π3个单位长度后对应的函数为偶函数,则f⎝ ⎛⎭⎪⎫π6等于( ) A .-12B.32C .1 D.12答案 D解析 因为函数f (x )=sin(ωx +φ)的最小正周期为π,所以ω=2ππ=2,所以f (x )=sin(2x +φ),图象向左平移π3个单位长度后所得函数为y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3+φ=sin ⎝ ⎛⎭⎪⎫2x +2π3+φ,因为y =sin ⎝ ⎛⎭⎪⎫2x +2π3+φ是偶函数,所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),因为|φ|<π2,所以k =0,φ=-π6,所以f (x )=sin ⎝⎛⎭⎪⎫2x -π6, 所以f ⎝ ⎛⎭⎪⎫π6=sin ⎝⎛⎭⎪⎫2×π6-π6=sin π6=12. 4.(2022·天津五十七中月考)函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,将f (x )的图象上所有点的横坐标扩大到原来的4倍(纵坐标不变),再把所得的图象沿x 轴向左平移π3个单位长度,得到函数g (x )的图象,则函数g (x )的一个单调递增区间为( )A.⎣⎢⎡⎦⎥⎤-5π3,π3B.⎣⎢⎡⎦⎥⎤π3,7π3C.⎣⎢⎡⎦⎥⎤π4,3π8D.⎣⎢⎡⎦⎥⎤3π8,π2答案 A解析 根据函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象,可得A =1, 12·2πω=2π3-π6, ∴ω=2.结合“五点法”作图可得2×π6+φ=π2,∴φ=π6,f (x )=sin ⎝⎛⎭⎪⎫2x +π6. 将f (x )的图象上所有点的横坐标扩大到原来的4倍(纵坐标不变),可得y =sin ⎝ ⎛⎭⎪⎫12x +π6的图象.再把所得的图象沿x 轴向左平移π3个单位长度,得到函数g (x )=sin ⎝ ⎛⎭⎪⎫12x +π6+π6=sin ⎝ ⎛⎭⎪⎫12x +π3的图象.令2k π-π2≤12x +π3≤2k π+π2,k ∈Z ,解得4k π-5π3≤x ≤4k π+π3,k ∈Z ,可得函数g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤4k π-5π3,4k π+π3,k ∈Z ,令k =0,可得一个单调递增区间为⎣⎢⎡⎦⎥⎤-5π3,π3. 5.(多选)如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成”函数,给出下列函数中是“互为生成”函数的是( ) A .f (x )=sin x +cos x B .f (x )=2(sin x +cos x ) C .f (x )=sin x D .f (x )=2sin x + 2 答案 AD解析 f (x )=sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4与f (x )=2sin x +2经过平移后能够重合. 6.(多选)(2022·深圳模拟)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3的图象为曲线E ,则下列结论中正确的是( )A.⎝ ⎛⎭⎪⎫-π12,0是曲线E 的一个对称中心 B .若x 1≠x 2,且f (x 1)=f (x 2)=0,则|x 1-x 2|的最小值为π2C .将曲线y =sin2x 向右平移π3个单位长度,与曲线E 重合D .将曲线y =sin ⎝ ⎛⎭⎪⎫x -π3上各点的横坐标缩短到原来的12,纵坐标不变,与曲线E 重合答案 BD解析 函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3的图象为曲线E ,令x =-π12,求得f (x )=-1,为最小值,故f (x )的图象关于直线x =-π12对称,故A 错误;若x 1≠x 2,且f (x 1)=f (x 2)=0,则|x 1-x 2|的最小值为T 2=12×2π2=π2,故B 正确;将曲线y =sin2x 向右平移π3个单位长度,可得y =sin ⎝⎛⎭⎪⎫2x -2π3的图象,故C 错误; 将曲线y =sin ⎝ ⎛⎭⎪⎫x -π3上各点的横坐标缩短到原来的12,纵坐标不变,可得y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,与曲线E 重合,故D 正确.7.(2022·北京丰台区模拟)将函数f (x )=cos2x 的图象向左平移φ(φ>0)个单位长度,得到函数g (x )的图象.若函数g (x )的图象关于原点对称,则φ的一个取值为________.(答案不唯一) 答案π4解析 将函数f (x )=cos2x 的图象向左平移φ(φ>0)个单位长度, 可得g (x )=cos(2x +2φ),由函数g (x )的图象关于原点对称, 可得g (0)=cos2φ=0, 所以2φ=π2+k π,k ∈Z ,φ=π4+k π2,k ∈Z ,当k =0时,φ=π4.8.(2022·济南模拟)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则为了得到曲线C 1,首先要把C 2上各点的横坐标变为原来的________倍,纵坐标不变,再把得到的曲线向右至少平移______个单位长度.(本题所填数字要求为正数) 答案 2π6解析 ∵曲线C 1:y =cos x =sin ⎝ ⎛⎭⎪⎫x +π2=sin ⎝ ⎛⎭⎪⎫2·12x +2π3-π6,∴先将曲线C 2上各点的横坐标变为原来的2倍,纵坐标不变, 再把得到的曲线y =sin ⎝ ⎛⎭⎪⎫2·12x +2π3向右至少平移π6个单位长度.9.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,-π2<φ<π2的最小正周期是π,且当x =π6时,f (x )取得最大值2. (1)求f (x )的解析式;(2)作出f (x )在[0,π]上的图象(要列表);(3)函数y =f (x )的图象可由函数y =sin x 的图象经过怎样的变换得到? 解 (1)因为函数f (x )的最小正周期是π, 所以ω=2. 又因为当x =π6时,f (x )取得最大值2,所以A =2,同时2×π6+φ=2k π+π2,k ∈Z ,φ=2k π+π6,k ∈Z ,因为-π2<φ<π2,所以φ=π6,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2)因为x ∈[0,π],所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,13π6.列表如下,2x +π6π6 π2 π 3π2 2π 13π6 x 0 π6 5π12 2π3 11π12 π f (x )12-21描点、连线得图象.(3)将y =sin x 的图象上的所有点向左平移π6个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x +π6的图象,再将y =sin ⎝ ⎛⎭⎪⎫x +π6的图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到函数y =sin ⎝⎛⎭⎪⎫2x +π6的图象,再将y =sin ⎝ ⎛⎭⎪⎫2x +π6上所有点的纵坐标伸长2倍(横坐标不变), 得到f (x )=2sin ⎝⎛⎭⎪⎫2x +π6的图象.10.已知向量m =⎝ ⎛⎭⎪⎫sin x ,-12,n =(3cos x ,cos2x ),函数f (x )=m ·n .(1)求函数f (x )的最大值及最小正周期; (2)将函数y =f (x )的图象向左平移π6个单位长度,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤0,π2上的值域. 解 (1) f (x )=m ·n =3sin x cos x -12cos 2x=32sin 2x -12cos 2x =sin ⎝⎛⎭⎪⎫2x -π6.所以函数的最大值为1,最小正周期为T =2π|ω|=2π2=π. (2)由(1)得f (x )=sin ⎝⎛⎭⎪⎫2x -π6. 将函数y =f (x )的图象向左平移π6个单位长度后得到y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6-π6=sin ⎝ ⎛⎭⎪⎫2x +π6的图象.因此g (x )=sin ⎝⎛⎭⎪⎫2x +π6,又x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,sin ⎝⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1.故g (x )在⎣⎢⎡⎦⎥⎤0,π2上的值域为⎣⎢⎡⎦⎥⎤-12,1.11.函数f (x )=A sin(ωx +φ)+b 的图象如图,则f (x )的解析式和S =f (0)+f (1)+f (2)+…+f (2020)+f (2021)+f (2022)+f (2023)的值分别为( )A .f (x )=12sin2πx +1,S =2023B .f (x )=12sin2πx +1,S =202312C .f (x )=12sin π2x +1,S =202412D .f (x )=12sin π2x +1,S =2024答案 D解析 由图象知⎩⎪⎨⎪⎧A +b =32,-A +b =12,又T =4,∴ω=π2,b =1,A =12,∴f (x )=12sin ⎝ ⎛⎭⎪⎫π2x +φ+1. 由f (x )的图象过点⎝ ⎛⎭⎪⎫1,32得12sin ⎝ ⎛⎭⎪⎫π2+φ+1=32, ∴cos φ=1.∴φ=2k π,k ∈Z ,取k =0得φ=0. ∴f (x )=12sin π2x +1,∴f (0)+f (1)+f (2)+f (3)=⎝ ⎛⎭⎪⎫12sin0+1+⎝ ⎛⎭⎪⎫12sin π2+1+⎝ ⎛⎭⎪⎫12sinπ+1+⎝ ⎛⎭⎪⎫12sin3π2+1=4. 又2024=4×506, ∴S =4×506=2024.12.(多选)关于函数f (x )=2cos 2x -cos ⎝ ⎛⎭⎪⎫2x +π2-1的描述正确的是( )A .其图象可由y =2sin2x 的图象向左平移π8个单位长度得到B .f (x )在⎝⎛⎭⎪⎫0,π2上单调递增C .f (x )在[0,π]上有3个零点D .f (x )在⎣⎢⎡⎦⎥⎤-π2,0上的最小值为- 2 答案 AD解析 f (x )=2cos 2x -cos ⎝ ⎛⎭⎪⎫2x +π2-1=sin2x +cos2x =2sin ⎝⎛⎭⎪⎫2x +π4, 对于A ,由y =2sin2x 的图象向左平移π8个单位长度,得到y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8=2sin ⎝ ⎛⎭⎪⎫2x +π4,故选项A 正确;对于B ,令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z ,所以f (x )在⎝ ⎛⎭⎪⎫0,π8上单调递增,在⎝ ⎛⎭⎪⎫π8,π2上单调递减,故选项B 不正确;对于C ,令f (x )=0,得2x +π4=k π,k ∈Z ,解得x =k π2-π8,k ∈Z ,因为x ∈[]0,π, 所以k =1,x =38π;k =2,x =78π,所以f (x )在[0,π]上有2个零点,故选项C 不正确;对于D ,因为x ∈⎣⎢⎡⎦⎥⎤-π2,0, 所以2x +π4∈⎣⎢⎡⎦⎥⎤-3π4,π4,所以sin ⎝ ⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-1,22,所以f (x )∈[]-2,1,所以f (x )在⎣⎢⎡⎦⎥⎤-π2,0上的最小值为-2, 故选项D 正确.13.(2022·上海市吴淞中学月考)定义运算⎪⎪⎪⎪a 1a 3 a 2a 4=a 1a 4-a 2a 3,将函数f (x )=⎪⎪⎪⎪31 sin ωx cos ωx (ω>0)的图象向左平移2π3个单位长度,所得图象对应的函数为奇函数,则ω的最小值是________. 答案 12解析 f (x )=3cos ωx -sin ωx=-2sin ⎝⎛⎭⎪⎫ωx -π3, 图象向左平移2π3个单位长度得,g (x )=-2sin ⎝⎛⎭⎪⎫ωx +2πω3-π3, g (x )为奇函数,则2πω3-π3=k π,k ∈Z , 解得ω=12+32k ,k ∈Z ,所以ω的最小值为12.14.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f (x )=A sin(ωx +φ)+B ⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的模型波动(x 为月份),已知3月份达到最高价9000元,9月份价格最低,为5000元,则7月份的出厂价格为________元. 答案 6000解析 作出函数简图如图.三角函数模型为y =A sin(ωx +φ)+B , 由题意知A =12×(9000-5000)=2000,B =12×(9000+5000)=7000, T =2×(9-3)=12,∴ω=2πT =π6.将(3,9000)看成函数图象的第二个特殊点, 则有π6×3+φ=π2,∴φ=0,故f (x )=2000sinπ6x +7000(1≤x ≤12,x ∈N *). ∴f (7)=2000×sin7π6+7000=6000(元).故7月份的出厂价格为6000元.15.(多选)将函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π2(ω>0)的图象向右平移π2个单位长度后得到函数g (x )的图象,且g (0)=-1,则下列说法正确的是( ) A .g (x )为奇函数B .g ⎝ ⎛⎭⎪⎫-π2=0C .当ω=5时,g (x )在(0,π)上有4个极值点D .若g (x )在⎣⎢⎡⎦⎥⎤0,π5上单调递增,则ω的最大值为5答案 BCD解析 由题意得g (x )=cos ⎝⎛⎭⎪⎫ωx -ωπ2-π2 =sin ⎝⎛⎭⎪⎫ωx -ωπ2.因为g (0)=-1,所以sin ⎝⎛⎭⎪⎫-ωπ2=-1,所以ωπ2=2k π+π2,ω=4k +1,k ∈N , 从而g (x )=sin ⎝ ⎛⎭⎪⎫ωx -2k π-π2=-cos ωx ,显然为偶函数,故A 错误;g ⎝ ⎛⎭⎪⎫-π2=-cos4k +1π2=0,故B 正确; 当ω=5时,g (x )=-cos5x , 令g (x )=-cos5x =±1得 5x =k π,x =k π5,k ∈Z .因为0<x <π,所以x 的值为π5,2π5,3π5,4π5,即函数g (x )在(0,π)上有4个极值点,故C 正确;若函数g (x )=-cos ωx 在⎣⎢⎡⎦⎥⎤0,π5上单调递增,则πω5≤π,即0<ω≤5,故D 正确.16.(2022·深圳模拟)已知函数f (x )=A sin(ωx +φ),其中A >0,ω>0,0<φ<π,函数f (x )图象上相邻的两个对称中心之间的距离为π4,且在x =π3处取到最小值-2.(1)求函数f (x )的解析式;(2)若将函数f (x )图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位长度,得到函数g (x )的图象,求函数g (x )的单调递增区间;(3)若关于x 的方程g (x )=m +2在x ∈⎣⎢⎡⎭⎪⎫0,9π8上有两个不同的实根,求实数m 的取值范围.解 (1)函数f (x )=A sin(ωx +φ), 其中A >0,ω>0,0<φ<π,由题知函数f (x )的最小正周期为π2=2πω,解得ω=4,又函数f (x )在x =π3处取到最小值-2,则A =2,且f ⎝ ⎛⎭⎪⎫π3=-2, 即4π3+φ=2k π+3π2,k ∈Z , 令k =0可得φ=π6,∴f (x )=2sin ⎝⎛⎭⎪⎫4x +π6. (2)函数f (x )=2sin ⎝ ⎛⎭⎪⎫4x +π6图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得y =2sin ⎝ ⎛⎭⎪⎫2x +π6,再向左平移π6个单位长度可得g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6+π6=2cos 2x ,令-π+2k π≤2x ≤2k π,k ∈Z , 解得-π2+k π≤x ≤k π,k ∈Z ,∴g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π2+k π,k π(k ∈Z ). (3)∵方程g (x )=m +2在x ∈⎣⎢⎡⎭⎪⎫0,9π8上有两个不同的实根,作出函数g (x )=2cos 2x ,x ∈⎣⎢⎡⎭⎪⎫0,9π8的图象,由图可知-2<m+2≤2或m+2=2,解得-4<m≤2-2或m=0.∴m的取值范围为-4<m≤2-2或m=0.31。
高考数学一轮复习正弦定理和余弦定理(第2课时)系统题型——解三角形及应用举例讲义(含解析)
第2课时 系统题型——解三角形及应用举例1.(2018·天津期末)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知sin C =sin 2B ,且b =2,c =3,则a 等于( )A.12 B.3 C .2D .2 3解析:选C 由sin C =sin 2B =2sin B cos B 及正、余弦定理得c =2b ·a 2+c 2-b 22ac,代入数据得(2a +1)(a -2)=0,解得a =2,或a =-12(舍去),故选C.2.(2018·天津实验中学期中)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =( )A.π3B.2π3C.3π4D.5π6解析:选B ∵3sin A =5sin B ,∴由正弦定理可得3a =5b ,即a =53b .∵b +c =2a ,∴c =73b ,∴cos C =a 2+b 2-c 22ab =259b 2+b 2-499b22×53b 2=-159103=-12.∵C ∈(0,π),∴C =2π3.故选B.3.(2018·北京高考)在△ABC 中,a =7,b =8,cos B =-17.(1)求∠A ; (2)求AC 边上的高.解:(1)在△ABC 中,因为cos B =-17,所以sin B = 1-cos 2B =437.由正弦定理得sin A =a sin Bb =32.由题设知π2<∠B <π,所以0<∠A <π2.所以∠A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +cos A sin B =32×⎝ ⎛⎭⎪⎫-17+12×437=3314, 所以AC 边上的高为a sin C =7×3314=332.[方法技巧]用正、余弦定理求解三角形基本量的方法1.(2019·湖南师大附中月考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若b cos C c cos B=1+cos 2C1+cos 2B,则△ABC 的形状是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形解析:选D 由已知1+cos 2C 1+cos 2B =2cos 2C 2cos 2B =cos 2C cos 2B =b cos Cc cos B ,∴cos C cos B =b c 或cos Ccos B =0,即C =90°或cos C cos B =b c .由正弦定理,得b c =sin B sin C ,∴cos C cos B =sin Bsin C,即sin C cos C =sin B cosB ,即sin 2C =sin 2B ,∵B ,C 均为△ABC 的内角,∴2C =2B 或2C +2B =180°,∴B =C或B +C =90°,∴△ABC 为等腰三角形或直角三角形.故选D.2.(2018·重庆六校联考)在△ABC 中,cos 2B 2=a +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形。
全国版2024高考数学一轮复习第4章三角函数解三角形第4讲正余弦定理及解三角形试题1理含解析
第四章 三角函数、解三角形第四讲 正、余弦定理及解三角形练好题·考点自测1.[2024全国卷Ⅲ,7,5分][理]在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19 B.13 C.12 D.232.[2024 山东,9, 5分][理]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.若△ABC 为锐角三角形,且满意sin B (1+2cosC )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A.a =2bB.b =2aC.A =2BD.B =2A3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =18,b =24,A =45°,则此三角形( ) A.无解 B.有一解 C.有两解D.解的个数不确定4.下列说法正确的是(△ABC 中,角A ,B ,C 的对边分别为a ,b ,c )( ) ①在△ABC 中,若A >B ,则必有sin A >sin B ; ②在△ABC 中,若b 2+c 2>a 2,则△ABC 为锐角三角形;③在△ABC 中,若A =60°,a =4√3,b =4√2,则B =45°或B =135°;④若满意条件C =60°,AB =√3,BC =a 的△ABC 有两个,则实数a 的取值范围是(√3,2); ⑤在△ABC 中,若a cos B =b cos A ,则△ABC 是等腰三角形. A.①③④⑤ B.①②③④ C.①④⑤D.①③⑤5.[2024全国卷Ⅱ,15,5分][理]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若b =6,a =2c ,B =π3,则△ABC 的面积为 .6.[2024浙江,14,6分]在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD = ,cos∠ABD = .7.[2024全国卷Ⅱ,13,5分][理]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b = .8.[2024深圳市高三统一测试]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a +b )(sin A -sin B )= (a -c )sin C ,b =2,则△ABC 的外接圆面积为 .9.[湖北高考,5分][理]如图4-4-1,一辆汽车在一条水平的马路上向正西行驶,到A 处时测得马路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD = m .图4-4-1 拓展变式1.(1)[2024江淮十校联考]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2a sin A -b sin B =2c sin C ,cos A =14,则sinB sinC=( ) A.4 B.3 C.2 D.1(2)在锐角三角形ABC 中,b =2,a +c =√7(a >c ),且满意2a sin B cos C +2c sin B cos A =√3b ,则a -c = . 2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c , (1)若cb <cos A ,则△ABC 的形态为 .(2)若c -a cos B =(2a -b )cos A ,则△ABC 的形态为 .3.[2024河南洛阳4月模拟]在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c. (1)若△ABC 的面积S 满意4√3S +c 2=a 2+b 2,c =√7,a =4,且b >c ,求b 的值; (2)若a =√3,A =π3,且△ABC 为锐角三角形,求△ABC 周长的取值范围.4.[2024全国卷Ⅰ,17,12分][理]在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5. (1)求cos∠ADB ; (2)若DC =2√2,求BC.5.(1)[解三角形与数列、基本不等式综合]设△ABC 的角A ,B ,C 成等差数列,且满意sin(A -C )-sin B =-√32,BC 延长线上有一点D ,满意BD =2,则△ACD 面积的最大值为( ) A .1 B .√34C .√32D .√63(2)[新课标全国Ⅰ,5分][理]在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 6.[2024山东,15,5分]某中学开展劳动实习,学生加工制作零件,零件的截面如图4-4-6所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH ∥DG ,EF =12 cm ,DE =2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为 cm 2.图4-4-6答 案第四讲 正、余弦定理及解三角形1.A 由余弦定理得AB 2=AC 2+BC 2-2AC ×BC ×cos C =16+9-2×4×3×23=9,AB =3,所以cos B =9+9-162×9=19,故选A .2.A 由题意可知sin B +2sin B cos C =sin A cos C +sin(A +C ),即2sin B cos C =sin A cos C ,又cos C ≠0,故2sin B =sin A ,由正弦定理可知a =2b.故选A.3.C ∵b sin A =12√2<a <b ,∴三角形有两解.4.C 对于①,在△ABC 中,若A >B ,则a >b ,a 2R >b2R (R 为△ABC 的外接圆的半径),即sin A >sin B ,①正确;对于②,在△ABC 中,若b 2+c 2>a 2,则A 是锐角,但△ABC 不肯定是锐角三角形,②错误;对于③,由a sinA =b sinB 得sin B =ba sinA √24√3×√32=√22,因为a >b ,所以B <A ,所以B =45°,③错误;对于④,由条件可得BC sin C <AB <BC ,即√32a <√3<a ,解得√3<a <2,④正确;对于⑤,由a cos B =b cos A 得sinA cosB =sin B cos A ,即sin(A -B )=0,又A ,B 为三角形的内角,所以A =B ,故△ABC 是等腰三角形,⑤正确.故选C .5.6√3 因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =2 √3,所以a =4√3,所以△ABC 的面积S =12ac sin B =12×4 √3×2√3×sin π3=6√3.6.12√257√210 在Rt△ABC 中,易得AC =5,sin C =AB AC =45.在△BCD 中,由正弦定理得BD =BC sin∠BDC ×sin∠BCD =√2245=12√25,sin∠DBC =sin[180°-(∠BCD +∠BDC )]=sin(∠BCD +∠BDC )=sin∠BCD cos∠BDC +cos∠BCD sin∠BDC =45×√22+35×√22=7√210.又∠ABD +∠DBC =90°,所以cos∠ABD =sin∠DBC =7√210.7.2113解法一 因为cos A =45,cos C =513,所以sin A =35,sin C =1213,从而sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.由正弦定理a sinA =b sinB ,得b =asinB sinA =2113. 解法二 因为cos A =45,cos C =513,所以sin A =35,sin C =1213,从而cos B =-cos(A +C )=-cos A cos C +sin A sin C =-45×513+35×1213=1665.由正弦定理a sinA =c sinC ,得c =asinC sinA =2013. 由余弦定理b 2=a 2+c 2-2ac cos B ,得b =2113.解法三 因为cos A =45,cos C =513,所以sin A =35,sin C =1213, 由正弦定理a sinA=c sinC,得c =asinC sinA=2013.从而b =a cos C +c cos A =2113.8.43π 利用正弦定理将已知等式转化为(a +b )(a -b )=(a -c )c ,即a 2+c 2-b 2=ac ,所以由余弦定理得cos B =a 2+c 2-b 22ac=12,因为0°<B <180°,所以B =60°.设△ABC 的外接圆半径为R ,则由正弦定理知,2R =b sinB=√3,R =√3,所以△ABC 的外接圆面积S =πR 2=43π.9.100√6 由题意,得∠BAC =30°,∠ABC =105°.在△ABC 中,因为∠ABC +∠BAC +∠ACB =180°,所以∠ACB =45°. 因为AB =600 m,由正弦定理可得600sin45°=BCsin30°,即BC =300√2 m .在Rt△BCD 中,因为∠CBD =30°,BC =300√2 m,所以tan 30°=CDBC =300√2,所以CD =100√6 m .1.(1)D 因为△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2a sin A -b sin B =2c sin C ,利用正弦定理将角化为边可得2a 2-b 2=2c 2①,由①及余弦定理可得cos A =b 2+c 2-a 22bc=b 4c =14,化简得b c =1,即sinBsinC =1,故选D .(2)√3 因为2a sin B cos C +2c sin B cos A =√3b ,所以2sin A sin B cos C +2sin C sin B cos A =√3sin B.在锐角三角形ABC 中,sin B >0,所以2sin A cos C +2sin C cos A =√3,即sin(A +C )=√32,所以sin B =√32,cos B =12.因为b 2=a 2+c 2-2ac cosB =(a +c )2-2ac -2ac cos B ,所以ac =1.因为(a -c )2=(a +c )2-4ac =7-4=3,且a >c ,所以a -c =√3.2.(1)钝角三角形 已知c b<cos A ,由正弦定理,得sinCsinB<cos A ,即sin C <sin B cos A ,所以sin(A +B )<sin B cos A ,即sinB cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,即B 为钝角,所以△ABC 是钝角三角形.(2)等腰三角形或直角三角形 因为c -a cos B =(2a -b )cos A ,所以由正弦定理得sin C -sin A cos B =2sin A cos A -sinB cos A ,又C =π-(A +B ),所以sin C =sin(A +B ),所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A (B =π-A 舍去),所以△ABC 为等腰三角形或直角三角形.3.(1)因为4√3S =a 2+b 2-c 2,所以4√3×12ab sin C =2ab cos C , 所以tan C =√33,又0<C <π,所以C =π6.由余弦定理及c =√7,a =4,得cos π6=16+b 2-78b,解得b =3√3或b =√3.因为b >c =√7,所以b =3√3. (2)由正弦定理及a =√3,A =π3得√3sinπ3=b sinB =csinC ,故b =2sin B ,c =2sin C =2sin(2π3-B ).则△ABC 的周长为√3+2sin B +2sin(2π3-B )=√3+√3cos B +3sin B =√3+2√3sin(B +π6).由题意可知{0<B <π2,0<2π3-B <π2,解得π6<B <π2.所以π3<B +π6<2π3,故√32<sin(B +π6)≤1,因此三角形ABC 周长的取值范围为(3+√3,3√3]. 4.(1)在△ABD 中,由正弦定理得BD sinA=ABsin∠ADB.由题设知,5sin45°=2sin∠ADB ,所以sin∠ADB =√25. 由题设知,∠ADB <90°,所以cos∠ADB =√1-225=√235. (2)由题设及(1)知,cos∠BDC =sin∠ADB =√25.在△BCD 中,由余弦定理得BC 2=BD 2+DC 2-2×BD ×DC ×cos∠BDC =25+8-2×5×2√2×√25=25,所以BC =5.5.(1)B 因为△ABC 的角A ,B ,C 成等差数列,所以B =π3,又sin(A -C )-sin B =-√32,所以A =B =C =π3,设△ABC 的边长为x ,由已知有0<x <2,则S △ACD =12x (2-x )sin 2π3=√34x (2-x )≤√34(x+2-x 2)2=√34(当且仅当x =2-x ,即x =1时取等号),故选B .(2)(√6−√2,√6+√2) 如图D 4-4-1,作△PBC ,使∠B =∠C =75°,BC =2,作直线AD 分别交线段PB ,PC 于A ,D 两点(不与端点重合),且使∠BAD =75°,则四边形ABCD 就是符合题意的四边形.过C 作AD 的平行线交PB 于点Q ,在△PBC 中,可求得BP =√6+√2,在△QBC 中,可求得BQ =√6−√2,所以AB 的取值范围是(√6−√2,√6+√2).图D 4-4-16.5π2+4 如图D 4-4-2,连接OA ,作AQ ⊥DE ,交ED 的延长线于Q ,AM ⊥EF 于M ,交DG 于E',交BH 于F',记过O 且垂直于DG 的直线与DG 的交点为P ,设OP =3m ,则DP =5m ,不难得出AQ =7,AM =7,于是AE'=5,E'G =5,∴∠AGE'=∠AHF'=π4,△AOH 为等腰直角三角形,又AF'=5-3m ,OF'=7-5m ,AF'=OF',∴5-3m =7-5m ,得m =1,∴AF'=5-3m =2,OF'=7-5m =2,∴OA =2√2,则阴影部分的面积S =135360×π×(2√2)2+12×2√2×2√2−π2=(5π2+4)(cm 2).。
高考真题——三角函数及解三角形真题(加答案)
全国卷历年高考三角函数及解三角形真题归类分析三角函数一、三角恒等变换(3题)1.(2015年1卷2)o o o o sin 20cos10cos160sin10- =( ) (A) (B(C )12- (D )12【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式.2.(2016年3卷)(5)若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式.3.(2016年2卷9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=(A )725(B )15(C )15-(D )725-【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .二、三角函数性质(5题)4.(2017年3卷6)设函数π()cos()3f x x =+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误,故选D.π5.(2017年2卷14)函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 .【解析】()22311cos 3cos cos 3cos 44f x x x x x =-+-=-++ 23cos 12x ⎛⎫=--+ ⎪ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,则[]cos 0,1x ∈,当3cos 2x =时,取得最大值1. 6.(2015年1卷8)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 考点:三角函数图像与性质7. (2015年2卷10)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x .将动点P 到A 、B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B .8.(2016年1卷12)已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5考点:三角函数的性质 三、三角函数图像变换(3题)9.(2016年2卷7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈【解析】平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B . 10.(2016年3卷14)函数sin 3cos y x x =-的图像可由函数sin 3cos y x x =+的图像至少向右平移_____________个单位长度得到.考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.11.(2017年1卷9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】:熟识两种常见的三角函数变换,先变周期和先变相位不一样。
2024年高考数学一轮复习课件(新高考版) 第4章 必刷小题8 解三角形
设△ABC的外接圆半径为R,因为O是△ABC的外心,故可得|AO|=R, 且A→B·A→O=12|A→B|2=12c2,A→C·A→O=12|A→C|2=12b2, 故||AACB||A→B·A→O+||AACB||A→C·A→O=2mA→O2, 即12|AB|·|AC|+12|AB|·|AC|=2mR2, 也即 bc=2mR2,则 m=2bRc2,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
所以 bc=b+c,即1b+1c=1, 所以 b+c=(b+c)1b+1c=2+bc+bc≥2+2 当且仅当b=c=2时,等号成立, 所以b+c的最小值为4,故D正确.
bc×bc=4,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A.40 m
√B.63 m C. 3 4 5 6 7 8 9 10 11 12 13 14 15 16
如图所示,∠DAC=45°,∠CBD=30°,∠ACB=30°, 设塔高CD为t,因为DC⊥平面ABC,所以DC⊥CA,DC⊥CB, 所以 AC=t,BC= 3t, 又AB2=AC2+BC2-2AC·BC·cos∠ACB, 即 632=t2+3t2-2× 3t×t× 23, 解得t=63 m.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
又 2sin B+sin C= 3, 2b+c2
由正弦定理可得 2b+c=2 3R,则 R2= 12 , 故 m=4b2+6cb2c+4bc=4cb+6bc+4≤2 4c6b·bc+4=34, 当且仅当4cb=bc,即 c=2b 时,m 取得最大值34, 故结合选项知 m 可取的值为34或35.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
第04讲 解三角形(八大题型)2024高考数学一轮复习+PPT(新教材)
sin
cos
(2)由题意可知cos =
= sinsin,所以sin( − )sin = sinsincos,
即sincossin − cossinsin = sinsincos,
2 + 2 −2
2
− ⋅
2 + 2 −2
【解析】 − cos < 0,
在三角形中sin > 0,
所以由正弦定理可得2sin − 2sincos < 0
所以cos < 0,
所以sin − sincos < 0,
所以为钝角,
所以sin( + ) − sincos < 0,
所以sincos + cossin − sincos < 0,
∴△ 为等腰三角形或直角三角形.
故选:D.
)
题型三:判断三角形的形状
【对点训练4】(2023·全国·高三专题练习)在△ 中,角,,的对边分别为,,,且 − cos < 0,则△
形状为(
)
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰直角三角形
【答案】C
所以sincos < 0,
2024
高考一轮复习讲练测
第04讲 解三角形
导师:稻壳儿
目录
C
O
N
T
E
01
考情分析
N
T
S
02
03
04
网络构建
知识梳理
题型归纳
真题感悟
01
考情分析
考点要求
考题统计
考情分析
(1)掌握正弦定理、余弦定
理及其变形.
解三角形高考大题,带答案
解三角形高考大题,带答案1. (宁夏17)(本小题满分12分)如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =∠,BD 交AC 于E ,2AB =.(Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE .解:(Ⅰ)因为9060150BCD =+=∠,CB AC CD ==,所以15CBE =∠.所以62cos cos(4530)4CBE +=-=∠. ················ 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理2sin(4515)sin(9015)AE=-+.故2sin 30cos15AE =122624⨯=+62=-. 12分2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。
(1)按下列要求写出函数关系式:①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式;(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。
【解析】:本小题考查函数的概念、解三角形、导数等基本知识,考查数学建模能力、抽象概括能力和解决实际问题的能力。
(1)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad ),则10cos cos AQ OA BAO θ==∠, 故10cos OB θ=又1010OP tan θ=-,所以10101010cos cos y OA OB OP tan θθθ=++=++- BACDEB C D A O P所求函数关系式为2010sin 10(0)cos 4y θπθθ-=+≤≤②若OP=x (km ),则OQ=10-x ,所以222(10)1020200OA OB x x x ==-+=-+所求函数关系式为2220200(010)y x x x x =+-+≤≤(2)选择函数模型①,2210cos cos (2010sin )(sin )10(2sin 1)'cos cos y θθθθθθθ-----== 令'0y =得1sin 2θ= 046ππθθ≤≤∴=当(0,)6πθ∈时'0y <,y 是θ的减函数;当(,)64ππθ∈时'0y >,y 是θ的增函数;所以当6πθ=时,min 120102101031032y -⨯=+=+ 此时点O 位于线段AB 的中垂线上,且距离AB 边1033km 处。
解三角形(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(原卷版)
考向22 解三角形【2022·全国·高考真题(理)】记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长.【2022·全国·高考真题】记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c+的最小值.解答三角高考题的策略:(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”. (2)寻找联系:运用相关公式,找出差异之间的内在联系. (3)合理转化:选择恰当的公式,促使差异的转化.两定理的形式、内容、证法及变形应用必须引起足够的重视,通过向量的数量积把三角形和三角函数联系起来,用向量方法证明两定理,突出了向量的工具性,是向量知识应用的实例.另外,利用正弦定理解三角形时可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角”定理及几何作图来帮助理解.1.方法技巧:解三角形多解情况在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 sin a b A =sin b A a b <<a b ≥a b >a b ≤解的个数一解两解一解一解无解2.在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有sin x 的齐次式,优先考虑正弦定理,“角化边”; (2)若式子含有,,a b c 的齐次式,优先考虑正弦定理,“边化角”; (3)若式子含有cos x 的齐次式,优先考虑余弦定理,“角化边”; (4)代数变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理使用;(6)同时出现两个自由角(或三个自由角)时,要用到A B C π++=.1.基本定理公式(1)正余弦定理:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理公式==2sin sin sinCa b c R A B = 2222cos a b c bc A =+-;2222cosB b c a ac =+-; 2222cosC c a b ab =+-.常见变形(1)2sin a R A =,2sinB b R =,2sinC c R =;(2)sin 2a A R =,sinB 2b R =,sinC 2cR =;222cosA 2b c a bc +-=; 222cosB 2c a b ac +-=; 222cosC 2a b c ab+-=.111sin sin sin 222S ABC ab C bc A ac B ∆===1()42abc S ABC a b c r R ∆==++⋅(r 是三角形内切圆的半径,并可由此计算R ,r .) 2.相关应用 (1)正弦定理的应用①边化角,角化边::sin :sin :sin a b c A B C ⇔= ②大边对大角大角对大边sin sin cos cos a b A B A B A B >⇔>⇔>⇔<③合分比:b 2sin sin sin sin sin sin sin sin sin sin sin B sin a bc a b b c a c a cR A B C A B B C A C A C+++++=======+++++(2)ABC △内角和定理:A B C π++=①sin sin()sin cos cos sin C A B A B A B =+=+cos cos c a B b A ⇔=+ 同理有:cos cos a b C c B =+,cos cos b c A a C =+. ②cos cos()cos cos sinAsinB C A B A B -=+=-; ③斜三角形中,tan tan tan tan()1tan tan A BC A B A B+-=+=-⋅tan tan tanC tan tan tanC A B A B ⇔++=⋅⋅④sin()cos 22A B C +=;cos()sin 22A B C+= ⑤在ABC ∆中,内角A B C ,,成等差数列2,33B AC ππ⇔=+=. 3.实际应用 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). (3)方向角:相对于某一正方向的水平角.①北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③). ②北偏西α,即由指北方向逆时针旋转α到达目标方向. ③南偏西等其他方向角类似.(4)坡角与坡度①坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).②坡度:坡面的铅直高度与水平长度之比(如图④,i 为坡度).坡度又称为坡比.1.(2022·青海·模拟预测(理))在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a b kab +=,则△ABC 的面积为22c 时,k 的最大值是( )A .2B .5C .4D .252.(2022·全国·高三专题练习)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+,若2sin sin sin B C A =,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形3.(2022·青海·海东市第一中学模拟预测(理))在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知2a =,222sin 3sin 2sin A B a C +=,则cos C 的最小值为______.4.(2022·上海·位育中学模拟预测)如图所示,在一条海防警戒线上的点、、A B C 处各有一个水声监测点,B C 、两点到点A 的距离分别为 20 千米和 50 千米.某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A C 、同时接收到该声波信号,已知声波在水中的传播速度是 1.5 千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B C 、到P 的距离,并求x 的值; (2)求静止目标P 到海防警戒线AC 的距离.(结果精确到 0.01 千米).5.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2cos tan sin C AB C-=,a b <. (1)求角B ;(2)若3a =,7b =,D 为AC 边的中点,求BCD △的面积.6.(2022·河南省杞县高中模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2cos cos cos a A b C c B =+. (1)求角A 的大小;(2)若23a =,6b c +=,求ABC 的面积.7.(2022·全国·高三专题练习)在ABC 中,内角,,A B C 对应的边分别为,,a b c ,6AB AC ⋅=,向量()cos ,sin s A A =与向量()4,3t =-互相垂直. (1)求ABC 的面积; (2)若7b c +=,求a 的值.1.(2022·全国·高三专题练习)已知在ABC 中,30,2,1B a b ===,则A 等于( )A .45B .135C .45或135D .1202.(2022·河南·南阳中学模拟预测(文))ABC 中,若5,6AB AC BC ===,点E 满足21155CE CA CB =+,直线CE 与直线AB 相交于点D ,则CD 的长( ) A 810B 15C 10D 303.(2022·全国·高三专题练习)在ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,若2222a b c bc -=且cos sin =b C a B ,则ABC 是( )A .等腰直角三角形B .等边三角形C .等腰三角形D .直角三角形4.(2022·四川省宜宾市第四中学校模拟预测(文))如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C 处,观测B 在C 处的正北方向,A 在C 处的北偏西60°方向,则A ,B 两处岛屿间的距离为 ( )A .6B .406C .20(13)+海里D .40海里5.(多选题)(2022·福建·福州三中高三阶段练习)ABC 中,角,,A B C 的对边分别为,,a b c ,且2,sin 2sin a B C ==,以下四个命题中正确的是( ) A .满足条件的ABC 不可能是直角三角形B .ABC 面积的最大值为43C .M 是BC 中点,MA MB ⋅的最大值为3D .当2A C =时,ABC 236.(多选题)(2022·广东·华南师大附中三模)已知圆锥的顶点为P ,母线长为2,底面圆直径为3A ,B ,C 为底面圆周上的三个不同的动点,M 为母线PC 上一点,则下列说法正确的是( )A .当A ,B 为底面圆直径的两个端点时,120APB ∠=︒ B .△P AB 3C .当△P AB 面积最大值时,三棱锥C -P AB 62+D .当AB 为直径且C 为弧AB 的中点时,MA MB +157.(多选题)(2022·河北·沧县中学模拟预测)在ABC 中,三边长分别为a ,b ,c ,且2abc =,则下列结论正确的是( ) A .222<+a b ab B .22++>ab a b C .224++≥a b cD .22++≤a b c 8.(2022·青海·海东市第一中学模拟预测(文))在ABC 中,O 为其外心,220OA OB OC ++=,若2BC =,则OA =________.9.(2022·河北·高三期中)已知ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,2a b cp ++=,则ABC 的面积()()()S p p a p b p c =---,该公式称作海伦公式,最早由古希腊数学家阿基米德得出.若ABC 的周长为15,()()()sin sin :sin sin :sin sin 4:6:5A B B C C A +++=,则ABC 的面积为___________________.10.(2022·全国·高三专题练习(理))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2224a b c +=,则tan B 的最大值为______.11.(2022·辽宁·沈阳二中模拟预测)沈阳二中北校区坐落于风景优美的辉山景区,景区内的一泓碧水蜿蜒形成了一个“秀”字,故称“秀湖”.湖畔有秀湖阁()A 和临秀亭()B 两个标志性景点,如图.若为测量隔湖相望的A 、B 两地之间的距离,某同学任意选定了与A 、B 不共线的C 处,构成ABC ,以下是测量数据的不同方案: ①测量A ∠、AC 、BC ; ②测量A ∠、B 、BC ; ③测量C ∠、AC 、BC ; ④测量A ∠、C ∠、B .其中一定能唯一确定A 、B 两地之间的距离的所有方案的序号是_____________.12.(2022·青海·海东市第一中学模拟预测(理))如图,在平面四边形ABCD 中,已知BC =2,3cos 5BCD ∠=-.(1)若45CBD ∠=︒,求BD 的长; (2)若5cos ACD ∠=AB =4,求AC 的长.13.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)2223S a c b =+-. (1)求角B 的大小;(2)若22a b c =,求sin C .14.(2022·上海浦东新·二模)已知函数()()sin cos f x t x x t R =-∈ (1)若函数()f x 为偶函数,求实数t 的值;(2)当3t =时,在ABC 中(,,A B C 所对的边分别为a 、b 、c ),若()223f A c ==,,且ABC 的面积为23a 的值.15.(2022·全国·高三专题练习)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B =++.(1)若23C π=,求B ; (2)求222a b c+的最小值.16.(2022·青海·海东市第一中学模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,221cos 2a b bc ac B -+=.(1)求角A ;(2)若sin 3sin b A B =,求ABC 面积的最大值.17.(2022·上海金山·二模)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知2sin 30b A a -=,且B 为锐角.(1)求角B 的大小;(2)若333c a b =+,证明:ABC 是直角三角形.18.(2022·湖南·湘潭一中高三阶段练习)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(2)sin (2)sin 2sin a c A c a C b B -+-=. (1)求B ;(2)若ABC 为锐角三角形,且2c =,求ABC 周长的取值范围.19.(2022·上海黄浦·二模)某公园要建造如图所示的绿地OABC ,OA 、OC 为互相垂直的墙体,已有材料可建成的围栏AB 与BC 的总长度为12米,且BAO BCO ∠=∠.设BAO α∠=(02πα<<).(1)当4AB =,3πα=时,求AC 的长;(结果精确到0.1米)(2)当6AB =时,求OABC 面积S 的最大值及此时α的值.20.(2022·上海虹口·二模)如图,某公园拟划出形如平行四边形ABCD 的区域进行绿化,在此绿化区域中,分别以DCB ∠和DAB ∠为圆心角的两个扇形区域种植花卉,且这两个扇形的圆弧均与BD 相切.(1)若437AD =,337AB =,37BD =(长度单位:米),求种植花卉区域的面积; (2)若扇形的半径为10米,圆心角为135︒,则BDA ∠多大时,平行四边形绿地ABCD 占地面积最小?1.(2021·全国·高考真题(理))魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距2.(2021·全国·高考真题(文))在ABC 中,已知120B =︒,19AC 2AB =,则BC =( ) A .1B 2C 5D .33.(2021·浙江·高考真题)在ABC 中,60,2B AB ∠=︒=,M 是BC 的中点,3AM =则AC =___________,cos MAC ∠=___________.4.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2,3,2a b c ===,则该三角形的面积S =___________.5.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当AC AB取得最小值时,BD =________. 6.(2022·上海·高考真题)在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为________ 7.(2021·全国·高考真题(理))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,360B =︒,223a c ac +=,则b =________.8.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.9.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A B A B =++. (1)若23C π=,求B ; (2)求222a b c +的最小值.10.(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知345,cos 5a c C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积.11.(2022·北京·高考真题)在ABC 中,sin 23C C =.(1)求C ∠;(2)若6b =,且ABC 的面积为63ABC 的周长.12.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123313S S S B -+==. (1)求ABC 的面积;(2)若2sin sin A C =b .13.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ;(2)证明:2222a b c =+14.(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB =m ,15AD =m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20︒=,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少?(长度精确到0.1m ,面积精确到0.01m²)15.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 22A B C =2b =(I )求a 的值;(II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.16.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.17.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=. (1)求B ;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:2c b =;条件②:ABC 的周长为423+; 条件③:ABC 3318.(2021·全国·高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.。
高考理科数学一轮复习专题训练:解三角形(含详细答案解析)
第五单元 解三角形(基础篇)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在中,a 、b 、c 分别为A 、B 、C 的对边,且,,,则( )A .B .C .D .【答案】D 【解析】,,,由正弦定理sin sin a b A B =,可得sin 6sin12036sin sin45a B b A ⋅⨯︒===︒D .2.若△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若222a b c ab +-=,则C =( ) A .π6B .π3C .2π3D .5π6【答案】B【解析】角A ,B ,C 的对边分别为a ,b ,c ,故得到2221cos 222b ac ab C ab ab +-===, 故角π3C =,故答案为B .3.在ABC V 中,若7a =,3b =,8c =,则其面积等于( ) A .63 B .212C .28D .12【答案】A【解析】方法一:由余弦定理,得2222227381cos 22737a b c C ab +-+-===-⨯⨯, 所以243sin 1sin C A -,所以1143sin 736322S ab C ==⨯⨯=. 故选A .方法二:海伦-秦九韶公式()()()S p p a p b p c =---92a b cp ++==, 所以9(97)(93)(98)=63S =⨯-⨯-⨯-,故选A .4.在ABC V 中,a ,b ,c 分别是内角A ,B ,C 所对的边,若cos cos sin b C c B a A +=,则ABC V 的形状为( ) A .等腰三角形 B .直角三角形C .钝角三角形D .锐角三角形【答案】B【解析】因为cos cos sin b C c B a A +=,所以2sin cos sin cos sin B C C B A +=,所以()2sin sin B C A +=,即2sin sin A A =,因为()0,πA ∈,故sin 0A >,故sin 1A =,所以π2A =,ABC V 为直角三角形, 故选B .5.已知锐角三角形的三边长分别为1,2,a ,则a 的取值范围是( ) A.B .(3,5) C.)D.)【答案】A【解析】锐角三角形的三边长分别为1,2,a ,则保证2所对应的角和a 所对应的角均为锐角即可,即2222140214040a a aa a ⎧+->⎪⎪⎪+-⎪>⇒<<⎨⎪>⎪⎪⎪⎩A . 6.在ABC V 中,45B =︒,D 是BC边上一点,AD =4AC =,3DC =,则AB 的长为( ) A.2BC.D.【答案】D【解析】由题意,在△ADC 中,由余弦定理可得916131cos 2342C +-==⨯⨯,则sin C ,在ABC V 中,由正弦定理可得sin sin AB ACC B==,据此可得AB =D .7.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,m CD =,并在点C 测得塔顶A 的仰角为30︒,则塔高AB 为( )A .302mB .203mC .60 mD .20 m【答案】D【解析】15BCD ∠=︒Q ,45BDC ∠=︒,120CBD \??, 由正弦定理得302sin 45BC =,302sin 45203BC °\==, 3tan3020320AB BC 状=\=?,故选D .8.在ABC △中,1AB =,3AC =,2BC =,D 为ABC △所在平面内一点,且2BD AB AC =+u u u r u u u r u u u r,则ABC △的面积为( ) A .23 B .3C .3 D .33【答案】D【解析】由题可作如图所示的矩形,则易知π6BCA ∠=,则π3BCD ∠=,则3sin BCD ∠=, 所以113si 3n 23223BCD S BC DC BCD =⨯⨯⨯∠⨯⨯==⨯△,故选D .9.若满足sin cos cos A B Ca b c==,则ABC △为( ) A .等边三角形B .有一个内角为30︒的直角三角形C .等腰直角三角形D .有一个内角为30︒的等腰三角形【答案】C【解析】由正弦定理可知sin cos cos A B Ca b c==,又sin cos cos A B Ca b c==,所以cos sin B B =,cos sin C C =,有tan tan 1B C ==. 所以45B C ==︒.所以180454590A =︒-︒-︒=︒. 所以ABC △为等腰直角三角形.故选C .10.在ABC △中,已知a x =,2b =,60B =︒,如果ABC △有两组解,则x 的取值范围是( ) A .432,3⎛⎫ ⎪ ⎪⎝⎭B .432,3⎡⎤⎢⎥⎣⎦C .432,3⎡⎫⎪⎢⎪⎣⎭ D .432,3⎛⎤⎥ ⎥⎝⎦【答案】A【解析】由已知可得sin a B b a <<,则sin602x x ︒<<,解得4323x <<.故选A . 11.在ABC △中,3AC =,向量AB u u u r在AC u u u r 上的投影的数量为2-,3ABC S =△,则BC =( )A .5B .27C .29D .42【答案】C【解析】∵向量AB u u u r 在AC u u u r 上的投影的数量为2-,∴cos 2AB A =-u u u r.①∵3ABCS =△,∴13||||sin ||sin 322AB AC A AB A ==u u u r u u u r u u ur ,∴||sin 2AB A =u u u r .②由①②得tan 1A =-,∵A 为ABC △的内角,∴3π4A =,∴2223πsin 4AB ==u u u r . 在ABC △中,由余弦定理得 222223π22cos(22)322232942BC AB AC AB AC ⎛⎫=+-⋅⋅⋅=+-⨯⨯⨯-= ⎪ ⎪⎝⎭, ∴29BC =.故选C . 12.锐角中,角,,的对边分别为,,,且满足,函数()ππcos 22sin sin 344πf x x x x ⎛⎫⎛⎫⎛⎫=--+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则的取值范围是( )A .1,12⎛⎫⎪⎝⎭B .1,12⎛⎤ ⎥⎝⎦C .3,1⎛⎫ ⎪ ⎪⎝⎭D .13,2⎛⎫⎪ ⎪⎝⎭【答案】A 【解析】,,,,,,三角形为锐角三角形,,,,ππ02230π2202πB B B ⎧<<⎪⎪⎪∴<-<⎨⎪⎪<<⎪⎩,π,32πB ⎛⎫∴∈ ⎪⎝⎭,()ππcos 22sin sin 344πf x x x x ⎛⎫⎛⎫⎛⎫=--+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ππππcos 22sin cos cos 2sin 243π342x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--++=--+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭πsin 26x ⎛⎫=- ⎪⎝⎭,所以()sin 2π6f B B ⎛⎫=- ⎪⎝⎭,因为2π2π3B <<,6π5π226πB ∴<-<,所以()112f B <<.故选A .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.ABC △的内角A ,B ,C 的对边分别是a ,b ,c .已知60B =︒,3b =,6c =A =________. 【答案】75︒ 【解析】由正弦定理sin sin b c B C =,得sin 6sin 602sin c B C b ︒=== 又c b <,则C B <,45C ∴=︒,18075A B C ∴=︒--=︒, 本题正确结果75︒.14.已知ABC △的边a ,b ,c 的对角分别为A ,B ,C ,若a b >且sin cos A Ca b=,则角A 的大小为_____. 【答案】π2【解析】由正弦定理得sin cos 1sin sin A C A B ==,即cos sin C B =,cos 0C ∴>,π0,2C ⎛⎫∴∈ ⎪⎝⎭,又a b >,A B ∴>,π0,2B ⎛⎫∴∈ ⎪⎝⎭,由cos sin C B =,得πsin sin 2C B ⎛⎫-= ⎪⎝⎭,π2C B ∴-=,即2πB C +=,()ππ2A B C ∴=-+=,本题正确结果π2.15.如图,一栋建筑物AB 高()30103-m ,在该建筑物的正东方向有一个通信塔CD .在它们之间的地面M 点(B 、M 、D 三点共线)测得对楼顶A 、塔顶C 的仰角分别是15°和60°,在楼顶A 处测得对塔顶C 的仰角为30°,则通信塔CD 的高为______m .【答案】60【解析】由题意可知:45CAM ∠=︒,105AMC ∠=︒,由三角形内角和定理可知30ACM ∠=︒. 在ABM Rt △中,sin sin15AB ABAMB AM AM ∠=⇒=︒. 在ACM △中,由正弦定理可知:sin 45sin 45sin sin sin30sin15sin30AM CM AM AB CM ACM CAM ⋅︒⋅︒=⇒==∠∠︒︒⋅︒,在DCM Rt △中,sin 45sin sin60sin6060sin15sin30CD AB CMD CD CM CM ⋅︒∠=⇒=⋅︒=⋅︒=︒⋅︒. 16.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin (2)tan b C a b B =+,23c = 则ABC △面积的最大值为______. 【答案】3【解析】()()sin 2sin 2tan 2sin sin 2sin sin cos Bb C a b B B C A B B=+⇒=+⋅()2cos sin 2sin sin 2sin sin 2sin cos 2cos sin sin B C A B B C B B C B C B ⇒=+=++=++1cos 22π3C C ⇒==⇒-,由余弦定理可知222222cos 12c a b ab C a b ab =+-=++=, 222a b ab +≥Q ,1223ab ab ab ∴≥+=4ab ⇒≤,当且仅当a b =时取等号,max 113sin 43222S ab C ∴==⨯⨯=,本题正确结果3. 三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,3cos 5A =,π4B =,2b =,(1)求a 的值; (2)求sin C .【答案】(1)85a =;(2)7210.【解析】(1)因为3cos 5A =,π4B =,2b =,所以4sin 5A =,2sin 2B =,由正弦定理可得24sin sin 252a b a A B =⇒=,85a ∴=. (2)[]sin sin π()sin()sin cos cos sin C A B A B A B A B =-+=+=+ 423272525210=⋅+⋅=. 18.(12分)在中,分别是角,,的对边,且.(1)求的值; (2)若,且,求的面积.【答案】(1)52;(2)3257. 【解析】(1)由正弦定理及,有,所以,又因为,,所以,因为,所以2cos 3B =, 又,所以25sin 1cos 3B B =-=,sin 5tan cos 2B B B ==. (2)在中,由余弦定理可得2224323b ac ac =+-=,又,所以有2967c =,所以的面积为21965325sin sin 27S ac B c B ===⨯=. 19.(12分)如图:在平面四边形ABCD 中,已知πB D ∠+∠=,且7AD CD ==,5AB =,3BC =.(1)求D ∠;(2)求四边形ABCD 的面积.【答案】(1)π3D =;(2) 【解析】(1)在ACD △中,由余弦定理得222222cos 77277cos AC AD CD AD CD D D =+-⨯⋅=+-⨯⨯9898cos D =-.在ABC △中,由余弦定理得:222222cos 53253cos AC AB BC AB BC B B =+-⨯⋅=+-⨯⨯=3430cos B -. ∴9898cos 3430cos D B -=-,∵πB D +=,∴cos cos(π)cos B D D =-=-, ∴9898cos 3430cos D D -=+,∴1cos 2D =,∴π3D =. (2)由(1)得2ππ3π3B =-=, ∴11sin sin 22ABCD ACD ABCS S S AD CD D AB BC B =+=⋅+⋅11775322=⨯⨯+⨯⨯=20.(12分)已知向量()sin ,cos x x =a ,),cosx x =b ,()f x =⋅a b .(1)求函数()f x =⋅a b 的最小正周期;(2)在ABC △中,BC sin 3sin B C =,若()1f A =,求ABC △的周长.【答案】(1)π;(2)4+【解析】(1)()211cos cos cos222f x x x x x x =+=++, ()1sin 262πf x x ⎛⎫=++ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==. (2)由题意可得1sin 22π6A ⎛⎫+= ⎪⎝⎭,又0πA <<,所以ππ13π2666A <+<,所以π5π266A +=,故π3A =. 设角A ,B ,C 的对边分别为a ,b ,c ,则2222cos a b c bc A =+-, 所以2227a b c bc =+-=,又sin 3sin B C =,所以3b c =,故222793c c c =+-,解得1c =. 所以3b =,ABC △的周长为47+.21.(12分)如图,在等腰梯形ABCD 中,AB CD ∥,2(62)CD =+,22BC =,BF BC <,梯形ABCD 的高为31+,E 是CD 的中点,分别以C ,D 为圆心,CE ,DE 为半径作两条圆弧,交AB 于F ,G 两点.(1)求∠BFC 的度数;(2)设图中阴影部分为区域Ω,求区域Ω的面积. 【答案】(1)45BFC ∠=︒;(2)2(31)S Ω=. 【解析】(1)设梯形ABCD 的高为h , 因为3162sin 22h BCD BC ++∠===,180BCD CBF ∠+∠=︒, 所以()62sin sin 180sin CBF BCD BCD +∠=︒-∠=∠= 在CBF △中,由正弦定理,得sin sin CF BCCBF BFC =∠∠622262++ 解得2sin BFC ∠=又()0,180BFC ∠∈︒︒,且CF BC >,所以45BFC ∠=︒.(2)由(1)得45ECF BFC ∠=∠=︒.在BCF △中,由余弦定理推论,得222cos 2BF FC BC BFC BF FC +-∠=⨯,即22(31)430BF BF -+,解得2BF =,23BF =(舍去). 因为112sin 2(62)3122CBF DAG S S BF FC BFC ==⨯⨯∠=⨯⨯=△△, 所以2(31)CBF DAG S S S Ω=+=△△.22.(12分)如图,在平面四边形中,14AB =,3cos 5A =,5cos 13ABD ∠=.(1)求对角线BD 的长;(2)若四边形ABCD 是圆的内接四边形,求BCD △面积的最大值. 【答案】(1)13BD =;(2)1698. 【解析】(1)在ABD △中,56sin sin(π())sin()sin cos cos sin 65ADB A ABD A ABD A ABD A ABD ∠=-+∠=+∠=∠+∠=, 由正弦定理得sin sin BD AB A ADB =∠,即sin 13sin AB ABD ADB⋅==∠. (2)由已知得,πC A =-,所以3cos 5C =-,在BCD △中,由余弦定理可得2222cos 169BC DC BC DC C BD +-⋅⋅==,则2261616955BC DC BC DC BC DC =++⋅⋅≥⋅⋅,即516916BC DC ⋅≤⨯,所以1154169sin 169221658BCD S BC CD C ⎛⎫=⋅⋅⋅≤⨯⨯⨯= ⎪⎝⎭△,当且仅当135BC DC ==第五单元 解三角形(提高篇)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在ABC △中,若2BC =,2AC =,45B =︒,则角A 等于( ) A .30︒ B .60︒C .120︒D .150︒【答案】A【解析】由正弦定理可得sin sin BC AC A B ==1sin 2A =, 因BC AC <,所以45AB <=︒,故A 为锐角,所以30A =︒,故选A .2.若△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a =2,b =3,c =4,则cos C =( ) A .14-B .14 C .23-D .23【答案】A【解析】a =2,b =3,c =4,根据余弦定理得到22294161cos 2124b ac C ab +-+-===-, 故答案为A .3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =,4b =,120A =︒, 则△ABC 的面积为( )A .2BC .4D .【答案】D【解析】因为a =,4b =,120A =︒,所以由余弦定理2222cos a b c bc A =+-,可得2c =,所以△ABC 的面积为1sin 2bc A =.故选D .4.△ABC 中,60B =︒,2b ac =,则△ABC 一定是( ) A .锐角三角形 B .钝角三角形C .等腰三角形D .等边三角形【答案】D【解析】△ABC 中,60B =︒,2b ac =,()2222221cos 20022a cb B ac ac a c ac +-==⇒+-=⇒-=,故得到a c =,故得到角A 等于角C ,三角形为等边三角形.故答案为D .5.钝角△ABC 中,若1a =,2b =,则最大边c 的取值范围是( )A .)B .()2,3C .)D .【答案】A【解析】因为钝角△ABC ,所以222cos 02a b c C ab +-=<,2140c \+-<,c >,又因为3c a b <+=,3c <<,故选A .6.如图,在△ABC 中,45B =︒,D 是BC 边上一点,AD =6AC =,4DC =,则AB 的长为( )A.2 B .36 C .33 D .32【答案】B【解析】由余弦定理可得22246(27)1cos 2C +-==,60C \=?,sin sin AB AC C BQ =,得到36sin 236sin 2C AC AB B ××===,故选B . 7.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75︒,30︒,此时气球的高度是60m ,则河流的宽度是( )A .()24031m B .()18021m C .()3031mD .)12031m【答案】D【解析】由题意可知:105ABC ∠=︒,45BAC ∠=︒,),2(m A ,6060120sin sin30AC C ∴===︒,由正弦定理sin sin BC ACBAC ABC =∠∠,得()sin 120sin 4560212031sin sin105AC BAC BC ABC ∠︒===∠︒,即河流的宽度)12031m ,本题正确选项D .8.已知ABC △的面积为3AC ⋅u ur u u u r ,则角A 的大小为( ) A .60︒ B .120︒ C .30︒ D .150︒【答案】D【解析】cos AB AC c b A ⋅=⋅u u u r u u u r Q ,又ABC △的面积为3AC ⋅u ur u u u r ,13sin cos 2S bc A b c A ∴==⋅,则3tan A =,又(0,π)A ∈,150A ∴=︒,故选D .9.我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”,设ABC △的三个内角,,A B C所对的边分别为,,a b c ,面积为S ,则“三斜求积”公式为S =若2sin 2sin a C A =,22()6a c b +=+,则用“三斜求积”公式求得ABC △的面积为( )A B C .12D .1【答案】A【解析】2sin 2sin a C A =Q ,22a c a ∴=,2ac =,因为22()6a c b +=+,所以22226a c ac b ++=+,22262642a c b ac +-=-=-=,从而ABC △=,故选A .10.已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,AD 为角A 的角平分线,交BC 于D ,π4B =,AD =2BD =,则b =( )A .BC .3D 【答案】A【解析】因为AD =2BD =,π4B =,由正弦定理得sin sin AD BDB BAD=∠,2sin sin 4BAD =∠,解得1sin 2BAD ∠=, 又由π0,2BAD ⎛⎫∠∈ ⎪⎝⎭,所以π6BAD ∠=,则π3BAC ∠=,所以ππ5ππ3412C =--=,又因为5π12ADC B BAD ∠=+∠=,所以ADC △为等腰三角形,所以b AD ==,故选A . 11.已知在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,60A ∠=︒,2a =,则ABC △周长的取值范围是( )A .(0,6)B .(2⎤⎦C .(4,6]D .2⎡⎤⎣⎦【答案】C【解析】根据三角形正弦定理得到sin sin sin a b c A B C ===变形得到sin ,sin ,2sin sin 3333b Bc C l B C ===++,因为2π3B C +=, 2π2sin sin π223sin 2cos 24sin 3633l B B B B B ⎛⎫⎛⎫∴=++-=++=++ ⎪ ⎪⎝⎭⎝⎭, 2ππ5ππ10,π,,sin ,1366662B B B ⎛⎫⎛⎫⎛⎫⎛⎤∈+∈∴+∈ ⎪ ⎪ ⎪ ⎥⎝⎭⎝⎭⎝⎭⎝⎦,(]4,6l ∴∈,故答案为C .12.在平面四边形ABCD 中,75A B C ∠=∠=∠=︒,2BC =,则AB 的取值范围是( ) A .()2,6B .()22,62++C .()2,62+D .()62,62-+【答案】D 【解析】由题意,平面四边形ABCD 中,延长BA 、CD 交于点E , ∵∠B =∠C =75°,∴△EBC 为等腰三角形,∠E =30°, 若点A 与点E 重合或在点E 右方,则不存在四边形ABCD , 当点A 与点E 重合时,根据正弦定理sin sin AB BCECB BEC=∠∠,算得62AB =,∴62AB <,若点D 与点C 重合或在点C 下方,则不存在四边形ABCD , 当点D 与点C 重合时∠ACB =30°, 根据正弦定理sin sin AB BCACB BAC=∠∠,算得62AB =,∴62AB >,综上所述,AB 6262AB <.故选D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,角C 等于60︒,若4,2a b ==,则c 的长为_______. 【答案】23【解析】因为角C 等于60︒,4,2a b ==,所以由余弦定理可得22212cos60164242122c a b ab =+-︒=+-⨯⨯⨯=, 所以23c =,故答案为23. 14.在ABC △中,π3A =,1b =,3a =,则ABC △的面积为______. 【答案】3 【解析】π3A =Q ,1b =,3a =, ∴由正弦定理可得31sin 3B =,解得1sin 2B =,b a <Q ,B A ∴<,π6B ∴=,可得ππ2C A B =--=, 11π3sin 31sin 222ABC S ab C ∴==⨯⨯⨯=△,本题正确结果3. 15.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径,两点间的距离,现在珊瑚群岛上取两点,,测得,,,,则,两点的距离为______.【答案】【解析】由已知,△ACD 中,∠ACD =15°,∠ADC =150°,∴∠DAC =15°, 由正弦定理得(80sin1504062sin1562AC ︒==︒-,△BCD 中,∠BDC =15°,∠BCD =135°,∴∠DBC =30°, 由正弦定理,sin sin CD BCCBD BDC=∠∠, 所以()sin 80sin15160sin1540621sin 2CD BDC BC CBD⋅∠⨯︒===︒=-∠,△ABC 中,由余弦定理,2222cos AB AC BC AC BC ACB +=∠-⋅⋅()()()()1160084316008432160062622=++-+⨯+⨯-⨯16001616004160020=⨯+⨯=⨯,解得805AB =, 则两目标A ,B 间的距离为,故答案为.16.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin cos cos sin sin sin ab Ca Bb A a A b Bc C+=+-,且3a b +=,则c 的取值范围为_______. 【答案】3,32⎡⎫⎪⎢⎣⎭【解析】因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以由正弦定理可得cos cos a B b A c +=, 又因为sin cos cos sin sin sin ab Ca Bb A a A b Bc C +=+-,所以由正弦定理可得222abcc a b c =+-,即222a b c ab +-=,所以2222()3c a b ab a b ab =+-=+-, 因为3a b +=,所以293c ab =-,因为2924a b ab +⎛⎫≤= ⎪⎝⎭, 当且仅当32a b ==时取等号,所以27304ab -≤-<,所以99394ab ≤-<,即2994c ≤<,所以332c ≤<,故c 的取值范围为3,32⎡⎫⎪⎢⎣⎭.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)在ABC V 中,45,10B AC ∠=︒=25cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长. 【答案】(1)32;(2)13.【解析】(1)(0,π)C ∈Q ,25sin 1cos C C ∴=-=, 310sin sin(π)sin cos cos sin A B C B C B C =--=⋅+⋅=, 由正弦定理可知中:sin 32sin sin sin BC AC AC ABC A B B⋅=⇒==. (2)由余弦定理可知: 22252cos 10182103225AB AC BC AC BC C =+-⋅⋅=+-⨯⨯⨯=,D 是AB 的中点, 故1BD =,在CBD △中,由余弦定理可知:2222cos 1812321132CD BC BD BC BD B =+-⋅⋅=+-⨯⨯⨯=. 18.(12分)已知ABC V 的内角,,A B C 的对边分别为,,a b c ,若2sin 2sin sin B A C =. (1)若2a b ==,求cos B ;(2)若90B ∠=︒且2a =,求ABC V 的面积. 【答案】(1)14;(2)2. 【解析】2sin 2sin sin B A C =Q ,由正弦定理可得22b ac =,(1)21a b c ==∴=Q ,,由余弦定理222cos 2a c b B ac +-=,可得1cos 4B =.(2)90B ∠=︒Q ,由勾股定理可得22222()02b a c ac a c a c =+=⇒-=⇒==,1122222ABC S ac ∴==⋅⋅=△.19.(12分)如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =,6BD =.(1)求sin ABD ∠的值;(2)若2CD =,且CD BC >,求BC 的长. 【答案】(1)6;(2)1BC =. 【解析】(1)在ABD △中,由正弦定理,得sin sin AD BDABD A=∠∠.因为60,3,6A AD BD ∠=︒==,所以36sin sin sin 606AD ABD A BD ∠=⨯∠=⨯︒=. (2)由(1)可知,6sin ABD ∠=, 因为90ABC ∠=︒,所以()6cos cos 90sin CBD ABD ABD ∠=︒-∠=∠=. 在BCD △中,由余弦定理得2222cos CD BC BD BC BD CBD =+-⋅∠. 因为2,6CD BD ==,所以264626BC BC =+-⨯⨯, 即2320BC BC -+=,解得1BC =或2BC =. 又CD BC >,则1BC =.20.(12分)已知a ,b ,c 分别是ABC V 内角A ,B ,C 的对边.角A ,B ,C 成等差数列,sin A ,sin B ,sin C 成等比数列.(1)求sin sin A C 的值;(2)若2a =,求ABC V 的周长. 【答案】(1)3sin sin 4A C?;(2)ABC V 的周长为32. 【解析】(1)角A ,B ,C 成等差数列,2B A C ∴=+,即60B =︒,sin ,sin sin A B C Q ,成等比数列,2233sin sin sin 4A CB 骣琪\?==琪桫. (2)由(1)可知2sin sin sin A C B ?,即2ac b =, 由余弦定理可得2222cos60b a c ac =+-?, 化简得2()0a c -=,即2a c ==,2b ac ==, 32a b c \++=,因此ABC V 的周长为32.21.(12分)某市欲建一个圆形公园,规划设立,,,四个出入口(在圆周上),并以直路顺次连通,其中,,的位置已确定,,(单位:百米),记,且已知圆的内接四边形对角互补,如图所示.请你为规划部门解决以下问题:(1)如果,求四边形的区域面积;(2)如果圆形公园的面积为28π3万平方米,求的值.【答案】(1);(2)12或17. 【解析】(1)∵πcos cos ADC ABC ADC θ∠+∠=∠=-,, 在和中分别使用余弦定理得:,得1cos 7θ=, ∴43sin sin 7ADC θ∠==, ∴四边形的面积()1sin 2ABC ADC S S S BA BC DA DC θ=+=⋅+⋅△△ ()14326448327=⨯+⨯⨯=. (2)∵圆形广场的面积为28π3,∴圆形广场的半径2213R =,在中由正弦定理知:4212sin sin 3AC R θθ==, 在中由余弦定理知:,∴2421sin 4024cos θθ⎛⎫=- ⎪ ⎪⎝⎭,化简得,解得1cos 2θ=或1cos 7θ=. 22.(12分)已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,π02B <<,3b ,22ac +-1sin sin tan 12A CB =. (1)求内角B 的大小;(2)求(2)(2)a c b a c b +++-的最大值.【答案】(1)π6B =(2【解析】(1)b =Q 221sin sin tan 12a c A C B +-=,222sin sin tan a c A C B b ∴+-=,即222sin sin tan a c b A C B +-=,由余弦定理得2cos sin sin tan ac B A C B =,2tan sin sin cos ac B A C B∴=,由正弦定理得222tan cos sin b BBB =,即222cos sin tan b B B B =,231cos sin 6B B ∴=,231sin 6sin B B ∴-=,即326sin sin 10B B +-=, 变形得2(2sin 1)(3sin 2sin 1)0B B B -++=,解得1sin 2B =, π02B <<Q ,∴π6B =.(2)b =Q π6B =,∴由余弦定理得22π12cos 612a c ac +-=,化简得22112a c +=,21()(212a c ac ∴+-+=,2()4a c ac +≤Q ,(2ac ∴-≥,2()(2a c ac ∴+-,112≤,2()a c ∴+,22(2)(2)()4a c b a c b a c b ∴+++-=+-≤a c =时等号成立,∴(2)(2)a c b a c b +++-。
高三一轮复习解三角形近几年高考题
解三角形相关公式 (1)内角和:A B C π++=;(2)正弦定理:R Cc B b A a 2sin sin sin ===(边角相对用正弦) 常用推论:⎪⎩⎪⎨⎧===C R C B R b A R a sin 2sin 2sin 2(3)余弦定理:⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222(两边夹角用余弦) (4)三边求角:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 22222222(已知三边求角) (5)面积公式:B ac A bc C ab sin 21sin 21sin 21S ABC ===∆ 练习题:1.在ABC ∆中,已知下列条件,解三角形(1)45,30,10A C c ︒︒===,求a 及ABC S ;(2)6,4,60b c A ︒===,求ABC S 及a2.在△ABC 中,角A 、B 、C的对边分别为,,,,1,3a b c A a b π===则c =(). A ..3—1D.33.ABC ∆中,3A π∠=,3BC =,AB =C ∠= A .6π B .4π C .34π D .4π或34π 4.在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于() 12π6π4π3π在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B A b +=且a b >,则B ∠=() 6π3π23π56π已知:在⊿ABC 中,BC b c cos cos =,则此三角形为() A.直角三角形B.等腰直角三角形C.等腰三角形D.等腰或直角三角形7.在ABC ∆中,已知3AC =,sin cos 2A A +=.(Ⅰ)求sin A 的值;(Ⅱ)若ABC ∆的面积3S =,求BC 的值. 8.设△ABC 的内角,,A B C 所对的边分别为,,a b c ,且6a c +=,2b =,7cos 9B =. (Ⅰ)求,a c 的值;(Ⅱ)求sin()A B -的值. 9.△ABC 在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (Ⅰ)求B ;(Ⅱ)若2b =,求△ABC 面积的最大值.北京高考题2013年15.在ABC △中,3a =,26b =,2B A ∠=∠.(Ⅰ)求cos A 的值;(Ⅱ)求c 的值.2014年15.如图,在△ABC 中,∠B =3π,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17 (1)求sin ∠BAD(2)求BD ,AC 的长2016年15.在△ABC 中,a 2+c 2=b 2+ac . (Ⅰ)求∠B 的大小;(Ⅱ)求cosA+cosC 的最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三一轮复习解三角形
近几年高考题
Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#
解
三角形
相关公式 (1)内角和:A B C π++=;
(2)正弦定理:R C
c B b A a 2sin sin sin ===(边角相对用正弦) 常用推论:⎪⎩
⎪⎨⎧===C R C B R b A R a sin 2sin 2sin 2
(3)余弦定理:⎪⎩
⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222(两边夹角用余弦)
(4)三边求角:⎪⎪⎪⎩
⎪⎪⎪⎨⎧-+-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2
222
222
2(已知三边求角) (5)面积公式:B ac A bc C ab sin 2
1sin 21sin 21S ABC ===∆ 练习题:
1.在ABC ∆中,已知下列条件,解三角形
(1)45,30,10A C c ︒︒===,求a 及ABC S ;(2)6,4,60b c A ︒===,求ABC S 及a
2.在△ABC 中,角A 、B 、C
的对边分别为,,,,1,3a b c A a b π=
==则c =(). A ..3—1D.3
3.ABC ∆中,3A π∠=
,3BC =
,AB =C ∠= A .6π B .4π C .34π D .4
π或34π 4.在锐角中ABC ∆,角,A B 所对的边长分别为,a b .
若2sin ,a B A =
则角等于() 12π6π4π3π在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B A b +=且a b >,则B ∠=() 6π3π23π56π已知:在⊿ABC 中,B
C b c cos cos =,则此三角形为() A.直角三角形B.等腰直角三角形C.等腰三角形D.等腰或直角三角形
7.在ABC ∆中,已知3AC =,sin cos 2A A +=.
(Ⅰ)求sin A 的值;
(Ⅱ)若ABC ∆的面积3S =,求BC 的值. 8.设△ABC 的内角,,A B C 所对的边分别为,,a b c ,且6a c +=,2b =,7cos 9B =. (Ⅰ)求,a c 的值;(Ⅱ)求sin()A B -的值. 9.△ABC 在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (Ⅰ)求B ;(Ⅱ)若2b =,求△ABC 面积的最大值.
北京高考题
2013年
15.在ABC △中,3a =,26b =,2B A ∠=∠.
(Ⅰ)求cos A 的值;
(Ⅱ)求c 的值.
2014年
15.如图,在△ABC 中,∠B =
3
π,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17 (1)求sin ∠BAD
(2)求BD ,AC 的长
2016年
15.在△ABC 中,a 2+c 2=b 2+ac .
(Ⅰ)求∠B 的大小;
(Ⅱ)求cosA+cosC 的最大值.。