空调管道水力平衡计算表2#立管
空调末端主动变流量的水力平衡分析
空调末端主动变流量的水力平衡分析一、热源主动变流量崩解与末端主动变流量供热与空调系统水力作为热媒介质,其流量的变化是因应负荷网络流量的变化。
一般的说如果负荷的变化是随时一致等比的,转折流量的变化应随时一致等比。
为节约循环泵电耗而采取热源主动变流量措施:多泵、少泵、大泵的配置变化、变速措施等。
但其变或为随室外温度参数连续变化流量按日期争阶段改变流量。
另一种变流量工况是今天主要讨论操作温度的问题。
当前端负荷不成比例、随机变化,这时系统应该采用末端只要的流量调控措施。
居住者对参数的要求通过控制手段(供热的温控阀、手控阀,空调的室内参数控制的电动变量调节阀)产生流量要求,末端流量需求的总和形成热源流量。
这种变流量工况即为这种一端主变流量。
末端主动流量在技术上有如下层次概念:1、流量变化取决于后端需求,热源循环泵控制设施不能预测流量的变化,但能感知数据量的变化。
2、某一时三段末端负荷不发生明显变化,这一时段内循环的变速措施为定流量一时间变扬程。
即每一瞬时流量可能是变化的,但这种转折决定一致同意于末端要求。
循环泵变速措施是在末端决定的流量基础上,在最小可行的扬程点动行实现节能的目的。
二、末端主动变流量的工程意义供热工程在过去按建筑面积收取热费时,热用户没有主动改变负荷和流量负载的需求,有些大型供热为实现节能目的采取热源的流量调控措施,具有典型的热源主动数据量特征。
在计热量收费的情况下,水系统崩坏具备了末端主动变流量特征。
而对计量收费提高供热品质,节能运行的论说很多,达里不再赘述。
而对于计量收费时,最大热负荷绝不同时发生,如果采取了有效流量的末端主动变流量措施可以有效地调度流量需求,进一步提高热源的供热能力。
这也是计量收费对供热企业的最大利益所在。
空调工程中每一空间的冷负荷不可能的一致等比的。
但空调末端的输出负荷更大的取决于风量。
而不是水量有很多要求不高可调的一程以风量调节冷负荷,热源采取单泵,多泵运行,冬夏两套循环泵等热源主动变流量措施。
丹佛斯Danfoss静态平衡阀MSV-F2参数表-水力平衡
参数表静态平衡阀MSV-F2, PN 16/25, DN 15 - 400描述MSV-F2 为静态平衡阀。
它用在供热和制冷定流量水系统中平衡流量。
这种阀门标配阀位指示和行程限制。
阀杆罩与行程限制集成为一体。
阀门设定值可被锁定。
在测量仪器PFM3000/4000中建有该阀门流量特性数据。
阀门不含石棉。
具有关断功能主要数据:• DN 15- 400• PN 16: - 水流温度: –10 °C … 130 °C • PN 25:- 水流温度: –10 °C … 150 °C• 阀门可安装与供水管或回水管上。
MSV-F2 DN 15-150应用MSV-F2 DN 200-400在定流量系统中,MSV 阀门可保持恒定的压降。
根据预设定值,阀门可设定多种压降。
订货附件型号产品编号Rectus型快速测量接头003Z0108针式测量接头,2 件003Z0104加长型针式测量接头45 mm,2 件003Z0103针式测量接头连接件,2 件003Z0107 PFM4000测量仪器参见相关参数表型号产品编号手轮DN 15- 50003Z0179DN 65- 150003Z0180DN 200003Z0181DN 250- 300003Z0182DN 350- 400003Z0183MSV-F2 阀门 - PN 16公称直径DN 1520253240506580100125150200250300350400k vs (m 3/h ) 3.16.39.015.532.353.893.4122.3200.0304.4400.8685.6952.31380.22046.12584.6公称压力(Bar)16最大压降(Bar)1.5泄漏率 A 级:依照 ISO5208,表 5(无可见渗漏)流体介质水以及水与辅助冷却剂(如乙二醇)的混合物* ,用于闭式供暖和制冷系统流体最高温度(°C) 130连接符合 EN 1092-2 标准的法兰重量(闭式) 2.32.93.85.67.29.41721324356231354497747890阀体材料铸铁 EN-GJL 250 (GG 25)阀座密封EPDM圆锥材料CW602NCuSn5Zn5Pb5铸造不锈钢* 请向供应商确认材料与辅助冷却剂的相容性。
供水平衡计算
烧结供水水量平衡核算
水泵供水能力(m3/h)
最大管径(mm)
允许最大流量 (m3/h)
备注
550
300
486
150
200
216
300
486
90
150
121.水量平衡核算
用水地点
供水管径
最大供水量
主抽风机电机冷却水
200
216
主抽风机油冷却器冷却水
单辊破碎机冷却水
预热点火炉冷却水
200
烧结机隔热板用水
循环水
环冷鼓风机冷却水 除尘风机轴承冷却水
配料除尘
25
成品仓除尘
25
筛分除尘
25
机尾除尘
25
混合机喷射润滑站冷却水
生石灰消化用水
100
热水管道
一混加水用量
80
二混加水量
80
216
3.375 3.375 3.375 3.375
54 34.56 34.56
最大用水量
180 30 30 8 24 100
15
12
399
10.3
13
0
除尘用水及生活用水
配料除尘
25
3.375
成品仓除尘
50
13.5
3
生产用水
5
机头电除尘
筛分除尘
机尾除尘
关于空调系统水力平衡与系统节能的分析
关于空调系统水力平衡与系统节能的分析摘要:本文主要介绍了水力平衡在空调水系统运行中对节能的意义,并分析了水力失衡的原因及不同形式系统的水力失衡调节的方法。
关键词:水力失调;水力平衡;水泵能耗引言节约资源是我国的基本国策,我国建筑能耗占总能耗的30%左右,其中空调能耗约占建筑能耗的50~60%,在集中中央空调系统的耗能设备中,冷冻水泵与冷却水泵的能耗大约占25~30%。
长期以来,空调系统在实际运行中普遍存在水力失调问题,不仅影响室内环境的舒适性,而且也影响到系统的运行成本;同时,空调水系统的水力不平衡会造成空调系统水流量的分配失衡,导致有些回路流量过剩而另一些回路流量不足,从而出现空调区域冷热不均的现象,为了兼顾局部失衡区域的空调效果,空调主机、水泵不得不在大流量状态下工作,导致空调系统能耗增加。
因此,解决水力失衡问题是提高暖通空调系统舒适性和节能的关键。
1水力工况和水力工况平衡水力工况是指系统各点的压力,各管段的流量、压差。
由管段的流量与压差的关系公式△P=SQ2可知当管路阻抗一定时,流量和压差成正比,压差增大时,流量增大。
式中:P—压差或阻力损失;S管段或系统的阻力系数;Q—管段或系统的流量。
系统运行水力工况是水泵的特性曲线与管网特性曲线交点形成的。
而水泵的扬程都是根据最不利环路的阻力确定的,以保证最不利支路的作用压差满足设计要求。
对于管网特性曲线△P=SQ2,因并联的近端回路S值都会小于设计值,造成总S值远小于设计值。
见图1:设计管网特性曲线为S设计,设计工况点为A点,未经水力平衡的管网特性曲线为S运行,运行工况点为B点,水泵的实际工作点在管网特性曲线图上将落到B点,其直观表象就是:①循环水泵在小扬程大流量工况下运行,使水泵在大轴功率低效率点工作;②总循环水量的加大必然导致主机阻力加大;③流量加大后供回水温差变小;④近端支路作用压差大于用户需用压差必然导致近端支路流量过大。
图1管网特性曲线图水力工况平衡就是使流量合理分配,让各个回路的流量达到设计流量或实际需求流量。
风路系统水力计算
风路系统水力计算之邯郸勺丸创作1 水力计算方法简述目前,风管经常使用的的水力计算方法有压损平均法、假定流速法、静压复得法等几种。
1.压损平均法(又称等摩阻法)是以单位长度风管具有相等的管长度平均分配给每一管段,再根据每一管段的风量和分配到的作用压力,确定风管的尺寸,并结合各环路间压力损失的平衡进行调整,以包管各环路间的压力损失的差额小于设计规范的规定值。
这种方法对于系统所用的风机压头已定,或对分支管路进行压力损失平衡时,使用起来比较方便。
2.假定流速法是以风管内空气流速作为控制指标,这个空气流速应依照噪声控制、风管自己的强度,并考虑运行费用等因素来进行设定。
根据风管的风量和选定的流速,确定风管的断面尺寸,进而计算压力损失,再按各环路的压力损失进行调整,以达到平衡。
各并联环路压力损失的相对差额,不宜超出15%。
当通过调整管径仍无法达到要求时,应设置调节装置。
3.静压复得法(略,具体详见《实用供热空调设计手册》之11.6.3)对于低速机械送(排)风系统和空调风系统的水力计算,大多采取假定流速法和压损平均法;对于高速送风系统或变风量空调系统风管的水力计算宜采取静压复得法。
工程上为了计算方两项进行叠加时,可归纳为下表的3种方法。
2 通风、防排烟、空调系统风管内的空气流速2.1 通风与空调系统风管内的空气流速宜按表2-1采取风管内的空气流速(低速风管)表2-1注:1 表列值的分子为推荐流速,分母为最大流速。
2.2 有消声要求的通风与空调系统,其风管内的空气流速宜按表2-2选用风管内的空气流速(m/s)表2-2注:通风机与消声装置之间的风管,其风速可采取8~10m/s。
2.3 机械通风系统的进排风口风速宜按表2-3机械通风系统的进排风口空气流速(m/s)表2-32.4暖通空调部件的典型设计风速,按表2-4采取。
暖通空调部件的典型设计风速(m/s)表2-42.5送风口的出口风速,应根据建筑物的使用性质、对噪声的要求、送风口形式及装置高度和位置等确定,可参照表2-5及表2-6的数值。
风道、冷冻水管道水力计算方法
★风道水力计算方法1.假定流速法其特点是先按技术经济要求选定风管流速,然后再根据风道内的风量确定风管断面尺寸和系统阻力。
假定流速法的计算步骤和方法如下。
①绘制空调系统轴侧图,并对各段风道进行编号、标注长度和风量管段长度一般按两个管件的中心线长度计算,不扣除管件本身的长度。
②确定风道内的合理流速在输送空气量一定是情况下,增大流速可使风管断面积减小,制作风管缩消耗的材料、建设费用等降低,但同时也会增加空气流经风管的流动阻力和气流噪声,增大空调系统的运行费用;减小风速则可降低输送空气的动力消耗,节省空调系统的运行费用,降低气流噪声,但却增加风管制作的材料及建设费用。
因此必须根据风管系③根据各风道的风量和选择的流速确定各管段的断面尺寸,计算沿程阻力和局部阻力。
根据初选的流速确定断面尺寸时,应按前面图6—1(表)和表6—1的通风管道统一规格选取,然后按照实际流速计算沿程阻力和局部阻力。
注意阻力计算应选择最不利环路(即阻力最大的环路)进行。
假定风速法风道水力计算应将计算过程简要举例说明后,列表计算。
计算表格式见下表。
联管路之间的不平衡率应不超过15%。
若超出上述规定,则应采取下面几种方法使其阻力平衡。
a.在风量不变的情况下,调整支管管径。
由于受风管的经济流速范围的限制,该法只能在一定范围内进行调整,若仍不满足平衡要求,则应辅以阀门调节。
b.在支管断面尺寸不变情况下,适当调整支管风量。
风管的增加不是无条件的,受多种因素的制约,因此该法也只能在一定范围内进行调整。
此外,应注意道调整支管风量后,会引起干管风量、阻力发生变化,同时风机的风量、风压也会相应增加。
c.阀门调节通过改变阀门开度,调整管道阻力,理论上最为简单;但实际运行时,应进行调试,但调试工作复杂,否则难以达到预期的流量分配。
总之,两种方法(方法a和方法b)在设计阶段即可完成并联管段阻力平衡,但只能在一定范围内调整管路阻力,如不满足平衡要求,则需辅以阀门调节。
暖通水力计算
热网水力计算的一般要求1.计算热负荷时应按近期热负荷计算,并应考虑计入发展热负荷,对于分期建设设计热负荷,可以留有余地或考虑增设设计管网的可能性。
2.管网水力计算时,应绘管道平面图、简易计算系统图,在图中注明各热用户和管段的集合展开长度及计算温度、管道附件、补偿器、流量孔板、阀门等。
热水管网还应注明各管段的始、标高。
3.在进行热水水力计算时,应注意提高整个供热系统的水力稳定性,为防止水力失调可以采取如下措施:1)减小管网干管的压力损失,宜取较小的比压降,适当增大管径;2)增大热用户系统的压力损失,一般在热用户入口处安装手动调节阀或平衡阀、调压孔板,控制和调节入口压力;3)高温水采暖系统的热源内部压力损失,对管网的水力稳定性也有影响,一般在热源内部留有一定的富裕压头,在正常情况下,富裕压头消耗在循环泵的出口阀门上。
当管网流量发生变化引起热源出口放入压力变化时,可调整循环水泵出口阀门的开度,使出口压力保持稳定。
4)供热主管网的管径DN,不论热负荷多少,均不小于50mm,而通向单体建筑物(热用户)的管径一般不宜小于如下尺寸:蒸汽管网25 mm热水管网32 mm5)在供热管网计算中,有的点出现静压超过允许极限值时,一般从此点与其它系统分开,设置独立的供热系统。
6)热水采暖管网,宜采用双管闭式系统,其供回水应采取系统的管径。
主要设备选择1.热网循环水泵热网循环水泵应按供热系统的调节方式来选择(1)供热系统采用中央质调节热循环水泵的总流量按向热用户提供的热水总流量的110%选取,数量不少于两台。
热网循环水泵扬程H按下式计算:H=1.2(H1+ H2+ H3+ H4+ H5)式中H:热水循环水泵扬程,mH2O(10kpa);H1:热水通过供热站中锅炉或热网加热器的流动阻力,mH2O(10kpa);H2,H3:热水通过供、回水热网管道的流动阻力,mH2O(10kpa);H4:热水在热用户(或热力站)的压力损失,mH2O(10kpa);H5:热源系统内部其它损失(如过滤器,阀门等处),mH2O(10kpa);(2)供热系统采用中央质-量调节(连续变流量调节)热网循环水水泵的流量、台数、扬程可参照中央质调节的选择方法。
watts空调水系统全面水力平衡完美解决方案
静态水力平衡:通过在水系统管道中增设静态平衡阀 及对系统进行全面水力平衡调试,使在设计工况下,每个 末端设备流量均同时达到设计流量,实现静态水力平衡。
实现静态水力平衡的主要产品有:静态平衡阀
( 三 ) 三个测量标准的实现形式 实现静态水力平衡的系统也就达到了全面水力平衡的
2、电动控制阀两端的压差不能变化太大,以保证控制阀有 良好的控制特性。
3、一二次侧系统的流量相匹配,确保主机和末端获得设计 供回水温度。
实现动态水力平衡的主要产品有:动态流量平衡阀、 压差控制阀、电动平衡二通阀、动态平衡电动调节阀。
一二次侧水力互扰:当主机侧多台主机并联时,存在 多台主机不同组合条件下运行,这时各运行主机之间会存 在水力互扰;或者,在二次侧运行工况变化时,系统的阻 力特性会随之改变,从而引起输配侧不同支路之间的水力 互扰。对于二次泵变流量系统,还存在一二次侧流量不匹 配问题。
为实现室内设定温度,系统每天提前 1~2 小 时开机
每天比水力失调系统少运行 1 小时以上
按一天运行 8 小时计算,少运行 1 小时节省 运行能耗 12.5%!
系统阻力过大,水泵在高扬程下运行
系统可在最低阻力下运行,计算出多余扬程, 通过变频降低水泵能耗
通常可降低能耗
20%
!
部分负荷下,水力失调将更加严重,过流回 路加剧过流,造成能耗浪费
第一个测量标准:在设计工况下,所有末端设备都能同时 够达到设计流量。
实现动态水力平衡的系统也就达到了全面水力平衡的 第二个测量标准:电动控制阀两端的压差不能变化太大, 以保证控制阀有良好的控制特性。
当实现了前两个测量标准,同时在一二次侧界面处采 用了合适的旁通方式,通过全面水力平衡调试后,确保一 次侧流量大于等于二次侧的设计流量,那么空调系统就能 达到全面水力平衡的第三个测量标准:一二次侧系统的流 量相匹配。
空调水系统调试过程中水力平衡问题
空调水系统调试过程中水力平衡问题摘要:近年来我国大型公建迅猛发展,中央空调供热/制冷日益普及,然而空调系统运行中存在诸多问题,水力失调便是其中的突出问题,所以保证空调系统的水力平衡是其运行中的重要环节。
本文归纳了供热/供冷管网水力平衡失调的原因,并提出了调节水力平衡的几种方法一、供冷/热管网水里平衡失调的表现及原因(一)供冷/热管网水力平衡失调的表现在中央空调系统中,水里失衡的表现主要是:各环路的流量输配不均衡,致使各用户冷热输配不均,距循环泵近的房间供热时室温偏高,供冷时室温偏低,据循环泵较远的用户供热时室温偏低,供冷时室温偏高。
另外还产生一些其他问题,如系统在大流量小温差的工况下运行,冷/热源难以达到其额定出力,投入运行的设备超过实际负荷需要,水泵工作点偏离高效区,燃料和电能消耗过高,水里平衡失调已成为空调系统中普遍存在又难以根治的难题。
(二)中央空调水力平衡失调的原因1实际施工与设计存在偏差设计人员在进行设计时,已经进行了精确的管网水力平衡计算,选定了适当合理的管径,但施工人员在施工过程中未严格按图施工,造成实际施工情况和理论设计之间出现较大偏差2设计人员设计时存在设计不合理现象供热管网一般采用异程式枝状管网,在异程管网中各环路的路程不同,阻力不同,这种方式使得热水流经近端用户的路程短,而流经远端用户的路程长,使得近端用户作用压差大,而远端用户作用压差小,这种管网如果设计、调节不合理就会造成近端用户流量远超过设计流量,远端用户流量远小于设计流量,造成近热远冷的现象,二、供热管网水里平衡调解原理1. 水力工况的基本公式供热管网水力平衡调节就是通过调节管路的阻力使各用户的流量接近于设计流量,对于简单管路来说,压力降和阻力系数、流量之间有如下关系:ΔP=S×G2其中,ΔP为管段两端的压力降,G为流经该管段的流量,S为该管段的阻力系数,只与管段的材料,管径,内壁粗造度等有关可见,作用压力一定情况下管路阻力与流量的平方成反比,对于空调管网来说,各系统是并联的,存在如下流量分配关系阻力系数S大的支管其流量小,阻力S小的支管其流量大。
鸿业暖通-风管水力计算使用说明
鸿业暖通-风管水力计算使用说明目录目录目录 ..................................................................... ....................................................... 1 第 1 章1.11.21.3第 2 章2.12.22.32.4 风管水力计算使用说明 ..................................................................... ............... 2 功能简介 ..................................................................... ........................................... 2 使用说明 ..................................................................... ........................................... 3 注意 ..................................................................... ................................................... 8 分段静压复得法 ................................................................................................ 9 传统分段静压复得法的缺陷 ..................................................................... ........... 9 分段静压复得法的特点 ..................................................................... ................. 10 分段静压复得法程序计算步骤 ..................................................................... ..... 11 分段静压复得法程序计算例题 ..................................................................... .. (11)- 1 -鸿业暖通空调软件第 1 章风管水力计算使用说明1.1 功能简介命令名称: FGJS功能: 风管水力计算命令交互: 单击【单线风管】【水力计算】,弹出【风管水力计算】对话框,如图1-1所示:图1-1 风管水力计算对话框如果主管固定高度值大于0,程序会调整风系统中最长环路的管径的高度为设置值。
空调冷热水温度、水力计算和管路平衡
空调冷热水温度、水力计算和管路平衡舒适性空调的冷热媒参数的确定舒适型空调的冷热媒参数,应考虑对冷热源装置、末端设备、循环水泵功率的影响等因素的确定,并应保证技术可靠、经济合理:1、 空调冷水供回水温差不应小于5℃;冷水机组直接供冷系统的空调冷水供回水温度可按冷水机组空调额定工况取7/12℃;循环水泵功率较大的工程,宜适当降低供水温度,加大供回水温差,但应校核降低水温对冷水机组性能系数和制冷量的影响。
2、 采用蓄冷装置的供冷系统,空调冷水供水温度应根据采用的蓄冷介质和蓄冷、取冷方式等参考表5.8.1确定;当采用冰蓄冷装置能获得较低的供水温度时,应奖励加大供回水温差;3、 采用换热器加热空调热水时,其空调热水供水温度宜采用60~65℃,供回水温差不应小于10℃;4、 采用直燃式冷(温)水机组、空气源热泵、地源热泵等作为热源,供回水温度和温差应按设备要求确定;5、 当空调冷水或热水采用大温差时,应校核流量减少对采用定型盘管的末端设备(如风机盘管等)传热系数和传热量的影响,所用的风机盘管机组的性能应经过测试。
空调系统的水流量1、 计算管段的水量应按下式计算:tQ G ∆=163.1(5.8.2) 式中 G ——计算管段的水量(m 3/h);Q ——计算管段的空调符合(kW );t ∆——供回水温差(℃)。
2、 计算管段的水量可按所接空气处理机组和风机盘管的额定流量的叠加值进行简化计算,当其总水量达到与水泵流量相等时,干管水流量值不再增加。
空调冷水系统的阻力计算1、 管道每米长摩擦阻力可按下式计算:85.187.485.1105s j h i q d C H --=(5.8.3-1)式中i H ——计算管段的比摩阻(kPa/m );d ——管道计算内径(m );q ——设计秒流量(m 3/s );C ——海澄-威廉系数,钢管闭式系统取C=120,开式系统取C=100。
2、 比摩阻宜控制在100~300Pa/m ,不应大于400Pa/m ;且空调房间内空调管道流速不宜超过表5.8.3-1的限值。
暖通、空调水管管径水力计算
比摩阻 摩擦阻力 R H=R*L
闸阀
局部阻力名称及当量长度(L')
当量长 度和
局部阻 空调器 力 阻力
自控阀阻力
管段总阻力
弯头
直通三通 分合流三通 ∑L' Z=R*L' Z1
Z2
H+Z+Z1+Z2
Pa/m Pa 个数 当量 个数 当量 个数 当量 个数 当量 m
Pa Pa
Pa
Pa
185.2 1111.1 2 0.5 0 0.8 2 1.5 0 0.7 4 740.7 26000
环路阻力叠 加
不平衡率
Pa
%
27624.6
29443.2
31987.5
32737.7
36119.3
37993.7
40512.1
43275.4
46850.1
备注
供水温度: 7.0 ℃
环路编号
冷负荷 FC冷量 管段名
kw 称编号 Q
W
3.26 1
3260
3.26 2
6520
3.26 3
9780
22.4 4 32180
0
27851.8
53.0 477.431 2 0.5 0 1.2 2 2.4 0 1.1 5.8 307.7 0
0
785.1
112.4 438.383 2 0.5 0 1.2 2 2.4 0 1.1 5.8 652.0 0
0
1090.3
149.9 299.793 2 0.9 0 1.8 2 3.7 0 1.7 9.2 1379.0 0
1
0
3 2 6.4 0 2.7 14.8 2065.5 0
暖通空调水系统的水力平衡调节
暖通空调水系统的水力平衡调节暖通空调水系统的平衡调节在集中供热和中央空调的水系统运行中,水力失调是常见的问题。
水力系统的失调有两方面的含义。
一方面是指虽然经过详细的水力计算并达到规定要求,但在实际运行后,各用户的流量与设计要求不符,这种水力失调是稳定的、根本性的,称之为稳态失调。
另一方面是指系统运行中,当一些用户的水流量改变时,会使其它用户的流量随之变化,这涉及到水力稳定性的概念。
对其它用户影响小,则水力失调程度小,水力稳定性好,称之为动态(稳定性)失调。
管网水力失调的原因是多方面的,归纳起来主要有两种情况。
一种是管网中流体流动的动力源提供的能量与设计要求不符,例如泵的型号、规格的变化及其性能参数的差异、动力电源的波动、流体自由液面差的变化等,导致管网中压头和流量偏离设计值。
另一种是管网的流动阻力特性发生变化,例如在管路安装中管材实际粗糙度的差别、焊接光滑程度的差别、存留于管道中泥沙、焊渣多少的差别、管路走向改变而使管长度的变化、弯头、三通等局部阻力部件的增减等,均会导致管网实际阻抗与设计值偏离。
尤其是一些在管网设置的阀门,改变其开度即可能改变管网的阻力特性。
水力失调对管网系统运行会产生不利影响。
管网系统往往是多个循环环路并联在一起的管路系统。
各并联环路之间的水力工况相互影响,必然会引起其他环路的流量发生变化。
如果某一管段的阀门开大或关小,必然导致管路流量的重新分配,即引起了水力工况的改变。
当某些环路因发生水力失调而流量过小,如锅炉循环系统中水冷壁管路流量分配不均,使部分管束水流停滞则有可能发生爆管事故;在制冷机水循环系统中,蒸发器管束因此可能发生冻管事故。
在供热空调系统中流体流量的变化使其负担输配的冷热量改变,即其水力失调必然会导致热力失调。
在水力失调发生的同时,管网中的压力分布也发生了变化。
在一些特殊情况下,局部管路和设备内的压力超过一定的限值,则可能使之破坏。
为了解决水力失调问题,可以采用静态水力平衡阀、动态平衡阀、动态平衡电动调节阀等阀门进行平衡调节。
采暖管道水力计算(精)
K ——管壁的当量绝对粗糙度(m),室内闭式采暖热水管路K =0.2×103m ,室外供热管网
-
K =0.5×103m ;
v ——热媒在管内的流速,根据热量和供回水温差计算确定(m/s);
,根据供回水平均温度按按本院技术措施表A. 2.1取值。 γ——热媒的运动粘滞系数(m2/s)
λ={
d j ⎡
1.4 热水采暖的垂直双管系统各层支管之间重力水头H z
H z =
2
h (ρh −ρg g (Pa ) 3
式中 h ——计算环路散热器中心之间的高差 (m;
1.5 单管跨越式系统水温降
1.5.1 单管跨越式系统的散热器和跨越管流量分配
1 单管跨越式系统散热器支路和跨越管支路的流量通过以下2式求得:
=G
t si ——第i 组散热器的出水温度(℃); t i ——第i 组散热器与之后的管道温度(℃); t i-1——第i 组散热器之前的管道温度(℃)。 ∑Q, G,t 0
i-1
si
ki
si i h
1.6 散热器数量N
N =N ' ⋅β1⋅β2⋅β3=
Q
β1⋅β2⋅β3 (1.6) n
C ⋅Δt s
N ’——设计工况下散热器数量(长度或片数);
表7:适用于采用钢管的一般垂直单管系统;(包括立管及干管,计算至建筑热力入口与室外干线连接处。为提高计算速度,本表管道摩擦阻力系数λ采用阿里特苏里公式) 2.1.4 室外供热管道
表8:适用于采用钢管的室外供热管道。
2.2 双管系统
2.2.1 住宅等水平双管系统
1、 一般最远端散热器支路为该户最不利环路。
1.3.3 室外热水供热管网局部阻力按与沿程阻力的比值计算确定,见下表:
全面水力平衡暖通空调水力系统设计与应用手册
全面水力平衡暖通空调水力系统设计与应用手册一、引言暖通空调系统在建筑物中起着重要的作用,保障室内空气质量和舒适度。
而水力系统作为暖通空调系统的一个重要组成部分,对系统的稳定性、效率和节能性有着重要影响。
全面水力平衡暖通空调水力系统的设计与应用显得尤为重要。
本手册旨在通过系统的介绍、设计原则与方法、应用案例分析等方面的内容,为相关从业人员提供指导和借鉴,帮助他们更好地理解和应用全面水力平衡暖通空调水力系统。
二、全面水力平衡暖通空调水力系统的介绍1. 水力系统的概念和作用水力系统是指在暖通空调系统中,通过管道、阀门、水泵等设备输送冷热水的系统。
水力系统的主要作用包括传热、传热、水力平衡和控制等。
2. 全面水力平衡的概念全面水力平衡是指在水力系统设计中,通过合理的布局、管道尺寸的选择、阀门的调节等手段,使得系统中的各个支路、回路能够达到平衡状态。
水力平衡的实现有利于提高系统的热效率、降低能耗、延长设备使用寿命。
三、全面水力平衡暖通空调水力系统的设计原则与方法1. 设计原则(1)综合考虑系统的整体平衡性(2)合理选择管道尺寸和布局(3)采用自动控制技术提高系统稳定性(4)优化水泵和阀门的选择和配置2. 设计方法(1)初步确定系统的水流量和压降(2)计算管道的阻力和选型(3)合理考虑管道的布局和衔接(4)选择适当的阀门和调节装置四、全面水力平衡暖通空调水力系统的应用案例分析以某高层建筑为例,介绍其全面水力平衡暖通空调水力系统的设计方案和实际应用效果,包括系统的结构布置、主要设备的选择和配置、水力平衡的实现效果等。
五、总结与展望全面水力平衡暖通空调水力系统的设计与应用是暖通空调领域的一个重要课题。
该手册旨在通过介绍系统原理、设计方法和实际案例,帮助相关从业人员更好地理解与应用该系统,为建筑节能与环保做出贡献。
未来,随着科技的不断发展,全面水力平衡暖通空调水力系统将会得到更广泛的应用,为建筑节能和绿色发展提供更多解决方案。
采暖系统水力计算汇总
实例:
附件6.2关于地板辐射采暖水力计算的方法和步骤(天正暖通软件辅助完成)
6.2.1水力计算界面:
根据施工图
“供水方式”选择“下供下回”
接着再根据施工图:
“立管形式”选择“双管”
“立管关系”选择“异程”
勾选“分户计量”
“采暖形式”选择“地板采暖”
点击“确定”
2.第二步在【设置】菜单中的【生成框架】完成下列内容:
楼层数:6层
系统分支数:1
分支1样式
分支2样式
本住宅楼样式同分支1,所以系统分支数为“1”
b、如右图:一个环路可能承担两个或两个以上房间,如果是这样,计算此环路所带负荷的时候,应该把所承担的房间负荷进行累加,假如某环路承担的是某个整个房间和另一个房间的一部分,如图中环路3,既承担客厅又承担部分餐厅,这时该环路负荷取那个整个房间的负荷与那个承担部分房间的部分负荷(可以用相对盘管面积,相对负荷的原则,按他们所占的面积进行取值。如果这部分靠近外围护结构,应该把其适当的放大,比如乘以1.2的修正系数,以减少实际情况与理论分析的误差。)
每支分支立管数:2
每楼层用户数:2
每用户分支数:3
(见下图单元盘管图)
3.第三步【设置】菜单中“设计条件”
4.第四步在【生成框架】对话框中点击“生成”,如下图
5.第五步在树视图中依次打开“立管1”、“楼层6”、“户1”,如下图:
6.第六步在上图中完成以下几项内容的输入:
1)负荷:指某盘管分支(环路)热媒提供的热量。
【精品】塑料采暖管道快速水力计算表
【关键字】精品耐热聚乙烯管道快速水力计算表刘学来1,2 李永安1 李继志21、山东建筑大学2、中国石油大学摘要:根据塑料管道的特点,阐述了采暖塑料管道的选择原则及注意事项。
对塑料采暖管道水力计算进行了数学描述,通过计算机编程计算编制了耐热聚乙烯管道的水力计算表。
工程技术人员在实际工作中可以快速查询,方便应用。
关键词:塑料管材水力计算分级体系采暖Plastic Heating Tubes Quick Hydraulic Calculating TableLiu Xue-lai1 Li Yong-an1 Li Ji-zhi21. 2.ChinaAbstract According to plastic tubes characteristic, elaborated the heating plastic tubes selection principle and the matters needing attention. Has carried on mathematics description to the heating plastic tubes water power computation and has established the commonly used plastic tubes water power computation table through the computer programming computation. The tables may be used to the engineering personnel in practice.Keywords plastic tubing ; hydraulic calculating ; graduation system ; heating1、引言塑料管道具有不锈蚀、施工简单、不结垢、环保、无污染、沿程阻力小等优点。
风系统水力计算
二、计算公式 a.管段压力损失 = 沿程阻力损失 + 局部阻力损失 即:ΔP = ΔPm + ΔPj。 b.沿程阻力损失 ΔPm = Δpm×L。 c.局部阻力损失 ΔPj =0.5×ζ×ρ×V^2。 d.摩擦阻力系数采用柯列勃洛克-怀特公式计算。
三、计算结果 1、风系统1(假定流速法) a.风系统1水力计算表
风系统1(分流)
风速(m/s)
比摩阻 (Pa/m)
局阻系数
7.64
1.19
0.76
1.11
0.03
27.78
5.90
0.73
0.34
1.38
0.06
9.00
4.17
0.38
1.46
1.38
0.06
7.74
3.47
0.29
1.04
1.11
0.03
3.89
3.26
0.27
0.83
1.11
0.03
0.25
117.52 9.24
设计软件: 鸿业暖通空调设计软件10.0.20160629 计算时间: 2018-04-28 15:38
计算书
损失,再按各环路间的压损差值进行调整,以达到平衡。 复得静压来克服该管段的阻力,根据这一原则确定风管的断面尺寸。 损失ΣPi-1时,则按这种方法来确定风道的断面尺寸及阻力损失。
总阻力 (Pa) 31.68 20.61 10.24 10.35 16.58 8.91 8.80 52.98 6.50 50.29 1.50 8.91 51.57 4.08 50.10 50.10 50.10 50.10
支管阻力 (Pa)
129.49 20.61 97.81 60.45 87.57 59.02 70.98 52.98 62.18 50.29 55.68 59.02 51.57 54.19 50.10 50.10 50.10 50.10
空调系统的水力平衡
0,6
0,4
0
a≥30%
0,6
0,8
1
HE HVAC APAC
阀门开度
阀门开度:
阀门开度:
[m3/h]
kV
KVS kV
k x = V ⋅100% K VS
kv 计算值,阀门所需的流通能力 [m3/h] Kvs 所选阀门的流通能力 [m3/h]
x
100% opening [%]
xmin ≥ 30%
∆pv100 ∆pv100 = ∆pv 0 ∆ps max
1
a
0 0,8 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,2 0,8 0,9 1 0 0,2 0,4
X
Δpv100:阀门全开始的压降 Δpv0:阀门全关时的压降 Δpsmax:系统的总压降 阀权度表示阀门对系统的控制能力,保证良好 调节能力 阀权度α>50%(至少30%)
Kv 值计算
阀门并联
kV 1
阀门串联
kV 1 kV 2
kV 2
k v0 = k v1 + k v2
[ m / h]
3
1 1 1 = 2 + 2 2 k v0 k v1 k v2
kv21 ⋅ kv22 kv 0 = kv21 + kv22
[ m 3 / h]
HE HVAC APAC
阀权度
阀权度:
a=
现代变流量系统
变流量系统 组合式一体阀
分体式:差压控制器 电调阀 分体式:差压控制器+电调阀
优点
缺点
优点
缺点
完美的控制特性 - 完美的系统平衡 - 概念简单 - 勿须调试
空调水管水力计算
一、空调水系统的设计原则:1、力求水力平衡;2、防止大流量小温差;3、水输送符合规范要求;4、变流量系统宜采用变频调节;5、要处理好水系统的膨胀与排气;6、解决好水处理与水过滤;7、切勿忽视管网的保冷与保温效果。
二、冷冻水、冷却水管的计算1、压力式水管道管径计算D=103πνL4(mm )公式中 L------水流量(m 3/s )v-------计算流速(m/s )一般水管系统的管内水流速可参考表13-12的推荐值取用表13-13选择。
2、直线管段的阻力计算Δh=d l λ×22v ρ=R ×l 式中Δh---长度为l (m )的直管段的摩擦阻力(Pa )λ---水与管内壁间的摩擦阻力系数;l----直管段的长度(m );d----管内径(m );ρ----水的密度(kg/m 3),当4℃时为1000kg/m 3R-----长度为1m 直管段的摩擦阻力(Pa/m )三、空调设备流量计算由Q=CM ΔT 可得出:M=Q/C*ΔT (Kg/S )Q-----空调制冷或制热量(Kw )C-----水的比热容,4.2KJ/Kg*℃ΔT---进出空调设备的供回水温差,ΔT =T G -T H四、风机盘管选择1、计算室内空调冷负荷Q (W ),简单依单位面积指标及经验估算。
2、考虑机组的盘管用后积垢积尘对传热的影响,对空调冷负荷要进行修正,冷负荷应乘以系数a仅冷却使用 a=1.10作为加热、冷却两用 a=1.20仅作为加热用 a=1.153、依据空调冷负荷选择风机盘,一般按中档运行能力选择。
4、校核风量:L=)(3600s n h h Q -ρ L-----风机盘管名义风量(m 3/h )Q-----室内空调冷负荷(KW)h n-----室内空气计算温度下空气焓值(KJ/Kg)h s------室内空气送风温度下空气焓值(KJ/Kg)ρ-----空气密度,取标态下1.2Kg/m3五、送风温差1、一般舒适性空调送风温差:送风高度≤5m 送风温差Δt s≤10℃送风高度>5m 送风温差Δt s≤15℃2、工艺性空调的送风温差:六、集水器的选择:1、通常用到集水器及分水器时水系统至少要分为三个子系统以上才会考虑用之!集水器与分水器的管径,接其中水的流速大致控制在通常情况下0.5~0.8m/s,并应大于最大接管开口直径的二倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.70
0.5
39.1
2.70
3.3
46.0
2.70
0.5
53.4
2.70
3.6
61.4 3.50
0.5
70.0 3.50
3.6
79.1 3.50
0.5
90.7 21.40
2.4
169.6 20.70
37
169.6 22.40 8.35
169.6 24.40 14.01
39.3 3.50
3.3
55.6 4.50
15.2 DN80
96330 1
96330 5
16.6 DN100
104475 1
104475 5
18.0 DN100
114225 1
114225 5
19.6 DN100
122370 1
122370 5
21.0 DN100
132120 1
132120 5
22.7 DN100
140265 1
140265 5
199658 1
199658 5
34.3 DN100
199658 1
199658 5
34.3 DN100
199658 1
199658 5
34.3 DN100
199658 1
199658 5
34.3 DN125
199658 1
199658 5
34.3 DN150
199658 1
199658 5
34.3 DN200
24.1 DN100
150015 1
150015 5
25.8 DN100
158160 1
158160 5
27.2 DN100
167910 1
167910 5
28.9 DN100
176055 1
176055 5
30.3 DN100
184200 1
184200 5
31.7 DN100
187382 1
187382 5
199658 1
199658 5
34.3 DN200
199658 1
199658 5
34.3 DN200
199658 1
199658 5
34.3 DN200
199658 1
199658 5
34.3 DN250
199658 1
199658 5
34.3 DN250
末端装置,泵房内设备及管路
流速 (m/s)
41498 5
7.1 DN70
49643 1
49643 5
8.5 DN70
59393 1
59393 5
10.2 DN70
67538 1
67538 5
11.6 DN80
77288 1
77288 5
13.3 DN80
85433 1
85433 5
14.7 DN80
95183 1
95183 5
16.4 DN100
比摩阻P 当量长度 管长
(Pa/m)
L(m) Ld(m)
137.2 49.40
4.4
77.8
1.80
1.5
98.6
1.80
5.4
122.0
2.30
3.3
147.8
2.30
0.5
40.0
2.30
3.3
47.0
2.30
0.5
56.0
2.30
3.6
64.2
2.70
0.5
74.8
2.70
3.6
84.2
2.70
说明 2.供
空调管道水力计算表Байду номын сангаас
本表水温采用12oC~7oC,t=5oC,K=0.5mm,密度=983.248kg/m3
负荷 W
1 4131 2 8145 3 3182 4 8145 5 8145 6 9750 7 8145 8 9750 9 8145 10 9750 11 8145 12 9750 13 8145 14 8145 15 8145 16 8145 17 8145 18 9750 19 54000 44 0 45 0 46 0 47 0 48 0 49 0 50 0 51 0 24 0 23 0
103328 1
103328 5
17.8 DN100
111473 1
111473 5
19.2 DN100
119618 1
119618 5
20.6 DN100
127763 1
127763 5
22.0 DN100
135908 1
135908 5
23.4 DN100
145658 1
145658 5
25.1 DN100
6364 12214 18064 26209 32059 40204 46054 54199 60049 68194 74044 82189 88039 96184 102034 110179 118324 172324 172324 172324 172324 172324 172324
1
6364 5
2.回 3.供
负荷 W
1 54000 2 9750 3 8145 4 8145 5 8145 6 8145 7 8145 8 9750 9 8145 10 9750 11 8145 12 9750 13 8145 14 9750 15 8145 16 8145 17 3182 18 8145 19 4131 44 0 45 0 46 0 47 0 48 0 49 0 50 0 51 0 24 0 23 0
0.307 0.450 0.398 0.577 0.435 0.546 0.625 0.736 0.815 0.659 0.716 0.795 0.851 0.530 0.562 0.607 0.652 0.949 0.249 0.249 0.249 0.159 0.159
23010 38561 44117 64010 61478 77097 88315 103934 115152 110339 119804 132983 142448 117454 124598 134544 144490 210432 107757 107757 107757 86123 86123
雷诺数 Re 14936 38756 48802 57645 60881 79578 95197 113894 109277 125053 138231 116232 126178 136124 146070 156016 165963 177869 243810 243810 243810 184599 197282 124850 124850 124850 124850 99783 99783
34.3 DN150
199658 1
199658 5
34.3 DN200
199658 1
199658 5
34.3 DN200
199658 1
199658 5
34.3 DN200
199658 1
199658 5
34.3 DN200
199658 1
199658 5
34.3 DN250
199658 1
199658 5
比摩阻P 当量长度 管长
(Pa/m)
L(m) Ld(m)
24.9 49.40
4.4
102.6
1.80
1.5
161.7
1.80
5.4
95.9
2.30
3.3
48.1
2.30
0.5
81.5
2.30
3.3
116.2
2.30
0.5
165.7
2.30
3.6
87.2
2.70
0.5
113.8
2.70
3.6
138.8
雷诺数 Re 103553 103148 116327 129506 142684 117632 127579 139485 149431 161337 171283 183189 193135 205042 214988 224934 228820 238766 243810 243810 243810 184599 197282 124850 124850 124850 124850 99783 99783
负荷 W
1 3182
负荷 累计
放大 负荷放大 温差 水量 管径(DN)
系数
W
oC (T/h)
(mm)
54000 1
54000 5
9.3 DN70
63750 1
63750 5
11.0 DN80
71895 1
71895 5
12.4 DN80
80040 1
80040 5
13.8 DN80
88185 1
88185 5
4.6 44.00
3.回
2 3182 3 5850 4 5850 5 8145 6 5850 7 8145 8 5850 9 8145 10 5850 11 8145 12 5850 13 8145 14 5850 15 8145 16 5850 17 8145 18 8145 19 54000 20 0 21 0 22 0 23 0 24 0
负荷 累计
放大 负荷放大 温差 水量 管径(DN)
系数
W
oC (T/h)
(mm)
4131 1
4131 5
0.7 DN32
12276 1
12276 5
2.1 DN40
15458 1