直接开平方法课件

合集下载

华师大版九年级数学上册《用直接开平方法和因式分解法解较简单的一元二次方程》课件

华师大版九年级数学上册《用直接开平方法和因式分解法解较简单的一元二次方程》课件
22.2 一元二次方程的解法
22.2.1 直接开平方法和因式分解法 第1课时 用直接开平方法和因式分解法解较简单的一元二次方程
1.利用__平__方__根__的定义直接开平方求一元二次方程的解叫做直 接开平方法. 2.解一元二次方程,实质上是把一个一元二次方程“_降__次___” ,转化为两个__一__元__一__次___方程. 3.当p≥0时,x2=p的解为____x_=__±___p___. 4.当把一元二次方程的一边化为0,而另一边易分解成两个一 次因式的乘积时,可令每个因式分别等于0,得到两个 _____一__元__一__次__方__程______,从而实现降次求解的目的,这种解法 叫做因式分解法.
19.已知方程(x-1)2=k2+2的一个根是x=3,求k的值和另一个 根.
解:将 x=3 代入原方程得 k 的值为± 2,再把 k=± 2代入 方程得另一个根为 x=-1
20.关于x的一元二次方程(2m-4)x2+3mx+m2-4=0有一根为0, 求m的值. 解:将x=0代入原方程,得m2-4=0,解得m=±2,∵2m-4≠0 ,m≠2,∴m=-2
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
A.x=4

一元二次方程的解法_直接开平方法_第1课时

一元二次方程的解法_直接开平方法_第1课时
知识回顾
什么叫做平方根
如果一个数的平方等于a,那么这个数就叫 做a的平方根。用式子表示:
若x2=a,则x叫做a的平方根。
记作x= a
即x= a 或x= 9的平方根是__±__3__

4
25
a
的平方根是___52___
尝试(利用平方根定义)
如何解方程(1)x2=4,(2)x2-2=0呢?
解(1)∵x是4的平方根 ∴x=±2
即此一元二次方程的解(或根)为: x1=2,x2 =-2
(2)移项,得x2=2 ∵ x就是2的平方根
∴x= 2
2 2 即此一元二次方程的解为: x1=
,x2=
典型例题
例1解下列方程
(1)x2-1.21=0
(2)4x2-1=0
解(1)移项,得x2=1.21
∴x=±1.1
即 x1=1.1,x2=-1.1
则m、n必须满足的条件是( B )
A.n=0
B.m、n异号
C.n是m的整数倍 D.m、n同号
练一练
3、解下列方程: (1)(x-1)2 =4 (2)(x+2)2 =3 (3)(x-4)2-25=0 (4)(2x+3)2-5=0 (5)(2x-1)2 =(3-x)2
练一练
4一个球的表面积是100cm2, 求这个球的半径。 (球的表面积s=4R2,其中R是 球半径)
变成(x+h)2=k (k≥0)的形式;
解:(1)移项,得(x-1)2=4 ∴x-1=±2
即x1=3,x2=-1
例2解下列方程: 典型例题
(2) 12(3-2x)2-3 = 0
分析:第2小题先将-3移到方程的右边,再 两边都除以12,再同第1小题一样地去解,然后 两边都除以-2即可。

青岛版九年级数学上册_用直接开平方法法解一元二次方程课件_

青岛版九年级数学上册_用直接开平方法法解一元二次方程课件_
2
课堂小结
(1)直接开平方法
x a(a 0)
2
(x+a)2=b(b≥0)
(ax b) (cx d )
2
2
你发现它们的联系了吗?
独立作业
知识的升华
1.如图,在一块边长35m的正方形地面上,修建同样宽 的两条互相垂直的道路,剩余部分栽种花草,为使剩余部 分的面积为1089m2,道路的宽应是多少? 解:设道路的宽为 x m,根据题意得
35m
(35-x)2 =1089.
解这个方程,得 x1 = 2
35m
x2 =68 (不合题意,舍去)
答:道路的宽应为2m.
用直接开平方法解一元二次方 程
复习引入:
一元一次方程的解法(1) 复习提问: 1、什么样的方程叫做一元一次方程、一 元二次方程? 2、一元二次方程的一般形式是什么?其 中a应具备什么条件?
1.什么叫做平方根? 如果一个数的平方等于a,那么这个数就叫 做a的平方根。 用式子表示:
若x2=a,则x叫做a的平方根。记作x=
练习、用直接开平方法解下列方程:
口答
1x 0; 2x 349 y 2 121 0; 42 x 2 128;
2
2
16 0;
笔答
5x 17 2 6( x 3)
2
49; (2 x 5)
2 2
(7)4(x- 2) 9( x 3)
知识回顾
a
或x= a 2 4 ±3 如:9的平方根是______ 的平方根是 ______ 5 25 2.平方根有哪些性质? (1)一个正数有两个平方根,这两个平方根是互 为相反数的; (2)零的平方根是零; (3)负数没有平方根。

2.直接开平方法和因式分解法(二)PPT课件(华师大版)

2.直接开平方法和因式分解法(二)PPT课件(华师大版)
(2)(x+10)2=16.
解:直接开平方,得 x+10=±4, ∴x1=-14,x2=-6.
分层作业
1.若方程(x-5)2=19 的两根为 a 和 b,且 a>b,则下列结论中正确的是 ( C ) A.a 是 19 的算术平方根 B.b 是 19 的平方根 C.a-5 是 19 的算术平方根 D.b+5 是 19 的平方根
4x y x -y
交叉相乘积相加得-3xy,凑得中间项,所以分解为 4x2-3xy-y2=(4x+y)(x- y).
参考以上方法,解方程:4x2-5x+1=0.
解:4x2-5x+1=0 化为(4x-1)(x-1)=0, ∴4x-1=0 或 x-1=0 故 x1=14,x2=1.
分层作业
点击进入word链接
参考答案
点击进入答案PPT链接
点击进入答案word链接
(4)x1=3,x2=14.
6.解方程: (1)4(x+3)2=25(x-2)2;
解:开平方,得 2(x+3)=±5(x-2), 解得 x1=136,x2=47;
(2)(2x+3)2=x2-6x+9.
解:由原方程,得(2x+3)2=(x-3)2, 直接开平方,得 2x+3=±(x-3), 解得 x1=0,x2=-6.
数学HS版九年级上
第22章 22.2.1.2
第22章 一元二次方程
22.2 一元二次方程的解法 1.直接开平方法和因式分解法 第2课时 直接开平方法和因式分解法(二)
学习指南 知识管理 归类探究 当堂测评 分层作业
学习指南
教学目标 1.使学生知道形如(x+b)2=a(a≥0)的一元二次方程可以用直接开平方法求解; 2.了解因式分解法的概念,会用因式分解法解一元二次方程. 情景问题引入 小明在解关于 x 的方程(x+2)2=4(x+2)时,在方程两边都除以(x+2),得到方程的根 为 x=2,其实,在解答中,小明的做法还遗漏了方程的一个根,你认为遗漏的根是什么?

一元二次方程的解法(一)直接开平方法(课件)数学九年级上册(人教版)

一元二次方程的解法(一)直接开平方法(课件)数学九年级上册(人教版)
即 x-5=1或x-5=-1
∴x1=6,x2=4.
(4)8x2-8x+2=-6
解: 4x2-4x+1=-3,
(2x-1)2=-3,
∵ (2x-1)2≥0,
∴ (2x-1)2≠-3,
∴此方程无实数根.
15.已知关于x的方程(x+1)2=k2+3的一个根是x=2,求k的值及另
一个根.
解:把x=2代入原方程得k2+3=9,
1.会把一元二次方程降次转化为两个一元一次方程.(难点)
2.运用开平方法解形如x2=p或(x+n)2=p (p≥0)的方程.(重点)
1.什么是平方根?一个数的平方根怎样表示?
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根.
a(a≥0)的平方根记作:± .
x2=a(a≥0),则根据平方根的定义知,x=± .
C.当n≥0时,有两个解=± −
D.当n≤0时,无实数解
B
)
2=1则x=_________.
±8
-1或-3
7.若x2=64,则x=______;若(x+2)
m≥1
8.若关于x的方程2(x-1)2=m-1有实数根,则m的取值范围是_______.
2−4
9.当x=_____时,分式
值为零.
−2
∴k2=6.解得k=± 6.
把k2=6代入原方程,得(x+1)2=9,可解得方程的另一个根为x=—4.
A.10cm
B)
B.5cm
C.±10cm
5.下列方程可以用直接开方法求解的有(
①(x-1)2-1=O
A.①和②
②x2-2=0
B.①和③
D.±5cm

22..直接开平方法和因式分解法课件初中数学华师大版九年级上册

22..直接开平方法和因式分解法课件初中数学华师大版九年级上册

3(x – 3) (1 – x) = 0

x1 = 3,x2 = 1.
课堂小结
1.对于形如 a(x – k)2 = b(a ≠ 0,b ≥ 0)的方程, 只要把 (x – k) 看作一个整体,就可转化为 x2 = n (n ≥ 0) 的情势用直接开平方法解.
2.当方程出现相同因式(单项式或多项式) 时,切不可约去相同因式,而应用因式分解法解.
(2)x( x 2 3) 0; x1 0,x2 2 3.
(3)(x – 1)2 = 0;
x1 = x2 = 1.
(4)(x – 4)2 = (5 – 2x)2
(x – 4)2 – (5 – 2x)2 =0
[(x – 4)-(5 – 2x)] [(x – 4)+(5 – 2x)] =0
(3x – 9) (1 – x) = 0
直接开平方,得 ______2___x_=____2_3________.
所以 x1 = __2___2_3__,x2 = __2____23__.
你知道吗?
小张和小林一起解方程
x(3x + 2) – 6(3x + 2) = 0. 小张将方程左边分解因式,得
所以 得
(3x + 2)(x – 6) = 0,
22.2 一元二次方程的解法
1. 直接开平方法和因式分解法
华东师大版九年级上册
• 学习目标:
1. 会用直接开平方法解形如 a(x - k)2 = b(a ≠ 0, ab ≥ 0)的方程.
2. 灵活应用因式分解法解一元二次方程.
3. 使学生了解转化的思想在解方程中的应用.
• 学习重点:
利用直接开平方法和因式分解法解一元二次方程.

17.直接开平方法课件沪科版八年级数学下册

17.直接开平方法课件沪科版八年级数学下册

2
这种情势;
第二步 开平方;
第三步 解一元一次方程,求出方程的根.
随堂练习
用直接开平方法解下列方程.
(1) (4x- 5 )(4x+ 5 )=3
2-( 5)2=3
(4x)
解:
16x2-5=3
16x2=8
1
2
x= ,
2
x=±
∴ x1=
2
2
2
2
, x2= −
2
2
(2) (2x-1)2=(3+x)2
解:2x-1=±(3+x)
开平方,得 x-1=±2
即 x-1=2 或 x-1=-2
∴ 原方程的根是
x2=-1
x1=3,
(2) 3(3-2x)2-12 = 0
解: 3(3-2x)2=12
(3-2x)2=4
3-2x=±2
即 3-2x=2 或 3-2x=-2
∴原方程的根是
1
5
x1= ,x2=
2
2
小结
1、用直接开平方法可解哪些类型的一元二次方程
(3)当p<0 时,方程无实数根.
例1 用直接开平方法解下列方程.
(1) 16x2 -25=0
2=25
16x
解: 移项,得
25
2
x=
两边都除以16,得
开平方,得
∴ 原方程的根是
16
5
x=±455源自x1= ,x2=44
将方程化成 x2=p
的情势,再求解
(2) 2x 1 0
2
解:
(3) 2 x 7 -1
(1) x2=9
解:x1=3, x2=-3.
(2) x2=25 解:x1=5, x2=-5.

21.2 一元二次方程的解法——直接开平方法课件 2024-2025学年人教版数学九年级上册

21.2 一元二次方程的解法——直接开平方法课件 2024-2025学年人教版数学九年级上册

2
(2) x -18=0.

2
解: x -18=0

2
x =18

x2=36
∴x1=6,x2=-6
10.解方程:
(1)(2-x)2=8;
解:(2-x)2=8
2-x=±2
∴x1=2-2 ,x2=2+2
(2)3(x-1)2-6=0.
解:3(x-1)2-6=0
3(x-1)2=6
(x-1)2=2
小结:通过移项、系数化为1,化为x2=p(p≥0)的形式求
解.
6.解方程:
(1)(x-2)2=4;
(2)(x+6)2-9=0.
解:(x-2)2=4
解:(x+6)2-9=0
x-2=±2
(x+6)2=9
∴x1=4,x2=0
x+6=±3
∴x1=-3,x2=-9.
小结:将方程化为(x+n)2=p(p≥0)的形式,直接开平方.
7.解方程:
(1)(2x-3)2-9=0;
(2)(2x-1)2=(x-3)2.
解:(2x-3)2-9=0
解:(2x-1)2=(x-3)2
2x-1=±(x-3)

∴x1=-2,x2= .
(2x-3)2=9
2x-3=±3

∴x1=3,x2=0.
小结:(1)中化为(mx+n) 2=p(p≥0)的形式;(2)中
(3)(x-1)2-25=0.
解: (x-1)2-25=0
(x-1)2=25
x-1=±5
∴x1=-4, x2 =6
(2)(x-2)2=3;
解:(x-2)2=3
x-2=±
∴x1=2+ ,x2=2-

21.2.1.1 直接开平方法(复习课件)

21.2.1.1 直接开平方法(复习课件)

解:20秒
18.(8分)已知m是不等式3m+2≥2m-2的最小整数解,
试求关于x的方程x2+4m=0的解.
解:∵3m+2≥2m-2,∴m≥-4,∴不等式的最 小整数解为-4,当m=-4时,原式为x2-16=0
,∴x1=4,x2=-4
19.(12分)某工程队在实施棚户区改造过程中承包了一项 拆迁工程,原计划每天拆迁1 250 m2,因为准备工作不足, 答:该工程队第一天拆迁的面积为 1 000 m2 第一天少拆迁了 20%,从第二天开始,该工程队加快了拆迁 2=1 (2)设这个百分数为 x , 则有 1 000(1 + x) 2,求: 速度,第三天拆迁了 1 440 m 440,x1=0.2=20%,x2=-2.2(舍去), 答:这个百分数为20% (1)该工程队第一天拆迁的面积; (2)若该工程第二天,第三天每天的拆迁面积比前一天增长 的百分比相同,求这个百分数.
B .0
10.若方程(a-2)x2+ ax=3 是关于 x 的一元二次方程, 则 a 的取值范围是( C ) A.a≠2 B.a≥0 D.a 为任意实数
C.a≥0 且 a≠2
11.若 2x2+3 与 2x2-4 互为相反数,则 x 的值为( D ) 1 A .2 B. 2 C.±2 ) 1 D.±2
21.2
解一元二次方程
21.2.1 配方法 第一课时 直接开平方法
1.若方程能化成 x2=p(p≥0)或(mx+n)2=p 的形式,则 ± p . ± p 或 mx+n= x=____ ____ 2.方程(x+n)2=m 有解的条件是m≥0 ____.
可化为x2=p(p≥0)型方程的解法
1.(3 分)一元二次方程 x2-4=0 的根为( C A .x = 2 C.x1=2,x2=-2 D.x=4 ) B.x=-2 )

人教版初中九年级上册数学《直接开平方法》精品课件

人教版初中九年级上册数学《直接开平方法》精品课件

(1)能根据平方根的意义解形如x2=p及ax2+c=0的一 元二次方程.
(2)能运用开平方法解形如(mx+n)2=p(p≥0)的方程. (3)体会“降次”的数学思想.
推Hale Waihona Puke 新课知识点1 用直接开平方法解一元二次方程
问题1 根据平方根的意义解导入列出的方程: x2=25.
解:根据平方根的意义,得 x= ±5
即 x1=5,x2=-5 因为棱长不能是负值,所以盒子的棱长为5dm.
根据平方根的意义解方程
x2=36; x=±6 x1=6,x2=-6
2x2-4=0;
3x2-4=8.
x2 2
x 2 x1 2, x2 2.
x2=4
x=±2 x1=2,x2=-2
当p>0时,方程x2=p有两个不等的实数根 x1 - p, x2 p . 当p=0时,方程x2=p有两个相等的实数根 x1=x2=0. 当p<0时,方程x2=p无实数根.
当p≥0时,方程(mx+n)2=p的解是
,
当p<0时,方程(mx+n)2=p 无实数根 .
(x+6)2-9=0 解:(x+6)2=9
x+6=+3 x1=-3, x2=-9
3(x-1)2-12=0
解:3(x-1)2=12 (x-1)2=4 x-1=+2 x1=3, x2=-1
课堂小结
1.同桌之间相互交流本课学习收获。 2.老师引导学生总结归纳本课学习知识点,并 总结交流本课学习心得
21.2 解一元二次方程 21.2.1 配方法
第1课时 直接开平方法
R·九年级上册
新课导入
一桶油漆可刷的面积为1500dm2,李林用这桶

九年级数学上册第22章一元二次方程的解法1直接开平方法和因式分解法上课pptx课件新版华东师大版

九年级数学上册第22章一元二次方程的解法1直接开平方法和因式分解法上课pptx课件新版华东师大版

解 (1)原方程可以变形为
(x + 1)2 = 4.
你是这样解的 吗?还有没有
直接开平方,得
其他解法?
x + 1 = ±2.
所以
x1 = 1,x2 = – 3.
(4)(x – 4)2 = (5 – 2x)2
(x – 4)2 – (5 – 2x)2 =0
[(x – 4)-(5 – 2x)] [(x – 4)+(5 – 2x)] =0
2.当方程出现相同因式(单项式或多项式) 时,切不可约去相同因式,而应用因式分解法解.
教学反思
本节课教师引导学生探讨直接开平方法和 因式分解法解一元二次方程,让学生小组讨论, 归纳总结探究,掌握基本方法和步骤,合理、 恰当、熟练地运用直接开平方法和因式分解法, 在整个教学过程中注意整体划归的思想.
所以 得
x(x – 3) = 0. x = 0 或 x – 3 = 0. x1 = 0,x2 = 3.
例3 解下列方程: (1)(x + 1)2 – 4 = 0; (2)12(2 – x)2 – 9 = 0.
分析 两个方程都可以通过简单的变形,化 为
(
)2 = a (a ≥ 0)
的形式,用直接开平方法求解.
(直1接)开移平项方,,得得x2x==9±0300,,(所2以)(x左+边30因)(式x –分3解0),= 得0,
∴x1 = 30,x2 = – 30.
x + 30 = 0或x – 30 = 0,
得 x1 = 30,x2 = – 30.
(2)x2 = 3x
(2)移项,得
x2 – 3x = 0. 方程左边分解因式,得
对于题(2)x2 – 1 = 0,有这样的解法: 将方程左边用平方差公式分解因式,得

(上)用直接开平方法解一元二次方程(最新)人教版九年级数学全一册课件(21张)-公开课

(上)用直接开平方法解一元二次方程(最新)人教版九年级数学全一册课件(21张)-公开课
14.用直接开平方法解下列方程: (1)8x2=2; (2)(3x+1)2-9=0; (3)100(1-x)2=64; (4)3(2x+3)2-75=0; (5)x2-4x+4=3; (6)3x2+7=1.
【名师示范课】上册 21.2.1 第1课时 用直接开平方法解一元二次方程-2020 秋人教 版九年 级数学 全一册 课件(共 21张PP T)-公 开课课 件(推 荐)
【名师示范课】上册 21.2.1 第1课时 用直接开平方法解一元二次方程-2020 秋人教 版九年 级数学 全一册 课件(共 21张PP T)-公 开课课 件(推 荐)
【名师示范课】上册 21.2.1 第1课时 用直接开平方法解一元二次方程-2020 秋人教 版九年 级数学 全一册 课件(共 21张PP T)-公 开课课 件(推 荐)
5.如果 x=-3 是一元二次方程 ax2=c 的一个根,那么该方程的另一个根是( A )
A.3
B.-3
C.0
D.1
6.解关于 x 的方程(x+m)2=n,正确的结论是( B ) A.有两个根 x=± n-m B.当 n≥0 时,有两个根 x=± n-m C.当 n≥0 时,有两个根 x=± n-m D.当 n≤0 时,无实数根
【名师示范课】上册 21.2.1 第1课时 用直接开平方法解一元二次方程-2020 秋人教 版九年 级数学 全一册 课件(共 21张PP T)-公 开课课 件(推 荐)
【名师示范课】上册 21.2.1 第1课时 用直接开平方法解一元二次方程-2020 秋人教 版九年 级数学 全一册 课件(共 21张PP T)-公 开课课 件(推 荐)
【名师示范课】上册 21.2.1 第1课时 用直接开平方法解一元二次方程-2020 秋人教 版九年 级数学 全一册 课件(共 21张PP T)-公 开课课 件(推 荐)

第21章解一元二次方程(一)(直接开平方法)+课件2024-2025学年人教版数学九年级上册

第21章解一元二次方程(一)(直接开平方法)+课件2024-2025学年人教版数学九年级上册

第2课时 解一元二次方程(一)(直接开平方法)
(2)13x2-5=0. 解:整理,得 x2=15. 根据平方根的意义,得 x=± 15, 即 x1= 15,x2=- 15.
第2课时 解一元二次方程(一)(直接开平方法)
训练 2.用直接开平方法解下列方程: (1)2x2-12=0; 解:整理,得 x2=14. 根据平方根的意义,得 x=±12,即 x1=12,x2=-12.
第2课时 解一元二次方程(一)(直接开平方法)
(2)x2-3=0. 解:整理,得x2=3. 根据平方根的意义,得 x=± 3, 即 x1= 3,x2=- 3.
第2课时 解一元二次方程(一)(直接开平方法)
训练 1.用直接开平方法解下列方程: (1)x2=116; 解:根据平方根的意义,得 x=±14, 即 x1=14,x2=-14.
第2课时 解一元二次方程(一)(直接开平方法)
(2)3(x+3)2=27. 解:整理,得(x+3)2=9. 根据平方根的意义,得x+3=±3, 即x+3=3,或x+3=-3. 于是,方程3(x+3)2=27的两个根为x1=0,x2=-6.
第2课时 解一元二次方程(一)(直接开平方法)
训练 3.用直接开平方法解下列方程: (1)(x+1)2=0.81; 解:根据平方根的意义,得x+1=±0.9, 即x+1=0.9,或x+1=-0.9. 于是,方程(x+1)2=0.81的两个根为x1=-0.1,x2=-1.9.
第2课时 解一元二次方程(一)(直接开平方法)
3.如果关于x的方程(x-9)2=m+4有实数根,那么m的取值范围是
A.m>3
B.m≥3
( D)
C.m>-4
D.m≥-4
4.【代几综合】已知三角形的两边长分别是4和6,第三边的长是

一元二次方程的解法(直接开平方法)课件湘教版九年级数学上册

一元二次方程的解法(直接开平方法)课件湘教版九年级数学上册
实质上,一元二次方程
转化
两个一元一次方程
(2)当n=0 时,方程有两个相等的实数根x1=x2=0;
(3)当n<0 时,因为任何实数x,都有x2≥0 ,所以方程无实数根.
典例精析
例2 解方程:4x²-25=0.

2
解:原方程可化为:x = .

根据平方根的意义,得x=


或 x=−





因此,原方程的根为x1= ,x2=− .

根据平方根的意义,





x+1= 或x+1=-

+
∴x= 或x=-






因此,原方程的根为x1= ,x2=− .
当堂练习
2.解方程
(1)( x+3)2-36=0;
解:(1)原方程可化为
(x+3)2=36
根据平方根的意义,得
+= 或+= −
因此,原方程的根为
x1=,x2=−.
第二章 一元二次方程
2.2 一元二次方程的解法(直接开平方法)
复习导入
一个数x的平方等于a,这个数x叫做a的平方根.
2 =


(a≥0),则x叫做a的平方根,表示为:

(a≥0)
下列各数有平方根吗?若有,你能求出它的平方根吗?
25 , 0
25
, 16
, 2 , -33,4 Nhomakorabea.
探究新知
1.如图,已知一矩形的长为200cm,宽150cm.现在矩形中挖去一个圆,使剩余部
解得 = . , = .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自主预习
平方根 ± 1若x 2 = a, 则x叫做a的 - - - - - - - - - - - ,即x = − − a− − . 2、预习课本P30问题(1)通过类比,探索,你能根据平 预习课本P30问题( P30问题 通过类比,探索, 方根的定义找出方程 解:
x+3= ±
(x + 3)
2
=2
( 1 )3(x -1) = 6 2 ( 2 )9x - 6x + 1 = 5
2
新知探究( 新知探究(一)
例1:解方程 1)( )(x ( 1)(x - 2)
2 2
= 10
( 2)(3x - 2) = 5 2)( )(3x
归纳:若一元二次方程一边是完全 归纳:若一元二次方程一边是完全 平方式,另一边是非负数 非负数时 平方式,另一边是非负数时,可以 用直接开平方法。 用直接开平方法。
( 1 )(2x - 3) = (x + 2) )(2x 2) 3) ( 2)9(x -1 ) = (x + 3)
2 2
22课堂检测Fra bibliotek一、填空题 2 1.若8x -16=0,则x的值是_________. 2 2.如果方程2(x-3) =72,那么,这个 一元二次方程的两根是________. 二、解方程
用直接开平方法解下列方程: 用直接开平方法解下列方程:
( 1 )(x + 6) ( 2 )(5x
2
= 9
2
+ 1) = 6
新知探究( 新知探究(二)
例2:解方程 1) ( 1)3(x + 6)
2 2
- 9 = 0
2
( 2)x – 6x + 9 = 8 2)
归纳:如果方程能化成x p或 归纳:如果方程能化成x = p或(mx+n) = p (p≥0)的的形式,那么可得x= (p≥0)的的形式,那么可得x= ± p 或 的的形式 mx+n = ±
的解法吗? 的解法吗?
2
x + 3 = 2 , 或x + 3 = − 2; x1 = −3 + 2 , x2 = −3 − 2;
归纳:上面的解法中, 归纳:上面的解法中,实际上是通过直接开平方把一个一元二 次方程“降次”转化为两个一元二次方程, 次方程“降次”转化为两个一元二次方程,通过解一元二次方 从而得到一元二次方程的两个根,这种解法叫直接开平法。 程。从而得到一元二次方程的两个根,这种解法叫直接开平法。
p
2
用直接开平方法解下列方程: 用直接开平方法解下列方程:
( 1 )2(x + 3)
2
2

7= 0
( 2 )x – 4x + 4 = 5
新知探究( 新知探究(三)
例3:解方程 (1)(2x-5) = (x – 3) )(2x2x
2 2 2 2
(2)4(x-2) = 9(x + 3)
用直接开平方法解下列方程: 用直接开平方法解下列方程:
九年级数学组
学习目标
1、理解体会一元二次方程的基本思想: 、理解体会一元二次方程的基本思想: -—— 降次; 降次; 2、会运用开平方法解形如x2=p或 、会运用开平方法解形如 或 的一元二次方程。 (mx+n)2 = p(p≥0)的一元二次方程。 的一元二次方程
学习重难点
学习重点:运用直接开平方法解一元二次方程。 学习重点:运用直接开平方法解一元二次方程。 学习难点:认清具有(mx+n)2=p(m≠0,p≥0) 学习难点:认清具有( ) ( ) 这种结构特点的一元二次方程, 这种结构特点的一元二次方程,并用 直接开平法解方程. 直接开平法解方程.
相关文档
最新文档