乘除法的运算性质
整式的乘除知识点

整式的乘除知识点整式的乘法运算是指对两个或多个整式进行相乘的运算。
整式的除法运算是指对一个整式除以另一个整式的运算。
整式的乘除运算是代数学中的基本运算,它在代数方程的解法、因式分解等应用中起着重要作用。
一、整式的乘法运算整式的乘法是指对两个或多个整式进行相乘的运算,其规则如下:1.单项式相乘:两个单项式相乘时,按照数字相乘,字母相乘,再将相同字母的指数相加的原则进行运算。
例如:(3x^2)(-2xy)=-6x^3y2.整式相乘:将一个整式中的每一项与另一个整式中的每一项进行相乘,然后将所得的结果相加。
例如:(x+5)(x-3)=x^2-x(3)+5(x)-15=x^2-3x+5x-15=x^2+2x-153.公式相乘:根据一些常见公式和特殊公式,可以通过整式的乘法运算简化计算。
例如:(a+b)(a-b)=a^2-(b)^2=a^2-b^2二、整式的除法运算整式的除法是指对一个整式除以另一个整式的运算,其规则如下:1.简单整式的除法:当被除式是单项式,除式也是单项式,并且除式不为零时,可以进行简单整式的除法运算。
例如:12x^3/4x=x^32.整式长除法:当被除式是一个整式,除式也是一个整式,并且除式不为零时,可以进行整式长除法运算。
例如:(3x^3-2x^2+4x-6)/(x+2)=3x^2-8x+20余-463.分式的除法:分式的除法可以利用倒数的概念进行处理,将除法问题转化为乘法问题。
例如:(a/b)÷(c/d)=(a/b)×(d/c)=(ad)/(bc)三、整式乘除运算的性质和应用1.乘法交换律:整式的乘法满足交换律,即a×b=b×a。
这个性质可以简化计算,使得整式的乘法更加灵活。
2.乘法结合律:整式的乘法满足结合律,即(a×b)×c=a×(b×c)。
这个性质可以改变运算次序,简化计算过程。
3.乘法分配律:整式的乘法满足分配律,即a×(b+c)=a×b+a×c。
乘除法的计算技巧

乘除法的计算技巧在计算乘除法时,如果我们合理、灵活地运用乘法的定律以及除法的某些性质和乘除混合运算的一些规律,就能够使计算变得简便,能大大提高计算的正确率。
特别是当算式中不能直接运用运算定律、性质及规律时,要通过对算式进行等值变形后再进行合理的计算,只有这样,我们的计算能力才会得到提高。
常用的运算定律和运算性质有:1、乘法的交换律:a⨯b=b⨯a乘法的结合律:(a⨯b)⨯c=a⨯(a⨯b)乘法的分配律:a⨯(b±c)=a⨯b±a⨯c2、除法的运算性质:a÷b=(a⨯n)÷(b⨯n)=(a÷n)÷(b÷n) (n≠0)a÷b÷c=a÷(b⨯c)a÷b⨯c=a÷(b÷c)例:用简便方法计算:316×48—340×28+24×48 555555×55555+111111×222225 (“新希望杯”第六届全国数学大赛四年级试题)分析解答(略)练习题1、用简便方法计算:25×32×125 25×64×125×5 333×333258×26-158×26 543×36+117×36+660×64 472×992400÷4÷25 39×68×27÷9÷17÷13 5600÷(8×35)3048÷(1016÷17) 8640÷2480×248 360×72+36×280(574×275×87)÷(82×25×29) 1998×19991999-1999×199819982、若A=20082009×2008,B=20082008×2009,则A、B中较大的数是()填(“A或B”),它比较小的那个大().3、6×4444×2222+3333×5555的得数中有()个数字是奇数。
整数的乘法与除法运算

整数的乘法与除法运算在数学运算中,整数的乘法与除法是基础而重要的操作。
通过对整数的乘法与除法的学习,我们可以更好地理解数的运算规律和性质。
下面将对整数的乘法与除法运算进行详细探讨。
一、整数的乘法运算整数的乘法运算是指将两个整数相乘的过程。
乘法运算可以表示为:“a乘以b”,记作a × b。
其中,a和b是乘数,结果是积。
整数的乘法运算有以下几个性质:1. 乘法交换律:对于任意两个整数a和b,a × b = b × a。
即乘法运算的顺序可以交换,结果不变。
2. 乘法结合律:对于任意三个整数a、b和c,(a × b) × c = a × (b ×c)。
即乘法运算可以任意使用括号,结果不变。
3. 乘法分配律:对于任意三个整数a、b和c,a × (b + c) = a × b + a× c。
即乘法可以分配到每一个加数之上,结果不变。
二、整数的除法运算整数的除法运算是指将一个整数除以另一个整数的过程。
除法运算可以表示为:“a除以b”,记作a ÷ b。
其中,a是被除数,b是除数,结果是商。
整数的除法运算有以下几个性质:1. 整除的概念:如果a能够被b整除,即a ÷ b的余数为0,则称a 能够被b整除,记作a能够整除b,或者b能够整除a。
2. 除法不满足交换律:对于任意两个整数a和b,a ÷ b不一定等于b ÷ a。
即除法运算的顺序不能交换,结果通常不相等。
3. 除法有除不尽的情况:当被除数a不能够被除数b整除时,结果通常为带余数的商,记作a ÷ b = q···r,其中q为商,r为余数,满足0 ≤ r < |b|。
三、整数乘除运算的应用整数的乘除运算在实际的应用问题中有着广泛的应用。
以下是一些例子:1. 购物结账:在购物结账过程中,商品的价格与购买数量之间需要进行乘法运算,计算出总金额。
乘法与除法的关系

乘法与除法的关系乘法与除法是基本的算术运算,它们在数学中起着重要的作用。
这两种运算之间存在着密切的关系,在解决实际问题和推理推导过程中都得到了广泛应用。
本文将探讨乘法与除法之间的关系,从而加深我们对数字运算的理解。
一、乘法与除法的基本概念乘法是指将两个或多个数相乘的运算,通常使用符号“×”来表示。
例如,3 × 4 = 12,表示将3乘以4的结果为12。
乘法可以看作是重复加法的过程,即将一个数重复叠加多次。
例如,3 × 4 可以理解为将3重复叠加4次,所得结果为12。
除法是指将一个数分成若干等份的运算,通常使用符号“÷”或“/”来表示。
例如,12 ÷ 4 = 3,表示将12分成4份,每份为3。
除法可以理解为乘法的逆运算,即通过已知的乘积和被乘数,求解出乘数。
例如,在已知乘积为12的情况下,如果被乘数为4,则可通过除法求得乘数为3。
二、乘法与除法的基本性质乘法与除法具有一些基本性质,这些性质对于进行运算和解题非常重要。
1. 乘法交换律:a × b = b × a。
这意味着两个数相乘的结果不受乘法顺序的影响。
例如,3 × 4 = 4 × 3。
2. 乘法结合律:(a × b) × c = a × (b × c)。
这表示在连续进行多次乘法时,可以任意选择乘法的顺序,结果不变。
例如,(2 × 3) × 4 = 2 × (3 × 4)。
3. 乘法分配律:a × (b + c) = a × b + a × c。
这意味着乘法对加法具有分配作用。
例如,2 × (3 + 4) = 2 × 3 + 2 × 4。
4. 除法和乘法的逆运算:a ÷ b = c 可以表示为 a = b × c。
小学乘除法的运算技巧

小学乘除法的运算技巧在小学数学学习中,乘除法是非常重要的一部分内容,掌握乘除法的运算技巧对学生的数学发展至关重要。
本文将介绍一些小学乘除法的运算技巧,帮助学生更好地理解和应用这些概念。
一、乘法的运算技巧乘法的基本概念是将两个数相乘得到一个积。
在日常生活中,我们常常需要快速计算乘法,下面是一些乘法的运算技巧:1.乘法交换律:乘法满足交换律,即乘法算式中,两个数的顺序交换并不影响最后的结果。
例如,3 × 4 和 4 × 3 的结果都是12。
学生可以利用这个性质来简化计算,选择更容易计算的顺序。
2.乘法的倍数关系:当乘法中的一个数是10的倍数时,计算可以变得更简单。
例如,计算 7 × 10,可以直接在7的基础上向左移动一位,得到70。
3.乘法的因数关系:当乘法中的一个数是另一个数的因数时,计算也可以变得更简单。
例如,计算 6 × 8,可以先计算 6 × 4 得到24,再将结果乘以2,即可得到 48。
4.乘法的分配律:乘法满足分配律,即 a × (b + c) = a × b + a × c。
学生可以利用这个性质将一个大的乘法问题拆解成两个小的乘法问题,简化计算。
例如,计算 5 × 8 + 5 × 2,可以先计算 5 × 8 得到40,再计算 5 × 2得到10,最后将两个结果相加,得到最终的答案50。
二、除法的运算技巧除法是乘法的逆运算,是将一个数分成多少份的操作。
下面是一些除法的运算技巧:1.除法的基本概念:除法是将被除数分成若干等份,每份的大小是除数。
学生在计算除法时,需要明确被除数、除数和商的概念。
2.除法的倍数关系:当被除数是除数的倍数时,计算结果是整数。
例如,计算 36 ÷ 6,由于 6 是 36 的倍数,所以结果是6。
3.除法的余数关系:当被除数不能整除除数时,会产生余数。
乘法与除法运算知识点总结

乘法与除法运算知识点总结乘法与除法是数学运算中常见且重要的部分。
它们在日常生活和学习中都有着广泛的应用。
本文将对乘法与除法运算的相关知识点进行总结,以帮助读者更好地理解和掌握这两种运算。
1. 乘法运算乘法是一种基本的数学运算,用于计算两个数的乘积。
乘法运算有以下几个重要的特性:1.1 交换律:两个数相乘,结果不受两个数位置的变换而变化。
例如:3 × 4 = 4 × 3。
1.2 结合律:三个或多个数相乘,其结果不受计算的顺序而变化。
例如:(2 × 3) × 4 = 2 × (3 × 4)。
1.3 零乘法则:任何数与0相乘,结果都是0。
例如:5 × 0 = 0。
1.4 乘法分配律:一个数与多个数相加再相乘,等于这个数与每个数分别相乘后再相加。
例如:2 × (3 + 4) = (2 × 3) + (2 × 4)。
此外,乘法还有一些特殊的运算法则:1.5 幂次法则:当一个数乘以自身多次时,可以用乘法指数的方式来简化运算。
例如:2^3 = 2 × 2 × 2。
1.6 负数乘法法则:两个正数或两个负数相乘,结果是正数;一个正数与一个负数相乘,结果是负数。
例如:(-2) × (-3) = 6,(-2) × 3 = -6。
2. 除法运算除法是乘法的逆运算,用于计算一个数被另一个数除的结果。
除法运算也有一些重要的特性:2.1 除法定义:除数不能为0,否则除法运算没有意义。
2.2 除法的基本性质:对于两个非零数a和b,a除以b的结果可以表示为a/b或者a÷b。
2.3 乘除法逆运算:如果a/b=c,那么c乘以b等于a。
例如:12/4=3,3×4=12。
2.4 除法分配律:一个数除以两个数的和,等于该数分别除以两个数后的商的和。
例如:10 / (4 + 2) = (10 / 4) + (10 / 2)。
乘除法运算律和性质

• 3.乘、除法混合运算的性质
• (1)在乘、除混合运算中,被乘数、乘 数或除数可以连同运算符号一起交换 位置。例如,
• a×b÷c=a÷c×b=b÷c×a。
• (2)在乘、除混合运算中,去掉或添加 括号的规则去括号情形:
• 括号前是“×”时,去括号后,括 号内的乘、除符号不变。即
• a×(b×c)=a×b×c, • a×(b÷c)=a×b÷c。
• 我们在第1讲中介绍了加、减法的 运算律和性质,利用它们可以简化一 些加、减法算式的计算。本讲将介绍 在巧算中常用的一些乘、除法的运算 律和性质,其目的也是使一些乘、除 法计算得到简化。
• 1.乘法的运算律 • 乘法交换律:两个数相乘,交换
两个数的位置,其积不变。即
• a×b=b×a。 • 其中,a,b为任意数。 • 例如,35×120=120×35=4200。
• (3)两个数之积除以两个数之积,可以 分别相除后再相乘。即
• 乘法结合律:三个数相乘,可以 先把前两个数相乘后,再与后一个数 相乘,或先把后两个数相乘后,再与 前一个数相乘,积不变。即
• a×b×c=(a×b)×c=a×(b×c)。
• 注意:
• (1)这两个运算律中数的个数可以推广 到更多个的情形。即多个数连乘中, 可以任意交换其中各数的位置,积不 变;多个数连乘中,可以任意先把几 个数结合起来相乘后,再与其它数相 乘,积不变。
• 括号前是“÷”时,去括号后,括 号内的“×”变为“÷”,“÷”变为 “×”。即
• a÷(b×c)=a÷b÷c,
• a÷(b÷c)=a÷b×c。
• 添加括号情形:
• 加括号时,括号前是“×”时,原 符号不变;括号前是“÷”时,原符号 “×”变为“÷”,“÷”变为“×”。 即
乘法除法知识点总结

乘法除法知识点总结一、乘法的基本概念1、乘法的定义乘法是一种数运算法则,用来将两个或多个数相乘得到一个新的数。
在乘法运算中,被乘数是被乘的数,乘数是进行乘法运算的数,而积是乘法运算的结果。
乘法的符号通常是“×”或者“·”,也可以使用括号“()”来表示乘法运算。
2、乘法的性质(1)乘法交换律:乘法运算中,乘数的顺序不影响乘积的大小。
例如:2×3=3×2(2)乘法结合律:乘法运算中,多个数相乘的顺序可以改变,得到的积不变。
例如:(2×3)×4=2×(3×4)(3)乘法分配律:乘法运算中,如果一个数与多个数的和相乘,等于这个数与每个数分别相乘后的和。
例如:2×(3+4)=2×3+2×43、乘法的特殊性质(1)乘以1:任何数乘以1的乘积都等于它本身。
例如:3×1=3(2)乘以0:任何数乘以0的乘积都等于0。
例如:5×0=0(3)乘法的分解:将一个数分解成几个因数相乘的形式,这种分解称为乘法的分解。
二、除法的基本概念1、除法的定义除法是一种数运算法则,用来将一个数分成若干等分或者确定一个数是另一个数的几倍的运算法则。
在除法运算中,被除数是要分成若干等分的数,除数是用来分被除数的数,商是除法运算的结果,余数是被除数除以除数所得的余数。
除法的符号通常是“÷”或者使用分数形式表示。
2、除法的性质(1)除法的性质和乘法的性质有一定的联系,比如在乘法交换律的基础上可以推导出除法的乘法,即a÷b=c,则c×b=a。
(2)余数的性质:当被除数除以除数,如果有余数的话,余数一定小于除数。
(3)除数为0时,没有意义:任何数除以0都没有意义,因为0没有确定的数与之相乘等于任何非零数。
3、除法的特殊性质(1)被除数等于除数时,商是1:任何数除以它本身的商都等于1。
例如:5÷5=1(2)除以1等于被除数:任何数除以1的商都等于它本身。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘除法的运算性质
1.整数乘法的法则:
(1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐;
(2)然后把几次乘得的数加起来。
(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。
)2.整数除法的法则:
(1)从被除数的商位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;
(2)除到被除数的哪一位,就在那一位上面写上商;
(3)每次除后余下的数必须比除数小。
3.运算律:
运算定律:
名称举例用字母表示
加法交换律 1+3=3+1 a+b=b+a
加法结合律 (1+3)+7=1+(3+7) (a+b)+c=a+(b+c)
乘法交换律3×5=5×3 a×b=b×a
乘法结合律(3×4)×25=3×(4×25)(a×b)×c=a×(b×c)
乘法分配律(4+8)×5=4×5+8×5 (a+b)×c=a×c+b×c
分数除法的运算法则
分数除法法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
分数乘除法的运算法则
分数乘整数,用分数的分子和整数相乘的积做分子,分母不变
分数乘分数,用分子相乘的积做分子,分母相乘的积做分母,能约分的要约分
分数除以一个数,等于乘这个数的倒数
其他4条回答
两个分数相乘,分母和分母相乘作为积的分母,分子和分子相乘做为积的分子
两个分数相除,等于乘以除数的倒数,再按照乘法法则来做
注意,不要忘记约分,化为最简结果
除法的运算性质主要有以下几条:
(1)在无括号的乘除混合或连除的算式中,改变运算顺序,结果不变。
例如:(1)36×7÷4=36÷4×7 (2)36÷9÷2=36÷2÷9
一般地,a×b÷c=a÷c×b(a能被c整除)
a÷b÷c=a÷c÷b(a能被bc整除)
这条性质也适用于含有三个以上的数的算式。
例如:37×45×11÷15=37×45÷15×11。
应用这条性质进行计算时,要注意整除的条件,就是使变化后的算式中的除法能够整除。
例如:40×9÷18×7,可以变成40×9×7÷18,而不能变成40÷18×9×7,因为40不能被18整除。
(2)一个数乘以两个数的商,等于这个数乘以商中的被除数,再除以商中的除数。
这条性质可以简称为“数乘以商的性质”。
例如:(1)2×(75÷15)=2×75÷15(2)90×(27÷9)=90÷9×27
一般地,a×(b÷c)=a×b÷c
a×(b÷c)=a÷c×b(b和a分别能被c整除).
(3)一个数除以两个数的积,等于这个数依次除以积的两个因数。
这条性质也可以简称为“数除以积的性质”。
例如:(1)105÷(7×3)=105÷7÷3 (2)330÷(5×11)=330÷5÷11
一般地,a÷(b×c)=a÷b÷c
这条性质也可以推广为:一个数除以几个数的积,等于这个数依次除以积的每个因数。
例如:840÷(7×3×4)=840÷7÷3÷4
一般地,a÷(b×c×d)=a÷b÷c÷d
(4)一个数除以两个数的商,等于这个数先除以商中的被除数,再乘以商中的除数。
或者这个数先乘以商中的除数,再除以商中的被除数。
这条性质也可以简称为“数除以商的性质”。
例如:(1)63÷(9÷3)=63÷9×3(2)63÷(9÷3)=63×3÷9
一般地,a÷(b÷c)=a÷b×c(a能被b整除)
a÷(b÷c)=a×c÷b(a能被b整除)
(5)两个数的和除以一个数,等于和里的两个加数分别除以这个数(在都能被整除的条件下),再把所得的商加起来。
这条性质可以推广到若干个数的和除以一个数的情况。
这条性质也可以简称为“和除以数的性质”。
例如:(77+66)÷11=77÷11+66÷11
一般地,(a+b)÷c=a÷c+b÷c(a和b分别能被c整除)
又如:(72+54+36+18)÷9=72÷9+54÷9+36÷9+18÷9
一般地,(a l+a2+……+an)÷b=a1÷b+a2÷b+……+a n÷b(a1、a2、……、a n分别能被b 整除)
(6)两个数的差除以一个数,等于被减数和减数分别除以这个数(在都能被整除的条件下),然后把所得的商相减。
这条性质也可以简称为“差除以数的性质”。
例如:(72-40)÷8=72÷8—40÷8
一般地,(a—b)÷c=a÷c—b÷c(a和b分别能被c整除)
减法有如下运算性质:
1.某数减去一个数,再加上同一个数,某数不变.即(a-b)+b=a
2.某数加上一个数,再减去同一个数,某数不变,即(a + b)-b=a
3.n个数的和减去一个数,可以从任何一个加数里减去这个数(在能减的情况下),再同其余的加数相加,如(a+b+c)-d=(a-d)+b+c.
4.
一个数减去n个数的和,可以从这个数里依次减去和里的每个加数,如a-(b+c+d)=a-b-c -d
5.一个数减去两个数的差,可以从这个数里减去差里的被减数(在能减的情况下),再加上差里的减数;或者先加上差里的减数,再减去差里的被减数,即a-(b-c)=a-b+c或者a-(b-c)=a+c-b
除法的运算性质练习
(1)36×7÷4=(2)36÷9÷2=
(1)2×(75÷15)=(2)90×(27÷9)=
(1)105÷(7×3)= (2)330÷(5×11)=
840÷(7×3×4)=
(1)63÷(9÷3)= (2)63÷(9÷3)=
(77+66)÷11=
(72+54+36+18)÷9=
(72-40)÷8=
减法有如下运算性质练习
1000-576-24=1000-(576+24)
760-78-22 864-36-64 149-(49+53)
(1) 986-42-58=986-(42 )
(2) l200-37-163= (37+163)
463-(263+58)
-----精心整理,希望对您有所帮助!。