数学教案的运用完全平方公式法

合集下载

数学《完全平方公式》教案

数学《完全平方公式》教案

数学《完全平方公式》教案【教学目标】1. 理解并掌握完全平方公式。

2. 能够运用完全平方公式解决相关问题。

【教学内容】1. 什么是完全平方数?2. 完全平方公式的概念、公式及运用。

3. 题目练习。

【教学步骤】Step1. 导入以单项式 x^2+6x+9 为例,提出 x^2 及 9 这两项,请同学们思考这两项之间是否有什么关系。

Step2. 概念讲解1. 完全平方数的概念:一个数的平方根是整数,就称这个数为完全平方数。

例如,1, 4, 9, 16, 25, 36, \cdots 都是完全平方数。

2. 完全平方公式的概念:将某个一元二次多项式改写为平方形式,这个改写的方法叫做完全平方公式。

举例说明,对于公式 a^2 + 2ab + b^2,如果将 a 与 b 这两个未知数看作相同的数,那么就可以写成 (a+b)^2,这种分解方法就叫做完全平方公式。

Step3. 公式讲解(1)公式:(a+b)^2=a^2+2ab+b^2(2)例题讲解例1:使用完全平方公式化简 x^2+8x+16。

解:我们可以将x^2+8x+16化成 (x+4)^2 的形式,逐步证明如下:\begin{aligned}x^2+8x+16 &= x^2+2(4)(x) + 4^2 \\&= (x+4)^2\end{aligned}因此, x^2+8x+16 可以化简为 (x+4)^2。

Step4. 练习1. 化简 y^2 + 6y + 9。

答:(y+3)^22. 化简 2a^2 + 8ab + 8b^2。

答:2(a+2b)^23. 化简 9s^2 + 12st + 4t^2。

答:(3s+2t)^2【教学反思】通过以上教学,同学们应该能够了解到完全平方数及完全平方公式的概念、公式及运用方法。

针对单项式及多项式的例题,有的可以结合化简方法,有的可以结合分解方法,这些方法的练习及巩固,有其相应的难度,同学们可以根据实际情况来选择合适的练习题目。

完全平方公式教案【优秀3篇】

完全平方公式教案【优秀3篇】

完全平方公式教案【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!完全平方公式教案【优秀3篇】作为一名教师,时常要开展教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

《完全平方公式》教案

《完全平方公式》教案

《完全平方公式》教案第一章:引言1.1 教学目标让学生了解完全平方公式的概念和意义。

引导学生通过实际例子发现完全平方公式的规律。

1.2 教学内容完全平方公式的定义和表达式。

完全平方公式的推导和证明。

1.3 教学方法使用图表和动画辅助学生理解和记忆完全平方公式。

1.4 教学评估设计一些练习题,让学生应用完全平方公式进行计算。

观察学生在练习中的表现,及时给予指导和帮助。

第二章:完全平方公式的推导和证明2.1 教学目标让学生理解完全平方公式的推导过程。

引导学生通过证明理解完全平方公式的正确性。

2.2 教学内容完全平方公式的推导方法。

完全平方公式的证明过程。

2.3 教学方法使用图表和动画演示完全平方公式的推导过程。

引导学生通过逻辑推理和数学证明理解完全平方公式的正确性。

2.4 教学评估设计一些证明题,让学生运用完全平方公式进行证明。

观察学生在证明过程中的思路和推理是否清晰。

第三章:完全平方公式的应用3.1 教学目标让学生能够运用完全平方公式解决实际问题。

引导学生通过完全平方公式简化计算过程。

3.2 教学内容完全平方公式在实际问题中的应用。

完全平方公式在简化计算过程中的作用。

3.3 教学方法通过实际例子引导学生运用完全平方公式解决问题。

使用图表和动画演示完全平方公式在计算过程中的应用。

3.4 教学评估设计一些应用题,让学生运用完全平方公式进行计算和解决问题。

观察学生在解题过程中的思路和计算是否准确。

第四章:完全平方公式的扩展4.1 教学目标让学生了解完全平方公式的扩展形式。

引导学生通过完全平方公式的扩展形式解决更复杂的问题。

4.2 教学内容完全平方公式的扩展形式。

完全平方公式的扩展形式在解决问题中的应用。

4.3 教学方法通过实际例子引导学生了解完全平方公式的扩展形式。

使用图表和动画演示完全平方公式的扩展形式在解决问题中的应用。

4.4 教学评估设计一些扩展题,让学生运用完全平方公式的扩展形式进行计算和解决问题。

《完全平方公式》教案

《完全平方公式》教案

《完全平方公式》教案
一、教学目标
1. 知识与技能:掌握完全平方公式的推导过程和结构特点,能够运用完全平方公式进行整式的乘法运算。

2. 过程与方法:通过观察、分析、归纳等方法,提高学生的数学思维能力和运算能力。

3. 情感态度价值观:培养学生的数学兴趣,增强学生的自信心。

二、教学重难点
1. 教学重点:完全平方公式的推导过程和结构特点。

2. 教学难点:运用完全平方公式进行整式的乘法运算。

三、教学方法
讲授法、演示法、练习法
四、教学过程
1. 导入:复习平方差公式,通过计算(a+b)(a-b)=a^2-b^2,引出今天的课题《完全平方公式》。

2. 知识讲解:讲解完全平方公式的推导过程和结构特点。

(1) 推导过程:(a+b)^2=a^2+2ab+b^2
(2) 结构特点:左边是两个相同的二项式相乘,右边是一个三项式,其中两项是左边两项的平方和,第三项是左边两项的积的2 倍。

3. 练习环节:学生进行练习,教师进行个别指导。

4. 课堂总结:老师对本节课的内容进行总结,强调重点和难点。

5. 布置作业:让学生在课后完成一些练习题,以巩固所学的知识。

五、教学反思
通过本次教学,学生对完全平方公式的推导过程和结构特点有了更深入的理解,能够运用完全平方公式进行整式的乘法运算。

在教学过程中,学生的积极性和参与度较高,通过练习和指导,让他们更加主动地去思考和表达自己的观点。

不足之处是,由于时间限制,有些学生在练习过程中还需要更多的指导和练习,需要在今后的教学中加以改进。

《完全平方公式》教案【通用七篇】

《完全平方公式》教案【通用七篇】

《完全平方公式》教案【通用七篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、致辞讲话、短语口号、心得感想、条据书信、合同协议、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as summary reports, speeches, phrases and slogans, thoughts and feelings, evidence letters, contracts and agreements, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《完全平方公式》教案【通用七篇】《完全平方公式》教案篇1一、教学目标:经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2.并初步运用;难点是完全平方公式的运用。

初中数学《完全平方公式》教学设计范文(精选7篇)

初中数学《完全平方公式》教学设计范文(精选7篇)

初中数学《完全平方公式》教学设计初中数学《完全平方公式》教学设计范文(精选7篇)作为一名教师,编写教学设计是必不可少的,借助教学设计可以提高教学效率和教学质量。

那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的初中数学《完全平方公式》教学设计范文,欢迎阅读,希望大家能够喜欢。

初中数学《完全平方公式》教学设计篇1学习目标:1、经历探索完全平方公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。

2、会推导完全平方公式,了解公式的几何背景,会用公式计算。

3、数形结合的数学思想和方法。

学习重点:会推导完全平方公式,并能运用公式进行简单的计算。

学习难点:掌握完全平方公式的结构特征,理解公式中a、b的广泛含义。

学习过程:一、学习准备1、利用多项式乘以多项式计算:(a+b)2 (a—b)22、这两个特殊形式的多项式乘法结果称为完全平方公式。

尝试用自己的语言叙述完全平方公式:3、完全平方公式的几何意义:阅读课本64页,完成填空。

4、完全平方公式的结构特征:(a+b)2=a2+2ab+b2(a—b)2=a2—2ab+b2左边是形式,右边有三项,其中两项是形式,另一项是()注意:公式中字母的含义广泛,可以是,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□±△)=□2±2□△+△25、两个完全平方公式的转化:(a—b)2= 2=()2+2()+()2=()二、合作探究1、利用乘法公式计算:(3a+2b)2 (2)(—4x2—1)2分析:要分清题目中哪个式子相当于公式中的a ,哪个式子相当于公式中的b2、利用乘法公式计算:992 (2)()2分析:要利用完全平方公式,需具备完全平方公式的结构,所以992可以转化()2,()2可以转化为()2。

3、利用完全平方公式计算:(a+b+c)2 (2)(a—b)3三、学习对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?四、自我测试1、下列计算是否正确,若不正确,请订正;(1)(—1+3a)2=9a2—6a+1(2)(3x2—)2=9x4—(3)(xy+4)2=x2y2+16(4)(a2b—2)2=a2b2—2a2b+42、利用乘法公式计算:(1)(3x+1)2(2)(a—3b)2(3)(—2x+ )2(4)(—3m—4n)23、利用乘法公式计算:99924、先化简,再求值;( m—3n)2—( m+3n)2+2,其中m=2,n=3五、思维拓展1、如果x2—kx+81是一个完全平方公式,则k的值是()2、多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是()3、已知(x+y)2=9,(x—y)2=5 ,求xy的值4、x+y=4 ,x—y=10 ,那么xy=()5、已知x— =4,则x2+ =()初中数学《完全平方公式》教学设计篇2一、教材分析:(一)教材的地位与作用本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。

初中数学完全平方公式教案范文

初中数学完全平方公式教案范文

初中数学完全平方公式教案范文一、教学目标1.理解完全平方公式的含义和作用;2.掌握完全平方公式的求值方法;3.运用完全平方公式解决实际问题;4.培养学生对数学问题的分析和解决能力。

二、教学重点1.理解完全平方的概念;2.掌握完全平方公式的应用;3.运用完全平方公式解决实际问题。

三、教学难点1.运用完全平方公式解决实际问题。

四、教学过程1.导入新课教师出示一个边长为x的正方形,并称其面积为A。

请学生以最简洁的方式表示出A的面积。

引导学生发现正方形的面积可以用x^2来表示,即A=x^2、然后教师出示一个边长为(a+b)的正方形,并告诉学生这个正方形的面积为多少。

引导学生用(x+y)^2中的x和y代替a和b,推测出(a+b)^2可以表示成什么样的式子。

教师引导学生发现(a+b)^2=a^2+2ab+b^2,并告诉学生这个公式叫做完全平方公式。

2.讲授完全平方公式的应用教师通过具体的例子讲解完全平方公式的运用,如求(3+4)^2,学生将该式子应用完全平方公式计算出结果,并进行验证。

教师再给学生提供一些类似的练习题,巩固他们对完全平方公式的运用。

3.解决实际问题教师给学生提供一些实际问题,如求一个长方形的面积,已知长和宽之和为x,宽为y。

学生根据题目中的条件,利用完全平方公式来求解。

4.拓展思考教师引导学生思考完全平方公式的推广和拓展,如(a-b)^2的展开式、(a+b)(a-b)的展开式等。

然后给学生提供相应的练习题,让学生运用所学知识解答。

五、课堂小结教师对本节课的内容进行总结,并提醒学生复习完全平方公式的应用方法和注意事项。

六、课后作业1.完成课堂练习题;2.准备下节课的知识预习。

七、教学反思通过本节课的教学,学生能够理解完全平方公式的含义和作用,能够运用完全平方公式解决实际问题。

同时,通过课堂实践和思考,学生的数学思维和解决问题的能力得到了培养和提高。

在今后的教学中,可以进一步拓展与完全平方公式相关的知识,丰富教学内容,提高学生的综合应用能力。

八年级数学完全平方公式教案

八年级数学完全平方公式教案

一、教学目标:1. 让学生掌握完全平方公式的推导过程和应用。

2. 培养学生运用完全平方公式解决实际问题的能力。

3. 提高学生的数学思维能力和运算能力。

二、教学内容:1. 完全平方公式的推导。

2. 完全平方公式的应用。

三、教学重点:1. 完全平方公式的推导过程。

2. 完全平方公式的应用。

四、教学难点:1. 完全平方公式的灵活运用。

2. 解决实际问题时,如何运用完全平方公式。

五、教学方法:1. 采用讲解法,引导学生理解完全平方公式的推导过程。

2. 采用例题解析法,让学生掌握完全平方公式的应用。

3. 采用练习法,提高学生的实际应用能力。

4. 采用小组讨论法,培养学生的合作意识和解决问题的能力。

教案内容:一、导入(5分钟)1. 复习平方差公式:a^2 b^2 = (a + b)(a b)2. 引导学生思考:如何得到一个数的平方的平方?二、新课讲解(15分钟)1. 讲解完全平方公式的推导过程:a^2 + 2ab + b^2 = (a + b)^22. 解释完全平方公式的含义:一个数的平方的平方,等于这个数加上它的一半乘以2倍的乘积。

三、例题解析(10分钟)1. 例题1:求(3x + 4)^2解答:3x^2 + 24x + 162. 例题2:求(2y 5)^2解答:4y^2 20y + 25四、课堂练习(10分钟)1. 练习1:求(x + 2)^22. 练习2:求(3y 4)^2五、课后作业(课后自主完成)1. 求(2x 3)^22. 求(5y + 2)^2六、课堂小结(5分钟)1. 回顾本节课所学的内容:完全平方公式的推导和应用。

2. 强调完全平方公式的灵活运用。

1. 学生对本节课内容的掌握程度。

2. 教学方法是否恰当,有何改进意见。

3. 针对不同学生的学习情况,提出针对性的辅导建议。

六、教学拓展:1. 引导学生思考:完全平方公式在实际问题中的应用。

2. 举例说明完全平方公式在几何、物理等学科中的应用。

七、课堂练习:1. 练习1:一个长方形的长是a+b,宽是a-b,求长方形的面积。

《完全平方公式》教案

《完全平方公式》教案

《完全平方公式》教案教案主题:完全平方公式的教学教学目标:1.理解完全平方的概念;2.掌握完全平方公式的运用;3.能够解决与完全平方公式相关的问题。

教学内容:1.完全平方的概念;2.完全平方公式的推导与运用;3.完全平方公式的应用。

教学步骤:一、导入(10分钟)1.引导学生回忆平方根的概念,并通过例子解释完全平方的概念。

2.提问:什么是完全平方?请举例说明。

二、概念讲解(15分钟)1.介绍完全平方公式的概念和用途。

2.解释完全平方公式的推导过程,通过几个例子说明。

三、公式推导(20分钟)1.运用代数运算的基础知识,推导完全平方公式。

2.解释推导过程中的每一步骤和思路,确保学生理解。

四、公式运用(20分钟)1.通过例题演示完全平方公式的运用。

2.引导学生思考并解答完全平方公式相关的问题。

五、练习与巩固(15分钟)1.分发练习题,让学生独立完成。

2.收集学生的答案,并进行讲解和讨论。

六、拓展与应用(15分钟)1.提供一些拓展问题,让学生运用完全平方公式解决实际问题。

2.引导学生思考其他与完全平方公式相关的数学问题。

七、小结与反思(10分钟)1.回顾本节课的主要内容和学习收获。

2.引导学生思考和总结完全平方公式的重要性和应用价值。

教学资源:1.幻灯片或黑板;2.教材和练习题。

教学评估:1.教师观察学生在课堂上的参与和回答问题的表现;2.课后布置练习题,检查学生对完全平方公式的掌握程度;3.对学生的作业进行批改和评价。

教学反思:本节课通过引导学生回忆和理解平方根的概念,引出了完全平方的概念,并通过推导完全平方公式的过程,让学生理解完全平方公式的运用。

教学过程中,教师使用了多种教学方法,例如提问、讲解、演示等,以提高学生的学习兴趣和参与度。

通过课堂练习和拓展问题,学生能够更好地巩固和应用所学的知识。

在教学评估中,可以及时发现学生的问题和困难,以便进行针对性的辅导和指导。

整体来说,本节课的教学效果良好。

初中完全平方公式教案

初中完全平方公式教案

初中完全平方公式教案一、教学目标:1. 让学生掌握完全平方公式的推导过程和应用。

2. 培养学生运用完全平方公式解决实际问题的能力。

3. 提高学生对数学知识的兴趣和积极性。

二、教学内容:1. 完全平方公式的推导。

2. 完全平方公式的应用。

3. 完全平方公式的拓展。

三、教学重点与难点:1. 完全平方公式的推导过程。

2. 完全平方公式的灵活运用。

四、教学过程:1. 导入:利用多媒体展示一个正方形,让学生观察并思考如何求得这个正方形的面积。

引导学生回顾平方公式,为新课的学习做好铺垫。

2. 新课讲解:a) 完全平方公式的推导:通过示例,讲解完全平方公式的推导过程,让学生理解并掌握完全平方公式的来源。

例如:(a+b)² = a² + 2ab + b²b) 完全平方公式的应用:讲解如何运用完全平方公式解决实际问题,例如:求解完全平方方程、估算无理数的大小等。

c) 完全平方公式的拓展:介绍完全平方公式的拓展知识,如:完全平方数、完全平方根等。

3. 课堂练习:设计一些练习题,让学生运用完全平方公式解决问题,巩固所学知识。

4. 总结与反思:让学生总结本节课所学的内容,反思自己在学习过程中的优点和不足,为今后的学习做好准备。

五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 课后作业:检查学生完成的课后作业,评估学生对完全平方公式的掌握程度。

3. 单元测试:通过单元测试,了解学生在段时间内对完全平方公式的运用能力。

六、教学策略:1. 采用直观演示法,让学生通过观察、实践,理解完全平方公式的推导过程。

2. 运用实例讲解法,让学生学会如何运用完全平方公式解决实际问题。

3. 设计多样化的练习题,激发学生的学习兴趣,提高学生的动手能力。

4. 鼓励学生积极参与课堂讨论,培养学生的合作意识。

5. 注重个体差异,给予每个学生充分的关注和指导,使他们在课堂上都能有所收获。

人教版八年级数学上册(教案).2.2完全平方公式

人教版八年级数学上册(教案).2.2完全平方公式
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《完全平方公式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或解决速度问题时,发现可以使用简单的数学公式来快速解答?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索完全平方公式的奥秘。
然而,我也发现了一些需要改进的地方。在新课讲授中,我应该更加注重对学生的引导,而不是单一的知识传授。特别是在讲解重点难点时,我应该鼓励学生主动提问和思考,而不是被动接受信息。这样,他们才能更深刻地理解和内化知识。
在小组讨论环节,我观察到学生们在交流和应用完全平方公式解决实际问题时存在一些障碍。这可能是因为我对问题的引导不够明确,或者是学生对公式的掌握还不够熟练。在未来的教学中,我需要设计更多具有针对性的问题和练习,帮助学生更好地将理论应用于实践。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了完全平方公式的推导、记忆方法和在实际问题中的应用。通过实践活动和小组讨论,我们加深了对完全平方公式的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问进行多项式的乘法运算,以及如何分解因式。
-实际问题中的应用:培养学生将完全平方公式应用于解决实际问题,如计算矩形面积、求解速度问题等。
举例:
-重点强调在多项式乘法中,如何识别并应用完全平方公式,如计算(x+3)²时,引导学生使用完全平方公式而非死记硬背。

完全平方公式教案设计

完全平方公式教案设计

完全平方公式是小学数学中一个重要的知识点,也是解决二次方程的一个关键方法之一。

因此,在小学数学教学中,教师需要对完全平方公式进行深入浅出的讲解,使学生能够掌握这个知识点,为以后的数学学习打下坚实的基础。

本篇文章将从以下几个方面来讲解完全平方公式教案设计:一、教材分析完全平方公式是小学数学中的一个重要知识点,通常出现在六年级下学期数学教材中。

总体而言,这个知识点分为两个部分:一是完全平方公式的公式说明,二是应用完全平方公式解题。

在公式说明部分,教材通常会给出完全平方公式的具体形式,即(a+b)^2=a^2+2ab+b^2。

同时还会通过例题的形式,让学生模仿计算、比较东西数量等概念,进一步理解完全平方公式的具体应用。

在应用完全平方公式解题的部分,教材通常会以一些常见的数学问题为例,让学生通过运用完全平方公式来解决这些问题,帮助学生更好地掌握这个知识点。

二、教学目标1、知识目标:掌握完全平方公式的定义和公式推导过程,能够准确使用完全平方公式进行数学计算。

2、能力目标:培养学生分析问题、解决问题的能力,提高学生的逻辑思维能力和计算能力。

3、情感目标:激发学生对数学学习的兴趣和热情,培养学生自主学习的能力,提高学生的自信心和自主意识。

三、教学重点和难点1、教学重点:精讲完全平方公式的定义和公式推导过程,帮助学生深刻理解完全平方公式的具体应用;2、教学难点:帮助学生分析和解决更复杂的数学问题,以培养学生的数学思维能力。

四、教学方法1、启发式教学法:通过问答、引导、启示等方法,帮助学生发现问题和解决问题的方法,培养学生的探究精神和创造能力。

2、案例教学法:通过实际案例,帮助学生更加深入地理解完全平方公式的应用,并能够在实际问题中进行运用。

3、问题解决法:帮助学生分析问题解决方法,从而培养学生思考问题、解决问题的能力。

五、教学过程1、导入环节:结合实际问题引导学生发现完全平方公式的应用(例如:一个方形花坛周长为32米,求出它的面积),让学生在实际问题中理解完全平方公式的原理。

完全平方公式与平方差公式教案

完全平方公式与平方差公式教案

完全平方公式与平方差公式教案一、教学目标:1. 让学生掌握完全平方公式和平方差公式的概念及运用。

2. 培养学生运用公式解决实际问题的能力。

3. 引导学生发现数学规律,提高学生的数学思维能力。

二、教学内容:1. 完全平方公式:(a±b)²= a²±2ab+b²2. 平方差公式:(a±b)(a∓b) = a²±b²三、教学重点与难点:1. 教学重点:完全平方公式和平方差公式的记忆与运用。

2. 教学难点:完全平方公式和平方差公式的推导过程。

四、教学方法:1. 采用讲解法,引导学生理解完全平方公式和平方差公式的含义。

2. 运用例题,让学生通过实践掌握公式的运用。

3. 组织小组讨论,培养学生合作学习的能力。

五、教学步骤:1. 导入新课:通过复习平方根的概念,引导学生进入平方公式的学习。

2. 讲解完全平方公式:讲解完全平方公式的推导过程,让学生理解公式的含义。

3. 讲解平方差公式:讲解平方差公式的推导过程,让学生理解公式的含义。

4. 例题讲解:运用例题,让学生掌握公式的运用。

5. 课堂练习:布置练习题,让学生巩固所学知识。

6. 总结与拓展:总结完全平方公式和平方差公式的运用,引导学生发现数学规律,提高学生的数学思维能力。

7. 课后作业:布置课后作业,巩固所学知识。

六、教学评估:1. 课堂练习环节,观察学生对完全平方公式和平方差公式的掌握情况。

2. 通过课后作业的完成情况,评估学生对课堂所学知识的巩固程度。

3. 组织小型测验,检验学生对完全平方公式和平方差公式的运用能力。

七、教学反馈:1. 根据学生的课堂表现和作业完成情况,及时给予反馈,指出学生的优点和不足。

2. 对学生在学习中遇到的问题,进行个别辅导,帮助他们解决问题。

3. 鼓励学生在课堂上积极提问,解答他们的疑问。

八、教学调整:1. 根据学生的学习情况,调整教学进度和教学方法。

教案设计:完全平方公式的讲解及实践操作

教案设计:完全平方公式的讲解及实践操作

教案设计:完全平方公式的讲解及实践操作一、教材分析在初一数学中的代数基础中,学习到了完全平方公式的概念,完全平方公式是代数式中的重要内容,使得学生们能够更好地解决数学问题。

因此,在学习完完全平方公式的定义后,我们需要详细讲解其应用,使学生们能够理解和掌握完全平方公式的用途,并且通过实践操作加深理解。

二、教学目标1.学生能够熟练掌握完全平方公式的定义及其应用方法。

2.学生能够通过实践操作解决与完全平方公式相关的数学问题。

3.提高学生的数学思维能力,培养学生自主学习的能力。

三、教学过程Step 1:导入新知用多媒体工具呈现完全平方公式的定义和公式式样,同时结合实际生活中的例子进行解释,让学生对完全平方公式有一个直观的理解。

Step 2:讲解完全平方公式的用途简单介绍完全平方公式的利用,并提出与完全平方公式相关的问题,引导学生思考。

Step 3:讲解如何使用完全平方公式详细讲解如何使用完全平方公式求解数学问题,例如对于已知a+b和a-b,如何求得(a+b)²和(a-b)²。

Step 4:案例分析选取一些实用性强的数学例题,让学生进行自主分析和讨论,引导学生掌握运用完全平方公式的思维方法。

Step 5:群体讨论与分享邀请同学分享自己的解题思路,通过讨论和分享的过程,巩固所学知识点,提高学生的思维能力。

Step 6:实践操作让学生在老师的指导下,进行实践操作,例如对于(x+3)²,怎样才能得出正确答案,通过实践巩固所学知识。

四、教学辅导1.提供相关课本、参考书籍、网站等资源供学生学习。

2.针对学生可能出现的问题,讲解详细的解题方法,让学生掌握正确的解题思路。

五、教学评估1.通过课堂讨论、作业的批改等方式进行课后评估。

2.定期考试或者小测验进行学生的掌握程度评估。

六、教学反思通过以上教学过程,学生们能够掌握完全平方公式的定义、用途、解题方法,并通过课后实践巩固所学知识,提高了学生的自主学习能力。

完全平方公式教学设计

完全平方公式教学设计

完全平方公式教学设计教学目标:1.理解完全平方公式的概念和原理。

2.能够运用完全平方公式进行数学计算。

3.培养学生的数学思维能力和解决问题的能力。

教学重点:1.完全平方公式的概念和原理。

2.完全平方公式在数学计算中的应用。

教学难点:1.如何通过完全平方公式解决实际问题。

2.如何灵活运用完全平方公式。

教学过程:导入(10分钟):引导学生回忆一下平方数的概念和如何求一个数的平方根。

然后通过问题引入完全平方公式。

例如,给出一个长方形的面积和宽度,让学生思考如何求解长度。

教学内容(30分钟):1.完全平方公式的概念和原理:- 完全平方公式指的是两个相同的数的乘积。

例如,(a+b)(a+b),其中a和b都是任意实数,这个式子可以展开为a^2+b^2+2ab。

-完全平方公式是二次方程的一种特殊形式,可以简化我们的计算过程。

2.完全平方公式的应用:-用于快速计算平方数:例如,25的平方等于(20+5)(20+5)=400+100+100+25=625-用于解决实际问题:例如,已知一个长方形的面积是36,问长度和宽度分别是多少?教学示范(15分钟):通过一些具体的题目示范完全平方公式的应用过程,引导学生掌握解题的思路和方法。

练习与巩固(20分钟):1.让学生自主完成一些完全平方公式的练习题,巩固掌握运用公式的能力。

2.设计一些拓展性的问题,让学生通过应用完全平方公式解决实际问题,培养他们的数学思维和解决问题的能力。

小结与延伸(10分钟):总结完全平方公式的概念和原理,强调公式的实际应用价值,并引导学生思考完全平方公式的延伸应用,如反向运用等。

教学资源:1.教师备课手册中的教学设计和教学示范。

2.学生的教材和练习册。

3.计算器和白板。

教学评价:1.课堂练习的表现:学生是否能够熟练应用完全平方公式解决问题。

2.参与讨论的表现:学生是否能够积极参与教学讨论,提出问题并解答问题。

3.课后作业的完成情况:学生是否能够按时完成课后作业,并正确运用完全平方公式解答问题。

数学教案完全平方公式

数学教案完全平方公式

数学教案完全平方公式一、教学目标1、知识与技能目标学生能够理解完全平方公式的结构特征。

熟练掌握完全平方公式,并能正确运用公式进行整式的乘法运算。

2、过程与方法目标通过对公式的推导和分析,培养学生的逻辑推理能力和抽象思维能力。

让学生经历从特殊到一般、再从一般到特殊的认识过程,体会转化的数学思想。

3、情感态度与价值观目标通过自主探究和合作交流,激发学生的学习兴趣,培养学生的创新精神和合作意识。

让学生在数学活动中体验成功的喜悦,增强学习数学的自信心。

二、教学重难点1、教学重点完全平方公式的推导和应用。

理解完全平方公式的结构特征,准确运用公式进行计算。

2、教学难点对完全平方公式中字母系数的广泛含义的理解和应用。

灵活运用完全平方公式进行简便运算。

三、教学方法讲授法、启发式教学法、练习法四、教学过程1、导入新课复习平方差公式:(a + b)(a b) = a² b²提出问题:如果两个相同的二项式相乘,结果会是怎样呢?比如(a + b)(a + b) 。

2、探索新知计算(a + b)(a + b)引导学生利用多项式乘法法则展开:(a + b)(a + b) = a²+ ab + ab + b²= a²+ 2ab + b²计算(a b)(a b)同样让学生展开计算:(a b)(a b) = a² ab ab + b²= a² 2ab + b²得出完全平方公式:(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²分析完全平方公式的结构特征:左边是一个二项式的平方。

右边是一个三项式,其中首末两项分别是二项式两项的平方,中间一项是二项式两项乘积的 2 倍。

3、例题讲解例 1:计算(2x + 3)²解:(2x + 3)²=(2x)²+ 2×(2x)×3 + 3²= 4x²+ 12x + 9例 2:计算(5 y)²解:(5 y)²= 5² 2×5×y + y²= 25 10y + y²4、课堂练习计算:(1)(x + 4)²(2)(3m 2)²(3)(-2a + 5b)²5、拓展提高计算:(1)(x + y + z)²(2)(a + 2b 3c)²6、课堂小结回顾完全平方公式及其结构特征。

完全平方公式:从基础到应用的初中数学教案

完全平方公式:从基础到应用的初中数学教案

完全平方公式: 从基础到应用的初中数学教案一、教学目标1、了解完全平方公式的定义和意义。

2、学会如何推导完全平方公式。

3、能够应用完全平方公式求解一些数学问题。

二、教学重难点重点:完全平方公式的定义和推导方法。

难点:如何应用完全平方公式解决实际问题。

三、教学准备1、课件:完全平方公式的定义和推导方法。

2、实物:若干可以用完全平方公式解决的实际问题。

四、教学过程第一节:引入1、教师向学生简单介绍一下什么是完全平方。

2、让学生自己尝试找出一个完全平方数。

3、教师引导学生讨论完全平方数的特点:完全平方数可以分解为两个相同的因数之积。

第二节:定义和推导1、详细讲解完全平方公式的定义:(a+b)²=a²+2ab+b²2、引导学生分析完全平方公式的意义及推导方法。

3、让学生自己举一些例子,并尝试证明完全平方公式的正确性。

第三节:应用1、教师引导学生根据完全平方公式解决以下问题:(1) 某个正方形的面积是25平方米,这个正方形的边长是多少?(2) 已知a=2,b=3,求(a+b)²。

(3) 某个长方形的面积是15平方米,长与宽的差是1米,求长和宽分别是多少米?2、学生通过讨论与实际数学问题结合的方式,练习应用完全平方公式。

第四节:总结1、教师引导学生回顾学习内容,提出问题,并指导学生总结重点。

2、教师让学生再一次尝试找出完全平方数。

五、作业布置根据课堂内容和习题集,完成本节课的作业。

六、教学反思通过本节课的讲解,学生对完全平方公式的概念和应用深入理解,并能够熟练运用完全平方公式解决一些数学问题。

本节课的唯一缺点可能是时间不够充分,如果有更多的时间,可以让学生进行更多的练习。

因式分解(完全平方公式)教案

因式分解(完全平方公式)教案

因式分解(完全平方公式)教案14.3.2因式分解(公式法)——完全平方公式》教案教学目标】一、知识技能:掌握完全平方式的特征,运用完全平方公式进行简单的因式分解。

二、过程方法:通过对完全平方公式的逆向变形进行分解,发展学生的观察、类比、归纳等能力,提高处理数学问题的技能。

三、情感态度:培养学生严谨的思维,激发学生求知的欲望与对数学的研究兴趣。

教学重难点】重点:运用完全平方式分解因式。

难点:识别一个多项式是否适合完全平方公式。

教学过程】一、复回顾:1.因式分解就是把多项式分解为几个整式的乘积的形式,如:2x²-x= x (2x-1)。

例子中的变形利用了我们上一节课所学的因式分解中的法则。

2.把下列的式子进行因式分解:1)4y + 8=4(y+2)(2)3a-ab=a(3-b)3)5b²-10b=5b(b-2)(4)2ab²-4a²b=2ab(ab-2a)二、探究新知一)完全平方式的概念:形如a²+2ab+b²、a²-2ab+b²这样的式子叫做完全平方式,例如:1)a²+4a+4=a²+2·a·2 + 2²2)a²+6a+9=a²+2·3a·3a+3²3)a²-10a+25=a²-2·5a·5a+5²4)a²+64-16a=a²-2·8a·8+a²跟踪练:判断下列各式是完全平方式吗?1)a²+b²不是完全平方式2)a²-4a +4 是完全平方式3)a²-ab +b²是完全平方式4)x²-6x-9 不是完全平方式5)x²+x+1 是完全平方式6)a²+16-8a 不是完全平方式完全平方式的特点:1、必须是三项式;2、有两个项的平方;3、有这两项的积的2倍。

数学教案-完全平方公式

数学教案-完全平方公式

数学教案-完全平方公式介绍完全平方公式是高中数学中重要的一个概念和方法,用于解决一元二次方程的问题。

它的应用范围广泛,掌握了完全平方公式可以帮助我们更好地理解和解决各种相关问题。

这个教案将介绍完全平方公式的概念、推导过程和一些常见的应用。

一、完全平方公式的概念完全平方公式是指将一个一元二次方程的解表示为一个完全平方的形式。

一元二次方程的一般形式为:ax^2 + bx + c = 0如果该方程有解,那么可以通过完全平方公式将其表示为:(ax + b/2a)^2 - (b^2 - 4ac)/4a^2 = 0其中,(ax + b/2a)^2是一个完全平方,(b^2 - 4ac)/4a^2是一个实数。

二、完全平方公式的推导过程完全平方公式的推导可以通过配方法来完成。

我们以一元二次方程ax^2 + bx + c = 0为例进行推导。

具体推导过程如下:1.将方程移到一边,使其等于零:ax^2 + bx + c = 0。

2.对方程两边同时除以a,得到x^2 + (b/a)x + c/a = 0。

3.将方程两边同时减去常数项c/a,得到x^2 + (b/a)x = -c/a。

4.在方程的两边同时加上 (b/(2a))^2,即(b/(2a))^2 + x^2 + (b/a)x = (b/(2a))^2 - c/a。

5.将左边的三项构造成一个完全平方,即(b/(2a) + x)^2 = (b^2 -4ac)/(4a^2)。

6.将方程两边同时开方,得到b/(2a) + x = ±sqrt((b^2 - 4ac)/(4a^2))。

7.移项得到x = (-b ± sqrt(b^2 - 4ac))/(2a),即一元二次方程的两个解。

可以看出,完全平方公式的推导过程是基于配方法进行的,通过构造一个完全平方来简化一元二次方程。

三、应用示例完全平方公式在解决实际问题时非常有用。

以下是一些常见的应用示例:1. 求解一元二次方程通过完全平方公式,我们可以轻松地求解任意一元二次方程的解。

数学《完全平方公式》教案

数学《完全平方公式》教案

•••••••••••••••••数学《完全平方公式》教案数学《完全平方公式》教案作为一名专为他人授业解惑的人民教师,时常需要用到教案,教案是实施教学的主要依据,有着至关重要的作用。

那么优秀的教案是什么样的呢?下面是小编为大家收集的数学《完全平方公式》教案,仅供参考,欢迎大家阅读。

数学《完全平方公式》教案1教学目标:1、经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。

2、体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。

3、了解完全平方公式的几何背景,培养学生的数形结合意识。

4、在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。

教学重点:1、弄清完全平方公式的来源及其结构特点,用自己的语言说明公式及其特点;2、会用完全平方公式进行运算。

教学难点:会用完全平方公式进行运算教学方法:探索讨论、归纳总结。

教学过程:一、回顾与思考活动内容:复习已学过的平方差公式1、平方差公式:(a+b)(a—b)=a2—b2;公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。

右边是两数的平方差。

2、应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。

二、情境引入活动内容:提出问题:一块边长为a米的正方形实验田,由于效益比较高,所以要扩大农田,将其边长增加b米,形成四块实验田,以种植不同的新品种(如图)。

用不同的形式表示实验田的总面积,并进行比较。

三、初识完全平方公式活动内容:1、通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。

并利用两数和的完全平方公式推导出两数差的完全平方公式:(a—b)2=a2—2ab+b2。

2、引导学生利用几何图形来验证两数差的完全平方公式。

3、分析完全平方公式的结构特点,并用语言来描述完全平方公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学教案的运用完全平方公式法
1。

使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;
2。

理解完全平方式的意义和特点,培养学生的判断能力。

3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.
4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。

1。

问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?
答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解。

我们学过的因式分解的方法有提取公因式法及运用平方差公式法。

2。

把下列各式分解因式:
(1)ax4-ax2 (2)16m4-n4。

解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)
(2) 16m4-n4=(4m2)2-(n2)2
=(4m2+n2)(4m2-n2)
=(4m2+n2)(2m+n)(2m-n)。

问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?
答:有完全平方公式。

请写出完全平方公式。

完全平方公式是:
(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2。

这节课我们就来讨论如何运用完全平方公式把多项式因式分解。

和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到
a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

式子
a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式。

运用这两个式子,可以把形式是完全平方式的多项式分解因式。

问:具备什么特征的多项是完全平方式?
答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式。

问:下列多项式是否为完全平方式?为什么?
(1)x2+6x+9; (2)x2+xy+y2;
(3)25x4-10x2+1; (4)16a2+1。

答:(1)式是完全平方式。

因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以
x2+6x+9=(x+3) 。

(2)不是完全平方式。

因为第三部分必须是2xy。

(3)是完全平方式。

25x =(5x ) ,1=1 ,10x =2·5x ·1,所以
25x -10x +1=(5x-1) 。

(4)不是完全平方式。

因为缺第三部分。

请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?
答:完全平方公式为:
其中a=3x,b=y,2ab=2·(3x)·y。

例1 把25x4+10x2+1分解因式。

分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍。

所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式。

解 25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2。

例2 把1- m+ 分解因式。

问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?
答:这个多项式由三部分组成,第一项“1”是1的平
方,第三项“”是的平方,第二项“- m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式。

解法1 1- m+ =1-2·1· +2=2。

解法2 先提出,则
1- m+ = (16-8m+m2)
= (42-2·4·m+m2)
= (4-m)2。

1。

填空:
(1)x2-10x+2=2;
(2)9x2++4y2=2;
(3)1-+m2/9=2。

2。

下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多
项式改变为完全平方式。

(1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;
(4)9m2+12m+4; (5)1-a+a2/4。

3。

把下列各式分解因式:
(1)a2-24a+144; (2)4a2b2+4ab+1;
(3)19x2+2xy+9y2; (4)14a2-ab+b2。

答案:
1。

(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,
2。

2。

(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式。

(2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式。

(3)是完全平方式,a2-4ab+4b2=(a-2b)2。

(4)是完全平方式,9m2+12m+4=(3m+2) 2。

(5)是完全平方式,1-a+a2/4=2。

3。

(1)(a-12) 2; (2)(2ab+1) 2;
(3)(13x+3y) 2; (4)2。

运用完全平方公式把一个多项式分解因式的主要思路与方法是:
1。

首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解。

有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解。

2。

在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b) 2;如果是负号,则用公式a2-2ab+b2=(a-b) 2。

把下列各式分解因式:
1。

(1)a2+8a+16; (2)1-4t+4t2;
(3)m2-14m+49; (4)y2+y+1/4。

2。

(1)25m2-80m+64; (2)4a2+36a+81;
(3)4p2-20pq+25q2; (4)16-8xy+x2y2;
(5)a2b2-4ab+4; (6)25a4-40a2b2+16b4。

3。

(1)m2n-2mn+1; (2)7am+1-14am+7am-1;
4。

(1) x -4x; (2)a5+a4+ a3。

答案:
1。

(1)(a+4)2; (2)(1-2t)2;
(3)(m-7) 2; (4)2。

2。

(1)(5m-8) 2; (2)(2a+9) 2;
(3)(2p-5q) 2; (4)(4-xy) 2;
(5)(ab-2) 2; (6)(5a2-4b2) 2。

3。

(1)(mn-1) 2; (2)7am-1(a-1) 2。

4。

(1) x(x+4)(x-4); (2)14a3 (2a+1) 2。

课堂教学设计说明
1。

利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。

2。

本节课要求学生掌握完全平方公式的特点和灵活运
用公式把多项式进行因式分解的方法。

在教学设计中安排了形式多样的课堂练习,让学生从不同侧面理解完全平方公式的特点。

例1和例2的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用平方公式进行完全因式分解的方法。

相关文档
最新文档