混凝土单筋矩形截面计算
矩形截面单双筋--抗弯抗剪验算(结构设计计算表格)
ρy= 0.36%
压筋配筋率 ρy=Asy/(b*h0)
ξ= 0.137
相对受压区高度 ξ=ρ *fy/(α1*fc)
注意:ξ<ξb,将继续计算!
x=
78 (mm) 受压区高度 x=ξ*h0
注意:x > 2ca,将继续计算!
Mu=
193.4 (kN-m)
双筋矩形截面 Mu
抗弯承载力
116.7 (kN-m)
强度
fy Es
类型 N/mm2 N/mm2 N/mm2
类型
N/mm2 N/mm2
斜截面受剪
截面 尺寸 验算
hw/b
2.825
Vu
403.975
ca=
35 (mm) 混凝土保护层厚度 ca
h0=
565 (mm) 梁有效高度 h0=h-ca
正截面受弯
N=
4
纵向钢筋:4φ18
纵筋根数 N
Vmax
16
均布荷 载下只 配箍筋 计算
1.00
砼强度系 数
1.0<C50<内插<C80<0.8
400 HRB(300,335,400,500) 纵筋强度等级
360 (N/mm2) 纵筋抗拉压强度设计值 fy
200000 (N/mm2)
1.00
受压区等 效
1.0<C50<内插<C80<0.94
0.80
矩形应力 系数
0.8<C50<内插<C80<0.74
C30 14.3 1.43 30000
C35 16.7 1.57 31500
HPB300 HRB335 HRB400 HRB500
受弯构件正截面承载力计算—单筋矩形截面受弯构件
a1 f c bx f y As
直接求得所需的钢筋面积。
并应满足As ≥ minbh;
若≥出现As<minbh时,则应按minbh配筋。
计算步骤4
选择钢筋直径并进行截面布置,得
到实际配筋面积As、as和h0。
截面设计
控制截面
在等截面受弯构件中,指弯矩组合设
计值最大的截面;在变截面受弯构件中,
构件种类
梁
板
纵向受力钢
筋层数
1层
2层
1层
混凝土强度等级
≤ 25
45mm
70mm
25mm
≥ 30
40mm
65mm
20mm
计算步骤2
根据公式
x
M a1 f c bx( h0 )
2
解一元二次方程求得截面受压区高度x,并满足
x b h0
否则应加大截面,或提高fc ,或改用双筋梁。
计算步骤3
单筋矩形截面受弯构件截面复核
(建筑规范)
截面复核:是指已知截面尺寸、混凝土和钢筋
强度级别以及钢筋在截面上的布置,要求计算截面
的承载力Mu或复核控制截面承受某个弯矩计算值M是
否安全。
截面尺寸
已知条件
材料强度级别
钢筋在截面上的布置
钢筋布置
复核内容
配筋率
截面的承载力Mu
复核步骤1
检查钢筋布置是否符合
M u f cd bh02 b 1 0.5 b
当由上式求得的Mu<M时,可采取提高混凝土
级别、修改截面尺寸,或改为双筋截面等措施;
复核步骤五
当x≤ξbh0时,由公式
x
M u f cd bxM u f sd As h0
单筋矩形截面受弯构件基本公式及适用条件
单筋矩形截面受
弯构件基本公式
单筋矩形截面受
弯构件基本公式
及适用条件
适用条件
思考题
由截面上对受压区混凝土合力
作用点的力矩之和等于零的平
衡条件,可得到什么公式?
fsd—普通钢筋的抗拉强度设计值
b—矩形截面的宽度
x—混凝土受压区高度
As—纵向受力钢筋截面面积
根据钢筋混凝土受弯构件按承载能力极限状态设计时的假定,可得出单筋矩形截面
受弯构件正截面承载力计算简图
由截面上对受拉钢筋合力作用点的力矩
之和等于零的平衡条件可以得到:
= −
Mu—计算截面的抗弯承载力
单筋矩形截面受弯构件
基本公式及适用条件
01 基本公式
02 适用条件
基本公式
根据钢筋混凝土受弯构件按承载能力极限状态设计时的假定,可得出单筋矩形截面
受弯构件正截面承载力计算简图
由截面上水平方向内力之和为零的平衡
条件,即ΣH=0,可得 =
fcd—混凝土轴心抗压强度设计值
h0—截面有效高度
根据钢筋混凝土受弯构件按承载能力极限状态设计时的假定,可得出单筋矩形截面
受弯构件正截面承载力计算简图
由截面上对受压区混凝土合力作用点的
力矩之和等于零的平衡条件可以得到:
=
−
适用条件
防止出现超筋梁
≤
§b—相对界限受压区高度
防止出现少筋梁
04 单筋矩形截面正截面承载能力计算
在梁的正截面强度计算中 用等效矩形应力图代替受压 区抛物线应力图,x为等效矩 形应力图的高度,h0为截面 有效高度,它们的比 值:ξ=x/h0, ξ称为相对受压区 高度。
相对受压区高度ξ不仅反映了钢筋与混凝土的面积比(配筋率ρ), 也反映了钢筋与混凝土的材料强度比,是反映构件中两种材料配比 本质的参数。
钢筋混凝土构件在按承载能力极限状态计算时,引入下列假定: ①构件弯曲后,其截面仍保持平面,受压区混凝土平均应变和 钢筋的应变沿截面高度符合线性分布。平截面假定 ②正截面破坏时,构件受压区混凝士应力取抗压强度设计值fcd fcd,应力计算图形为矩形。等效矩形应力图 ③正截面破坏时,受弯、大偏心受压、大偏心受拉构件的受拉 主筋达到抗拉强度设计值fsd ,受拉区混凝土不参与工作(抗剪计算除外)。
2 正截面承载力计算的基本假定
以IIIa阶段作为承载力极限状态的计算依据
(l)上图为钢筋混凝土梁对应三个工作阶段的应变图。由图可见, 梁在第I阶段受压与受拉应变图呈直线分布,说明混凝土与钢筋应 变的变化规律符合平截面假定。随着弯矩的增加,当梁进入第II 阶段时,受压区混凝土压应变与受拉区钢筋拉应变的实测值均不 断增长,但应变图基本上仍是上、下两个三角形,平均应变仍符 合平截面假定。这种状况一直延续至第Ⅲ阶段,即梁破坏前。最 后,当梁破坏时,受压区混凝土边缘纤维压应变达到(或接近)混 凝上受弯时极限压应变,这标志着梁已开始破坏。
(4)由公式fsdAs=fcdbx或fsdAs(h0-x/2)=γ0Md 计算钢筋截面面积As;
(5)根据计算所得和构造要求选择钢筋直径、根数并布置,确定实际的As 实 ;实际采用的钢筋宜为计算所需钢筋截面面积的0.95~1.05倍。
(6)检查假定as是否接近实际,如误差大,重新计算(因为若as假<as实,则
单筋矩形截面计算例题
单筋矩形截面计算例题例题1:某矩形截面梁,截面b×h =300×500,混凝土为C30,该截面承担弯矩为200kNm,配置HRB335级钢筋,请计算该截面所需配置的最小钢筋面积。
ΣM=0 M=а1f c bx(h0-x/2)由于混凝土强度等级为C30,不超过C50,所以а1取为1.0,可以查相应的材料表格,f c=14.3 N/mm2;对于HRB335级钢筋,f y=300 N/mm2。
设受拉区钢筋配置为梁底单排,因此有:h0=h-35=500-35=465mm因此有:200×106 = 14.3×300 × x(465-x/2)解得x=112mm对于计算结果x,进行校核x,防止出现大于x b的情况而超筋。
x b=ξb h0对于C30混凝土与HRB335级钢筋,ξb=0.55。
x b=ξb h0=0.55×465=255.75mm > x,结果满足适筋梁要求。
因此A s =а1f c bx/f y= 14.3×300×112/300=1601.6mm2截面配筋率:ρ=A s/bh0=1601.6/300×465=1.15%>ρmin查钢筋表,对于HRB 335(20MnSi)钢筋,选择4Φ20+2Φ16,A S= 1256+402=1658 mm2>1601.6 mm2,可以满足要求。
通过本例题可以看出,求解方程组必须校核其结果x,只有x< x b才可以作进一步的设计,截面配筋率也必须大于最小配筋率。
同时在解方程时也要注意,由于ΣM=0:M=а1f c bx(h0-x/2)为一个一元二次方程,可能出现两个方程根,根据截面的尺度状况,可以自然约减下去一个根。
例题2:某矩形截面梁,截面b×h =400×600,混凝土为C30,该截面梁底配有双排HRB335级钢筋4Φ25+4Φ20,求该截面能够承担的最大弯矩。
单筋矩形截面受弯构件正截面承载力计算
单筋矩形截面受弯构件正截面承载力计算下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!单筋矩形截面受弯构件正截面承载力计算详解在结构工程中,混凝土受弯构件的承载力计算是至关重要的环节,特别是单筋矩形截面的受弯构件。
矩形截面梁(单筋)抗弯承载力计算表
0.70%
纵筋配筋率 ρ=As/(b*h0)
ρmax
2.40%
最大配筋率 ρmax=ξb*(α1*fc)/fy
ρmin
0.20%
最小配筋率 ρmin=max(0.45ft/fy,0.2%)
注意:ρmin<ρ<ρmax,将继续计算!
ξ=
0.150
相对受压区高度 ξ=ρ*fy/(α1*fc)
x= Mu=
25500
C25 11.9 1.27 28000
C30 14.3 1.43 30000
C35 16.7 1.57 31500
C40 19.1 1.71 32500
C45 21.1 1.8 33500
HPB23 HRB33 HRB40
5
5
0
210 300 360
210000 200000 200000
C50 23.1 1.89 34500
C55 25.3 1.96 3表
C fc= ft= Ec=
35 C?(20,25,30,35,40,45,50,55) 混凝土等级
16.7 (N/mm2
1.57 )(N/mm2
31500
)(N/mm2 )
混凝土抗压强度设计值 fck 混凝土抗拉强度设计值 ft 混凝土弹性模量 Ec
HRB
400 HRB(235,335,400) 纵筋强度等级
强度 类型
fy N/mm2 Es N/mm2
梁截面尺寸
b=
400 (mm)
h=
600 (mm)
ca=
35 (mm)
h0=
565 (mm)
纵向钢筋:5φ20
梁宽度 b 梁高度 h 混凝土保护层厚度 ca 梁有效高度 h0=h-ca
单筋截面计算
3.3单筋矩形截面受弯承载能力计算
(2)查表计算 ①求αs
αs = M/ α1 f cb h0 2 ②查表求ξ 、γs ,教材表3-7(若ξ >ξb ,应加大截面尺寸,或改双筋 ③求As
As = M /fy h0 γs
或 As = ξb h0 α1 f c/fy ④选配钢筋(和公式法相同) 一般情况下接近计算值,范围为5%。 ⑤验算配筋率(和公式法相同)
ρ ≥ ρ min 或 AS ≥ ρ min bh (3-15) 上式说明检验最小配筋率ρ min 时,构件截面应采用全截面面积
3.3单筋矩形截面受弯承载能力计算
(2)基本公式的应用
a.计算表格的编制
上面推导的公式虽可直接计算,但还不方便,设计中为了 方便,常将公式进行改写,并制成表格使用。
令:αs=ξ(1-0.5 ξ )代入(3-11)
◆设计过程应为: αs → ξ → γs → As
3.3单筋矩形截面受弯承载能力计算
◆截面设计步骤 已知弯矩设计值M,混凝土等级和钢筋级别,截面尺寸b、h0。求所
需受拉钢筋面积As。 (1)公式法求解步骤 ①将已知条件代入下列公式求解x及As
α1 f cb x= fyAs M = α1 f cb x(h0-0.5x)= fyAs (h0-0.5x) ②选配钢筋
则有: M = α1 f cb h0 2 αs
αs = M/ α1 f cb h0 2
(3-16)
再令:γs=1-0.5 ξ代入(3-12)
则有:M= fyAs h0 γs
As = M /fy h0 γs
(3-17)
由αs=ξ(1-0.5 ξ )可得: ξ=1-(1-2 αs )0.5
3.3单筋矩形截面受弯承载能力计算
钢筋混凝土受弯构件正截面承载力计算—单筋矩形截面梁计算
受压混凝土的应力-应变关系
计算原则
2)等效矩形应力图
简化原则:受压区混凝土的合力大小不变;受压区混凝土的合力作用点不变。
等效矩形应力图形的混凝土受压区高度 x 1xn ,等效矩形应力图形的应力值 为 1 fc, 1、1 的值见下表。
表 1、1 值
混凝土强 度等级
≤C50
C55
C60
C65
C70
C75
(2)求跨中截面的最大弯矩设计值。
因仅有一个可变荷载,故弯矩设计值应有取下列两者中的较大值:
M 1 1.2g 1.4q l 2
8
1 1.2 5 1.4 10 5.02 62.5
8
M 1 1.35g 1.4 0.7q l 2
8
1 1.35 5 1.4 0.7 10 5.02 51.7
需要加固、补强
计算原则
1)基本假定
01 平截面假定。
02
钢筋的应力 s 等于钢筋应变 s 与其弹性模量 Es 的乘积,但不得大
于其强度设计值 fy,即
s sEs fv
03 不考虑截面受拉区混凝土的抗拉强度。
计算原则
04
受压混凝土采用理想化的应力-应变关系,当混凝土强度等级为
C50及以下时,混凝土极限压应变 cu=0.0033。
(1)受拉钢筋为4 25,As=1964 mm2; (2)受拉钢筋为3 18,As=763 mm²。
单筋矩形截面梁计算
解 查表得:
fc 9.6N/mm2
ft 1.10N/mm2
f y 300N/mm2 c 1.0
b 0.550
c 30mm
单筋矩形截面梁计算
(1)
d
25
h0 h c 2 450 30 2 408
单筋矩形截面梁、板正截面受弯承载力计算教学课件.
0.96
0.76
0.95
0.73
0.94
0.74
水工混凝土结构
1.3 相对受压区计算高度
相对受压区计算高度是等效矩形混凝土受压区计算高度x
与截面有效高度h0的比值,用ξ= x/h0表示。 当梁发生界限破坏时,即受拉钢筋屈服的同时,受压区
混凝土也达到极限压应变εcu。这时混凝土受压区计算高度xb
与截面有效高度h0的比值,称为相对界限受压区计算高度ξb, ξb= xb/h0。这一临界破坏状态,就是适筋梁与超筋梁的界限。
HPB235
≤C50 HRB335 HRB400 RRB400
0.614
0.550 0.518
0.425
0.399 0.384
0.522
0.468 0.440
0.386
0.358 0.343
水工混凝土结构
1.4 受拉钢筋配筋率 受拉钢筋的配筋率ρ是指受拉钢筋截面面积As与截面有效 截面面积bh0比值的百分率,即ρ =As /(bh0 )×100﹪。 通常用ρmax表示受拉钢筋的最大配筋率; 用ρmin表示受拉钢筋的最小配筋率。 当ρ>ρmax时,将发生超筋破坏; 当ρ<ρmin时,将发生少筋破坏; 当ρmin≤ρ≤ρmax时,将发生适筋破坏。 为避免发生超筋破坏与少筋破坏,截面设计时,应控制 受拉纵筋的配筋率ρ在ρmin~ρmax范围内。
水工混凝土结构
2015.03
钢筋混凝土梁板设计
单筋矩形截面梁、板正截面承载力计算
1 正截面承载力计算的一般规定
1.1 计算方法的基本假定
(1) 截面应变保持为平面:
c
x
c
y
c
矩形截面设计
=
f y As α1 fcbh0
(
x
=
ξ h0 )
2. 判别:判别ξ 与ξb
a) 如果ξ ≥ ξb , Mu = α1 fcbh02ξb (1− 0.5ξb ) ;
b) 如果ξ < ξb , Mu = α1 fcbh02ξ (1− 0.5ξ ) ;。
1. 比较: M > Mu ,不安全; M ≤ Mu ,安全。
⎛
⎜
( ) ( ) ⎜
另法:
x
=
h0
⎜1 ⎜
−
⎡ 2 ⎢M 1− ⎢⎣
− α1 fc
b'f − b h'f α1 fcbh02
⎛ ⎜⎜⎝
h0
−
h'f 2
⎞⎤ ⎟⎟⎠⎥⎥⎦
⎞ ⎟ ⎟ ⎟ ⎟
,
x
≤
xb
时,
As
= α1 fcbx + α1 fc fy
b'f − b h'f
⎜⎜⎝
⎟⎟⎠
x > xb 时,截面超筋,应加大截面或提高混凝土强度等级。
2.
比较
M1
与
M
:
M1
=
α1
fcbxb
⎛ ⎜⎝
h0
−
xb 2
⎞ ⎟⎠
a) 如果 M1 ≥ M ,只需配单筋;
b) 如果 M1 < M ,应配双筋。
3.
求
As1
=
α1
fcbxb fy
ቤተ መጻሕፍቲ ባይዱ
4. 求 M 2 、 As' 、 As2
M2 = M − M1
( ) As'
=
f
单筋矩形截面承载能力计算
单筋矩形截面承载能力计算矩形截面通常分为单筋矩形截面和双筋矩截面两种形式。
只在截面的受拉区配有纵向受力钢筋的矩形截面,称为单筋矩形截面(图4-10)。
不但在截面的受拉区,而且在截面的受压区同时配有纵向受力钢筋的矩形截面,称为双筋矩形截面。
需要说明的是,为了构造上的原因(例如为了形成钢筋骨架),受压区通常也需要配置纵向钢筋。
这种纵向钢筋称为架立钢筋。
架立钢筋与受力钢筋的区别是:架立钢筋是根据构造要求设置,通常直径较细、根数较少;而受力钢筋则是根据受力要求按计算设置,通常直径较粗、根数较多。
受压区配有架立钢筋的截面,不是双筋截面。
图4-10 单筋矩形截面根据4.3.1的基本假定,单筋矩形截面的计算简图如图4-11所示。
图4-11 单筋矩形截面计算简图为了简化计算,受压区混凝土的应力图形可进一步用一个等效的矩形应力图代替。
矩形应力图的应力取为α1f c(图4-12),f c为混凝土轴心抗压强度设计值。
所谓“等效”,是指这两个图不但压应力合力的大小相等,而且合力的作用位置完全相同。
图4-12 受压区混凝土等效矩形应力图按等效矩形应力计算的受压区高度x与按平截面假定确定的受压区高度x o之间的关系为:(4-7)系数α1和β1的取值见表4-2。
系数α1和β1的取值表表4-2≤C50C55 C60 C65 C70 C75 C80α1β10. 8◆基本计算公式由于截面在破坏前的一瞬间处于静力平衡状态,所以,对于图4-12 的受力状态可建立两个平衡方程:一个是所有各力的水平轴方向上的合力为零,即(4-8)式中b——矩形截面宽度;A s——受拉区纵向受力钢筋的截面面积。
另一个是所有各力对截面上任何一点的合力矩为零,当对受拉区纵向受力钢筋的合力作用点取矩时,有:(4-9a)当对受压区混凝土压应力合力的作用点取矩时,有:(4-9b)式中M——荷载在该截面上产生的弯矩设计值;h o——截面的有效高度,按下计算h o=h-a s。
单筋矩形截面受弯构件正截面承载力计算
As2fy
b
(c)
43
问题: 在T形截面设计时, 怎样利用单筋矩形截面的
表格 (, , )。
M=M1 + M2
As=As1 + As2
M1
1
fc
(bf
b)hf (h0
hf 2
)
As1
1
fc (bf fy
b)hf
M2 M M1
s2
M2
1 fcbh02
2
As2
1 fcb2h0
fy
但对于更高强度的钢材由于受砼极限压应变
的限值, fy'最多为400N/mm2。
20
4.5.3 基本公式的应用
截面设计 截面复核 截面设计:
又可分As和As均未知的情况I和已知As 求As‘的情况II。
21
情况I: 已知, bh, fcm, fy, fy ' 求As及As'
解: • 验算是否能用单筋: Mmax= α1fc bh02b(10.5b)
或
M = As fy h0(1- 0.5)
15
令 s = (10.5)
s = 10.5 , s, s之间存在一一对应的关系, 可预先制
成表待查, 因此对于设计题:
s
M
1 fcbh02
对于校核题:
As
1 fcbh0
fy
As fy 1 fcbh0
s (1 0.5 )
Mu 1 fcbh02s
16
As bh0
min和x
xb (或
b )
• 若Mu M,则结构安全
当 < min Mu = Mcr = m ftw0
当 x > xb Mu = Mmax = α1fcbh02b(1-0.5b)
第三章 第四节 单筋矩形截面受弯构件正截面承载力计算
Mu
xc
C
Z
x 0 T C
xt
h0
Tc T s
M 0
M u TZ CZ
设AS—钢筋的面积;fy—钢筋的屈服强度,T= ASfy 。 Z和C与压区高度及压区应力分布有关。
第四节
单筋矩形截面受弯构件正截面承载力计算
b x h
一、计算基本公式及适用条件
基本公式 h0 受弯构件正截面承载能力计算,应满足作用 在结构上的荷载在结构截面中产生的弯矩设计 值M不超过按材料的强度设计值计算得到的受 as 弯构件承载能力设计值Mu, 即:M ≤ Mu
h0——截面有效高度, h0=h-as h——截面高度 as ——受拉钢筋合力点至混凝土受拉边缘的距离,初步计算时,对 于C25~C45等级的混凝土,可按35mm(单排受拉筋)、60mm(双排受拉 筋)、20mm(平板)取值。
第四节 单筋矩形截面受弯构件正截面承载力计算 一、计算基本公式及适用条件
◆ 例题3-1
解:查表得: fc=9.6N/mm2 ,; fy=300N/mm2 ; ξb=0.55;截面有效 高度 h。=500-40=460mm ;纵向受拉钢筋按一排放置,则梁的有效 高度h0=500—40=460mm。 1.计算受压区高度x
f y As 300 804 x 125.6mm b h0 0.55 460 253mm 1 f cb 1.0 9.6 200
第四节 单筋矩形截面受弯构件正截面承载力计算 一、计算基本公式及适用条件
第四节 单筋矩形截面受弯构件正截面承载力计算 一、计算基本公式及适用条件
单筋矩形截面 仅在受拉区布置纵向受力钢筋的矩形截面 双筋矩形截面 同时在受拉区和受压区布置纵向受力钢筋的矩形截面
3.2正截面承载力计算
3.2-正截面承载力计算3.2 正截面承载力计算钢筋混凝土受弯构件通常承受弯矩和剪力共同作用,其破坏有两种可能:一种是由弯矩引起的,破坏截面与构件的纵轴线垂直,称为沿正截面破坏;另一种是由弯矩和剪力共同作用引起的,破坏截面是倾斜的,称为沿斜截面破坏。
所以,设计受弯构件时,需进行正截面承载力和斜截面承载力计算。
一、单筋矩形截面1.单筋截面受弯构件沿正截面的破坏特征钢筋混凝土受弯构件正截面的破坏形式与钢筋和混凝土的强度以及纵向受拉钢筋配筋率ρ有关。
ρ用纵向受拉钢筋的截面面积与正截面的有效面积的比值来表示,即ρ=As/(bh0),其中A s为受拉钢筋截面面积;b为梁的截面宽度;h0为梁的截面有效高度。
根据梁纵向钢筋配筋率的不同,钢筋混凝土梁可分为适筋梁、超筋梁和少筋梁三种类型,不同类型梁的具有不同破坏特征。
①适筋梁配置适量纵向受力钢筋的梁称为适筋梁。
适筋梁从开始加载到完全破坏,其应力变化经历了三个阶段,如图3.2.1。
第I阶段(弹性工作阶段):荷载很小时,混凝土的压应力及拉应力都很小,应力和应变几乎成直线关系,如图3.2.1a。
当弯矩增大时,受拉区混凝土表现出明显的塑性特征,应力和应变不再呈直线关系,应力分布呈曲线。
当受拉边缘纤维的应变达到混凝土的极限拉应变εtu时,截面处于将裂未裂的极限状态,即第Ⅰ阶段末,用Ⅰa表示,此时截面所能承担的弯矩称抗裂弯矩M cr,如图3.2.1b。
Ⅰa阶段的应力状态是抗裂验算的依据。
第Ⅱ阶段(带裂缝工作阶段):当弯矩继续增加时,受拉区混凝土的拉应变超过其极限拉应变εtu,受拉区出现裂缝,截面即进入第Ⅱ阶段。
裂缝出现后,在裂缝截面处,受拉区混凝土大部分退出工作,拉力几乎全部由受拉钢筋承担。
随着弯矩的不断增加,裂缝逐渐向上扩展,中和轴逐渐上移,受压区混凝土呈现出一定的塑性特征,应力图形呈曲线形,如图3.2.1c。
第Ⅱ阶段的应力状态是裂缝宽度和变形验算的依据。
当弯矩继续增加,钢筋应力达到屈服强度f y,这时截面所能承担的弯矩称为屈服弯矩M y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单筋矩形截面计算框图
整理ppt
3
第4章 受弯构件正截面承载力
3 截面复核
已知:b 、h 、A s 、f y 、f c 、M u、 s 求: M u 未知数: x 、M u
基本公式: 1fcbxfyA s MM u1fcbx(h02 x)fyA s(h02 x)
(1)当 x bh0且 As mibn h时,用基本公式直接计算 M u ;
整理ppt
7
整理ppt
8
整理ppt
9
第4章 受弯构件正截面承载力(选讲)
应用(选讲)
整理ppt
10
4.4 单筋矩形截面受弯承载力计算
(2)当 x bh0时,说明是超筋梁,取 x bh0,M u sm ax 1fcbh02;
(3)当 As minbh时,说明是少筋梁,分别按素混凝土构件和钢筋
混凝土构件计算 M
,取小值。
u
整理ppt
4
4.4 单筋矩形截面受弯承载力计算
第4章 受弯构件正截面承载力
4 截面设计
已知:M 、b 、h 、f y 、f c 、 s 求: A s 未知数:x 、A s 。 基本公式:
(1) s
M = 1 fcbh02
, 1 12s
(2)当 b 时,说明是超筋梁,改用双筋梁或增大截面尺寸重新计算;
(3)当 b时,说明是少筋梁, 取 As minbh。
整理ppt
5
4.4 单筋矩形截面受弯承载力计算
整理ppt
6
第4章 受弯构件正截面承载力
1 基本计算公式
整理ppt
1
4.4 单筋矩形截面受弯承载力计算
第4章 受弯构件正截面承载力
2 适用条件
防止发生超筋破坏
xbh0 或 b
As
bh0
max
b
1 fc
fy
MMu smax 1fcbh02
或 s smax
防止发生少筋破坏
As mibn h
整理ppt
2
4.4 单筋矩形截面受弯承载力计算